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ABSTRACT Compared with the conventional multi-scroll attractor, the multi-wing butterfly chaotic attrac-
tors are easier to design and implement through analog circuitry, thus they has more potential applications.
To explore the dynamic property of the multi-wing butterfly system and its application to image encryption.
A chaotic system with four-wing attractors is designed and the dynamic behaviors are analyzed in terms
of phase diagram, bifurcation diagram, Lyapunov exponential spectrum and C0 structural complexity. It is
found that each parameter has a large range of intervals that can keep the system in the chaotic state
and the generated sequences have sufficient pseudorandom to be well suited for application in secure
communications. Then, the circuit model of the constructed four-wing chaotic system is built with a basic
operational amplifier circuit, and the accuracy of the circuit implementation is verified. Finally, a color image
compression encryption scheme is designed based on the theory of compressive sensing and DNA dynamic
coding. The algorithm is mainly composed of five parts: sparse, compression calculation, 3D projection
scrambling, DNA diffusion and plaintext association confusion. The security test results show that the
designed scheme not only has superior compression performance and high security, but also has no limitation
on the size of the test image.

INDEX TERMS Four-wing attractor, compressive sensing, DNA encoding, color image encryption, multi-
sim circuit simulation.

I. INTRODUCTION
With the rapid development of electronic information tech-
nology, a lot of image information is continuously transmitted
and stored all the time [1], [2], [3], [4], [5]. And there is no
shortage of image communication containing some extremely
secret and important information. Once the information is
leaked, it will cause irreversible effects. For example, if the
images involving military information or medical informa-
tion are leaked or tampered with, it will threaten the security
of individuals and even the country. Then how to ensure the
security of image information in the transmission process
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becomes an important issue that people pay attention to. It is
worth mentioning that with its inherent ergodicity, random-
ness and sensitivity to initial conditions, chaotic systems are
widely used in the field of image encryption [6], [7], [8], [9],
[10], [11], [12], [13], [14], [15].

DNA technology has the advantages of high parallelism
and high information density. To improve the security, some
researchers have combined DNA technology with chaotic
encryption [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28]. Xiong et al. [16] proposed a
memristor circuit system and designed an image encryption
algorithm to verify the image encryption application of the
memristive system based on DNA variation. Shi et al. [17]
constructed a fractional hyper-chaotic system and designed a

VOLUME 12, 2024

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 2573

https://orcid.org/0000-0001-7913-8093
https://orcid.org/0000-0003-2424-4870
https://orcid.org/0000-0002-9454-4919


L. Zhang, X.-L. An: Dynamic Analysis of a Four-Wing Chaotic System and Application

color image encryption scheme combine with DNA dynamic
coding. In the literature [18], a three-dimensional discrete
hyperchaotic map is introduced on the basis of the Marotto
theorem and then an improved color image encryption
scheme is designed. A color image cryptosystem based on
dynamic DNA encryption and chaos is presented in the lit-
erature [19]. Different from the traditional DNA sequence
operation according to binary calculation, a diffusion pattern
based on random numbers related to plaintext is proposed.
Chen et al. [20] cracked an image encryption scheme based
on two-dimensional Hénon-sin map and DNA encoding. The
proposed concept of extending DNA encryption to s-box
replacement is expected to contribute to the security eval-
uation and theoretical design of future DNA-based image
encryption schemes. Belazi et al. [21] proposed a new
chaos-based medical images encryption scheme which is
based on the combination of chaos andDNA computation and
follows a permutation-substitution-diffusion structure.

Performing the corresponding compression operation
before image encryption can effectively reduce the stor-
age and transmission costs. Since compressive sensing (CS)
theory was proposed in 2006 [29], many image encryp-
tion schemes based on CS theory have been proposed [30],
[31], [32], [33], [34], [35], [36], [37], [38], [39]. In the
literature [30], an image encryption algorithm based on CS
theory and hyperchaotic map is presented, including permu-
tation, compression and diffusion processes. Yang et al. [31]
defined a fractional-order memristor chaotic circuit system
and introduced a new color image compression and encryp-
tion algorithm based on the constructed circuit system. Based
on a four-wing hyperchaotic system combining CS theory
and DNA coding, an image encryption scheme is proposed
in the literature [32]. The measurement matrix is constructed
by combining the Kronecker product (KP) with the chaotic
system, and the KP is used to extend the low-dimensional
seed matrix to the high-dimensional measurement matrix.
In order to reduce the storage space of the measurement
matrix and improve memory usage, Wen et al. [33] proposed
a CS strategy based on the semitensor product and submitted
an image compression encryption scheme with visual secu-
rity. In the literature [34], an efficient image compression
and encryption algorithm based on chaotic system and CS
theory is introduced to overcome the drawback that linear
image encryption systems are vulnerable to selective plain-
text attacks and to reduce the correlation between encrypted
image pixels. To improve the security of the image encryp-
tion system, Gong et al. [35] proposed an optical image
compression encryption scheme based on CS theory and
RSA public-key cryptographic algorithm, which uses the
optical compression imaging system to sample the original
image.

In order to improve the security of the encryption
algorithm while saving transmission bandwidth and storage
space, a color image compression and encryption scheme is
designed in this paper. The algorithm is mainly composed
of five parts: sparse, compression calculation, 3D projection

scrambling, DNA diffusion and plaintext association confu-
sion. The main contributions are as follows.

(1) A four-wing chaotic system is constructed and its com-
prehensive dynamics analysis are realized. The simulation
results show that the system has complex dynamic behavior
and enough randomness to be applied to the field of chaotic
cryptography. The circuit design and Multisim simulation
results are in good agreement with the theoretical analysis
results.

(2) Based on CS theory and DNA coding technol-
ogy, a color image compression and encryption scheme is
designed. The proposed 3D projection confusion scheme can
effectively minimize the correlation between the components
of color images.

(3) The experimental results show that the encryption
scheme has excellent compression and encryption effects and
good practical application prospects.

The rest parts are arranged as follows. Section II con-
structed a four-wing chaotic system and explored the
basic properties. In Section III, some detailed analysis of
the model dynamic behavior is investigated and the ana-
log circuit of the system is designed and implemented
through the Multisim platform. Section IV gives some basics
and the designed image compression encryption scheme.
In Section V, a detailed analysis of the security performance
of the algorithm is provided. Finally, Section VI gives some
conclusions.

II. THE FOUR-WING CHAOTIC SYSTEM AND ITS BASIC
PROPERTIES
A. MATHEMATICAL MODEL
The 4D autonomous system is described by:

ẋ = −ax + ez− yzw
ẏ = −by+ fw− xzw
ż = c(w− z) − xyw
ẇ = d(w+ z) + xyz

(1)

where x, y, z,w are the state variables and a, b, c, d, e, f are
real parameters. Especially, every equation contains a cube,
which ensure the system can exhibit abundant dynamical
behaviors.

B. SYMMETRY AND DISSIPATION
When the transformation is (x, y, z,w)→ (−x, −y, −z, −w),
system (1) is symmetric. That is to say, the system is symmet-
ric about the origin.

For the system, we have

∇V (t) =
∂ ẋ
∂x

+
∂ ẏ
∂y

+
∂ ż
∂z

+
∂ẇ
∂w

= −a− b− c+ d (2)

where V (t) denotes the volume of the region in R3

with smooth boundaries. It is well known that V (t) =

exp(et)V (0) by Liouville’s theorem, which means that any
volume in R3 will shrink to zero exponentially and rapidly.
When −a − b − c + d < 0, ∇V (t) < 0. Therefore, in order
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to ensure the dissipation, the selection of parameters in this
paper needs to meet the condition −a− b− c+ d < 0.

C. EQUILIBRIUM AND STABILITY
Setting 

−ax + ez− yzw = 0
−by+ fw− xzw = 0
c(w− z) − xyw = 0
d(w+ z) + xyz = 0

(3)

Obviously, S0 = [0, 0, 0, 0] is one equilibrium. Further-
more, one can obtain

A
2d
z4 − fBz2 − bC = 0

x = Az

y =
C
z

w = −Bz

(4)

where A = (e ±

√
de2+2ac(c+3d±

√
c2+d2+6cd)

d )/2a,B =

c + d ±
√
c2 + d2 + 6cd/2d and C = a(c − d ±

√
c2 + d2 + 6cd)/(e±

√
de2+2ac(c+3d±

√
c2+d2+6cd)

d ).

Setting
√
c2 + d2 + 6cd = g , c+3d+g = p, c+3d−g =

q, c + d + g = m, c + d − g = n, c − d + g = s, c − d −

g = t,
√
f 2(c+ d ± g)2 + 4bd(c+ d ± g)(c− d ± g) = k,

e±
√
de2 + 2ac(c+ 3d ± g)

/
d = h, fm+k = l, fm−k = r .

Then one can get

x11=

√
ahl

/
m

/
2a, x12=

√
ahr

/
m
/
2a, x13=

√
ahl

/
n
/
2a,

x14 =

√
ahr

/
n
/

2a, x21 =

√
am

/
hl, x22 =

√
am

/
hr,

x23 = s
√
an

/
hl, x24 = s

√
an

/
hr, x31 =

√
al

/
hm,

x32 =

√
ar

/
hm, x33 =

√
al

/
hn, x34 =

√
ar

/
hn,

x41 = −

√
aml

/
h
/

2d, x42 = −

√
amr

/
h
/

2d,

x43 = −

√
anl

/
h
/

2d, x44 = −

√
anr

/
h
/

2d .

From the above analysis, it can be seen that the system has
nine equilibria which can be divided into the following five
groups:

(1) The first group of equilibria is S1= [x11, x21, x31, x41]
and S2 = −S1;
(2) The second group of equilibria is S3 = [x12, x22,

x32, x42] and S4 = −S3;
(3) The third group of equilibria is S5 = [x13, x23,

x33, x43] and S6 = −S5;
(4) The fourth group of equilibria is S7 = [x14, x24, x34,

x44] and S8 = −S7;
(5) The fifth group of equilibrium is the origin.

When a = 9, b = 38, c = 50, d = 5, e = 5, f = 2, the
nine equilibria are

S0 = (0,0,0,0), S1 = (4.5,-3.7,2.6,5.3),

S2 = (3.5,5.2,-1.8,4.2), S3 = (-14.5,-10,-5.4,1.2),

S4 = (-15.1,11.2,4.9,1.3), S5 = (-4.5,3.7,-2.6,-5.3),

S6 = (-3.5,-5.2,1.8,-4.2), S7 = (14.5,10,5.4,-1.2),

S8 = (15.1,-11.2,-4.9,-1.3).

Since the system is symmetrical about the origin,
we only need to analyze the stability of equilibrium points
S0, S1, S3, S5 and S7.
Linearizing the Eq. (3) at the equilibrium point S0, the

Jacobian matrix is obtained as

JS0 =


−9 0 5 0
0 −38 0 2
0 0 −50 50
0 0 5 5

 (5)

And its characteristic equation is

(λ + 9)(λ + 38)(λ 2
+ 45λ − 500) = 0 (6)

Obviously, there are four nonzero eigenvalues λ 1
0 = −9,

λ 2
0 = −38, λ

3
0 = −54.22, λ 4

0 = 9.22. According to
the Routh-Hurwitz criterion, the equilibrium point S0 is an
unstable saddle point.

Similarly, the eigenvalues at the equilibrium point S1 are
λ 1
1 = −35.85, λ 2

1 = −69.53, λ
3,4
1 = 6.69 ± 28.83i. Obvi-

ously, there are two conjugate complex roots with positive
real part, and two real roots which is less than zero, according
to Routh-hurwitz criterion, the equilibrium point S1 is an
unstable node focus.

And at the equilibrium points S3, S5 and S7, the character-
istic roots of them are calculated to be

λ
1
3 = −35.07, λ

2
3 = −63.22, λ

3,4
3 = 3.15 ± 8.02i;

λ
1,2
5 = −20.21 ± 144.37i, λ

3,4
5 = −30.79 ± 8.33i;

λ
1
7 = −17.85, λ

2
7 = −65.62, λ

3,4
7 = −4.26 ± 187.58i.

According to Routh-Hurwitz criterion, S3 is unstable node
focus, S5 is stable focus and S7 is stable node focus.

III. DYNAMICS ANALYSIS
In this section, the dynamical properties of the system (1) are
analyzed in detail by means of phase diagrams, bifurcation
diagrams, Lyapunov exponent spectrum, and C0 structural
complexity. It is worth noting that in the following numerical
calculations, the fourth Runge-Kutta algorithm is used for the
solution. In addition, for the convenience of discussion, the
initial values of the system are fixed as (0.1, 0.2, 0.3, 0.4).

A. PHASE DIAGRAM
The phase diagram can be used to visualize the motion of the
system and then the reciprocating aperiodicmotion character-
istics of chaotic motion can be observed. And in finite phase
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FIGURE 1. Typical chaotic attractors (a) x-z plane, (b) x-w plane, (c) z-w plane.

space, the larger the space occupied by the system trajectory,
the better the randomness and ergodicity of the system.

In this section, the system parameters are selected as
a = 9, b = 38, c = 50, d = 5, e = 5, f = 2.
Several typical chaotic attractors of the system are obtained
by numerical simulation as shown in Fig.1. As can be seen
from the figure, the chaotic attractors of the system occupy
a considerable space, indicating that the system has excellent
ergodicity in terms of obtaining chaotic sequences with better
pseudorandom properties.

B. BIFURCATION DIAGRAM
The variation of the systemwith parameters can be visualized
from the bifurcation diagram. When the control parameters
are changed, the motion state of the system will be changed
essentially.

Fig. 2 gives the bifurcation diagram with different param-
eter intervals. It can be seen from the figure that the output
trajectory points of the system are randomly distributed
with alternating periodic and chaotic windows over different
parameter ranges, and there is always a large chaotic cross-
section. In addition, one can also observe various bifurcation
behaviors such as folding bifurcation, tangent bifurcation
and internal crisis bifurcation. In other words, the system
has relatively complex dynamic behavior and has enough
potential to be applied in the field of secure communication.

C. LYAPUNOV EXPONENT SPECTRUM (LEs)
Lyapunov exponent describes the time asymptotic separation
rate of adjacent trajectories in the dynamic system, which
can be used as an important index to distinguish whether
the system is chaotic. And the positive Lyapunov exponent
usually indicates that the system is chaotic.

Take the system parameter as a = 9, b = 38, c = 50,
d = 5, e = 5, f = 2. After calculation, the Lyapunov
exponent of the system is λ1 = 3.0697, λ2 = 0, λ3 =

−37.7339, λ4 = -57.3261. And according to Kaplan-Yorke
conjecture, the corresponding Lyapunov dimension is DL =

2.0814. Obviously, the system is chaotic under this set of
parameters.

The LEs with different parameters are given in Fig. 3.
It should be noted that the third and fourth exponents are

FIGURE 2. Bifurcation diagram with (a) a ∈ [5, 20], (b) b ∈ [0, 40],
(c) c ∈ [5.5, 50], (d) d ∈ [5, 25], (e) e ∈ [0, 10], (f) f ∈ [0, 30].

always much smaller than zero, so they are omitted from the
figure. As can be seen from the figure that system always has
a positive Lyapunov exponent within a large range of param-
eters. That is to say the system has a large chaotic interval
and thus has the potential to generate chaotic sequences with
a higher degree of randomness. More importantly, it can be
observed that the LEs and the bifurcation diagrams change in
a consistent manner.

D. COMPLEXITY CHAOTIC DIAGRAM OF DIFFERENT
PARAMETER
In fact, the complexity of a chaotic system is one of the
methods to portray its dynamics and has the same obser-
vation as phase diagram, bifurcation diagram and LEs.
Complexity is the degree to which a chaotic sequence
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FIGURE 3. LEs with (a) a ∈ [5, 20], (b) b ∈ [0, 40], (c) c ∈ [5.5, 50],
(d) d ∈ [5, 25], (e) e ∈ [0, 10], (f) f ∈ [0, 30].

is close to a random sequence. In general, the larger
the value of complexity is, the closer the sequence is to
a random sequence and the higher the corresponding security.
Therefore, complexity is an important indicator for testing
the randomness of a sequence. Moreover, the complexity of
chaotic sequences is divided into behavioral complexity and
structural complexity.Where, the structural complexity refers
to the complexity of a sequence by analyzing the frequency
characteristics and energy spectrum characteristics in the
transform domain. The more balanced the energy spectrum
distribution in the transform domain of the sequence, the
closer the original sequence is to the random signal, and the
higher the complexity of the sequence. More importantly,
compared with the behavioral complexity, the structural com-
plexity has more global statistical significance.

In this section, the complexity of the system is analyzed by
the C0 structural complexity algorithm. The main calculation
idea of C0 complexity is to decompose the sequence into
regular and irregular components, and its measurement value
is the proportion of irregular components in the sequence. The
specific calculation steps are as follows.

Step 1 The discrete Fourier transform is applied to the
chaotic pseudo-random sequence {x(n)}N−1

0 with length of N
by

X (k) =

N−1∑
n=0

x(n)e−j
2π
N nk

=

N−1∑
n=0

x(n)W nk
N (7)

where k = 0, 1, . . . ,N − 1.

Step 2 Let the mean square value of {X (k)}N−1
0 be

GN =
1
N

N−1∑
k=0

|X (k)|2 (8)

The parameter r is introduced to retain the spectrum that
exceeds r times than the mean square value, and the rest is
regarded as zero, that is

X̃ (k) =

{
X (k), |X (k)|2 > rGN
0, |X (k)|2 ≤ rGN

(9)

Step 3 The inverse Fourier transform is applied to X̃ (k) as

x̃(n) =
1
N

N−1∑
k=0

X̃ (k)ej
2π
N nk

=
1
N

N−1∑
k=0

X̃ (k)W−nk
N (10)

where n = 0, 1, . . . ,N − 1.
Step 4 Define C0 complexity as

C0(r,N ) =

N−1∑
n=0

|x(n) − x̃(n)|2 /

N−1∑
n=0

|x(n)|2 (11)

Keep the initial value of the system unchanged and some
classic complexity chaotic images are shown in Fig. 4. The
depth of the image color represents the complexity of the
chaotic system under this parameter range. The darker color
indicates the higher complexity value of the system and the
corresponding sequence randomness. On the contrary, the
lighter the color, the lower the complexity value is gotten and
the worse the sequence randomness is. It can be seen from
the figure that the system is in the chaotic state within a large
range of parameters. In addition, one can also observe that the
C0 complexity diagrams are consistent with the bifurcation
diagrams and LEs diagrams.

E. CIRCUIT DESIGN FOR THE CHAOTIC ATTRACTOR
The dynamics of many chaotic systems are validated by
Circuit realization [43]. To made the experiments effectively,
so the variation of state variables is kept within the tolerable
voltage range for integrated circuit. Reduce the chaotic output
level to 1/200 of the original one, and set m = 200x, n =

200y, u = 200z, v = 200w. Because the transformations of
system variable do not affect the state and function, so let
x1 = m, x2 = n, x3 = u, x4 = v. The original system is
described 

ẋ1 = −ax1 + ex3 − 40000x2x3x4
ẋ2 = −bx2 + fx4 − 40000x1x3x4
ẋ3 = c(x4 − x3) − 40000x1x2x4
ẋ4 = d(x4 + x3) + 40000x1x2x3

(12)
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FIGURE 4. C0 complexity with (a) a ∈ [5, 20], b ∈ [0, 40], (b) a ∈ [5, 20],
c ∈ [5.5, 50], (c) a ∈ [5, 20], e ∈ [0, 10], (d) a ∈ [5, 20], f ∈ [0, 30],
(e) b ∈ [0, 40], d ∈ [5, 25], (f) b ∈ [0, 40], e ∈ [0, 10].

Based on the circuit theory and characteristics of compo-
nents, the circuit equations is

U̇1=−
R4R7

R1R5R6C1
U1+

R4
R2R5C1

U3−
R4R17

R3R5R13C1
U2U3U4

U̇2=−
R11R44

R8R12R13C2
U2+

R11
R9R12C2

U4−
R11R28

R10R12R27C2
U1U3U4

U̇3=
R18

R15R19C3
(U4−U3)−

R7R18
R6R17R19C3

U1U2U4

U̇4=
R25

R22R26C4
(U4+U3)−

R25
R24R26C4

U1U2U3

(13)

Based on electronic circuitry design Principle and circuit
equations, the designed circuit is shown in Fig. 5. The whole
circuit consists of four parts: add and subtract operational
circuit, integral circuit, inverting circuits and multiplication
circuit. On the circuit, the model operational amplifier is
TL084CN, the model multipliers is AD633, value of voltage
is 12V.

Based on the above figure, build a circuit platform and test
the circuit. Then get the Multisim11.0 simulation figure on
the oscilloscope as shown in Fig.6. Obviously, the simulation
figure in Fig.1 and Fig.6 are consistent.

IV. APPLICATION IN IMAGE ENCRYPTION
A. PRELIMINARY KNOWLEDGE
1) COMPRESSIVE SENSING
From CS theory, the original signal can be reconstructed
with high probability using a small fraction of non-adaptive

FIGURE 5. Circuit implementation of the 4D chaotic system.

projection values when the sparse signal is sampled at a
sampling rate well below Nyquist. The main principle can be
expressed as follows: the high-dimensional sparse signal is
transformed into a low-dimensional signal using an observa-
tion matrix independent of the transformation basis, and then
a small amount of high probability signal in that is used to
reconstruct the original signal.

For an. N × 1.dimensional signal x = [x(1), x(2), . . . ,
x(N )]T , it can be expressed as

x = 9α =

N∑
i=1

9iαi (14)

where9i is the i-th column of9 and α representsN×1 coef-
ficient vector. If there are only k non-zero elements in α, the
vector x is called k-sparse. The common sparse transform
methods primarily include discrete cosine transform (DCT),
Fourier transform and discrete wavelet transform (DWT).
And the operation of obtainingM measurements from x is

y = 8x = 89α = 2α (15)

where 8 denotes the measurement matrix of size M × N
and 2 = 89 means the sensing matrix with size M × N .
IfM ≪ N , then x can be considered as a linearly descending
function from RN to RM .

The process of signal reconstruction is actually that of
finding the optimal solution to the underdetermined equation.
Since the number of measurements M in Eq. (13) is much
smaller than the length N of the signal, Eq. (13) is considered
as an underdetermined equation, which usually has infinite
number of solutions. Only when the measurement matrix
8 satisfies the Restricted Isometry Property (RIP) can it be
ensured that Eq. (13) has only one k-sparse solution.
If for all k-sparse signals x, there exists δk ∈ (0, 1), such

that the following inequality holds

(1 − δk )||x||22 ≤ ||2x||22 ≤ (1 + δk )||x||22 (16)
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FIGURE 6. Experimental observations of the chaotic attractor in different planes, (a) U1 − U3(500mV /Div, 500mV /Div ),
(b) U1 − U4(500mV /Div, 500mV /Div ), (c) U3 − U4(500mV /Div, 500mV /Div ).

where δk denotes RIP constant of the sensing matrix 2. Then
2 is described as satisfying the k order RIP [40].
And α can be accurately reconstructed by

α̂ = argmin ||α||0, s.t. y = 89α = 2α (17)

where α = (α1, α2, . . . , αN ), and ||α||0 denotes the number
of non-zero elements in the vector α.

2) CHAOS-BASED MEASUREMENT MATRIX
In this paper, the measurement matrix 8 is obtained from
the four-wing chaotic system and Hadamard matrix, and the
specific steps are as follows.

Step 1 Firstly, the initial values are set and the system is
allowed to iterate m+ M times and the previous m values are
discarded to obtain chaotic pseudo-random sequences X , Y ,
Z of lengthM . WhereM = floor(cr ∗H ),floor(x) represents
the maximum integer smaller than or equal to x, cr denotes
compression ratio and H stands for the length of the test
image.

Step 2 Then the sequences s1, s2, s3 are obtained by
arranging the elements of X ,Y ,Z in the order from highest
to lowest.

Step 3 Finally, Hadamard matrices phi(M × W ), i =

1, 2, 3 are generated using the seed
(

−1 1
1 −1

)
, and the

measurement matrix 8i(M ×W ), i = 1, 2, 3 is obtained by
81(i, 1 : W )=ph1(s1(i), 1 : W )
82(i, 1 : W )=ph2(s2(i), 1 : W )
83(i, 1 : W )=ph3(s3(i), 1 : W ),

i=1, 2, . . . ,M (18)

whereW is the width of the test image.

3) DNA ENCODING AND DECODING RULES
The DNA sequence is made of four nucleic acid bases,
adenine (A), thymine (T), cytosine (C) and guanine (G).
In effect, A and T are complementary, while C and G are
complementary. In the theory of computers, information is
typically represented in binary, while in the theory of DNA
coding it is represented by A, T, C and G. Since 0 and 1 are
complementary in binary, it can be assumed that 00 and 11 are

complementary, and 01 and 10 are complementary. Thus,
when 00, 01, 10 and 11 are used to encode A, T, C and G,
there are 24 encoding rules, but only eight of them match
the Watson-Crick complementary rule [41], as presented in
Table 1. In addition, the DNA decoding rules are opposite to
the encoding rules.

TABLE 1. DNA encoding rules.

4) DNA ADDITION AND SUBTRACTION RULES
The rules of addition and subtraction of DNA sequences
can be inferred from that operations of binary numbers
0 and 1. Therefore, according to the above DNA coding rules,
eight DNA addition and subtraction rules can be accessed,
as shown in Table 2.

TABLE 2. DNA addition and subtraction rules.

5) DNA COMPLEMENTARY RULE
For every nucleotide xi, the DNA complementary rule [42] is
governed by{

xi ̸= L(xi) ̸= L(L(xi)) ̸= L(L(L(xi)))
xi = L(L(L(L(xi))))

(19)

where xi and L(xi) are a couple of complementary nucleic acid
bases that satisfy single mapping. Six pairs of complementary
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bases can be obtained from Eq. (19) as:

(1) L1(A) = T ,L1(T ) = C,L1(C) = G,L1(G) = A

(2) L2(A) = T ,L2(T ) = G,L2(G) = C,L2(C) = A

(3) L3(A) = C,L3(C) = T ,L3(T ) = G,L3(G) = A

(4) L4(A) = C,L4(C) = G,L4(G) = T ,L4(T ) = A

(5) L5(A) = G,L5(G) = T ,L5(T ) = C,L5(C) = A

(6) L6(A) = G,L6(G) = C,L6(C) = T ,L6(T ) = A

where Li, i = 1, 2, . . . , 6 is the ith complement rule. It is
worth noting that after the basic DNA encoding operation,
this paper will then randomly select a complementary princi-
ple for further diffusion of the pixel values.

6) THE 3D PROJECTION CONFUSION
Aiming at the problem of high pixel correlation between color
image components, a 3D projection scrambling scheme is
designed. The component matrices R,G and B of the color
image can be regarded as the three mutually vertical planes
in a cube, as shown in Fig. 7.
Assume that a point (X (i),Y (i),Z (i)) exists in space, then it

is projected ontoR,G andB plane asR(X (i)),G(Y (i)),B(Z (i)).
Then the scrambling method can be chosen randomly based
on the chaotic sequence, as described in Section IV-B.

FIGURE 7. Schematic diagram of 3D projection.

B. ENCRYPTION ALGORITHM DESCRIPTION
The dynamic analysis in Section III indicates that the sys-
tem (1) has complex dynamics performance to be applied in
image encryption. In this section, a color image encryption
scheme based on CS theory and DNA dynamic encoding is
designed. The algorithm consists of sparse, CS calculation,
3D projection confusion, DNA diffusion and plaintext asso-
ciation scrambling. Fig. 8 displays the major process of the
designed encryption algorithm, which is detailed as described
below.

Step 1 Input the original color image I (3 × H × W ) and
decompose it into red, green and blue parts to obtain matrices
R,G and B with size of H × W . It should be noted that
since the three channels R,G,B have the same permutation
and diffusion process, the following part is an example of the

process of R channel, while that of G and B channels can be
obtained in the same way.

Step 2 DWT is used to obtain the sparse coefficient matrix
R1(H × W ) and the measurement matrix 81(M × W ) is
generated by Section IV-A2.
Step 3 The sparse image R1(H ×W ) is compressed longi-

tudinally using the measurement matrix81(M×W ) to obtain
the final compressed image C11(M × H ), where P2 = 8P′

1.
Step 4 In order to keep all pixel values of the compressed

image C11 in [0, 256], it needs to be quantized by

Q1 = round(255 × (C11 − Min1)/(Max1 − Min1)) (20)

where Max1=max(max(C11)),Min1=min(min(C11)).
Step 5 Let model (1) iterate m + M × H times, and then

discard the first m iterations to avoid transient effects, then
the chaotic sequences {xi}MHi=1 , {yi}

MH
i=1 , {zi}

MH
i=1 and {wi}MHi=1

are obtained. And random matrices q,X1,X2,X3 with size
of M × H can be obtained by

q = floor((x + 100) × 1014) mod 3 + 1
X1 = floor((y+ 100) × 1014) mod MH + 1
X2 = floor((z+ 100) × 1014) mod MH + 1
X3 = floor((w+ 100) × 1014) mod MH + 1

(21)

Step 6 Keep only one of the recurring random num-
bers in the pseudo-random sequence X1,X2,X3 (i.e. the one
that appears for the first time), and then add the values of
{1, 2, · · · ,MN } that do not appear in the sequence X1,X2,X3
to the end in descending order. The non-repeating sequences
Y1,Y2,Y3 are obtained.
Step 7 The 3D projection scrambling scheme described in

Section IV-A6 is used to reduce the pixel correlation between
color image components, which is described in detail as
follows.
The quantized compressed matrices Q1(M ×H ),Q2(M ×

H ) and Q3(M × H ) are developed into one-dimensional
column vectors AR(1 × MH ),AG(1 × MH ) and AB(1 ×

MH ). Suppose there exists a point (Y1(i),Y2(i),Y3(i)) in
space, then project it onto AR,AG and AB plane as
AR(Y1(i)),AG(Y2(i)),AB(Y3(i)), as shown in Fig. 5. The
scrambling method can be selected based on the values of
sequence q(i) received in Step 5.
Case 1 If q(i) = 1, exchange the positions of AR(Y1(i)) and

AG(Y2(i));
Case 2 If q(i) = 2, exchange the positions of AR(Y1(i)) and

AB(Y3(i));
Case 3 If q(i) = 3, exchange the positions of AG(Y2(i))

and AB(Y3(i)).
Restore AR,AG and AB to the matrix with size ofM ×H .
Step 8 The scrambling matrices AR,AG and AB are trans-

formed into binary matrices bAR, bAG and bAB with size of
8 × M × H . Then, the binary matrices are transformed into
DNAmatricesDAR,DAG andDAB throughDNA coding rule
r1 and the size is 4 ×M × H .
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Step 9 According to the DNA complementary rule, the
sequence S1 = {si, i = 1, 2, . . . , 4MH} can be received by

If s2i−2 = A, then s2i−1 = Ll1(d2i−1).

If s2i−2 = C, then s2i−1 = Ll2(d2i−1).

If s2i−2 = G, then s2i−1 = Ll3(d2i−1).

If s2i−2 = T , then s2i−1 = Ll4(d2i−1).

If s2i−1 = A, then s2i = Ll5(d2i).

If s2i−1 = C, then s2i = Ll6(d2i).

If s2i−1 = G, then s2i = Ll7(d2i).

If s2i−1 = T , then s2i = Ll8(d2i).

where si is the ith element of the sequence S1, i ∈

{1, . . . , 4MH}. di is the ith element after the DNA matrix
DAR is expanded into a one-dimensional row vector and
li, i ∈ {1, 2, . . . , 8} is any DNA complementarity principle.
Step 10As in step 9, the other two sequences S2 and S3 are

obtained.
Step 11 The parameters and initial values are entered

again, and the system is iterated n + MH times. Then the
former n values are removed and the chaotic sequences
{xi}MHi=1 , {yi}

MH
i=1 , {zi}

MH
i=1 and {wi}MHi=1 are received.

Step 12 Transform all elements of the sequences obtained
in step 11 to get the pseudo-random sequences k1, k2 and
k3 by

where k1(i), k2(i) and k3(i), i ∈ {1, 2, . . . ,MH} are the i-th
element of chaotic sequences k1, k2 and k3.
Step 13 Transform the pseudo-random sequences k1, k2

and k3 into binary sequences K1,K2 and K3 with size of
8 × M × H and then transform them into DNA sequences
DK1,DK2 and DK3 with size of 4×M ×H by DNA coding
rule r2.

Step 14 The DNA sequences DTR,DTG and DTB are
obtained by

DTR(i) = S1(i) + DK1(i) + DTR(i− 1) (22)

DTG(i) = S2(i) + DK2(i) + DTG(i− 1) (23)

DTB(i) = S(i) + DK3(i) + DTB(i− 1) (24)

where DTR(0) = S1(4MN ),DTG(0) = S2(4MN ),DTB(0) =

S2(4MN ) and ‘+’ represents DNA addition.
Step 15 The DNA sequences DTR,DTG and DTB are

reverted to matrices, which are transformed into binary matri-
ces by DNA decoding rule r3. And then reverted to decimal
matrices BR,BG and BB with size ofM × H .
Step 16According to the chaotic sequence {xi}MHi=1 , {yi}

MH
i=1 ,

{zi}MHi=1 and {wi}MHi=1 in step 5, randommatrices Y5,Y6,Y7 with
size ofM × H can be obtained by

Y5 = floor((x + y) × 1016) mod M + 1
Y6 = floor((y+ z) × 1016) mod M + 1
Y7 = floor((z+ w) × 1016) mod H + 1
Y8 = floor((w+ x) × 1016) mod H + 1

(25)

Step 17 Swap the positions of pixel points BR(i,j),
i = 1, 2, . . .M; j = 1, 2, . . .H and BR(s, t). Scramble BR

in order from left to right, top to bottom. Furthermore, the
scrambled matrix is denoted as CR.

Step 18 The coordinate of (s, t) is calculated by{
s = mod(Y5(i, j) + sum(BR(Y6(i, j), 1 : H )),M ) + 1
t = mod(Y7(i, j) + sum(BR(1 : M ,Y8(i, j))),H ) + 1

(26)

If s = i or s = Y6(i, j) or t = j or t = Y8(i, j), the positions
of BR(i,j) and BR(s, t) remain unchanged. Otherwise BR(i,j)
and BR(s, t) swap positions.

Step 19 Similarly, the component encryption matrices CG
and CB are obtained. And the final encrypted image C can be
obtained by combining CR,CG and CB.

It is worth to be noted that the designed encryption scheme
is symmetric, so the decryption algorithm is the inverse pro-
cess of that encryption algorithm, which is not described in
detail here. In addition, Orthogonal Matching Pursuit (OMP)
is selected to restore the ciphertext image in the decryption
process.

FIGURE 8. Encryption algorithm flow chart.

C. NIST SP800-22 TEST
This section uses the NIST SP800-22 test suite to check the
randomness of the chaotic sequence obtained in Section IV-
B, and the results are shown in Table 3. It is worth noting that
the tests marked with ∗ in the table contain more than one
test, and the one with the worst result is given. As can be seen
from the table, all P-values are larger than 0.01, which means
that the sequence is random, i.e., the constructed four-wing
chaotic system can be well applied in the field of image
encryption.

TABLE 3. NIST SP800-22 test result.
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FIGURE 9. Experimental results of Fruits256, Beans256, Pappers512 and Car512: (a) Original images,
(b) Encrypted images, (c) Decrypted images.

D. SIMULATION RESULTS
In this section, color Fruits, Beans images of size 256 and
Peppers, Car images of size 512 are taken as test images
(for the sake of description, they are noted as Fruits256,
Beans256 and Pappers512, Car512, respectively). The testing
equipment is a personal computer with 8.00GB of memory,
AMDA9-9410 processor, 2.90GHz CPU, and Windows 7
system. The testing software is MATLAB R2018b.

Setting the key of the designed algorithm, where the
parameters are a = 9, b = 38, c = 50, d = 5, e = 5,
f = 2, the initial values are (0.1, 0.2, 0.3, 0.4), the random
numbers are m = 500, n = 800 and the compression rate
cr = 0.8. Fig. 9(a) presents the original images of Fruits256,
Beans256, Peppers512 and Car512. The respective encrypted
and decrypted images gained by numerical simulation are
displayed in Fig. 9(b) and (c), respectively. It is obvious that
the encrypted images are always noise-like, and no any useful
information about the plaintext image can be observed, which
proves that the designed encryption scheme can compress and
encrypt the test image effectively. Additionally, there is little
difference between the decrypted image and the plaintext
image, which demonstrates the effectiveness and feasibil-
ity of the decryption algorithm. Moreover, the designed
algorithm has no limitation on the size of test images.

V. PERFORMANCE ANALYSIS
A. THE EFFECT OF THE COMPRESSION RATIO ON
SIMULATION
In this section, the effect of different cr values on the encryp-
tion algorithm performance is investigated by mean structural

similarity (MSSIM) and peak signal-to-noise ratio (PSNR).
And cr can be calculated by

cr =
HCWC

HIWI
(27)

whereHI andWI are the height and width of plaintext image,
while HC and WC are that of cipher image.

The PSNR and MSSIM are defined by

MSE =
1

HW

H∑
i=1

W∑
j=1

(I1(i, j) − I (i, j))2 (28)

PSNR = 10 log10(
L2

MSE
) (29)

SSIM(X ,Y ) =
2µXµY +C1

µ2
Xµ2

Y +C1
×

2σXσY +C2

σ 2
Xσ 2

Y +C2
×

σXY +C3

σXσY +C3

(30)

MSSIM(X ,Y ) =

64∑
k=1

SSIM(xk , yk )/64 (31)

where H,W are the length and width of the original image.
I1 and I represent the decrypted image and the plaintext
image, respectively. µX and µY denote the average values of
image X and Y , σX and σY are the variance, σXY indicates
the covariance, C1 = (k1 × L)2,C2 = (k2 × L)2,C3 =
C2
2 , k1 = 0.01, k2 = 0.03. And L is the maximum pixel value
of the image and L = 255 when the test image is represented
by 8 bits of pixels. In image compression, the typical PSNR
value is between 30dB and 40dB, and the larger the PSNR
value is, themore similar the original image and the processed
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image are to each other. In addition, the value of MSSIM
always lies in the interval [−1,1], and the closer the value
is to 1, the higher similarity between the two test images.

In this section, color Lena256, Fruits256 and Beans256
images are selected as test images, and the PSNR andMSSIM
values at different cr are presented in Table 4. As can be
seen from the table, the values of PSNR and MSSIM are
all proportional to the cr values. In other words, the larger
the cr value is, the more similar the reconstructed image and
the original image is, and the better the reconstruction effect
is. Therefore, to make sure the quality of the reconstructed
images, cr =0.8 is taken in this paper.

TABLE 4. PSNR and MSSIM values under different cr values.

B. KEY SPACE AND KEY SENSTIVITY ANALYSIS
A good encryption algorithm should not only have a large
enough key space, but also should be highly sensitive
to the key. The keys of the proposed algorithm mainly
consist of system parameters a, b, c, d, e, f and initial val-
ues (x0, y0, z0,w0). The maximum error of each key in
the decryption process is obtained by numerical simula-
tion, where w0 is 10−16, x0, z0, a, d, e, f are 10−15, b, c
are 10−14 and y0 are 10−13. Therefore, the key space is
1016+15×6+14×2+13 > 2488,which can be completely resis-
tant to violent attacks. In addition, the key space comparison
results with other literatures [18], [22], [30] are presented in
Table 5. Clearly, the designed scheme has a much larger key
space and can effectively withstand exhaustive attacks.

TABLE 5. Key space comparison results.

To test key sensitivity, the Fruits256 image is chosen as
the test image and a small perturbation is applied to the
key. For convenience, the correct key is noted as K0 and
the slightly modified keys are Ki(i = 1, 2, . . . , 4). The
resulting decrypted images are provided in Fig. 10, where
Fig. 10(a) presents that obtained using the correct key. It can
be noticed from the figure that when the key is slightly
varied, the decrypted image will be completely unlike the
one obtained using the correct key. Without loss of complete-
ness, Table 6 gives the PSNR and MISSIM values among

TABLE 6. PSNR and MSSIM values between different decrypted images.

FIGURE 10. Decrypted image of Cameraman256 with: (a) K0, (b1).
K1 = x0 + 10−15, (b2) K2 = y0 + 10−13, (b3) K3 = a + 10−15,
(b4) K4 = b + 10−14.

Fig. 10(a), (b1) and (b2). It can be noticed that the PSNR
values are all approaching 5 and the MISSIM values are all
nearly 0, which indicates that there is little similarity between
the decrypted images obtained by slightly changing the key
and those obtained by the correct key. In other terms, the
designed algorithm is highly sensitive to the key and can
successfully defend against brute force attacks.

C. HISTOGRAM ANALYSIS
Histograms can clearly reveal the distribution of image pixel
and are mainly employed to estimate the ability of algorithms
to defend against statistical attacks. In this section, color
Fruits256, Beans256, Peppers512 and Car512 are chosen as
testing images. Figure 11 displays the histograms of the orig-
inal images and the corresponding histograms of encrypted
and decrypted images. Obviously, the histograms of the orig-
inal images are undulating, while that of the encrypted images
are flat. Consequently, it is hardly for an attacker to get
any valuable information from the histogram of encrypted
images. It can also be found that the pixel value distribution
of the decrypted image is almost the same as the origi-
nal image, which indicates the feasibility of the decryption
algorithm.

Additionally, the chi-square statistic is commonly used to
numerically measure the homogeneity of image histograms.
For an image with gray level of 256 and size of M × N , the
chi-square statistic can be calculated by

χ2
=

255∑
i=0

(fi − g)2

g
(32)
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FIGURE 11. Histogram analysis results for plaintext images, ciphertext images and decrypted images: (a1) Original
Fruits256, (a2) Encrypted Fruits256, (a3) Decrypted Fruits256, (b1) Original Beans256, (b2) Encrypted Beans256,
(b3) Decrypted Beans256, (c1) Original Pappers512, (c2) Encrypted Pappers512, (c3) Decrypted Pappers512,
(d1) Original Car512, (d2) Encrypted Car512, (d3) Decrypted Car512.

where fi denotes the frequency of each grayscale value
and g = MN/256 are the corresponding theoretical fre-
quency distributions. When the significance level is taken
as 0.05, the chi-square statistic is χ2

0.05(255) = 293.24783.
Table 7 lists the chi-square statistics of color Fruits256,
Beans256, Peppers512 and Car512 plaintext images and the
corresponding ciphertext images. It can be seen that the
values of the chi-square statistics of plaintext images are
substantially larger than χ2

0.05(255), and that of the corre-
sponding ciphertext images are all smaller than χ2

0.05(255).
The above analysis shows that ciphertext image histograms
are almost uniformly distributed, which suggests that the
proposed algorithm can successfully resist statistical attacks.

TABLE 7. The analysis results of chi-square statistics.

D. CORRELATION ANALYSIS
In general, the closer the correlation coefficient is to 0, the
stronger the algorithm is against statistical attacks. However,
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FIGURE 12. Correlation distribution of adjacent pixels in horizontal, vertical and diagonal directions of Lena256,
(a1) R channel of plaintext, (a2) R channel of ciphertext, (b1) G channel of plaintext, (b2) G channel of ciphertext,
(c1) B channel of plaintext, (c2) B channel of ciphertext.
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TABLE 8. Correlation coefficients in different channel.

TABLE 9. The correlation comparison results of Lena256 and Lena512 images in different algorithms.

the correlation of the original image is always quite high, and
thus a good encryption scheme should minimize it.

In order to measure the resistance of the proposed
algorithm to statistical attacks, n pairs of adjacent pix-
els are randomly chosen from the experimental images,
which grayscale values are remembered as ui and vi, i =

1, 2, · · · ,MN . The correlation coefficient between u = {ui}
and v = {vi} is calculated as

ruv =
E((u− E(u))(v− E(v)))

√
D(u)

√
D(v)

(33)

D(u) =
1
N

N∑
i=1

(ui − E(u))2 (34)

E(u) =
1
N

N∑
i=1

ui (35)

where ui = (xi, yi). If vi = (xi + 1, yi), then the correlation
coefficient in the horizontal direction is calculated. Similarly,
if vi = (xi, yi + 1) or vi = (xi + 1, yi + 1), the correlation
coefficient in the vertical or diagonal direction is calculated.

In this section, color Lena256, Fruits256, Beans256,
Lena512, Pappers512 and Car512 are chosen as the exper-
imental images. And 10,000 pairs of pixels are randomly
picked from these experimental images to calculate the cor-
relation coefficients. The pixel distribution of the R, G,
B channels of color Lena256 are presented in Fig. 12. It is
observed that the pixels of the original image are concentrated
around y=x in each channel, while that of the encrypted
image are uniformly distributed over the whole range of
pixel values, which indicates that the proposed algorithm can
completely reduce the correlation of the original image. Addi-
tionally, Table 8 presents the correlation coefficients of the
original and corresponding encrypted experimental images in
different orientations. Table 9 shows the correlation coeffi-
cient results for the color Lena256 and Lena512 encrypted
images in this paper with the existing literature [4], [9], [10],
[11], [22], [31]. It is clear that the correlation coefficients of
the encrypted images obtained in this paper are closer to 0 and
can efficiently withstand statistical attacks.

It is important to note that the correlation between the
color image components is commonly high. In this paper,
3D projection scheme is introduced to vary the pixel positions
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TABLE 10. Adjacent-position correlation coefficients.

TABLE 11. The correlation comparison results of Lena256 and Lena512 at
adjacent position in different algorithms.

between the components specially to decrease the correlation.
The correlation coefficients between the components of the
test images at adjacent locations are presented in Table 10.
It can be found that the correlation coefficients between the
components of the encrypted images at adjacent positions
are very near to zero, which indicates that the proposed
scheme can efficiently destroy the correlation between the
components. Additionally, Table 11 presents the results of
the Lena256 and Lena512 encrypted images correlation coef-
ficients in this paper at adjacent locations compared to the
existing literature [9], [12], [18], [19]. It is clear that the
correlation coefficients in this paper are closer to zero, which
proves the effectiveness of the proposed encryption scheme.

E. INFORMATION ENTROPY ANALYSIS
Information entropy is an essential metric to estimate the
security of an encryption scheme, which can reveal the uncer-
tainty of image information. The larger the entropy value is,
the fewer visual information is obtained, and the better the
encryption effect is. And the information entropy value can
be calculated by

H = −

L∑
i=0

p(i) log2 p(i) (36)

where L denotes the number of gray levels, and p(i) shows
the probability of occurrence of i. For an image with the gray
level of 256, the theoretical information entropy value H is 8.

The information entropy of the original and corresponding
encrypted Lena256, Fruits256, Beans256, Lena512, Pap-
pers512 and Car512 images is presented in Table 12. It can
be seen that the encrypted images information entropy is
very near to 8, while that of each original image is quite
different from the theoretical value. The above findings show
that the proposed encryption scheme greatly changes the pixel
values of the original image and significantly increases the
randomness of the encrypted image. Additionally, the infor-
mation entropy comparison results of Lena256 and Lena512
in this paper and literature [13], [14], [15], [22], [26], [37], are

TABLE 12. Information entropy of test images in different channel.

TABLE 13. Information entropy comparison results of Lena256 and
Lena512 in different algorithms.

presented in Table 13. It can be observed from the table that
the information entropy of the encrypted image in this paper is
much closer to 8, which indicates that the proposed algorithm
has a more prominent encryption effect and can successfully
withstand information entropy attacks.

VI. CONCLUSION
Firstly, a four-wing chaotic system is constructed and its
dynamic characteristics are analyzed in detail. Simulation
results show that the system exhibits rich dynamics with
chaotic states distributed over a large interval and is well
suited for applications in the field of secure communication.
Then, the circuit design andMultisim simulation results are in
good agreement with the theoretical analysis results. Finally,
a color image compression encryption scheme is designed
based on the constructed system. The security performance
of the proposed algorithm is evaluated detailly in terms of key
space, key sensitivity, histogram, correlation and information
entropy. The experimental results indicate that the proposed
encryption scheme not only has a considerable key space, but
also has better key sensitivity. Additionally, the scheme can
also be effective against common attacks, such as exhaustive
attacks, statistical attacks, and information entropy attacks.
It should be noted that the designed 3D projection scrambling
scheme can significantly minimize the correlation between
the components of color images. In the future research work,
we will continue to explore chaotic systems with special
attractors and their practical engineering applications.
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