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ABSTRACT The global repercussions of the COVID-19 pandemic on economies and public health
worldwide have been profound. This study aims to examine the developmental trends of the COVID-19
pandemic, establish predictive models, and provide insights for effective control measures against potential
future disease outbreaks. Considering the coexistence of both linear and nonlinear factors in COVID-19 data,
conventional single-machine learning and traditional forecasting models encounter challenges in accurately
predicting pandemic trends. To enhance the precision of COVID-19 pandemic predictions by integrating
linear and nonlinear factors, this study proposes three combined forecasting models: CNN-LSTM-ARIMA,
TCN-LSTM-ARIMA, and SSA-LSTM-ARIMA. These models leverage the strengths of deep learning in
capturing nonlinear factors and the capabilities of the traditional ARIMA model in handling linear factors.
Initially, LSTM and ARIMA models are used to model and predict the COVID-19 pandemic in Quebec,
Canada. Subsequently, CNN models, TCN models, and the Sparrow Search Algorithm are employed to
integrate predictions from the LSTM and ARIMA models. Comparative analyses of the three combined
models, it was found that the CNN-LSTM-ARIMA model exhibits the highest predictive accuracy, with an
MSE of 7048.26, RMSE of 83.95,MAE of 61.18,MAPE of 0.16, andR2 of 0.95. To validate the applicability
and stability of the CNN-LSTM-ARIMA model in predicting COVID-19 pandemics, Italian COVID-19
pandemic data was employed. The three combined forecasting models are established and evaluated using
model evaluation metrics. The results affirm that the CNN-LSTM-ARIMA model remains the optimal
choice, underscoring its high stability and suitability for COVID-19 pandemic forecasting endeavors.

INDEX TERMS COVID-19, LSTM, ARIMA, CNN-LSTM-ARIMA, TCN-LSTM-ARIMA, SSA-LSTM-
ARIMA.

I. INTRODUCTION
On December 8, 2019, the Chinese government reported
the first fatality attributed to what would later be iden-
tified as COVID-19, originating from Wuhan pneumonia.
Concurrently, a novel coronavirus strain rapidly dissemi-
nated globally, with its epicenter in Wuhan, Hubei province,
China [1], [2]. The COVID-19 pandemic has wrought con-
siderable damage to the global economy and the health of
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citizens across various nations. The virus’s highly mutable
nature posed significant challenges for effective control dur-
ing its initial outbreak.

Since the onset of the COVID-19 pandemic, predicting
its trajectory has become a focal point for scholars world-
wide. In the early stages, Zhu Renjie and colleagues achieved
noteworthy predictive results by employing the classical
infectious disease model, SIR, to forecast the COVID-19
pandemic in seven countries: Italy, South Korea, the United
Kingdom, the United States, France, Spain, and Germany [3].
Leonid Kalachev and others utilized the SIQR model to
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FIGURE 1. Technology roadmap.

forecast the autumn 2020 COVID-19 pandemic in Missoula
County, Montana, USA, demonstrating the model’s superior
predictive accuracy compared to the SIR model [4].

With the ongoing development of deep learning, JinWeiqiu
and colleagues proposed a prediction model known as TCN-
GRU-DBN-q-SVM. In this model, TCN, GRU, and DBN
are integrated as elements of a hybrid model, with SVM
employed to estimate the error of the TCN-GRU-DBN-q
predictive sequence. This adaptive model allows adjustments
based on data characteristics, ensuring robustness and gen-
eralization [5]. Zhang Qing derived optimal parameters for
the TCN model by continually adjusting the window size
and convolutional kernel size. The TCN epidemic prediction
model, constructed using these optimal parameters, achieves
highly accurate daily forecasts of the number of cases in the
United States [6].

Abdelkader Dairi established a CNN-LSTM hybrid model
for predicting the pandemic in seven countries. Comparing
its performance with single LSTM and CNN models, the
results indicated a significant improvement in the CNN-
LSTM model’s performance [7]. Chen Honglin introduced
an attention mechanism into the CNN-LSTMmodel to better
explore long time-series data features. This model outper-
formed the CNN-LSTM model when applied to predict the
COVID-19 situation in China [8]. Yogesh Gautam trained
an LSTM model using early COVID-19 data from Italy
and the United States. This model was used to predict the
pandemic in Germany, France, Brazil, India, and Nepal,
successfully demonstrating the effectiveness of the LSTM
model [9]. Shahid et al. employed the Bi-LSTM model to
forecast the pandemic in China, and the results showed that
the Bi-LSTM model had lower MAE and RMSE compared
to the LSTMmodel, indicating an enhancement in prediction
accuracy [10].
To improve the long-term forecasting accuracy of the

LSTM model, Wang Peipei and colleagues embedded a

rolling update mechanism into the LSTM. This enhanced
model’s robustness and effectiveness when forecasting pan-
demics in Russia, Peru, and Iran [11]. YuanMeng and collab-
orators optimized the hyperparameters of the LSTM model
using Bayesian optimization. They validated the model’s
ability to enhance the efficiency of LSTM model learning
and improve prediction accuracy using COVID-19 data from
China [12]. Sarbhan Singh applied the traditional ARIMA
model to predict the pandemic in Malaysia. The results
showed good predictive performance of the ARIMA model
in the test dataset [13]. Machine learning prediction models
have also been used for pandemic forecasting. Li Shaoting
and colleagues developed the CEEMDAN-XGB&WSD
model, where CEEMDAN effectively removes local noise,
and WSD supplements historical information. They demon-
strated the model’s robustness and generalization ability
when predicting the pandemic in China using this combined
model [14]. Hu Haiwen used a regression decision tree model
to predict the pandemic in the United States. Comparing it
with linear regression, XGBOOST, SVR, LSTM, and CNN-
LSTM models, they confirmed the regression decision tree
model’s superior performance in pandemic prediction [15].
Jin Yongchao used an ARIMA-LSTM model to predict the
pandemic. They found that the predictive accuracy of the
ARIMA-LSTM model was significantly higher than that of
the ARIMA model and the LSTM model [16].
Although the aforementioned forecasting methods have

shown promise in COVID-19 pandemic prediction, they often
lack consideration for the linear and nonlinear factors present
in pandemic data. Even though some studies have applied the
ARIMA-LSTM model, the common approach to combining
these two models is still using the LSTMmodel to correct the
residuals of the ARIMA model or applying linear regression
to the predictions of both models to obtain weights.

In this study, to better capture the linear and nonlinear fac-
tors present in pandemic data, we first modeled and predicted
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FIGURE 2. LSTM model structure diagram.

the pandemic data using a single deep learningmodel, LSTM,
and the traditional forecastingmodel, ARIMA. Subsequently,
we combined the forecasts from LSTM and ARIMA, effec-
tively utilizing the linear and nonlinear factors within the
data. To integrate the predictions from LSTM and ARIMA,
we employed one-dimensional convolutional neural net-
works, temporal convolutional networks, and the Sparrow
Search Algorithm. The overall technical roadmap of the arti-
cle is shown in figure 1.

II. MODEL SELECTION
A. LSTM MODEL
LSTM (Long Short-TermMemory) stands out as a distinctive
type of recurrent neural network. Although traditional recur-
rent neural networks excel in processing data with sequential
features, they often encounter challenges such as vanishing
gradients and exploding gradients, limiting their effectiveness
in capturing extended dependencies within sequential data.
The LSTM model improves upon conventional recurrent
neural networks by incorporating a state structure and three
gate structures: the cell state, forget gate, input gate, and
output gate [16]. These enhancements facilitate the dynamic
adjustment of self-recurrent weights, effectively mitigating
issues related to vanishing and exploding gradients while pro-
viding both long-term and short-term memory capabilities.
The structure of the LSTM model is depicted in Figure 2.
The following section provides an introduction to the three

gate structures of the LSTM model.

1) FORGET GATE
The forget gate reviews the current time step’s input infor-
mation, denoted as xt , and the previous time step’s output
information, denoted as ht−1. When ft = 0, the gate discards
the read information. Conversely, when ft = 1, it retains
the read information. The calculation formula for ft is as
follows [17] and [18]:

ft = σ
(
Wf · [ht−1, xt ] + bf

)
(1)

Here, σ signifies the sigmoid activation function,Wf is the
weightmatrix for the forget gate, and bf is the bias coefficient.

FIGURE 3. ARIMA model modeling forecast flowchart.

2) INPUT GATE
This gate determines which new input information to store
in the neuron. It initiates by creating a candidate cell state C̃t ,
and then, the input gate it updates the candidate cell state. The
new information is subsequently added to the cell state. The
specific formula is as follows [19]:

C̃t = tanh (Wc [ht−1, xt ] + bc) (2)

it = σ (Wi · [ht−1, xt ] + bi) (3)

Ct = ft × Ct−1 + it × C̃t (4)

In the above formula, Wc is the weight matrix for the cell
state, bc is the bias coefficient for the cell state, Wi is the
weight matrix for the input gate, and bi is the bias coefficient
for the input gate.

3) OUTPUT GATE
The output gate determines the final output ht using the cell
state. It starts by processing the current input information xt
and the previous output information ht−1. Then, it multiplies
these values by the cell state processed by the tanh layer
to obtain the final output ht . The specific formula is as
follows [20]:

ot = σ (Wo · [ht−1, xt ] + bo) (5)

ht = ot × tanh(Ct ) (6)

In this formula,Wo is the weight matrix for the output gate,
and bo is the bias coefficient for the output gate.

B. ARIMA MODEL
The Auto Regressive Integrated Moving Average model,
commonly known as ARIMA(p, d, q), involves parameters p,
d, and q, representing the number of Auto Regressive (AR)
terms, the number of Moving Average (MA) terms, and the
order of differencing needed to achieve stationarity in the time
series. The general form is expressed as follows [21] and [22]:

Yt = c+

∑p

i=1
riyt−i + εt +

∑q

i=1
θiεt−i (7)

In the above formula, c represents the constant term, ri
represents the autocorrelation coefficients, εt is the error
term. The modeling and forecasting process of the ARIMA
model is illustrated in Figure 3.
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FIGURE 4. 1D-CNN model structure diagram.

C. 1D-CNN MODEL
The 1D-CNNmodel, which stands for one-dimensional Con-
volutional Neural Network, is a special type of convolutional
neural network. It is named ‘‘one-dimensional’’ because the
convolutional kernels of 1D-CNN operate only along the
sequence of time steps. One-dimensional CNNs excel in pro-
cessing sequential data and primarily consist of convolutional
layers, pooling layers, and fully connected layers [23]. The
model structure of the 1D-CNN is illustrated in Figure 4.
We will delve into the architecture of the 1D-CNN model,
elucidating its convolutional layers, pooling layers, and fully
connected layers.

1) CONVOLUTIONAL LAYERS
These layers function by traversing a fixed-size convolutional
kernel across the input data, executing convolution operations
to discern features within the input. The convolutional kernel
essentially constitutes a weight matrix. The computational
formula for the convolutional layer is outlined below [24],
[25]:

x li = σ (
∑

j∈Mi
x l−1
j ·W l

ij + bli) (8)

In the above formula, x li is the result of the convolu-
tion operation, σ is the activation function, Mi is the input
operation, x l−1

j is the region to be convolved, W l
ij is the

convolutional kernel, (·) is the convolutional operation, and
bli is the bias coefficient of the corresponding convolutional
kernel.

2) POOLING LAYER
Pooling layer, also known as sampling layer, usually follows
the convolutional layer immediately. Its function is to reduce
the dimensionality of input data to reduce computational
costs. The commonly used pooling operation is the maximum
pooling operation, as shown in Figure 5 [25].

FIGURE 5. Schematic diagram of the max pooling operation.

3) FULLY CONNECTED LAYERS
These layers play a pivotal role in converting the feature
maps discerned by the convolutional and pooling layers into
the ultimate output. The computational formula for a fully
connected layer is articulated below [26]:

y = σ (W · x + b) (9)

In the given formula, σ signifies the activation function,
W stands for the weight matrix associated with the fully
connected layer, and b denotes the bias term pertinent to the
fully connected layer.

D. TCN MODEL
The Temporal Convolutional Network (TCN) model is a
special type of convolutional neural network designed for
parallel processing of sequential data. This feature reduces
the time required for modeling and forecasting. Further-
more, TCN models can work with sequences of arbitrary
lengths, and they can directly map input sequences to output
sequences of the same length.

Within TCNmodels, dilated causal convolutions and resid-
ual connections are integrated into the network structure.
Let’s delve into the elements of the TCN model, focusing on
dilated causal convolutions and residual connections.

1) DILATED CAUSAL CONVOLUTIONS
Dilated causal convolutions, a key component of TCN mod-
els, apply a dilation factor to causal convolution, extending
the receptive field of the convolutional network [27]. Incor-
porating distinct dilation factors across various convolutional
layers enables the model to grasp dependencies spanning
diverse time scales. The configuration of dilated causal con-
volutions is depicted in Figure 6.
Residual connection: Residual connection is used to solve

the potential gradient vanishing problem in complex neu-
ral networks, thereby improving the training efficiency and
accuracy of the model [28]. The structure of the residual
block includes two layers of convolution, nonlinear mapping,
Dropout, and WeightNorm, where Dropout and WeightNorm
are used to regularize the neural network. The structure of the
residual block is shown in Figure 7.
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FIGURE 6. Diagram of the expansive causal convolutional structure.

FIGURE 7. Residual block structure diagram.

E. SSA MODEL
The Sparrow Search Algorithm (SSA) is a heuristic algorithm
inspired by sparrows’ foraging behavior, exhibits exceptional
global search capabilities. This algorithm classifies sparrows
into three roles: finders, followers, and sentinels [27]. Finders
bear the responsibility of foraging for food and supplying
information about foraging areas to the population. Con-
sequently, finders boast the broadest search range within
the entire population. The formula governing the update of
finders’ positions is outlined below [28], [29]:

X t+1
ij =

X tij · exp
(

−i
α · itermax

)
R2 < ST

X tij + Q · L R2 ≥ ST
(10)

In the formula above, the variables and terms are defined as
follows: X tij represents the position of the i-th sparrow in the
j-th dimension at the t-th iteration. α is a random number in
the range (0, 1], itermax is the maximum number of iterations,
Q is a random number following a normal distribution, L is
a constant matrix of size 1×d, where d is the dimensionality,
R2 is a warning value, and it lies within the range [0,1], ST is

a safety threshold, and it falls within the range [0.5,1]. When
R2 < ST , it indicates that there are no predators within the
current foraging area, allowing the finders to expand their
search range. When R2 ≥ ST , it implies the presence of
predators within the current foraging area, and all sparrows
must immediately move to a safe zone for foraging.

Joiners compete for more food resources by continuously
monitoring the behavior of discoverers, in order to improve
their predation rate. The formula for updating the position of
the enrollee is as follows [30]:

X t+1
ij =


Q · exp

(
X tworst − X tij

i2

)
i > n/2

X t+1
p +

∣∣∣X tij − X t+1
p

∣∣∣ · A+
· L otherwise

(11)

In the above formula, n is the number of sparrows, and the
parameter Q is the same as formula (10), X tworst is the position
with the worst global fitness during the t-th iteration, X t+1

p
is the location where the fitness of the discoverer is optimal
during the t+1st iteration, A+

= AT (AAT )−1, where A is a
matrix of size 1 × d, elements are random values of 1 or -1,
and parameter L is the same as formula (10).

Guardians are randomly selected from the sparrow popula-
tion, typically selecting a 10% to 20% proportion of sparrows
as guarders. They always remain vigilant to the surrounding
environment during the foraging process. Once a predator is
discovered, the sparrow population will immediately engage
in anti predatory behavior. The formula for updating the
position of the vigilant is as follows [31]:

X t+1
ij =


X tbest + β ·

∣∣∣X tij − X tbest
∣∣∣ fi > fg

X tij + k ·

(
|X tij − X tworst |

(f i − fw) + ε

)
fi = fg

(12)

In the formula above, X tbest denotes the globally optimal
position during the t-th iteration, β represents a random num-
ber following a standard normal distribution, k is a random
number within the range [-1,1], fi is the fitness value of the
current sparrow, fw is the current global best fitness value, fg
denotes the current global worst-case fitness value, and ε is a
minimal constant.

F. EVALUATION INDICATIONS
In order to compare the predictive effects of different predic-
tion models more intuitively, this study used Mean Squared
Error (MSE), Root Mean Square Error (RMSE), Mean Abso-
lute Error (MAE), Mean Absolute Percentage Error(MAPE),
and Coefficient of determination(R2). The calculation formu-
las for each evaluation index are as follows:

MSE =
1
n

∑n

i=1
(ŷi − yi)

2 (13)

RMSE =

√
1
n

∑n

i=1
(ŷi − yi)

2 (14)

MAE =
1
n

∑n

i=1
|ŷi − yi| (15)
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MAPE =
1
n

∑n

i=1
|
ŷi − yi
yi

| (16)

R2 = 1 −

∑n
i=1

(
yi − ŷi

)2∑n
i=1 (yi − ȳ)2

(17)

In the above formulas (13) - (17), n is the total sample size,
ŷi is the predicted value of the model, yi is the true value, ȳ is
the average of the true value [32].

III. MODEL APPLICATION
A. SELECTION OF DATASETS
This study uses the daily newly diagnosed number of
COVID-19 from March 1, 2020 to October 21, 2021 in
Quebec, Canada, and the daily newly diagnosed number of
COVID-19 from February 21, 2020 to October 12, 2021 in
Italy for modeling, prediction and analysis. The data is
sourced from the Johns Hopkins University website. Upon
acquiring the data, the outliers were checked by drawing box
plots and time series diagrams, and the mean substitution
treatment was performed on the outliers.

B. MODEL CONSTRUCTION SOFTWARE AND PACKAGES
The programming language used for implementing deep
learning models in this study is Python 3.11.6. TensorFlow
is employed to build deep learning models, while NumPy is
utilized for mathematical computations and array operations.
The Pandas package is used for data processing and analysis.
For plotting and ARIMAmodel implementation in this study,
the programming language is R 4.3.1. The ggplot2 package is
used for data visualization, t-series for time series stationarity
testing, and forecast for the automatic order determination of
the ARIMA model.

C. LSTM MODEL
The LSTM model was constructed by using the daily newly
diagnosed number of COVID-19 patients from March 1,
2020 to October 21, 2021 in Quebec, Canada. Both the
input and output of the model are the daily new confirmed
COVID-19 cases. The first two thirds of the data were used
as training sets for the training model. The last one-third
of the data is used as the test set to evaluate the model’s
generalization ability. The parameter settings of the LSTM
model are shown in Table 1.

Based on the above parameters and data, an LSTM model
is constructed, and the time series diagram comparing the
predicted and true values of the model is shown in Figure 8.
The evaluation indicators for the predictive performance of
the LSTM model on the test set are shown in Table 2.

D. ARIMA MODEL
In this study, the ARIMA model was constructed by using
the daily newly diagnosed number of COVID-19 patients
from March 1, 2020 to October 21, 2021 in Quebec, Canada.
Firstly, the original sequence is subjected to differential pro-
cessing. After first order differential processing, the sequence
becomes stationary and non white noise. Determine the final

TABLE 1. LSTM model parameters.

FIGURE 8. LSTM prediction results in Quebec.

TABLE 2. Evaluation index of the LSTM model test set.

model as ARIMA (2, 1, 0) using the BIC minimum criterion,
and the residual of the model is white noise. The compari-
son of ARIMA model fitting values and true values in time
series is shown in Figure 9. The evaluation indicators for the
prediction effect of the ARIMA model are shown in Table 3.

E. COMBINATION MODEL
1) CNN-LSTM-ARIMA MODEL
After obtaining the predicted values of LSTM and ARIMA
models, in order to integrate linear (ARIMA) and nonlinear
(LSTM) factors, the predicted values of LSTM, ARIMA and
the daily number of newly diagnosed COVID-19 patients
in Quebec, Canada, from March 1, 2020 to October 21,
2021 were used as variables to build the CNN-LSTM-
ARIMA model. Among them, the first 2/3 of the data is used
as the training set, and the last 1/3 of the data is used as the
test set. The parameter settings of the CNN model are shown
in Table 4.
After configuring the parameters, use the training set to

train the CNN model, and then use the model to make pre-
dictions in the test set. The comparison time series diagram
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FIGURE 9. ARIMA prediction results in Quebec.

TABLE 3. ARIMA model evaluation index.

TABLE 4. CNN model parameters.

between the predicted values and the actual values of the
CNN-LSTM-ARIMA model is shown in Figure 10.
The evaluation indicators for the prediction performance

of the CNN LSTM ARIMA model on the test set are shown
in Table 5.

Upon comparing the performance metrics of the CNN-
LSTM-ARIMA model in Table 5 with those of the LSTM
and ARIMAmodels, it is evident that the predictive accuracy
of the combined CNN-LSTM-ARIMA model surpasses that
of both the LSTM and ARIMA models significantly.

2) TCN-LSTM-ARIMA MODEL
TCN-LSTM-ARIMA model and CNN-LSTM-ARIMA
model have the same principle. They also use the predicted
value of LSTM, the predicted value of ARIMA and the daily
newly diagnosed number of COVID-19 in Quebec, Canada,
from March 1, 2020 to October 21, 2021 as variables to
build the TCN-LSTM-ARIMA model. The partitioning of
the training and testing sets is the same as the CNN LSTM
ARIMAmodel. The parameter settings of the TCNmodel are
shown in Table 6.

The time series diagram of the TCN-LSTM-ARIMA
model’s predicted and true values is shown in Figure 11.

FIGURE 10. CNN-LSTM-ARIMA prediction results in Quebec.

TABLE 5. Evaluation index of the CNN-LSTM-ARIMA model test set.

TABLE 6. TCN model parameters.

The evaluation indicators for the predictive performance of
the TCN-LSTM-ARIMA model on the test set are shown in
Table 7.

3) SSA-LSTM-ARIMA MODEL
In the SSA-LSTM-ARIMA model, use the sparrow search
algorithm to search for the weightW1 of the LSTM predicted
value in formula (18) and weight W2 of the ARIMA pre-
dicted values. Integrate linear and nonlinear factors into the
predicted value ŷ the RMSE of is the smallest. About to ŷ
the RMSE is used as the fitness value for the sparrow search
algorithm.

ŷ = W1xLSTM +W2xARIMA (18)

The parameter settings of the sparrow search algorithm are
shown in Table 8.
After setting the parameters of the sparrow search

algorithm, use the sparrow search algorithm to search for the
weight W1 and W2 between the intervals [0,1]. Finally, the
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FIGURE 11. TCN-LSTM-ARIMA prediction results in Quebec.

TABLE 7. Evaluation index of the TCN-LSTM-ARIMA model test set.

TABLE 8. SSA parameters.

optimal result is obtained as shown in formula (19).

ŷ = 0.601xLSTM + 0.412xARIMA (19)

The prediction results of the LSTM and ARIMA models
are incorporated into formula (16) to obtain a time series dia-
gram of the comparison between the predicted and true values
of the SSA-LSTM-ARIMA model, as shown in Figure 12.
The evaluation indicators for the prediction performance of

the SSA-LSTM-ARIMA model on the test set are shown in
Table 9.

F. COMPARISON OF COMBINED MODELS
Based on the three evaluation indicators selected in this study,
the prediction performance of the three combination mod-
els was compared. Among them, the CNN-LSTM-ARIMA
model had the best prediction performance, followed by the
TCN-LSTN-ARIMA model, and the SSA-LSTM-ARIMA
model had the worst prediction performance. However, the
prediction performance of these three combination mod-
els was better than that of the LSTM model and ARIMA
model.

FIGURE 12. SAA-LSTM-ARIMA prediction results in Quebec.

TABLE 9. Evaluation index of the SSA-LSTM-ARIMA model test set.

IV. MODEL VALIDATION
In order to verify the applicability and stability of CNN-
LSTM-ARIMA model in the prediction of COVID-19, this
study uses the daily newly confirmed number of COVID-19
patients in Italy from February 21, 2020 to October 12,
2021 to build the above five models.

The relevant parameters of the LSTM model and the divi-
sion method of the training and testing sets are the same as
above. The ARIMA model is determined as ARIMA (2, 1,
0) using the BIC minimum criterion. The time series dia-
grams comparing the fitted and true values of the LSTM and
ARIMA models are plotted as shown in Figures 13 and 14.

After the prediction results of LSTM and ARIMA
models were obtained, CNN-LSTM-ARIMA and TCN-
LSTM-ARIMA models were constructed by using TCN and
CNN models respectively, taking the prediction values of
LSTM, ARIMA and the daily newly diagnosed number
of COVID-19 patients in Italy from February 21, 2020 to
October 12, 2021 as variables. Draw a time series diagram
comparing the predicted values of the model with the actual
values, as shown in Figures 15 and 16.

Finally, using the sparrow search algorithm, search for the
optimal weights of LSTM and ARIMA models, and obtain
the optimal results as shown in formula (20). Among them,
the sparrow search algorithm parameter settings are the same
as above.

ŷ = 0.752xLSTM + 0.232xARIMA (20)

Draw a time series diagram comparing the predicted val-
ues and actual values of the SSA-LSTM-ARIMA model,
as shown in Figure 17.
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FIGURE 13. LSTM prediction results in Italy.

FIGURE 14. ARIMA prediction results in Italy.

FIGURE 15. CNN-LSTM-ARIMA prediction results in Italy.

After completing the model modeling and prediction, cal-
culate the evaluation indicators of the above five models in
the prediction of COVID-19 in Italy, as shown in Table 10.

Table 10 shows that the prediction accuracy of CNN-
LSTM-ARIMA model is the best among the five models,
which further verifies the applicability and stability of
CNN-LSTM-ARIMA model in the prediction of COVID-19.

V. RESULTS AND DISCUSSION
In this study, three combined models were developed: CNN-
LSTM-ARIMA, TCN-LSTM-ARIMA, and SSA-LSTM-
ARIMA, aimed at enhancing the precision of LSTM and
ARIMA models in predicting the COVID-19 pandemic.
Initially, utilizing COVID-19 data from Quebec, Canada,

FIGURE 16. TCN-LSTM-ARIMA prediction results in Italy.

FIGURE 17. SSA-LSTM-ARIMA prediction results in Italy.

TABLE 10. Model evaluation index.

we modeled and predicted the pandemic using ARIMA
and LSTM models. The calculated metrics for the ARIMA
model were MSE=9140.14, RMSE=95.60, MAE=68.03,
MAPE=0.17, R2

=0.94, and for the LSTM model were
MSE=8947.83, RMSE=94.59, MAE=70.89, MAPE=0.19,
R^2=0.94.

To enhance predictive accuracy, CNN, TCN, and
SSA algorithms were employed to refine the pre-
dictions of ARIMA and LSTM models, integrating
both linear and nonlinear factors present in the pan-
demic data. The calculated metrics for the combined
models were as follows: CNN-LSTM-ARIMA model’s
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MSE=7048.26, RMSE=83.95, MAE=61.18, MAPE=0.16,
R2

=0.95; TCN-LSTM-ARIMA model’s MSE=8203.44,
RMSE=90.57, MAE=66.81, MAPE=0.20, R2

=0.94; SSA-
LSTM-ARIMA model’s MSE=8815.50, RMSE=93.89,
MAE=68.50, MAPE=0.18, R^2=0.95.

Subsequently, utilizing COVID-19 data from Italy for
modeling and prediction, the CNN-LSTM-ARIMA model
remained the optimal choice, affirming its applicability and
stability in forecasting COVID-19 pandemics.

VI. CONCLUSION AND SUGGESTIONS
The COVID-19 pandemic data often exhibits the complexity
of having both linear and nonlinear trends, posing significant
challenges for predictive work. Addressing these challenges,
we employed the CNN-LSTM-ARIMA model to integrate
both nonlinear and linear factors within the epidemic data,
thereby enhancing the accuracy of COVID-19 pandemic
predictions.

Through the collective efforts of people worldwide,
we have overcome the COVID-19 pandemic. However, the
outbreak of the pandemic has undoubtedly sounded an alarm
for the world to prioritize public health security. The CNN-
LSTM-ARIMA predictive model established in this paper
can serve as a reference for governments in similar infectious
disease prevention and control efforts, aiming to minimize
the losses caused by pandemic outbreaks. Additionally, gov-
ernments should guide the public to strengthen awareness of
epidemic prevention and control, emphasizing the importance
of disinfection in public spaces.
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