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ABSTRACT In this paper, D(HE)at, a practical denial-of-service (DoS) attack targeting the finite fieldDiffie-
Hellman (DH) key exchange protocol, is presented, allowing remote users to send non-public keys to the
victim, triggering expensive server-side DH modular-exponentiation calculations. The attack was disclosed
in November 2021 with an assigned CVE-2002-20001 number. Additionally, the ‘‘long exponent’’ issue,
an implementation flaw in cryptographic libraries where unreasonably large private keys are used, deviating
from the recommended NIST guidelines, and making D(HE)at more effective, is presented. This issue was
disclosed in November 2022with an assigned CVE-2022-40735 number. A thorough analysis of the D(HE)at
attack, alongwith proof of concept code that has the potential to compromise all existing protocols employing
DH key exchange, such as TLS or SSH, is presented in this paper, highlighting the necessity of additional
security measures for effective safeguarding. The potential of reaching full 100% CPU utilization by the
D(HE)at attack is demonstrated, even on the most up-to-date operating systems, without any significant
computation on the client side. With minimal bandwidth and a low request rate per second (rps), the D(HE)at
attack can be carried out against target machines from a single laptop. In this study, the consequences of
these issues are explored, and a comparative security and performance analysis is conducted among the
most commonly used general-purpose cryptographic libraries, including OpenSSL, BoringSSL, LibreSSL,
GnuTLS, NSS, Mbed TLS, OpenJDK, Oracle JDK, and WolfSSL. Based on Shodan measurements, it has
been found that 87% of servers worldwide support DH key exchange in the SSH protocol, and according to
our scan, 55% of the top 1 million websites support DH in TLS. As a result of this study, it is recommended
that developers and administrators consider exclusively enabling Elliptic Curve Diffie-Hellman (ECDH),
a significantly more efficient protocol, in their server configurations.

INDEX TERMS Diffie–Hellman key exchange, D(HE)at attack, key exchange protocol, DoS.

I. INTRODUCTION
Key Exchange protocols are a fundamental aspect of modern
cryptography and play a crucial role in ensuring the security
of communication over networks. The primary goal of key
exchange protocols is to allow two ormore parties to establish
a shared secret value over an untrusted channel, which can
then be used to encrypt and decrypt messages exchanged
between them. The first publicly available such protocol
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was proposed by Merkle [33] in 1974. Merkle’s puzzle
protocol allows two parties to agree on a shared secret value
using only symmetric cryptography. The main problem with
Merkle’s puzzle protocol is that it only provides a quadratic
gap between the running time of the honest parties and the
adversary. In 2009, Barak and Mahmoody [3] showed that
the quadratic gap is the best possible if we treat symmetric
ciphers as a black box oracle, i.e., that every protocol in the
random oracle model where the participants make n oracle
queries can be broken with high probability by an adversary
making O(n2) queries. The quadratic gap and the large
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amount of data transferred between parties make Merkle’s
protocol ineffective.

The Diffie–Hellman (DH) key exchange protocol, intro-
duced in 1976 by Whitfield Diffie and Martin Hellman [10],
is one of the first practical key exchange methods. In the
DH key exchange, a client and a server agree on common
group parameters, namely a prime number p and a generator
g ∈ Z∗p. Here, g generates a cyclic subgroup G ≤ Z∗p with a
prime order q. Then both parties select a private key a ∈ Zq
and b ∈ Zq. The client calculates its public key and sends
A ≡ ga (mod p) to the server. The server, in turn, calculates
its public key B ≡ gb (mod p) and sends it back to the
client. Both parties compute the shared key k ≡ (ga)b =
(gb)a = gab (mod p). The Computational Diffie–Hellman
(CDH) assumption states that computing the shared key gab

from ga, gb (mod p) is computationally difficult. Throughout
the paper, we call (p, g) as the group parameters, (A,B) are
the public keys, and (a, b) are the private keys. In the paper,
we use the terms private key and exponent interchangeably
for (a, b). Although DH key exchange can also be performed
using elliptic curve groups, our focus is solely on the
‘‘mod p’’ case, also known as finite field Diffie–Hellman
(FFDH).

A. DIFFIE–HELLMAN EPHEMERAL (DHE) AND FORWARD
SECRECY
In the standard DH key exchange, the same private keys
are reused for multiple sessions. This means that if an
adversary were to somehow obtain the private key, they
would be able to decrypt all past and future communications,
meaning that it cannot provide forward secrecy. However,
by using ephemeral keys, a new key pair is generated for
each session, and the private key is discarded after the shared
key calculation. In this paper, when we mention ‘‘DH key
exchange’’, we are specifically referring to the finite field
Diffie-Hellman Ephemeral (DHE) key exchange mechanism.

DH key exchange is widely used for establishing session
keys in various protocols such as TLS 1.0 [8], SSH 2.0
[83], IKEv1 [20], IKEv2 [24] or QUIC [77]. TLS 1.3 was
defined in RFC 8446 [69] and released to the public in
August 2018. Due to the importance of forward secrecy
offered by ephemeral keys, RSA key exchange is no
longer available in TLS 1.3, leaving only DHE and Elliptic
Curve Diffie–Hellman Ephemeral (ECDHE) protocols as the
available choices.

B. GLOBAL SUPPORT OF DH KEY EXCHANGE
Based on our most recent analysis of the top 1 million
websites [32] as of May 2023, we found that 55% of these
sites utilize the DH key exchange protocol during the TLS
negotiation (see Figure 1). The widespread usage of the SSH
protocol on the internet can be assessed in a similar manner.
According to the data gathered from Shodan [73], we found
that 87% of servers worldwide offer support for DHE within
the SSH protocol.

FIGURE 1. Diffie–Hellman support in the Top 1 million domains.

C. RECOVERING THE SHARED KEY
Despite its widespread use, if not implemented correctly,
the DH key exchange is vulnerable to various known
attacks that can compromise confidentiality or integrity.Man-
in-the-middle attacks or the small subgroup confinement
attack are just a few examples that are often used against
discrete logarithm-based key agreement protocols [31],
[80]. For instance, in 2015 Adrian et al. published the
Logjam [1] attack against the DH key exchange protocol. The
vulnerability allows an attacker to downgrade the encryption
strength and potentially decrypt secure communications. The
main goal of these attacks is to recover the shared secret
value, which can subsequently be used to gain unauthorized
access to the encrypted data (confidentiality) or modify data
in an unauthorized manner (integrity). However, the third
aspect of the CIA triad (availability), is often disregarded and
underestimated.

D. RESPONSIBLE DISCLOSURE - D(HE)at AND LONG
EXPONENT ATTACK
In November 2021, the D(HE)at attack [37] was officially
disclosed as a theoretical threat that has been assigned an
official CVE-2002-200011 number. We have communicated
with numerous vendors, alerting them about the presence and
the significance of this attack impacting modern operating
systems. While measuring the performance of various imple-
mentations, we discovered the ‘‘long exponent’’ issue [38]
occurring in multiple cryptographic libraries, to which the
identifier CVE-2022-40735 has been allocated. In response
to these threats, many vendors and software companies
implemented or announced mitigation strategies. To mention
a few of the most notable ones; In November 2022, the
OpenSSL Team applied a new patch mitigating CVE-2022-
40735 from version 3.0.6. In January 2023, Oracle reduced
the private key sizes in Java implementations from version
17.0.6. The Cybersecurity & Infrastructure Security Agency
(CISA) of the United States issued an Alert Code ICSA-22-
314-10 [2], indicating that Siemens products (SCALANCE
W1750D) are impacted. F5 Product Development has issued
the K83120834 [13] advisory solution. Synology addressed
CVE-2002-20001 in their Mail Server from version

1CVE-2002-20001 note: The reason why the 2002 CVE assignment was
given, even though it was published in 2021, will be discussed in Section III.
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1.7.4-10659 [23]. Ubuntu announced CVE-2022-40735 on
its webpage [38] and various distributions are currently
undergoing evaluation.

1) CONTRIBUTIONS
The main contributions of this paper can be summarized as
follows:
• The D(HE)at attack is presented emphasizing its
extensive applicability and its consequent impact. It is
confirmed through our findings that every protocol
employing DH key exchange is susceptible, including
well-known ones such as TLS 1.2, TLS 1.3, SSH 2.0,
IKEv1 IKEv2, and QUIC. This issue is demonstrated
in practice, revealing that this vulnerability extends
to all primary operating systems supporting DH key
exchange, even those with all current security patches
applied.

• The ‘‘long exponent’’ issue, a significant implementa-
tion flaw in cryptographic libraries, which relates to the
employment of large private keys in the Diffie–Hellman
key exchange, is disclosed.

• The consequences of the aforementioned attacks are
evaluated, and a comprehensive performance and secu-
rity analysis of their impact on the most widely used
cryptographic libraries including OpenSSL, BoringSSL,
LibreSSL, GnuTLS, NSS, Mbed TLS, OpenJDK, Wolf-
SSL, is provided. Additionally, a framework is released
that can be used to measure the speed of DH key
generation across various libraries, aiding administrators
during the mitigation phase.

• It is demonstrated that the D(HE)at attack can be carried
out even from a single laptop with particularly low
bandwidth and request count to achieve 100% CPU
utilization on the server side. This makes D(HE)at
particularly effective in request count compared to other
methods [27], [86].

The paper is organized as follows: Section II will introduce
the basic notations and provide an overview of some well-
known attacks against the DH key exchange protocol.
Section III discusses, the anatomy of the D(HE)at attack
and the ‘‘long exponent’’ issue. Section IV investigates the
impact of these attacks, providing a detailed performance
and security comparison of well-known libraries. Section V
summarizes the different attack scenarios, while in SectionVI
we highlight possible strategies to mitigate these attacks.
We conclude that it is not possible to completely mitigate the
D(HE)at attack at the protocol level, due to the fundamental
nature of the modular exponential calculations, however,
we are determined to present practical solutions to minimize
the impact.

II. PRELIMINARIES
In this section, we provide an overview of the essential
notations, concepts, and background that will be used
throughout the paper.

A group (G, ◦) is a set G equipped with a binary operation
◦, which satisfies the following conditions: closure ∀a, b ∈
G, a ◦ b ∈ G, associativity ∀a, b, c ∈ G, (a ◦ b) ◦ c =
a ◦ (b ◦ c), existence of an identity element ∃e ∈ G such
that ∀a ∈ G, e ◦ a = a ◦ e = a, and presence of an inverse
element ∀a ∈ G, ∃a−1 ∈ G such that a ◦ a−1 = a−1 ◦ a = e.
An Abelian group is a group having the following additional
property: ∀a, b ∈ G, a◦b = b◦a. The order of a finite group
(G is finite) is its cardinality, i.e., the number of its elements
in the group and it is denoted by |G|. A group (G, ◦) is said
to be cyclic if it has a generator g such that for any a ∈ G,
there exists an integer n such that a = gn. If g generates all
elements of the group (G, ◦), g is a generator and we say it
generates (G, ◦). For the sake of simplicity, throughout this
paper, we will use Z∗p referring to the group composed of the
set Z∗p = {1, 2, . . . , p− 1} with multiplication modulo p.

A. DIFFIE HELLMAN PROBLEM
Let G be a cyclic group with order p, and let g ∈ G be a
generator of this group. Then the Diffie–Hellman problem
(DHP) involves finding the value of z = gab for a given
x = ga and y = gb, where a and b are independently and
uniformly chosen from the set {0, · · · , p− 1}. This problem
is a key component of the Diffie–Hellman key exchange
algorithm.

B. DISCRETE LOGARITHM PROBLEM
Computing the exponent a from the expression ga for a given
base g, where a has been uniformly and randomly chosen
from the group, is called the Discrete Logarithm Problem
(DLP). Computing the discrete logarithm is the only known
method for solving DHP, however, it has not been proved
that no other methods exist. The description of the DH key
exchange protocol can be seen in Algorithm 1.

Algorithm 1 Diffie–Hellman Key Exchange Protocol
Group parameters: p prime and g generator.
1: procedure DH
2: CLIENT picks a random a ∈ Z∗p
3: CLIENT computes A ≡ ga (mod p)
4: CLIENT sends A to SERVER
5: SERVER picks a random b ∈ Z∗p
6: SERVER computes B ≡ gb (mod p)
7: SERVER sends B to CLIENT
8: Both parties compute k ≡ (ga)b = (gb)a (mod p)
9: return k shared secret value
10: end procedure

C. EXPENSIVE MODULAR EXPONENTIATION
Modular exponentiation forms the foundation for numer-
ous public-key cryptographic algorithms and also play an
important role in DH key exchange. Directly computing
the modular exponentiation xk (mod m) can be computa-
tionally inefficient, especially for large values of x and
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k . howeverer, an optimized method can be implemented
based on the observation that x2 (mod m) can be computed
as [(x (mod m)) × (x (mod m))] (mod m). This method
called modular exponentiation by squaring, which has a
complexity ofO(log k), allows for a faster andmorememory-
efficient computation of modular exponentiation. Although
implementing modular reduction operations to keep the
numbers smaller requires additional computational overhead,
the reduced size of the numbers makes each operation faster,
resulting in significant time and memory savings.

1) PARI/GP FOR CRYPTOGRAPHIC CALCULATIONS
PARI/GP [76] is an open-source computer algebra system.
Throughout this paper, we will showcase examples using
PARI/GP, which is widely used in cryptographic computa-
tions and number theory analyses. The fast modular exponen-
tiation method can be easily implemented in PARI/GP which
can be seen in Listing 1.

LISTING 1: Fast modular exponentiation in PARI/GP.

Consider to calculate the following huge number 1002
32

(mod 225 + 1). The efficiency of the fast modular expo-
nentiation method becomes apparent. The traditional method
takes 3.21 minutes in one CPU thread of a 2017 MacBook
Pro using approximately 8 GB of memory in PARI/GP.
In contrast, using the exponentiation by squaring method
powermod(x,k,m) results in a calculation time of less
than 1 ms, without requiring significant memory usage.
During this paper when examining the key generation speeds
of different libraries that utilize modular exponentiation,
we will use PARI/GP 2.15.2 as our reference point, ensuring
an easy comparison for the research community.

D. ATTACK SURFACES OF DH KEY EXCHANGE
Before examining the intensive server-side DH modular-
exponentiation attack, we highlight some fundamental secu-
rity issues that could potentially threaten the reliability of
the DH key exchange protocol. These examples can serve
as a useful starting point for readers to gain a deeper
understanding of the original D(HE)at attack.

1) SMALL P MODULUS
The security provided by the DH key exchange protocol
is heavily dependent on the size of the modulus p. When
the prime number p is too small, it is possible to check
all possible solutions and solve the discrete log problem
quickly. For instance, consider a 64-bit prime number
p = 16292513333391787979, with g = 2 as a primitive
root modulo p. The DH key exchange protocol’s PARI/GP
implementation is shown in Listing 2.
The private key selected by the client is a =

2012590787486009163 and the associated public key is
A ≡ ga (mod p) = 10675403142324386337. The protocol
results in identical keys (k1 and k2) for the CLIENT and

LISTING 2: PARI/GP example for DH key exchange.

SERVER, indicating a shared secret value. The shared
secret value is represented by the group element gab =
10101250519266596601.

Solving the discrete logarithm problem and deriving the
private key a from the public key ga (mod p) for such a small
64-bit pmodulus can be easily achieved, using the znlog()
PARI/GP command, as shown in the following code snippet:

LISTING 3: Discrete logarithm computation.

This operation took only 149 ms for a 2017 MacBook
Pro. This example clearly underscores the importance of
selecting a sufficiently large modulus p to maintain a robust
level of security in the DH key exchange protocol. The size
of p directly affects the strength of the encryption, making
it critical for maintaining the integrity and confidentiality
of the data being protected. Among others, NIST provides
specific recommendations [4] (see Table 1) for the minimum
size of p in order to achieve various levels of security.
According to NIST guidelines, to achieve security levels
of 80, 112, 128, 192, and 256 bits, one needs to select a
prime with the size of at least 1024, 2048, 3072, 7680, and
15360 bits respectively. Therefore it is crucial to choose
a large enough p modulus to ensure appropriate bits of
security.

2) PRIVATE EXPONENT SIZE
Here we would like to clarify a frequently misunderstood
aspect related to the size of the private keys a, b. Increasing

TABLE 1. Comparable security strengths of a symmetric block cipher and
asymmetric-key algorithms.
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the size of the private keys beyond a certain threshold, while
keeping the modulus p unchanged, would not enhance the
security of the protocol. Table 2 provides a comparison
of international guidelines (including NIST SP 800-57)
concerning the sizes of private keys associated with various
modulus values.

TABLE 2. Recommendations for private exponent sizes for various
modulus.

In the DH key exchange protocol, the public key is
represented as ga (mod p). The discrete logarithm problem
can be solved efficiently in O(

√
n) time using methods like

Giant Step/Baby Step and Pollard’s Rho, instead of the naive
O(n) approach. To achieve 128-bit security, one must select
a prime modulus of 3072 bits and a corresponding private
key of 256 bits according to NIST recommendations. Only
expanding the size of the private keys without proportionally
increasing the modulus p does not yield stronger security,
but causes significant performance degradation. For instance,
using the NIST-suggested 256-bit private key along with a
3072-bit modulus can be 10 times faster compared to the case
when the public key size is the same as the private key size
(long exponent). The performance difference can be as much
as 20 times using long and short exponents in the case of an
8192-bit modulus size. In the prior example, if we increase the
size of the private key a and b to, for instance, 2048-bit, the
difficulty of solving the discrete logarithm problem remains
the same, irrespective of this increase in the private key size.
This attack scenario (large private key, small modulus) can
effectively be illustrated by the following code snippet:

LISTING 4: Discrete log attack against DH key exchange.

In our test environment, even with a 2048-bit private key,
the znlog(A,Mod(g,p)) computation can be executed
by an attacker in under 200 ms, highlighting the significance
of the issue.

3) LARGE MODULUS AND SMOOTH NUMBERS
The security of the key exchange protocol depends greatly
on the choice and size of the group parameters (p, g) as well as
the minimum size of the private keys (a, b). In order to ensure
secure key exchange, it is essential to choose a large modulus
according to the NIST recommendation. howeverer, this
alone is not sufficient to guarantee security. In 1978, Stephen

C. Pohlig and Martin E. Hellman introduced a method [51]
for solving the discrete logarithm problem in a finite cyclic
group inO(log2 p) time if p−1 has only small prime factors.
This method is known as the Pohlig–Hellman algorithm and
can be used to recover information about exponents if the
order of the subgroup generated by g has small factors. The
Pohlig–Hellman algorithm is an extension of the Baby-Step
Giant-Step algorithm and is particularly efficient for groups
with a small prime order. The algorithm pseudocode can be
seen in Algorithm 2.

Algorithm 2 Pohlig–Hellman Algorithm
1: procedure Pohlig–Hellman(p, g, h ∈ G)
2: n← p− 1
3: factorize n as n = pe11 p

e2
2 . . . pekk

4: for i = 1 to k do
5: hi← hn/p

ei
i (mod p)

6: gi← gn/p
ei
i (mod p)

7: xi ← solution of gxii = hi (mod p) using the
Baby-Step Giant-Step algorithm

8: end for
9: x ← solution of x ≡ xi (mod n/peii ) using the

Chinese Remainder Theorem
10: return x
11: end procedure

At this point, we also aim to illustrate the fundamental
principles of the algorithm with an example where the
modulus is large enough. Let us generate a large prime
modulus p, such that p − 1 only has small prime factors.
To obtain the modulus p, the first 171 prime numbers were
multiplied and +1 was added to the result i.e. p = (2 · 3 ·
5 · . . . · 1019) + 1. The following command in PARI/GP,
p=prod(i=1,171,prime(i))+1 was used to produce
the 1410-bit prime modulus. The Pohlig–Hellman algorithm
can be used efficiently to find the discrete logarithm of the
public key A if the largest prime factor of p − 1 is small,
which is 1019 in our example. By solely observing the public
key A ≡ ga (mod p), an attacker can determine the discrete
logarithm of Awithin a time frame of 1.7 seconds by utilizing
the already mentioned znlog(A,Mod(g,p)) PARI/GP
command. The fact that the recovered value from the public
key A and the randomly chosen private key a are identical
indicates that the attack was successful. The experiment can
be seen in Listing 5.

LISTING 5: Calculating Discrete logarithm of a smooth p− 1.

The same method can be employed to conduct a man-
in-the-middle attack when the condition p − 1 = qr is
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satisfied, where r consists of small prime factors exclusively.
In the original group Z∗p that we are working with, there
is a subgroup of order q where the computation of discrete
logarithm in q is difficult, as well as a subgroup of order
r where it is relatively easy. The keys can be recovered
(mod r) as first described by Oorschot and Wiener [80] in
1996.

The CIA triad is a fundamental concept in information
security that consists of three key elements: confidentiality,
integrity, and availability. The demonstrated attacks including
the small modulus attack and the small subgroup attacks
using the Pohlig–Hellman algorithm, are all related to the
confidentiality and integrity elements of the CIA triad.
The third aspect of the CIA triad (availability), is often
disregarded and underestimated.

III. THE D(HE)at ATTACK (CVE-2002-20001)
To prevent attacks such as the small subgroup attack, it is
commonly recommended to choose a ‘‘safe’’ prime for
the value of p in the DH key exchange. A safe prime is of the
form 2q+1, where q is also a prime number. Additionally, the
generator g should be selected in a way that generates a group
of order q modulo p. By choosing p and g in this manner,
the security of the DH key exchange is strengthened against
small subgroup attacks. Modern cryptographic libraries
often utilize pre-defined group parameters (p, g) in their
implementations of the DH key exchange protocol. This
approach helps to mitigate the risk of weak parameter
selection by ensuring that the parameters used in the key
exchange are well-established and secure.

As an illustration, RFC 7919 [17] employs four distinct
safe primes. For example the 2048-bit group is defined as
p = 22048 − 21984 +

⌊
21918 · e+ 560316

⌋
· 264 − 1 where

the generator is g = 2 and the group size is q = (p− 1)/2 is
also a prime number. Verifying the generated subgroup is
straightforward, as it can be done by checking if 2q mod p ≡
1. Applying a large prime modulus can effectively safeguard
the confidentiality and integrity of the key exchange protocol,
howeverer, it also introduces a new attack surface that
can potentially compromise the availability of the involved
hardware and software components.

Under normal circumstances, the DH key exchange
algorithm requires the same amount of resource consumption
from the parties participating in the key agreement process,
because each party must perform the same operations to
calculate their public keys and the shared secret value.
In 2002, Jean-Francois Raymond and Anton Stiglic briefly
mentioned [68] a theoretical attack against the DH key
exchange protocol: an adversary could send an excessive
number of public keys, which may simply be random
numbers, so the victims are forced to perform a large number
of modular exponentiations in order to compute the shared
DH secret values, causing computational problems on the
server side.

Modern cryptographic protocols support the ephemeral
version of the DH key exchange which involves two modular

exponentiation calculations on the server side. In most cases,
an attacker can force modern protocols to perform modular
exponentiation before calculating the shared secret key,
namely for calculating the public key. To achieve this, one
only needs to transmit an initial cryptographic handshake
message. Exploiting this observation, the likelihood of a suc-
cessful denial of service (DoS) attack against the ephemeral
DH key exchange can be significantly increased. This small
modification compared to the original idea discussed in 2002,
makes this attack surprisingly easy to execute. It has turned
out that even the most current servers using DH key exchange
are susceptible without proper mitigation. Despite 20 years
having passed since this issue was mentioned, no publicly
known exploit has been developed.

A. D(HE)at ANNOUNCEMENT
In November 2021 we announced the server-side modular
exponential attack, called D(HE)at attack with the assigned
CVE-2002-20001 number. This attack is designed to target
all variants of the DH key exchange protocol, including the
ephemeral version. It is important to note that despite the
D(HE)at attack being formally published in 2021, it was
assigned a CVE number 2002 due to the fact that the concept
of the attack for the traditional DH key exchange was already
discussed in 2002. The following is the official description
of the attack, as listed in the NIST NVD database: ‘‘Diffie–
Hellman Key Agreement Protocol allows remote attackers
(from the client side) to send arbitrary numbers that are
actually not public keys and trigger expensive server-side
DHE modular-exponentiation calculations, aka a D(HE)at
attack. The client needs very little CPU resources and
network bandwidth. The attack may be more disruptive in
cases where a client can require a server to select its largest
supported key size’’.

B. IMPACT
The impact of the vulnerability is high with an assigned
7.5 CVSS (Common Vulnerability Scoring System) score.
The high score is a result of various factors. Notably, the
attack does not require user interaction and can be carried
out remotely through the network. Additionally, the attack
has a low level of complexity. It is crucial to emphasize that
this specific attack does not compromise confidentiality (C),
integrity (I), or scope (S), but it does have a significant impact
on availability (A). The CVE-2002-20001 CVSS 3.1 radar
diagram can be seen in Figure 2.

C. ATTACK DESCRIPTION.
The pseudo code and the schematic diagram illustrating the
D(HE)at attack can be seen in Algorithm 3 and Figure 3.
The attack deviates from the standard DH protocol right from
the start, with the client stating its sole support for DHE
(Algorithm 3, line 2). The malicious client can force the
server to generate its public key (Algorithm 3, line 4). To carry
out the attack, the attacker simply has to generate a random
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FIGURE 2. CVE-2002-20001 radar diagram.

number A ∈ Z∗p (Algorithm 3, line 6) once and transmit it
to the victim server, pretending that it was calculated as the
legitimate public key. Applying this technique the malicious
client can skip the expensive modular exponentiation as it is
guaranteed that the result of modular exponentiation is less
than themodulus p, so it is enough to pick an arbitrary number
A ∈ {1, . . . , p− 1}.

Algorithm 3 The D(HE)at Attack
Group parameters: p prime and g generator.
1: procedure DHEAT()
2: Client sends that it only supports DHE
3: SERVER picks a random b ∈ Z∗p
4: SERVER computes B ≡ gb (mod p)
5: SERVER sends (p, g) and B to CLIENT
6: CLIENT picks a random A ∈ Z∗p
7: CLIENT sends A to SERVER
8: SERVER computes k ≡ Ab (mod p)
9: CLIENT skips computing the shared k key

10: return k invalid shared secret value
11: end procedure

Thanks to DLP, the targeted server is unable to distinguish
between a computed public key and the arbitrary random
number selected by the attacker and hence accepts the random
number as a legitimate public key. The server computes the
fake shared key k ≡ Ab (mod p) (Algorithm 3, line 8)
and the client skips the expensive modular exponentation
once again (Algorithm 3, line 9). With this mechanism,
a malicious client can force the server to perform modular
exponentiation twice, while avoiding the need to perform
any computationally intensive calculations on the client
side. While calculating modular exponentiation has a time
complexity of O(log b), meaning it scales logarithmically
with the size of the exponent b, generating a random number

FIGURE 3. D(HE)at attack concept.

has a constant time complexity of O(1). The fact that
generating a random number has a constant time regardless of
the input size makes it advantageous for potential attackers,
as it allows for efficient execution of the D(HE)at attack.

D. PROOF OF CONCEPT
Even though the D(HE)at attack has significant conse-
quences, it was considered a performance issue by most
vendors due to its fundamental nature. To underscore the
significance of this matter, we created a PoC code (D(HE)ater
[50]) for the D(HE)at attack that could operate effectively in
almost every situation for different protocols, with the aim
of convincing the impacted vendors. By openly sharing the
code, researchers can work together to improve the security
of cryptographic libraries and reduce the risks posed by this
vulnerability.

In the following section, wewill illustrate how the D(HE)at
attack can be easily carried out against the latest operating
systems (e.g. Ubuntu 22.04 LTS or Ubuntu 23.04) with all
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the latest security patches installed, assuming no additional
countermeasures are in place (e.g. Fail2ban,WAF).Wewould
like to emphasize that although we will demonstrate the
attack on the most recent Ubuntu servers equipped with the
latest OpenSSL, it is important to note that the attack is
not specific to these systems. It is a generic issue in the
DH key exchange and can be exploited on various operating
systems with different cryptographic libraries. The examples
presented in the following section were also tested on various
major operating systems such as Debian 11, openSUSE Leap
15.3, Fedora, and others. This emphasizes the criticality
that, the vulnerability of the DH key exchange to modular
exponential attacks is not a theoretical concern but has
significant implications in practical real-life situations.

E. DEMONSTRATION OF THE D(HE)at ATTACK
Before we begin examining and comparing the various
cryptographic libraries, we will showcase the effectiveness
of the D(HE)at attack by testing it on different types of
protocols, namely TLS 1.3, and SSH 2.0. The tests are
highly illustrative, and in every instance, we managed to
achieve 100% CPU utilization on the server side without any
resource-intensive computations on the client side.

1) 2 CPU CORES INSTANCE – TLS 1.3
In our first example, a Digital Ocean Regular instance was set
up with two Intel CPU cores (Premium NVMe SSD Droplet
with 4 GB RAM). We deployed Ubuntu 22.10, the latest
available instance at the time of writing on the Digital Ocean
cloud service. Following this, we manually updated the
droplet to the latest version, Ubuntu 23.04 (Lunar Lobster).
Apache2 (2.4.57) web server along with the latest OpenSSL
3.0.8 were installed. All patches and security updates were
applied to the server. Within the Apache2 configuration file,
we have activated only TLS 1.2 and TLS 1.3 with the latest
cipher suites recommendations. In the configuration file, only
eight strong cipher suites were activated:

LISTING 6: Enabled cipher suites in our test server.

The remote server will become inaccessible when the
command dheat.py -thread-num 64 -protocol
tls <IP> is executed. The proof of concept tool automati-
cally selected the largest DH public key size available in TLS
1.3, which in our case was 8192 bits. Within 15-20 seconds,
the load average reaches 150, and the CPU utilization hits
100%, as can be seen in Figure 4.

FIGURE 4. D(HE)at attack against the TLS 1.3 protocol.

The server becomes inaccessible during the attack and
is unable to handle additional requests. In case someone
attempts to download the server’s main web page using curl,
the following error is encountered curl: (28) Failed
to connect to <IP> port 443.

2) 2 CPU CORES INSTANCE – SSH 2.0
Using the same instance (Ubuntu 23.04, OpenSSL 3.0.8)
we carried out the same attack against the SSH pro-
tocol. The connection that was established during the
attack utilized the SSH 2.0 protocol and employed
the diffie-hellman-group18-sha512 algorithm,
which means an 8192-bit key size similar to the pre-
vious attack scenario. Within 35-40 seconds, both CPU
cores once again attained their peak capacity. Once the
load average exceeds 50, the server becomes incapable
of accepting the majority of further SSH connections,
resulting in dropping approximately 6-7 out of every
10 connections: kex_exchange_identification:
Connection closed by remote host. In these
two examples, we used the most popular Digital Ocean
instance with 2 CPU cores. The question naturally arises:
Can increasing the number of CPU cores prevent or mitigate
the impact of this attack? The answer is no, which we will
illustrate in our upcoming example.

3) 32 CPU CORES INSTANCE – TLS 1.3
We successfully executed an attack on the most recent
Ubuntu 23.04 in the previous two examples, which had
OpenSSL 3.0.8 installed. It is important to note that the
majority of users choose the long-term support (LTS)
version of Ubuntu. The reason behind this preference is that
LTS releases offer extended stability, security, and support
compared to normal releases. Therefore, to demonstrate a
more realistic scenario we will now attempt our attack on
the most recent Ubuntu 22.04 LTS (Jammy Jellyfish) with a
significantly more powerful computer, specifically an AMD
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FIGURE 5. 100% CPU usage during a D(HE)atattack against an AMD Ryzen Threadripper PRO 3995WX with 32 CPU cores.

Ryzen Threadripper PRO 3995WX with 32 CPU cores. This
server is equippedwith a pre-installed OpenSSL version 3.0.2
(which is the default OpenSSL version in Ubuntu 22.04).
In this example, our focus is once again on the HTTPS
protocol. In order to remove any potential bias towards a
specific service provider, we decided to switch from Digital
Ocean to a private data center situated in the Middle East
region.

Even when attacking a more powerful server with addi-
tional CPU cores, the result remains unchanged. All 32 CPU
cores reach 100% utilization, as depicted in Figure 5. When
the load average reaches 80 − 90 the server experiences
significant slowdowns, making it unable to handle normal
requests effectively.

The attack was successful, howeverer, a notable difference
can be observed. We attained 100% utilization across all 32
CPU cores in merely 5 seconds, employing 32 threads with
the D(HE)at tool, as opposed to the prior example where
64 threads were used and peak CPU utilization was reached
after 20-40 seconds. How did we manage to overwhelm
a significantly greater server capacity, while using fewer
resources and less time from the client-side perspective?

F. LONG EXPONENTS (CVE-2022-40735)
The answer to the previous question can be discovered by
examining the differences between OpenSSL 3.0.2 (Ubuntu
22.04 LTS) and OpenSSL 3.0.8 (Ubuntu 23.04). In the
more recent OpenSSL version (3.0.8), a patch has been
implemented to mitigate the D(HE)at risk associated with
using large private keys. In OpenSSL 3.0.2, the D(HE)at
impact is considerably more visible, as the DH key exchange
protocol is using unnecessarily large private keys (exponents)
making the D(HE)at attack significantly more feasible.

Some cryptographic libraries implement the
Diffie–Hellman key exchange by using long exponents
arguably making modular exponentiations unnecessarily
expensive. Appropriately short exponents can be used when
there are adequate subgroup constraints [80], and these
short exponents can lead to less expensive calculations
than long exponents with the same security strength. This

implementation issue enhances the effect of the D(HE)at
attack, especially when larger key sizes are enabled in the
server configuration or the private exponent size is not
configurable. It means the D(HE)at attack can be more
effective if the private exponent size is significantly larger
on the server side.

This is exactly the case in our third, 32 CPU cores
example. In OpenSSL 3.0.2, an unnecessarily large private
key exponent (8192 bits) is associated with the 8192-bit
prime modulus. As per the international standards, including
the NIST recommendations (c.f. Table 2), for an 8192-bit p
modulus, a roughly 380-400 bits private exponent suffices
to achieve adequate security. Utilizing a key larger than
400 bits does not yield any additional security but can
lead to a significant performance dropdown (as shown in
Section II-D2). The CVE-2022-40735 identifier was assigned
for this type of implementation flaw and was publicly
disclosed in November 2022.

In OpenSSL 3.0.6 the ‘‘long exponent’’ issue (CVE-2022-
40735) is already mitigated, and for an 8192-bit modulus,
only a 400-bit associated private key size is presented. This
implies that significantly more requests are required from the
client to execute the D(HE)at attack effectively. If both CVE-
2002-20001 and CVE-2022-40735 vulnerabilities are present
on a vulnerable server, especially if large group parameters
are enabled, a malicious client can completely exhaust the
server’s resources with minimal effort resulting in a highly
efficient DoS attack.

As discussed at the beginning of this section, the latest
Ubuntu 22.04 LTS version which is using OpenSSL 3.0.2
still contains the CVE-2022-40735 vulnerability. However,
this vulnerability has been resolved in Ubuntu 23.04 with the
use of OpenSSL 3.0.8. As a result, only the original D(HE)at
attack (CVE-2002-20001) can be used against Ubuntu 23.04.
Despite the absence of the long exponent problem (CVE-
2022-40735) in Ubuntu 23.04, a malicious client can still
exhaust server resources from a normal laptop (e.g. 2017
MacBook Pro, 16GBRAM) as we have shown in the first two
examples. Since different applications and servers employ
various cryptographic libraries, the question arises as to
which library is affected and which one should be used by
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system administrators. Answering this question is a complex
task, as it requires a thorough understanding of the unique
requirements of each application and we need to explore the
default settings of different cryptographic libraries.

In the following section, we present a thorough assessment
of different cryptographic libraries. Our analysis includes
a comprehensive comparison of the default settings for
cryptographic libraries, as well as the default sizes of private
keys and group parameters used by these libraries.

IV. ANALYSIS
In this section, we delve into a comprehensive methodology
that is essential for accurately assessing various crypto-
graphic libraries. We also emphasize the significance of
assessing the speed of cryptographic libraries, as opposed to
focusing solely on the speed of the application server.

A. METHODOLOGY
Evaluating the DH key exchange at the application level
would yield unrealistic outcomes. This is because application
servers like Apache, Lighttpd, and NGINX engage in various
additional tasks, such as socket handling and thread creation,
during the cryptographic handshake process, making the
measurement results impossible to compare. A possible
solution could involve the utilization of a specific application
server. However, it is worth noting that there is no single
application server that supports all cryptographic libraries
and all the investigated protocols. Therefore, we evaluated
cryptographic libraries, as they operate at the lowest level of
DHE key exchange. If a cryptographic library is vulnerable
to a D(HE)at attack, all application servers using that library
are also at risk. The result of measuring the cryptographic
library represents a theoretical maximum performance that
can be reached by any application server utilizing a specific
cryptographic library.

1) DH KEY EXCHANGE SUPPORT
In the previous section, we illustrated the practical usage
of the D(HE)at attack. However, a fundamental question
naturally emerges: What is the current status of DH key
exchange support and key sizes among servers? Does the
D(HE)at attack effectively target the majority of servers
present on the internet? We have conducted an investigation
into the two most widely used protocols that offer DH key
exchange: TLS and SSH.

We found that 55% of the top 1 million [32] web servers
utilize the DH key exchange protocol during the TLS
negotiations (see Figure 1). According to our measurements,
web servers that utilize DH key exchange typically do not
provide compatibility with key sizes exceeding 2048 bits in
the majority of cases (see Figure 6).
The reason for this is that, before TLS version 1.2, the

negotiation of DH parameters was not a part of the TLS
standard; it was introduced as an extension in RFC7919 [17].
Moreover, the popular OpenSSL lacks support for the
necessary extension to negotiate DH parameters prior to TLS

FIGURE 6. Diffie–Hellman key size support in the Top 1 million domains.

1.2. Only its latest major version (3.0) supports DH group
parameter negotiation in TLS version 1.3.With the increasing
popularity of TLS 1.3, it is reasonable to anticipate greater
support for larger keys, making D(HE)at more efficient. This
is particularly relevant because OpenSSL (3.0) utilizes the
largest possible (8192 bit) DH group parameter by default.
This fact gains more relevance when considering that the
configurations of most application servers are dependent on
the cryptographic library settings.

Beyond that, the widespread usage of the SSH protocol on
the internet can be assessed in a similar manner. According to
the data gathered from Shodan [73], we found (see Figure 7)
that 87% of servers worldwide offer support for DHE within
the SSH protocol, 65% offer the largest key size defined in the
related standard [5], and 82% support group exchange [15]
that also makes possible negotiation of larger key sizes.

FIGURE 7. Diffie–Hellman key size support in SSH according to Shodan.

2) EVALUATED ARCHITECTURES
Throughout the evaluation process, we involved four distinct
types of CPUs, ranging from low to high-end performance.
These CPUs are the following:
• ARM v7 Processor rev 4 (v7l)
• Digital Ocean Regular
• Intel Atom C3558 CPU @ 2.2GHz
• Intel Xeon E-2224 CPU @ 3.40GHz
In all our measurements, we utilized a single core and

a single thread from each CPU. The rationale behind
this approach was that various application servers and
cryptographic libraries leverage cores differently, and we
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aimed to generate comparable results. Moreover, in modern
architectures, these CPUs are frequently used in virtual
environments, allowing users to select the number of cores
and threads they wish to use. With a single core and thread
configuration, themeasurements presented in this study allow
for easy replication and adjustment according to the desired
number of cores and threads.

3) EVALUATED LIBRARIES
We have conducted research on all the major cryptographic
libraries across the specified CPU types including OpenSSL,
BoringSSL, LibreSSL, GnuTLS, NSS,Mbed TLS, OpenJDK
andWolfSSL. The analyzed libraries and their corresponding
version can be seen in Table 3.

TABLE 3. Compared cryptographic libraries.

Since there were significant changes in the Diffie–Hellman
implementation and parameters used between versions 1.0,
1.1.1, and 3.0 of OpenSSL, we made sure to include these
three major versions in our performance measurements.
By evaluating the performance of each version under different
scenarios, we were able to gain a better understanding of the
impact that these changes had on the overall performance of
the OpenSSL library.

The performance of the Diffie–Hellman key exchange
strongly depends on the used private-public key sizes,
meaning that the effectiveness of the D(HE)at attack also
strongly depends on that. Thus, our first comparison aims
to evaluate the effective key generation speed (modular
exponentiation speed) in the aforementioned libraries using
different p modulus and different private key sizes.

B. KEY GENERATION PERFORMANCE
Different cryptographic libraries come with varying default
settings, offering support for different maximum modulus
sizes. Furthermore, there is a significant difference in the
speed of modular exponentiation across various library
implementations, which is a crucial factor in determining
the public key generation speed. Interestingly, this difference
was even observed among different versions of the same
cryptographic library, emphasizing the importance of care-
fully selecting the appropriate library version for specific
applications to achieve optimal performance. In the first
step of our investigation, we focused on evaluating the

performance of the DH key generation. To ensure consistent
and comparable results, we measured key generation speeds
using the same parameters, specifically a 2048-bit public key
and a 232-bit exponent size. Figure 8 illustrates the DH key
generation speed of various cryptographic libraries relative to
PARI/GP (100%) on the Intel Xeon E-2224 CPU@ 3.40GHz
platform.

FIGURE 8. DH key generation speed of cryptographic libraries compared
to PARI/GP on Intel Xeon E-2224 CPU @ 3.40GHz .

Just for clarification, when we are discussing key genera-
tion in the context of the DH key exchange protocol, we are
referring to the computation of the public key, represented as
A ≡ ga (mod p). To establish a reference point, throughout
this paper, we used PARI/GP version 2.15.2 andmeasured the
performance of all other cryptographic libraries against it.

By comparing the modular exponentiation (key genera-
tion) speed of each library to PARI/GP, we were able to
identify significant differences in performance and determine
which libraries performed best under different scenarios.
Only two (OpenSSL, BoringSSL) of the investigated cryp-
tographic libraries can exceed the performance of PARI/GP.
GnuTLS is close to the result of PARI/GP, but all the
others significantly fall short of the performance that can be
considered optimal.

It is important to acknowledge that the significant vari-
ations among different libraries primarily arise from their
requirement to be compatible with a wide range of platforms
and devices. Although, the performance differences are
significant and establish the need for optimization, in real-
life scenarios the DH key generation parameters – public key
and exponent sizes – and their default matter much more than
the pure performance.

1) LONG EXPONENT ATTACK
A significant difference can be seen in performance when
comparing the key generation speed, which is heavily
dependent on the size of the used exponent in the modular
exponentiation. For instance, when using OpenSSL 3.0.5
with a 3072-bit modulus and a private key of the same
size, it is possible to generate 208 public keys per second
per CPU thread on Intel Xeon E-2224 CPU @ 3.40GHz .
However, when the private key size is reduced in OpenSSL
3.0.6 to 272 bits, by NIST recommendations, the public key
generation speed increases to 1811 per second, which is a

VOLUME 12, 2024 967



Sz. Pfeiffer, N. Tihanyi: D(HE)at: A Practical DoS Attack on the Finite Field DH Key Exchange

770% speed improvement. Figure 9 illustrates the significant
difference in speed between a small and a large private key
(232 vs. 3072 bits) using various libraries on Intel Xeon E-
2224 CPU @ 3.40GHz .

FIGURE 9. DH key generation speed using small and long exponents on
Intel Xeon E-2224 CPU @ 3.40GHz .

Given this significant difference in performance speed,
it becomes essential to investigate the private key sizes
employed by cryptographic libraries. To select the most suit-
able library for diverse applications and server requirements,
we aim to conduct a more detailed comparison involving
different key sizes. The speed of public key generation for
small exponent sizes (232-416 bits) is presented in Table 6
and Figure 10. For long exponent sizes (2048-8192 bits) the
key generation speed can be seen in Table 7 and Figure 11.
Both tables include results for all cryptographic libraries
tested on the four CPU instances. One can immediately
see the performance difference between the small and large
private keys.

2) DEFAULT PRIVATE KEY SIZE
Typically, users do not modify the default configurations of
cryptographic libraries or make changes to the source code
before compilation. As a result, the size of the private keys
used in the DH key exchange is determined by the default
configurations of the respective cryptographic libraries. For
example, each version of OpenSSL 1.0/1.1.1 and 3.0 until
3.0.5 are vulnerable to the ‘‘long exponent’’ issue (CVE-
2022-40735), meaning that large private keys were in use by
default. This issue was fixed in 3.0 series starting with version
3.0.6, where each public key size is paired with a smaller
private key according to the NIST recommendation. The only
exception is when custom (different from the ones defined in
RFC 7919 [17] or RFC 3526 [29]) parameters (p, g) are set
using a DH parameter file, and the optional private exponent
value is not set. In that case ‘‘long exponent’’ issue still exists
in OpenSSL 3.0 versions utilizing DH key exchange up to the
1.2 version of TLS.

To mitigate the attack surface of the ‘‘long exponent’’
issue, it is crucial to utilize a cryptographic library that uses
short exponents. We have collected and documented (default)
private key sizes of each investigated cryptographic library.

Table 4 demonstrates that the ‘‘long exponent’’ issue is not
as unlikely as one might assume considering that the issue

TABLE 4. Default TLS public key sizes and private exponents.

has been known for more than twenty years [68] and the
related RFCs formulate recommendations for the applicable
private exponent sizes (c.f. Table 2). In part of this study,
all cryptographic library vendors were warned about this
issue. As a consequence, the latest versions of OpenJDK,
Oracle JDK, and OpenSSL use small exponents. One can see
that GnuTLS, NSS, and WolfSSL have never been affected
in the ‘‘long exponent’’ issue. Detailed information about
the key generation speeds of the investigated cryptographic
libraries can be found in Table 6 and Table 7 which illustrate
a noticeable performance decrease across different key sizes
and libraries.

3) PUBLIC MODULUS SIZE
Another crucial factor influencing key generation speed
is the public modulus size. For instance, a significant
difference is evident between an 8192-bit modulus and a
3072-bit modulus, even when the appropriate private key
size is utilized. In order to attain 128-bit security, the NIST
recommends using a 3072-bit prime modulus and a minimum
private key size of 256 bits (see Table 1). If a client can
force the server to use the largest supported group parameter
during the DH key exchange parameter negotiation, such
as an 8192-bit modulus, a substantial performance decline
becomes visible between the two moduli. As an example,
this performance difference can reach 967% (1811 op/sec vs
187.2 op/sec) on Intel Xeon E-2224 CPU @ 3.40GHz using
OpenSSL 3.0, as shown in Table 6 and Table 7.

4) ALGORITHM AND PARAMETER NEGOTIATION
At this point, we need to clarify an important question.
Is it actually possible for the client to force the server
to utilize the larger key sizes, thus increasing the impact
of D(HE)at attack? It primarily depends on whether DH
group parameter negotiation is defined in a cryptographic
protocol. If so, how widespread is the support of parameter
negotiation among the most popular cryptographic library
implementations, and which parameters are offered by
default?

968 VOLUME 12, 2024



Sz. Pfeiffer, N. Tihanyi: D(HE)at: A Practical DoS Attack on the Finite Field DH Key Exchange

a: CRYPTOGRAPHIC PROTOCOLS
All widely used cryptographic protocols have DH parameter
negotiation support (see Table 5).

TABLE 5. Cryptographic protocol DH parameter negotiation support.

The only exception is the TLS protocol prior to its version
1.2 which supports the negotiation only with an extension.

In the Diffie–Hellman key exchange protocol, there are
two methods to agree on group parameters (p, g) during
the handshake. One such method involves referencing the
group parameters known to both parties, such as those
defined in RFC 3526 [29], RFC 5114 [26], and RFC 7919
[17]. Most protocols employ this approach (see Table 8)
as it can decrease the bandwidth requirement during the
cryptographic handshake, especially in the case of larger
key sizes (e.g. 8192-bit). The other method involves directly
transmitting group parameters, which has the advantage
that any parameters can be used independently whether
they are standardized or not. Irrespective of whether the
Diffie–Hellman parameters are referenced through an RFC
document or transmitted directly during a cryptographic
handshake, it is important to note that only the group
parameters (p, g) are negotiated between the involved parties.
The size of the private exponents (a, b) is determined
independently by each partywithout any reliance on the other.

The cryptographic protocols definition can either specify
that a server should respect the other client’s algorithm
preference or disregard it. If the client preference is
honored, the attacker can order the algorithms based on their
requirements, giving priority to the most resource-intensive
ones. On the other hand, if the server disregards the client’s
algorithm preference, the attacker is required to examine the
victim’s service to identify the supported algorithms. In this
case, the malicious client can always claim that he can only
negotiate the most resource-intensive algorithm applicable to
the victim. It means that the only prerequisite of the D(HE)at
attack is that the server is configured to allowDiffie–Hellman
key exchange. The attacker’s fundamental interest is to
enforce the largest key size, as the resource requirement of
the modular exponentiation highly depends on the size of
the public modulus (p). In certain cryptographic protocols,
negotiation is not feasible (see Table 5) as the server offers
the group parameters and the client does not influence it.
However in many cases, such as with TLS 1.2 implementing
RFC 7919, TLS 1.3, or SSH 2.0 employing Diffie–Hellman
support, the client offers a list of preferred cipher suites
with the corresponding parameters, enabling an attacker to
force the victim to use the largest enabled key size. However,

cryptographic protocols have various ways to negotiate
DH group parameters (p, g) during the Diffie–Hellman
key exchange part of the cryptographic handshake, but
only whether they support parameter negotiation affects the
effectiveness of the D(HE)at attack, regardless of how they
support it.

b: LIBRARY IMPLEMENTATIONS
The overwhelming majority of cryptographic libraries that
implement the Diffie–Hellman key exchange also implement
group parameter negotiation in TLS (see Table 9). The one
exception is Mbed TLS which does not implement parameter
negotiation in any TLS versions. The situation was the same
in the case of the last major version (1.1.1) of OpenSSL,
but the latest major version (3.0) released with parameter
negotiation support, but only in the 1.3 version of TLS. As a
consequence, it is practically feasible for an attacker to force
larger DH key sizes during the D(HE)at attack making the
negotiable parameter enabled by default in the cryptographic
library particularly important.

All the investigated cryptographic libraries that support
DH parameter negotiation in TLS also enable the largest
key size (8192 bits) in the related standard by default.
It means that if the implementation or the configuration
of the application server does not override this default
value the attacker could enforce the server to perform
the most resource-intensive DH key exchange variant. The
only exception is WolfSSL as shown in Table 10, which
disables the key sizes larger than 2048 bits in the library
implementation by default, so the application server cannot
enable it.

C. RESOURCE REQUIREMENTS FOR D(HE)at
1) THROUGHPUT
The necessary throughput for a successful D(HE)at attack is
determined by several factors, including themaximumDiffie-
Hellman public key size supported by the server’s configu-
ration, the private key sizes employed by the cryptographic
library or the application server, and the computational
capacity of the targeted machine’s CPU. As a part of the DH
key exchange process, the computationally intensive modular
exponentiation is carried out twice. To determine the number
of requests required to fully utilize a single CPU thread, one
can consider half of the measured DH key generation speed
values. Therefore, to calculate the total number of requests
needed to fully load each core of all the CPUs within a
machine, one should multiply this value by the total number
of CPU cores and threads available.

If an attacker can send the necessary amount of requests
successfully – meaning that the requests are received and
processed by the server – it is guaranteed that it causes 100%
load on each CPU core, as only the DH key generations are
enough to achieve that CPU load. In practice, the amount
of successfully sent requests is lower as an attacked server
usually performs several other operations (such as thread
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TABLE 6. DHE public key generation speed - small exponent 232-416 bits.

TABLE 7. DHE public key generation speed - large exponent 2048-8192 bits.

creation or memory management) than the DH key exchange
part of handling a new client connection.

2) BANDWIDTH
The bandwidth requirement of the D(HE)at attack highly
depends on the cryptographic protocol peculiarities. The
Diffie–Hellman key exchange requires performing the

modular exponentiation twice (public key generation, shared
secret calculation). Still, a malicious actor may choose an
attack pattern that forces performing only one modular
exponentiation per connection, because it may require much
smaller bandwidth or just one round-trip (see Table 11),
whichmaymean a better cost efficiency ratio on the attacker’s
side.
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FIGURE 10. DHE public key generation speed - small exponent 232-416 bits.

TABLE 8. Cryptographic protocol DH parameter transmission method.

TABLE 9. Cryptographic library DH parameter negotiation support in TLS.

The proof-of-concept implementation of the D(HE)at
attack (D(HE)ater) always waits for a cryptographic

TABLE 10. Maximum public key size offered by default in cryptographic
libraries during DH parameter negotiation of TLS.

handshake message from the server that proves that the
computationally demanding modular exponentiation has
already been performed. On the one hand, it is not the most
effective attack pattern as increases the amount of time and
bandwidth necessary for a connection. On the other hand,
depending on the server implementation details it may be
enough to send the cryptographic handshake message that
triggers modular exponentiation, and the connection can be
closed immediately.
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FIGURE 11. DHE public key generation speed - large exponent 2048-8192 bits.

TABLE 11. Cryptographic protocol bandwidth requirement.

The bandwidth requirement can also depend on the DH
key size, as the cryptographic protocol may require the client
to send its public key before the server would compute its
public key. When the cryptographic protocol not only refers
to DH group parameters defined in standards but allows
the use of custom parameters, they must be sent as part of
the handshake, meaning that if both the parameters and the
client’s public key may be sent it requires one kilobyte extra
data in every connection on both directions in the case of an
8192-bit key size.

a: EARLY VERSIONS
In early protocol versions (1.0–1.2) there is no negotiation
for DH group parameters, the only DH group parameter set
(p, g) is defined by the server and sent together with the
server DH public key as a response to the initial client-
side cryptographic handshake message (ClientHello)
if the result of the cipher suite negotiation is one which
key exchange is Diffie–Hellman. An attacker can ensure
it easily if the server supports at least one DH cipher
suite sending only DH cipher suites (see Section III). As a
consequence of that way of working only the attacker has to
send only the client hello message to trigger the public key
generation.

The outbound bandwidth requirement is determined by the
size of the client hello message which can be optimized as in
theory it can contain only one cipher suite and no extensions
meaning only 60 bytes including the TLS record header.
In practice some extensions [11] are necessary (e.g. server
name [12], renegotiation extension [72]) most of the time to
perform a successful handshake. It means an extra 11 bytes
of data plus the length of the server’s fully qualified domain
name for server name extension.
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The inbound bandwidth requirement is determined by
the server response messages as the attacker needs to
wait for the message containing the server’s public key
(ServerKeyExchhange) to be sure that CPU-intensive
modular exponentiation has been done by the server. Before
that message server sends the initial cryptographic handshake
message (ServerHello) which contains the selected
cipher suite, which in this case must be the same as the
attacker sent in client hello. The structure and also the
consequence of the length of the server hello message are
similar to the client hello message, especially since client
hello without extensions prevents the server from sending
extension in server hello.

However, the bandwidth requirement is determined by
the next two messages (ServerCertificate, Server-
KeyExchange). The former contains the items of the
server’s certificate chain in ANS.1 encoding, containing
usually two (leaf, intermediate) or three (root certificate)
certificates each size is at least a thousand bytes. The latter
contains the DH group parameters and the server’s DH public
key with the same size which is usually 256 bytes (2048-
bit key size), however, they can be 1024 bytes (8192-bit
key size). The length of the response messages in total is at
least 3-4000 bytes. Performing an extra round-trip attacker
can send an arbitrary number as its public key (Client-
KeyExchange) along with a small message signaling the
transitions in ciphering strategies (ChangeCipherSpec)
to trigger a second modular exponentiation on the server-
side (shared key calculation). Attack can wait for the servers’
signaling message to be sure that the second modular
exponentiation has already been done.

However RFC 7919 defines negotiation of DH group
parameters, it does not mean a substantial change in
bandwidth requirement. The client sends the list of the
supported DH groups in an extension [17] of the client’s hello
message. It requires a few extra bytes as the attacker uses
the same method as it used in the case of the cipher suites,
by sending only one DH group, the largest one the server
supports. The server sends the selected DH group parameters
back to the client independently from the fact that it could
refer to them as the client did in its initial cryptographic
handshake message to maintain compatibility with the earlier
TLS versions. As a consequence, the bandwidth requirement
does not change compared to the earlier TLS versions.

b: VERSION 1.3
In contrast, TLS version 1.3 allows the client to send its
DH public key as an extension [71] of the client hello
message, meaning that the server can calculate the shared key
right after the initial handshake message received from the
client. TLS 1.3 decreased the number of handshakemessages.
Among others, client and server key exchange messages
ceased to be used, as instead of sending DH group parameters
directly, they are referred identifiers, reducing the required
incoming bandwidth of the attack. This way of working
reduces the necessary number of round-trips to one, cutting

back the latency and making the cryptographic handshake
significantly effective.

At the same time, D(HE)at attack also becomesmore effec-
tive, as with a single message two modular exponentiation
can be triggered. The outbound bandwidth requirement is
increased with the size of the DH public key compared to
the one round-trip version of the attack in TLS 1.2, but the
amplification factor is doubled. The incoming bandwidth
requirement in the application layer is approximately the
same as it was in the case of TLS 1.2, but the one round-trip
reduces the TCP overhead (ACK messages).

c: OPPORTUNISTIC TLS
Several application layer protocols (e.g.: SMTP, IMAP, . . . )
allow the establishment of TLS channels by an extension of
the original protocol, called opportunistic TLS. In this way
of working the client can query the extensions supported by
the server and if the TLS support is among the supported
ones it can initiate to change TLS protocol, usually by
sending the STARTTLS command. As described it usually
requires two extra round-trips (query, TLS initialization)
before the cryptographic handshake can start and requires
a small amount – usually a few ten bytes – to be sent and
received at the application level, however, extra round-trips
require an extra TCP overhead (ACK messages).

d: SSH
The SSH protocol differs from TLS in several ways
influencing the bandwidth requirement of a D(HE)at attack
significantly. Themost important difference is in the structure
of the cryptographic handshake. The initial message (protocol
version exchange) both on the client and server side
contains only a protocol and a software version in clear
text format (e.g. SSH-2.0-OpenSSH_8.1). The second
handshake message (KEXINIT) contains the identifiers
of the cryptographic algorithms that the peer supports.
Algorithms are identified by their names instead of numeric
IDs and all the supported algorithms are sent part of that
message by both parties which significantly increases the
required bandwidth compared to TLS. However, the attacker
can send an optimized message containing only the shortest
name algorithm for each type of algorithm it still requires
approximately 140-150 bytes at the application level. At the
same time, the attacker cannot influence the configuration of
the server, meaning that it would send several algorithms in
each algorithm type, requiring typically 900-1000 bytes in the
application layer.

Similar to TLS 1.3 the client has to send its DH public
key to the server (KEXDH_INIT) before it can get the
server’s public key, meaning that another 1024 bytes need
to be sent and received by the client considering the fact
that 8192-bit DH key sizes are wildly enabled on SSH
servers. The server along with the DH group parameter
sends its host key (host/X.509 certificates also possible,
but rarely used) contains only the server’s public key
without any additional information (e.g. validity, extensions
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in X.509, . . . ) or other items in the certificate chain shortening
this type of message (KEXDH_REPLY) compared to mes-
sages (ServerCertificate, ServerKeyExchange)
in TLS. As an SSH server usually has multiple host keys
with different types (e.g. RSA, ECDSA, EdDSA) attacker
may force the server to send the host key that has the smallest
key length by sending only the necessary host key algorithm
part of the key exchange initialization message. Applying
these optimizations the server’s key exchange reply message
would contain a 1024 bytes (8192-bit) DH key, 32 host
key (e.g.: ECDSA, EdDSA), and a signature, typically 32-
384 bytes according to the host key type. There is another
message (NEWKEYS) that signals that parties are ready to
communicate encrypting using the new keys, meaning that
the server has done the second modular exponentiation
(shared key calculation).

The protocol detailed above requires higher outbound,
but lower inbound bandwidth and two extra round-trips
compared to the 1.3 version of TLS protocol. To reduce
the number of round-trips the attacker can send the three
client messages together. There is another DH key exchange
method defined in the SSH protocol called group exchange,
which allows the server to use custom DH group parameters.
In this case an extra pair of messages (DH_GEX_REQUEST,
DH_GEX_GROUP) need to be sent. The initial message
contains the DH parameter sizes the client supports and the
reply message contains the DH group parameters with the
size selected by the server. After reconnaissance of the server
configuration, a malicious client can send the largest key
only enabled in the server configuration. In contrast to the
latter method where an attacker can fully precalculate the
client-side messages, this method requires a minimal amount
of computation on the client side, as the server can send
different DH group parameters – using the same size – in
each connection. After receiving the DH group parameters
the malicious client can send an arbitrary number less than
the prime (p) in the group parameters as its public key instead
of performing the modular exponentiation (see Section III).
However a small enough number can be suitable for each
prime number.

It should be emphasized that the bandwidth requirement
in table 11 are approximate because certain values highly
depend on the aforementioned cryptographic protocol details,
the server configuration – such as enabled algorithms on SSH,
X.509 certificate chain length in TLS – and also the lower
level network parameters (e.g. MTU).

V. ATTACK SCENARIOS
In the following, the most important scenarios are described
from the point of view of the victim assuming that
Diffie–Hellman key exchange is enabled on a server, meaning
that it is vulnerable to the D(HE)at attack.

A. THE WORST-CASE SCENARIO
The worst-case scenario arises when the protocol and its
implementation offer DH parameter negotiation. This risk is

even higher if the enabled parameters depend on a default
setting that allows the usage of the largest modulus. The
situation becomes even more critical if the cryptographic
library, the application server, or its configuration is using
large exponents, or if the implementation of modular
exponentiation is not optimal. If DH parameter negotiation
is available, a malicious client can force the largest modulus,
which is mostly 8192 bits. In the worst-case scenario, the
public key is paired with a private exponent using the
same key size, meaning that even the most optimal library
implementation can generate only just 5 − 12 keys per
second (see Table 7) on a single thread of a modern CPU.
Using a low-end CPU the generation of a single DH public
key requires 2 − 3 seconds, which is dramatically slow
considering the fact that these types of CPUs have only a few
CPU threads.

It is crucial to highlight that a malicious client can enforce
the server to both generate a public key and compute the
shared key, thereby adding an extra modular exponentiation
step. This action cuts the speed of the Diffie–Hellman key
exchange process in half, reducing it to an average rate of
2.5 − 6 exchanges per second. A modern CPU performance
with 32 threads would be 32×(2.5−6) ≈ 80−190 exchanges
per second, meaning that sending at least 80 − 190 TLS
client hello messages per second – using approximately
1.7 − 6.6 Mb per second bandwidth – would cause 100%
CPU utilization. This volume of requests does not require
specializedDoS capabilities. A simpleDigital Ocean instance
with 1 CPU and 1 GB RAM, priced at only 0.009 USD per
hour (6 USD / month), may serve this purpose effectively in
practice (see Section V-D). It has the capacity to overload a
modern server by causing service disruptions.

It is not just a theoretical case where a large modulus is
paired with a large exponent (see Table 4) and the larger
exponent sizes are enabled by default (see Table 10). For
instance, Ubuntu 22.04 LTS uses OpenSSL 3.0.2, which is
affected by CVE-2022-40735, offers 8192-bit public key size
by default and supports TLS 1.3, where a single message
enough to enforce the server to generate a public key and to
compute the shared secret.

B. BEST-CASE SCENARIO
To achieve a 128-bit security level, comparable to that of
AES-128 for symmetric encryption or X25519/P-256 curves
for asymmetric encryption, one can simply use a 3072-bit
modulus in combination with a roughly 256-bit private key in
the DH key exchange. There is no reason for utilizing a larger
modulus in the DH key exchange when paired with AES-
128, considering that AES-128 offers maximum security of
128 bits. Using an oversized modulus and private key would
result in a huge dropdown in performance. By employing
a cryptographic library with efficient implementation and
suitable parameters, along with a well-configured application
server, a significantly larger amount of requests would be
necessary to achieve 100% CPU utilization.
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Under the assumption that we can generate 1811 public
keys per second (see Table 6, OpenSSL 3.0 column with
3072/272 public/private keys) and the CPU has 32 threads,
as was the case in the previous (worst-case) scenario, it would
require (1811 × 32)/2 = 28, 976 DH key exchanges
per second to achieve maximum CPU utilization, using
approximately 0.6− 1 Gb per second bandwidth. While this
attack can still be executed from a single machine, the high
number of requests can be blocked by implementing simple
rate-limiting measures. For example, an IP address can be
banned if it exceeds 10 requests per second. However, this
limitation does not affect the ability of a distributed denial-
of-service (DDoS) attack carried out by a botnet comprising
approximately 3000 machines. In this case, each individual
bot only needs to send 10 requests per second and ≈ 200 −
340 Kb per second bandwidth, imposing a negligible load on
the bot itself. Consequently, the botnet can effectively target
a large number of machines concurrently.

C. MOST SECURE SCENARIO
Some cryptographic algorithms – such as AES-256, Elliptic
Curve Diffie–Hellman with NIST P-521 curve – can provide
256 bits of security. This security strength can be achieved
in theory with the finite field Diffie–Hellman key exchange
using at least 15360-bit public and at least 512-bit private
keys according to NIST [4]. In practice, working with
such enormous parameters is challenging because there
are no standardized group parameters of that size in RFC
7919 or RFC 8268 standards. Generating group parameters
of this size is possible, but it is important to note that
only GnuTLS can handle Diffie–Hellman key exchange with
primes of this magnitude, and this process does indeed take
a substantial amount of time. Most cryptographic libraries,
including OpenSSL, support a maximum prime modulus size
of 10,000 bits, as shown in Table 12. Even if the libraries
were compatible with a 15360-bit key size, the performance
would be extremely poor. For instance, when dealing with
a 15360-bit modulus and suitable 512-bit private key, the
performance is roughly four times slower on a Intel Xeon
E-2224 CPU @ 3.40GHz CPU compared to an 8192-bit
modulus with an 8192-bit exponent (long exponent issue) as
shown in Figure 12.

FIGURE 12. DH key generation speed with 15360/512 and 8192/8192
keys using OpenSSL 3.0 on Intel Xeon E-2224 CPU @ 3.40GHz .

TABLE 12. Cryptographic library maximum supported DHE modulus size.

Based on our measurements and experiments, we can
deduce that attaining a 256-bit security level in DH key
exchange is not only a challenging endeavor but also carries
a significant risk of potential DoS attacks.

D. REAL-LIFE SCENARIO
In real-world scenarios, a server’s CPU utilization is typically
not at zero, and the server application does several other
operations than only the DH public key and shared secret
calculation (see Section IV-A, making it easier for an attacker
to execute their malicious actions with significantly fewer
resources, as demonstrated in both the worst and best-case
scenarios. We also should not forget when a 100% can be
achieved the normal traffic can cause the overload. It means
that during a D(HE)at attack, a malicious actor should
monitor the server’s response times to conclude the load on
the server side and adjust the necessary number of requests
as needed saving resources on the attacker’s side.

In practical situations, simply banning an IP address
may not always be a viable solution. This is due to
the widespread use of network address translation (NAT),
where hundreds or even thousands of machines share the
same public IP address for internet communication. This
opens up an additional attack surface for malicious users,
enabling them to ban a huge number of active machines by
initiating incomplete handshakes. It is worth noting that these
handshakes adhere fully to established standards, making it
even more challenging to detect such attacks.

VI. POSSIBLE MITIGATION SCENARIOS
Due to the high computational cost associated with modular
exponentiation for large numbers, the DH key exchange
is vulnerable to the modular exponential attack by design.
Through minor efforts, we have successfully demonstrated
in real-life scenarios that it is possible to achieve 100% CPU
utilization on the latest servers, even when up-to-date patches
are applied. This raises the question of what the solution
might be and whether a solution exists. While the protocol
is inherently vulnerable, several factors can be taken into
consideration.

A. DISABLE OR RESTRICT DH KEY EXCHANGE
The most obvious mitigation technique is to disable the DH
key exchange, although there is no other forward secret
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alternative, just the ECDHE protocol. Moreover, entirely
deactivating DH may not always be feasible due to the
constraints of legacy systems. One can categorize services
into two primary types: public services and private services.

1) PUBLIC SERVICES
In the case of public services, it may not always be possible
to permanently deactivate DH key exchange due to legacy
considerations. In public services, there is a requirement to
support a large number of clients, and not all of them are
prepared to use the most up-to-date protocols and cipher
suites. Consequently, limiting the availability to only ECDHE
protocols would render it impossible for certain clients to
establish connections. Nonetheless, the risk can be mitigated
by disabling DH in TLS 1.3 and restricting its usage to TLS
1.0-1.2 only. This can also have the advantage that private
key sizes can be ensured by setting the optional private
value length in the DH parameter file. To provide backward
compatibility, DHE cipher suites may remain unchanged prior
to TLS version 1.3, but the size of the DHE key sizes should
be strictly limited by using DH parameter files with the
appropriate key size. It should be noted that it is not a solution
in the cases when the cryptographic library supports only
negotiating the finite field DH parameters, as defined in RFC
7919.

2) PRIVATE SERVICES
In these situations, administrators typically deal with a
limited number of client applications and a specific range
of their versions. As a result, they can require that client
applications support the latest cryptographic algorithms.
In practical terms, this may involve enforcing the obliga-
tory requirement for ECDH support, thereby enabling the
complete deactivation of finite field DH key exchange
algorithms on servers. Typically, it is also viable to employ
the most secure algorithms without concern for their resource
demands. This is achievable because both the source and
frequency of resource requests can be effectively restricted,
preventing the success of a DoS attack like D(HE)at.

Application servers that employ TLS for securing the
confidentiality and integrity of communication channels have
the capability to configure cipher suites and named groups.
To deactivate finite field DH algorithms, cipher suites should
either be explicitly configured to exclude DHE algorithms
or implicitly configured by using predefined groups and
implementing a rule to disable DH algorithms. For example,
one can add the configuration line ...:!kDHE to the
server’s cipher suite settings when using OpenSSL.

Named groups should also be configured explicitly while
omitting algorithms such as FFDHEx. Application servers
that implement the SSH protocol allow for the independent
configuration of key exchange algorithms separate from other
cryptographic algorithms. Typically, these key exchange
algorithms are configured individually, so removing algo-
rithms with names starting with diffie-hellman effec-
tively disables finite field DH key exchange. Regardless of

whether DH key exchange can be disabled, implementing
rate limiting is always a good practice for a private service,
especially when dealing with an expected lower volume of
connections, which is common in the case of SSH.

B. APPROPRIATE PARAMETER SELECTION
As previously demonstrated, it is crucial to make a proper
choice regarding the size of the ‘‘p’’ modulus in the DH
key exchange. Given that the most popular cryptographic
algorithms offer at least 128 bits of security, the key sizes
employed in Diffie–Hellman key exchange should also
guarantee a security level of at least 128 bits to prevent any
reduction in security. It is essential to select the correct ‘‘p’’
size accordingly to avoid the unnecessary use of overly large
moduli, which can result in a noticeable drop in performance.
For achieving a 128-bit security level, a 3072-bit modulus
is sufficient, and larger moduli can lead to a significant
performance decrease. The Cryptolyzer [49] tool can, for
example, be utilized to verify the supported modulus in a pre-
configured server for various protocols (refer to Listing 7).
This tool can assist in testing server configurations to prevent
impropermodulus settings and can also be employed to assess
the default settings of various application servers.

LISTING 7. Checking involvement in D(HE)at attack using cryptoLyzer [49].

After selecting the most appropriate public key size(s)
the related private key sizes should be reviewed which is
not a trivial task, since the used private key sizes cannot be
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determined using black box techniques. The private key must
not leave the peer and from the public key, an observer cannot
determine the size of the used private key, if it could it would
pose a risk to the security of the key exchange. The source
code of the cryptographic library and/or the application server
implementationmust be analyzed to determine the private key
sizes in operation. In closed-source software log messages
or documentation may provide information about the used
private key sizes. Estimations regarding the size of the private
key being used can also be derived based on the public key
generation speed of a machine with a known CPU capacity.

In most cases, the size of the private key cannot be
influenced without the modification of the source code of the
cryptographic library and/or the application server. However,
there is a rarely used exception in the case of the TLS protocol
up to its 1.2 version.

In most application servers, it is possible to read the
Diffie–Hellman parameters (p, g) from a designated param-
eter file. This file also includes an optional field, known
as (privateValueLength), as defined in PKCS#3 [30].
If the cryptographic library is capable of recognizing this
optional value, it is possible to restrict the size of the private
key by setting it to an appropriate value.

The GitLab repository of D(HE)ater [50] contains parame-
ter files with private values set to an appropriate value. These
files are available for different key sizes of the well-known
(RFC 7919, RFC 3526) parameters. For custom parameters or
private key sizes, there is a command-line tool in D(HE)ater
to check and/or set the optional private key size value of an
existing DH parameter file (see Listing 8).

LISTING 8. Setting optional private key size in a DH parameter file using
D(HE)ater.

In particular, when dealing with OpenSSL versions prior to
3.0 (up to TLS 1.2), it is crucial to set this value appropriately.
Failure to do so will result in the private key size being
used as the public key size (see Section III-F). From version
3.0, OpenSSL uses a reduced private key size even when
the (privateValueLength) field is absent, but this only
applies if the group parameters are well known (as defined in
RFC 3526, RFC 5114, or RFC 7919). It means if someone
generates a DH parameter file with custom group parameters
(for example using openssl dhparam command), the
long exponent issue identified as CVE-2022-40735 is still

valid. Based on our most recent evaluation of the top 1million
websites, it is estimated that approximately 8.4% utilize
custom group parameters (p, g), meaning that they remain
affected in long exponent attack after upgrading to OpenSSL
3.0.

C. LIMIT THE NUMBER OF CONNECTIONS
Independently from the chosen key sizes or even the key
exchange algorithm, it is considered to be a good practice
to rate limit the number of unauthenticated sessions an
application server should handle concurrently, especially in
the case of private services such as SSH. Some application
servers (e.g. OpenSSH [39], [40], [41]) support that good
practice in themselves, but in most cases, application servers
should be integrated with an external (e.g. Fail2Ban) or an
independent application (e.g. Linux Netfilter) to enforce any
limitations.

Built-in mechanisms are typically the first choice for rate
limiting, but custom solutions may not always be effective.
In these instances, it is recommended to use third-party
solutions, based on the information that originates from the
application layer. Such information can be the source address
of a potentially malicious client performing unsuccessful
authentications, or handshakes, where the latter is a typical
sign of the D(HE)at or similar DoS attacks. However,
it should be noted that rate limiting and banning should be
handled with due care to avoid service outages with certain
customers.

VII. CONCLUSION
In this research, we conducted an in-depth exploration
of a practical denial-of-service (DoS) attack against the
Diffie–Hellman key exchange protocol (the D(HE)at attack).
The attack allows remote users to send arbitrary numbers to
the victim that are actually not public keys and trigger expen-
sive server-side DH modular-exponentiation calculations.
Our findings suggest that the D(HE)at attack is a fundamental
issue related to the costly modular exponentiation. As such,
devising a countermeasure is not a simple task, and needs
a more profound understanding of the correct selection of
group parameters.

A. LONG EXPONENT ISSUE (CVE-2022-40735)
There is a huge difference in performance in the usage of short
and long exponent in theDHkey exchange as demonstrated in
Section IV. Certain cryptographic libraries have been found
to use excessively large exponents in the DH key exchange,
leading to the assignment of CVE-2022-40735. In this study,
we conducted a thorough performance comparison between
cryptographic libraries that utilize large exponents, deviating
from NIST recommendations, and those that use appropriate
private exponents.

B. 256 BIT SECURITY
Reaching 256-bit security using the finite field
Diffie–Hellman key exchange is challenging. The majority
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of cryptographic libraries do not support a 15360-bit modulus
and there are no standardized public parameters for that size.
Even when they do, the performance of the DH key exchange
is dramatically low compared to the Elliptic-curve Diffie-
Hellman and would hold a significant risk of a D(HE)at
attack.

C. DEFAULT PARAMETERS
Cryptographic protocols can handle the negotiation of both
cryptographic algorithms and their respective parameters.
This means that when parameters are open to negotia-
tion, they could include larger key parameters – such as
FFDHE8192 – by default, making them more vulnerable to
D(HE)at attacks. By default, WolfSSL employs a 2048-bit
DH group parameter, while other libraries utilize an 8192-
bit DH group parameter. This might create a misleading
impression that WolfSSL is significantly faster than other
libraries when in reality, it simply employs a smaller DH
group parameter by default as part of its design. Figure 13
shows the DH key generation speeds that an attacker can
enforce if the parameter negotiation default values are
not overwritten by the application server, which is quite
common.

FIGURE 13. DHE key generation speeds that an attacker can enforce if
negotiation parameter defaults are used on Intel Xeon E-2224 CPU @
3.40GHz .

This example highlights again the importance of making
a thoughtful choice when selecting the right cryptographic
library and application server to fulfill our particular
needs.

D. ELLIPTIC-CURVE DIFFIE–HELLMAN
Naturally, the question arises: Is the ECDH protocol entirely
immune to such a DoS attack?

On the one hand, it is possible to select elliptic curves
[7] (Brainpool curves, NIST-P curves, Bernstein curves)
that provide a significantly better ratio of security strength
to speed [6] compared to the finite field Diffie–Hellman
key exchange. On the other hand, it should be emphasized
that in the case of certain elliptic curves, the speed ratio
compared to finite field DH (see Figure 14) does not
seem necessarily enough to completely mitigate an elliptic-
curve based D(HE)at attack, which would require further
investigation not part of this study.

FIGURE 14. DHE key generation speeds compared to ECDHE key
generation speeds on Intel Xeon E-2224 CPU @ 3.40GHz using OpenSSL.

E. TO DISABLE OR NOT TO DISABLE?
Based on this research we can conclude that finite field DH
key exchange using larger key sizes is very resource-intensive
which makes it vulnerable to DoS/DDoS attacks. Developers
and administrators should choose both parameters and default
values related to Diffie–Hellman key exchange by all three
pillars of the CIA triad. Using large exponents and or offering
large public key sizes by default satisfies confidentiality
requirements, but poses a significant risk to the availability of
their worse performance. We recommend that developers and
administrators shift towards exclusively enabling algorithms
that are not just effective enough to provide confidentiality,
but also efficient enough to provide availability at least until
cryptographic protocols do not provide effective protection
against DoS/DDoS attacks in themselves. Based on this study,
we are committed to conducting ongoing investigations to
assess the speed and performance of different elliptic curve
Diffie–Hellman key exchange protocols, and we intend to
continue our research in this direction.
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