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ABSTRACT In this paper, the weighted group consensus for a kind of discrete heterogeneous multi-agent
systems (HMASs) with packet loss in cooperative-competitive networks based on self-adaptive controller is
studied. Based on self-adaptive controller, packet loss and cooperative-competitive relation, a novel control
protocols have been designed for this system without satisfying the in-degree balance of the vertex. Some
sufficient conditions have been obtained for the weighted group consensus of this kind of HMASs, by using
graph theory, matrix analysis and complex frequency method. Based on weighted parameters, control
parameters, packet loss rate and cooperative-competitive relation, the upper bound of the input time delay
can be calculated. Finally, some simulation experiments are listed to show the effectiveness of the derived
results.

INDEX TERMS Group consensus, heterogeneous, multi-agent systems, self-adaptive controller, time delay,
packet loss, cooperative-competitive relation.

I. INTRODUCTION
Multi-agent systems (MASs) have great promising appli-
cation in many practice systems, such as UAV formation
control [1], distributed sensor networks [2], satellite forma-
tion control [3], robot formation control [4]. Consensus, as the
key problem of MASs, is a hot research topic. Therefore,
many scholars have investigated the issue of consensus in
the past years [5], [6], [7], [8], [9], [10] and a lot of results
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have been obtained [8], [11], [12], [13], [14], [15]. In [8], the
consensus for a class of discrete-time heterogeneous multi-
agent systems is studied. By applying algebraic graph theory
and matrix theory, some sufficient conditions for consensus
of heterogeneous multi-agent systems are obtained. In [11],
the group consensus for HMASs composed of discrete-time
first-order and second-order agents is investigated. Some suf-
ficient conditions are derived for consensus of the systems
with directed communication topology by applying matrix
theory and graph theory. In [12], the leader-following H
infinity consensus for discrete-time nonlinear multi-agent

9834

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-2566-3949
https://orcid.org/0000-0001-8592-3717
https://orcid.org/0000-0002-4027-5303
https://orcid.org/0000-0002-5059-3145


X. Sun et al.: Weighted Group Consensus for a Kind of Discrete Heterogeneous MASs

systems with delay and parameter uncertainty is investigated.
On the basis of Lyapunov function technology and the linear
matrix inequality method, some new sufficient conditions
are derived. In [13], the weighted couple-group consensus
of continuous-time heterogeneous multiagent systems with
input and communication time delay is investigated. By using
graph theory, general Nyquist criterion and Gerschgorin disc
theorem, the time delay upper limit that the system may
allow is obtained. In [14], the group consensus of het-
erogeneous multi-agent systems with fixed and switching
topologies are investigated. Some sufficient conditions are
obtained by using graph theory, matrix theory and Lyapunov
theory. In [15], an output sign-consensus of multiagent sys-
tems over directed signed graphs are investigates. In [16], the
leader-following output consensus for a class of uncertain
nonlinear multiagent systems with unknown control direc-
tions has been investigated. A novel two-layer distributed
hierarchical control scheme is proposed, which can be used
to increase the flexibility of controller. Note that the states
of all agents only converge to the same consensus value in
most of the aforementioned works. However, the consensus
values may be different for agents in different subgroups with
different environments or tasks. Group consensus is a special
case of consensus, which deserves investigation.

However, most existing research on group consensus of
MASs is based on homogeneous multi-agent systems [17],
[18]. In homogeneous multi-agent systems, all agents can
only exchange information in the same subgroup. This is
obviously out of line with the actual situation. In fact, almost
each agent will be disturbed by the external environment, so it
has its own dynamic characteristics. Therefore, there are no
identical two multi-agent systems. On the other hand, agents
between different subgroups can also exchange information
with each other in order to archive consensus. Hence, it is
necessary for us to investigate heterogeneous multiagent sys-
tems. In [19], the pinning scheme is used to analyze the group
consensus of HMASs with first-order agents and second-
order agents under fixed and switching topologies. Sufficient
conditions are deduced by applying graph theory and the Lya-
punov stability approach. In [20], the consensus of HMASs
with second-order linear and non-linear agents are investi-
gated. Some sufficient conditions are obtained by using graph
theory, Lyapunov technique, Lasalle’s invariance principle
and other mathematical method. In [21], a robust hierarchical
pinning control scheme is used to realize the coordination
control for a special nonlinear heterogeneous multi-agent
system. In [22], the output formation containment of het-
erogeneous linear systems with different dimensions and
dynamic interaction has been studied. A distributed hybrid
active controller is designed by using the discrete-time infor-
mation of neighbors.

It is worth pointing out that most of the aforementioned
works only considered a single cooperation or competi-
tion relation between agents. And all agents of the whole
complex systems have only the same dynamical behaviors.

In many practical systems, cooperative and competitive rela-
tion can also coexist. Therefore, it is necessary for us to
study the consensus or group consensus of MASs with a
cooperative-competitive relation [23], [24], [25]. In [23], the
swarming behavior of multiple Euler-Lagrange systems is
investigated with cooperation-competition interactions and
uncertain parameters, where agents can cooperate or compete
with each other. A distributed consensus tracking of the con-
sidered multi-agent systems with cooperation-competition
interactions and uncertain parameters is studied by using
pinning control strategy. In [24], couple-group consensus
problems for a class of discrete-time heterogeneous systems
consisting of first-order and second-order agents under the
influence of communication and input time delays are inves-
tigated by utilizing cooperative and competitive interactions
among agents. Based on frequency domain analysis and
matrix theory, some sufficient conditions are derived and the
upper bound of input time delays are consequently estimated.
In [25], the bipartite consensus of multi-agent linear systems
with cooperative-competitive relation is studied.

On the other hand, there are two kinds of time delay in
every real MASs: input and communication time delays.
Communication time delays will occur when the agents com-
municate with each other. Input time delays will occur when
the agents are influenced by external disturbances. Both kinds
of delays will affect the stability and coordination of the
system. Therefore, when studying group consensus of the
multiagent system, the input time delay and communication
time delay are the main parameters to be considered [26],
[27], [28]. In [26], the average-consensus of networkedmulti-
agent systems with heterogeneous time delays is studied. the
necessary and sufficient condition for the average consensus
is derived. In [27], the leader-following consensus problem
of multi-agent systems in discrete-time with time-varying
delays is studied. Consensus conditions for multi-agent sys-
tems with a delay-dependent cyclic switching signal have
been obtained. In [28], the consensus of fractional-order
Takagi-Sugeno fuzzy multi-agent systems with time delay is
studied.

As we know, packet loss is a common phenomenon of
many complex systems. In many real situations, random
noise, radio interference, network congestion and other com-
munication failures will all cause packet loss. Packet loss
is one of the main factors of system stability. Therefore,
it is very necessary for us to investigate the group consensus
of MASs with packet loss [29], [30], [31]. In [29], forma-
tion tracking for heterogeneous multi-agent systems with
loss of multiple communication packets is investigated using
the iterative learning control (ILC) method. Convergence
conditions are given based on frequency-domain analysis
using the general Nyquist stability criterion and Gerschgorin
disk theorem. In [30], the consensus problem is studied
for a class of multi-agent systems with sampled data and
packet losses, where random and deterministic packet losses
are considered. A Bernoulli-distributed white sequence and
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a switched system with stable and unstable subsystems is
employed separately to model packet dropouts, such that
linear multi-agent systems with sampled data and packet
losses can reach consensus. In [31], consensus of nonlinear
mixed delay multi-agent systems with random packet losses
and time delay is studied. Sufficient conditions are obtained
by utilizing the Lyapunov-Krasovskii functional.

However, external interference caused by uncertain factors
always exists, they will also lead to the instability of the
system. The agent needs to adjust its own behavior to adapt to
the changes in the external environment. Therefore, it is rea-
sonable and necessary to design an appropriate self-adaptive
controller to achieve group consensus [32], [33].
In the existing literature, researches have been conducted

on one or several main factors that can affect the consensus
of MASs. However, in many practical applications, due to
internal or external reasons, there are many factors which
can affect the consensus of MASs, such as heterogeneous,
position, velocity, packet loss, time delay, coupling strength
and cooperative-competitive relation, etc. All these can lead
to slow convergence or make the system malfunction. There-
fore, it is necessary for us to study the consensus of MASs
under the influence of these factors.

Inspired by above analysis, this paper will investigate
weighted group consensus for a kind of discrete HMASs
with packet loss and time delay in cooperative-competitive
networks based on self-adaptive controller. There are the
main triple contributions in this article. First, a novel
weighted group consensus protocol and self-adaptive con-
troller are proposed for this discrete HMASs. Second, in this
novel protocol, heterogeneous, position, velocity, packet
loss, time delay, coupling strength between agents, and
cooperative-competitive relation are all considered. Thirdly,
graph, matrix, stability and complex frequency theories are
used to obtain some sufficient conditions for the group con-
sensus of this HMASs. From the proof process, it is not
necessary to demand that the topology of this system is
strong connective or contain a spanning tree. Finally, some
simulation examples have been given to show the validity of
the obtained results.

The rest of this paper are organized as follows. Section II
introduces the related symbols, graph theory, definitions,
lemmas, and discrete time HMASs model. In Section III,
a novel weighted group consensus protocol with self-adaptive
controller is proposed and the proof of main results is given.
In Section IV, several simulation experiments are given to
prove the correctness of the obtained results. In Section V,
conclusions are concluded.

II. PRELIMINARY KNOWLEDGE AND MODEL
DESCRIPTION
In this part, the relevant theoretical knowledge needed in the
process of analyzing the group consensus for multi-agent sys-
tems will be introduced first, such as Mathematical symbols,
graph theory, Gershgorin disk theory, HMASs model, some

TABLE 1. The mathematical symbols.

definitions and lemmas. The mathematical symbols involved
in this article are shown in Table 1.

A. GRAPH THEORY
A weighted directed digraph G =

(
V (G) , E (G) , A

)
with

m + n nodes can be used to represent a discrete HMAS.
There is no self-circulation in G. The vertex set V (G) =

{v1, v2, · · · , vm, vm+1, · · · vm+n} denotes the m+ n agents of
this system. E (G) ∈ V × V denotes the edge set of G.
A =

(
aij

)
∈ R(m+n)×(m+n) is the adjacency matrix of G.

If agent i could receive information from agent j directly, then
we have eij =

(
vi, vj

)
∈ E (G) and aij > 0. Otherwise(

vi, vj
)

/∈ E (G). Ni =
{
vj ∈ v

∣∣eij ∈ E (G)
}
denotes the

neighbor set of vi. di = deg (vi) =
∑
j=1

aij denotes the degree

of vertex vi. D = diag {d1, d2, · · · , dm, dm+1, · · · , dm+n} is
the degree matrix of G. L = D− A is the laplacian matrix of
G. It can be defined as

L =


−aij, i ̸= j
m+n∑

j=1,j̸=i

aij, i = j i, j ∈ σ

B. HMASs
In this part, a kind of discrete heterogeneous multi-agent
system with m+ n agents will be introduced. In these m+ n
agents, m agents have second-order dynamics, and the other
n agents have first-order dynamics. The dynamic model of
this system can be described as the following equations (1)
and (2): {

xi (k + 1) = xi (k) + vi (k)
vi (k + 1) = vi (k) + ui (k) , i ∈ σ1

(1)

xi (k + 1) = xi (k) + ui (k) , i ∈ σ2 (2)
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where σ1 = {1,2,· · · ,m}, σ2 = {m+ 1,m+ 2,· · · ,

m+ n}. σ = σ1 ∪ σ2, σ1 ∩ σ2 = φ. xi (k) ∈ RN, vi (k) ∈ RN ,
ui (k) ∈ RN are the state, velocity and input control of the ith

agent, respectively.
Remark 1: To simplify the calculation, this paper only

considers one-dimensional systems, that is N = 1. It is worth
noting that, if N > 1, similar results can be obtained by using
the Kronecker product of matrix for n-dimensional systems.

This discrete-time heterogeneous multiagent system (1)
and (2) composes of first-order and second-order agents. The
first-order neighbors of agent can be represented as Ni,1, the
second-order neighbors of agent i can be represented as Ni,2.
Hence, the neighbor node set of agent i can be represented
as Ni = Ni,1 ∪ Ni,2. Then the adjacency matrix G of discrete
HMASs (1) and (2) can be described as following matrix:

A =

[
A22 A21
A12 A11

]
where A22 ∈ Rm×m represents the adjacency matrix of
second-order agents. A11 ∈ Rn×n represents the adjacency
matrix of first-order agents. A21 ∈ Rm×n represents the adja-
cency matrix from second-order agents to first-order agents.
A12 ∈ Rn×m represents the adjacency matrix from first-order
agents to second-order agents. A21 and A12 also represents the
coupling strength between first-order agents to second-order
agents.

The Laplace matrix L of HMASs (1) and (2) can be
expressed as the following matrix:

L = D− A

=

[
L22 + D21 −A21

−A12 L11 + D12

]
=

[
D22 − A22 + D21 −A21

−A12 D11 − A11 + D12

]
where L22 and L11 represent the Laplace matrix of
second-order agents and first-order agents, respectively.
D22 and D11 represent the degree matrix of second-order
agents and first-order agents, respectively. D21 represents the
in-degree weight matrix from second-order agents to first-
order agents.D12 represents the in-degree weight matrix from
first-order agents to second-order agents. D22,D21,D11 and
D12 can be written as the following formula:

D11 = diag

 ∑
j∈Ni,1

aij, j ∈ σ2

 ,

D12 = diag

 ∑
j∈Ni,2

aij, j ∈ σ2

 ,

D21 = diag

 ∑
j∈Ni,1

aij, j ∈ σ1

 ,

D22 = diag

 ∑
j∈Ni,2

aij, j ∈ σ1

 .

Definition and lemma:
Definition 1: In graph G, V (G) is the vertex set, E (G)

is the edge set. If V (G) can be divided into two mutually
disjoint vertex subsetsV1 (G) andV2 (G), and the two vertices
vi and vj associated with edge eij belong to V1 (G) and V2 (G)

separately, G is called a bipartite graph.
(1) The vertex V of graph G can be completely divided into
two subsets Vi,Vj:

V1 ∪ V2 = V ,V1 ∩ V2 = φ.

(2) If edge eij = (Vi,Vj) belongs to E , then Vi belongs to V1
and Vj belongs to V2.
Definition 2: The heterogeneous multi-agent systems (1)

and (2) is called asymptotically group consensus, if (1)
and (2) hold for any initial position and velocity values ∀i, j ∈
σ1 ∪ σ2.

(1) lim
k→∞

∥∥xi (k) − xj (k)
∥∥ = 0, ℓi = ℓj

lim
k→∞

∥∥xi (k) − xj (k)
∥∥ ̸= 0, ℓi ̸= ℓj

(2) lim
k→∞

∥∥vi (k) − vj (k)
∥∥ = 0, ℓi = ℓj

lim
k→∞

∥∥vi (k) − vj (k)
∥∥ ̸= 0, ℓi ̸= ℓj

Definition 3: If a subgraph of a connected graph G is a
tree containing all vertices of G, the subgraph is called the
spanning tree of G.
Lemma 1: [34] Given a Laplacian matrix L ∈ Rm×n

and vector k =
[
k1 k2 · · · kn

]
, ki ∈ R,then the following

conditions are equivalent:
(1) For λi (L) , i ∈

{
1, 2, · · · , m+ n

}
, every eigenvalue

has a positive real part except the zero eigenvalue;
(2) Lk = 0 denotes that k =

[
k1 k2 · · · kn

]
;

(3) The system asymptotically achieves consensus if the
system k̇ = −Lk is stable at the zero.
(4) The directed graphwith L contains one ormore directed

spanning trees.
Lemma 2: [34] If G =< V ,E > is a connected bipartite

graph, then zero is the unique simple eigenvalue of D + A,
rank(D+ A) = n− 1, all the nonzero eigenvalues of G have
positive real part,D andA are the degree and adjacencymatrix
of G.

III. RESULTS
In this section, a weighted group consensus of discrete
HMASs (1) and (2) will be discussed. Influence on system
consensus, such as dynamic control parameter, packet loss,
input and communication time delay, interaction between
agents and cooperative–competitive relations are all consid-
ered. The following content will design and analyze a novel
control protocol for the fixed topology. Based on the litera-
tures [32], a novel consensus protocol is proposed as follows:

ui (k)

= αi


∑
j∈si

aijεijp
[
xj (k) − xi (k)

]
−

∑
j∈di

aijεijp
[
xj (k) + xi (k)

]

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+βi


∑
j∈si

aijεijp
[
vj (k) − vi (k)

]
−

∑
j∈di

aijεijp
[
vj (k) + vi (k)

]
 , i ∈ σ1 (3)



ui (k) = γi


∑
j∈si

aijεijp
[
xj (k) − xi (k)

]
−

∑
j∈di

aijεijp
[
xj (k) + xi (k)

]
 + wi (k)

wi (k + 1) = φi


∑
j∈si

aijεijp
[
xj (k) − xi (k)

]
−

∑
j∈di

aijεijp
[
xj (k) + xi (k)

]


+wi (k) , i ∈ σ2

(4)

wherewi(k) is the novel self-adaptive controller. αi > 0, βi >

0, γi > 0, φi > 0 represents the variable control parame-
ters. εij represents the cooperative or competitive interaction
intensity between agent i and agent j. p ∈ (0, 1] represents
packet loss rate. si represents the neighbor set of agent i in
the same group, they are cooperative with i. di represents
the neighbor set of agent i in the different group, they are
competitive with i. xj (k)− xi (k) and xj (k)+ xi (k) represent
the cooperative and competitive relation between agent i and
agent j, respectively. vj (k)−vi (k) and vj (k)+vi (k) have the
same meaning of the agents’ speeds.

According to the control protocols (3) and (4), systems (1)
and (2) can be rewritten as follows (5) and (6):



xi (k + 1) = xi (k) + vi (k)

vi (k + 1) = vi (k) + αi


∑
j∈si

aijεijp
[
xj (k) − xi (k)

]
−

∑
j∈di

aijεijp
[
xj (k) + xi (k)

]


+βi


∑
j∈si

aijεijp
[
vj (k) − vi (k)

]
−

∑
j∈di

aijεijp
[
vj (k) + vi (k)

]


,

i ∈ σ1

(5)

xi (k + 1) = xi (k) + γi


∑
j∈si

aijεijp
[
xj (k) − xi (k)

]
−

∑
j∈di

aijεijp
[
xj (k) + xi (k)

]


+wi (k)

wi (k + 1) = φi


∑
j∈si

aijεijp
[
xj (k) − xi (k)

]
−

∑
j∈di

aijεijp
[
xj (k) + xi (k)

]


+wi (k) , i ∈ σ2

(6)

Furthermore, due to the agent’s situation and external
interference, almost all multi-agent systems have input and
communication time delay inevitably. Therefore, systems (5)

and (6) can be described as follows (7) and (8).

xi (k + 1) = xi (k) + vi (k)

vi (k + 1) = vi (k)

+αi


∑
j∈si

aijεijp
[
xj

(
k − τij

)
− xi (k − ti)

]
−

∑
j∈di

aijεijp
[
xj

(
k − τij

)
+ xi (k − τi)

]


+βi


∑
j∈si

aijεijp
[
vj

(
k − τij

)
− vi (k − τi)

]
−

∑
j∈di

aijεijp
[
vj

(
k − τij

)
+ vi (k − τi)

]
 , i ∈ σ1

(7)

xi (k + 1) = xi (k)

+γi


∑
j∈si

aijp
[
xj

(
k − τij

)
− xi (k − τi)

]
−

∑
j∈di

aijεijp
[
xj

(
k − τij

)
+ xi (k − τi)

]
 + wi (k)

wi (k + 1) = φi


∑
j∈si

aijεijp
[
xj

(
k − τij

)
− xi (k − τi)

]
−

∑
j∈di

aijεijp
[
xj

(
k − τij

)
+ xi (k − τi)

]
,

i ∈ σ2

(8)

In systems (7) and (8), the current position and velocity,
sampling location and speed are all considered.

Using z-transformation, graph theory and complex
frequency-domain method, some sufficient conditions of
group consensus for system (5) and (6) with undirected
bipartite graph topology have been given in Theorem 1.
Theorem 1: Group consensus of heterogeneous MASs (7)

and (8) with undirected bipartite graph topology can be
achieved asymptotically under the control protocols (3)
and (4) if the input delay τi satisfies formula (9), shown at
the bottom of the next page, when i ∈ σ1, or the input delay
τi satisfies formula (10), shown at the bottom of the next page,
when i ∈ σ2.
where di =

∑
vj∈Ni

aij, i ∈ σ1 ∪ σ2.

Proof:Do z-transform for equations (7) and (8), we have
following equations (11) and (12).

zxi (z) = xi (z) + vi (z)

zvi (z) = αi


∑
j∈si

aijεijp
[
xj (z) z−τij − xi (z) z−τi

]
−

∑
j∈di

aijεijp
[
xj (z) z−τij + xi (z) z−τi

]


+βi


∑
j∈si

aijεijp
[
vj (z) z−τij − vi (z) z−τi

]
−

∑
j∈di

aijεijp
[
vj (z) z−τij + vi (z) z−τi

]


+vi (z) , i ∈ σ1

(11)
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

zxi (z) = xi (z)

+γi


∑
j∈si

aijεijp
[
xj (z) z−τij − xi (z) z−τi

]
−

∑
j∈di

aijεijp
[
xj (z) z−τij + xi (z) z−τi

]
 + wi (z)

zwi (z) = φi


∑
j∈si

aijεijp
[
xj (z) z−τij − xi (z) z−τi

]
−

∑
j∈di

aijεijp
[
xj (z) z−τij + xi (z) z−τi

]


+wi (z) , i ∈ σ2

(12)

where xi (z) , vi (z) and wi (z) represent the z-transform of
xi (k) , vi (x) and wi (x), respectively. Then we have equa-
tions (13) and (14).

(z− 1) xi (z) = vi (z)

(z− 1) vi (z)=αi


∑
j∈si

aijεijp
[
xj (z) z−τij − xi (z) z−τi

]
−

∑
j∈di

aijεijp
[
xj (z) z−τij + xi (z) z−τi

]


+βi


∑
j∈si

aijεijp
[
vj (z) z−τij − vi (z) z−τi

]
−

∑
j∈di

aijεijp
[
vj (z) z−τij + vi (z) z−τi

]
 , i ∈ σ1

(13)

(z− 1) xi (z)=γi


∑
j∈si

aijεijp
[
xj (z) z−τij − xi (z) z−τi

]
−

∑
j∈di

aijεijp
[
xj (z) z−τij + xi (z) z−τi

]


+wi (z)

(z− 1)wi (z)=φi


∑
j∈si

aijεijp
[
xj (z) z−τij − xi (z) z−τi

]
−

∑
j∈di

aijεijp
[
xj (z) z−τij + xi (z) z−τi

]
 ,

i ∈ σ2

(14)

After some calculations, equations (13) and (14) can be
rewritten as following equations form (15) and (16).

(z− 1)2 xi (z)

= αi


∑
j∈si

aijεijp
[
xj (z) z−τij − xi (z) z−τi

]
−

∑
j∈di

aijεijp
[
xj (z) z−τij + xi (z) z−τi

]


+(z− 1)βi


∑
j∈si

aijεijp
[
xj (z) z−τij − xi (z) z−τi

]
−

∑
j∈di

aijεijp
[
xj (z) z−τij + xi (z) z−τi

]
 ,

i ∈ σ1 (15)

(z− 1)2 xi (z) = (z− 1)

γi


∑
j∈si

aijεijp
[
xj (z) z−τij − xi (z) z−τi

]
−

∑
j∈di

aijεijp
[
xj (z) z−τij + xi (z) z−τi

]


+ (z− 1)wi (z)

(z− 1)wi (z)=φi


∑
j∈si

aijεijp
[
xj (z) z−τij − xi (z) z−τi

]
−

∑
j∈di

aijεijp
[
xj (z) z−τij + xi (z) z−τi

]
,

i ∈ σ2

(16)

To simplify the calculation, we define

x22 (z) = [x1 (z) , x2 (z) , · · · , xn (z)]T ,

x11 (z) = [xn+1 (z) , xn+2 (z) , · · · , xn+m (z)]T

The z-transform L of graph G is defined as follows:

L̃ = z (L) =


−aijz−τij , i ̸= j,∑
j∈Ni

aijz−τi , i = j i, j ∈ σ,

where z (L) ∈ R(m+n)×(m+n).
Then the matrix L̃ can be rewritten as follows:

L̃ =

[
L̃22 + D̃21 −Ã21

−Ã12 L̃11 + D̃12

]
=

[
D̃22 − Ã22 + D̃21 −Ã21

−Ã12 D̃11 − Ã11 + D̃12

]

where

Ã22 =
(
−aijz−τij

)
m×m , j ∈ Ni,2, i ∈ σ1


τi <

4 (βi − αi)(̃
dεijp

)2
βi (βi − αi)

2
+ 4αi + d̃εijp (βi − αi)

√(̃
dεijp

)2
β4
i (αi − βi)

2
+ 4α2

i

, αi ̸= βi

τi <

√
1

pεijd̃iβi
, αi = βi

(9)


τi <

4 (φi − γi)(
d̂iεijp

)2
φi (φi − γi)

2
+ 4γi + d̂iεijp (φi − γi)

√(
d̂iεijp

)2
φ4
i (γi − φi)

2
+ 4γ 2

i

, γi ̸= φi

τi <

√
1

pεijd̂iφi
, γi = φi

(10)
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Ã21 =
(
−aijz−τij

)
m×n , j ∈ Ni,1, i ∈ σ1

Ã12 =
(
−aijz−τij

)
n×m , j ∈ Ni,2, i ∈ σ2

Ã11 =
(
−aijz−τij

)
n×n , j ∈ Ni,1, i ∈ σ2

D̃22 = diag

 ∑
j∈Ni,2

aijz−τi , i ∈ σ1


D̃21 = diag

 ∑
j∈Ni,1

aijz−τi , i ∈ σ1


D̃12 = diag

 ∑
j∈Ni,2

aijz−τi , i ∈ σ2


D̃11 = diag

 ∑
j∈Ni,1

aijz−τi , i ∈ σ2


After some calculations, systems (7) and (8) can be written
as equation (17):

(z− 1)2 x22 (z) = −
[
αiεijp+ βiεijp (z− 1)

](
L̃22 + D̃21

)
x22 (z)

−
[
αiεijp+ βiεijp (z− 1)

]
Ã21x11 (z) , i ∈ σ1

(z− 1)2 x11 (z) = −
[
γiεijp+ φiεijp (z− 1)

]
Ã12x11 (z)

−
[
γiεijp+ φiεijp (z− 1)

] (̃
L11 + D̃12

)
x22 (z) , i ∈ σ2

(17)

Let x (z) = [x22 (z) , x11 (z)]T , equation (17) can be rewrit-
ten as matrix form (18)

(z− 1)2 x (z) = η (z) x (z) (18)

where, as shown in the equation at the bottom of the page.
Therefore, the characteristic equation of (17) is

C (z) = det
(
(z− 1)2 I − η (z)

)
(19)

According to the Lyapunov stability principle, ifC (z) = 0,
the roots of equation (19) is z = 1 or in the unit circle of the
complex plane, then the couple group of HMASs (7) and (8)
can be realized.

If z ̸= 1, let C (z) = det (I + Q (z)) = 0, we can get the
following equation (20).

Q (z)

= −
η (z)

(z− 1)2

=

 [αiεijp+βiεijp(z−1)](L̃22+D̃21)
(z−1)2

[αiεijp+βiεijp(z−1)]Ã21
(z−1)2

[γiεijp+φiεijp(z−1)]Ã12
(z−1)2

[γiεijp+φiεijp(z−1)](L̃11+D̃12)
(z−1)2


(20)

If z = 1, then det
(
(z− 1)2 I − η (z)

)
=

(
αiεijP

)m+n

det
(
L̃
)
. According to Lemma 1, it is obvious that 0 is a

characteristic value of L, so z=1 is the roots of equation (17).
Let z = ejω(j is an imaginary unit). According to Lemma 1

and Nyquist criterion, if the point (−1, j0) is not surrounded
by Nyquist curve Qi

(
ejω

)
, then the characteristic roots of

equation (19) will be located in the unit circle (Qi, i ∈ σ1∪σ2)
of the complex plane. Then the couple groups of HMASs (7)
and (8) can be realized. In this case, using Gerschgorin circle
theorem, it has

λ
(
Q

(
ejω

))
∈ {Qi, i ∈ σ1} ∪ {Qi, i ∈ σ2}

If i ∈ σ1, then

Qi =


x : x ∈ C

∣∣∣∣∣∣x −

pεij
[
αi+βi

(
ejω−1

)]
e−jωτi

∑
j∈Ni

aij

(ejω−1)
2

∣∣∣∣∣∣
≤

∑
j∈Ni

∣∣∣∣ [
γi+φi

(
ejω−1

)]
pεijaij

(ejω−1)
2 e−jωτij

∣∣∣∣

 (21)

The center of the disk (21) is

Qi
(
ejω

)
=

[
αi + βi

(
ejω − 1

)]
e−jωτipεij

∑
j∈Ni

aij(
ejω − 1

)2 (22)

Let d̃i =
∑
vj∈Ni

aij, i ∈ σ1, applying the Euler formula to (22),

one has

Qi
(
ejω

)
=

d̃iεijp [(αi − βi) cos (ωτi + ω) + βi cosωτ ]
+j̃diεijp [(βi − αi) sin (ωτi + ω) − βi sinωτi]

2 (cosω − 1)
(23)

Suppose thatωio is the first intersection point ofQi
(
ejω

)
on

the real axis, equation (24) can be obtained from equation (23)

d̃iεijp [(βi − αi) sin (ωi0τi + ωi0) − βi sinωi0τi]
2 (cosωi0 − 1)

= 0 (24)

d̃iεijp [(βi − αi) sin (ωi0τi + ωi0) − βi sinωi0τi] = 0 (25)

If αi ̸= βi, one has

sin (ωi0τi + ωi0)

sinωi0τi
=

βi

(βi − αi)
(26)

Applying the Taylor formula to equation (26), the follow-
ing equation (27) can be obtained.

sin (ωi0τi + ωi0)

sinωi0τi
= 1 −

ω2
i0

2
+

ωi0

ωi0τi

1 −
ω2
i0

2
+

ωi0

ωi0τi
=

βi

βi − αi

τi =
2 (βi − αi)

2αi + ω2
i0 (βi − αi)

(27)

η (z) =

[
−

[
αiεijp+ βiεijp (z− 1)

] (̃
L22 + D̃21

)
−

[
αiεijp+ βiεijp (z− 1)

]
Ã21

−
[
γiεijp+ φiεijp (z− 1)

]
Ã12 −

[
γiεijp+ φiεijp (z− 1)

] (̃
L11 + D̃12

) ]
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In addition, the first intersection pointωi0 ofQi
(
ejω

)
on the

real axis is in the unit circle, combining with equation (23),
the following equation (28) can be obtained.

∣∣∣Qi (ejω)∣∣∣ =


(
d̃iεijp[(αi−βi) cos(ωτi+ω)+βi cosωτ ]

2(cosω−1)

)2
+

(
d̃iεijp[(βi−αi) sin(ωτi+ω)−βi sinωτi]

2(cosω−1)

)2


1
2

< 1

(28)

After some calculations, one has

ω4
i0+(̃diεijpβi) (αi − βi) ω2

i0 − (̃diεijp)2 (αi − βi)
2
− β2

i > 0

(29)

On the basis of equation (29), we get (30), as shown at the
bottom of the next page.

According to (27) and (30), we have (31), as shown at the
bottom of the next page.

Thus, if αi = βi and γi = φi, we know that the point
(−ϑ, j0), ϑ ≥ 1 is not be enclosed in Q, i ∈ σ1, one has∣∣∣∣∣−ϑ −

[
αi + βi

(
ejω − 1

)]
p̃diεije−jωτi(

ejω − 1
)2

∣∣∣∣∣
>

∑
j∈Ni

∣∣∣∣∣
[
γi + φi

(
ejω − 1

)]
pεijaij(

ejω − 1
)2 e−jωτij

∣∣∣∣∣ (32)

By Applying Euler formula, we obtain (33) and (34), as
shown at the bottom of the next page.

After some calculations, we have

ϑ2
+ ϑ

pεijd̃iβi cosωτi

cosω − 1
> 0 (35)

Because ϑ ≥ 1, inequality (35) can be rewritten as inequal-
ity (36). Combining with the Taylor formula, we obtain the
following form (36).

τ 2i >
2
ω2 −

1

pεijd̃iβi
(36)

If 1
pεijd̃iβi

> τ 2i , inequality (30) holds. Then, the follow-
ing (37) can be obtained.

τi <

√
1

pεijd̃iβi
(37)

Note that inequality (37) is one of the necessary insufficient
conditions of (30).

Therefore, when i ∈ σ1, we can compute the upper bound
of the time delay in the following form (38), as shown at the
bottom of the next page.

When i ∈ σ2, we can obtain the following inequality (39).

Qi =


x : x ∈ C

∣∣∣∣∣∣x −

[
γipεij+φipεij

(
ejω−1

)] ∑
j∈Ni

aije−jωτi

(ejω−1)
2

∣∣∣∣∣∣
≤

∑
j∈Ni

∣∣∣∣ [
γipεij+φipεij

(
ejω−1

)]
e−jωτi

(ejω−1)
2 aije−jωτij

∣∣∣∣


(39)

Thus, the center of the disk (21) is computed as follows.

Qi
(
ejω

)
=

[
γipεij + φipεij

(
ejω − 1

)] ∑
j∈Ni

aije−jωτi

(
ejω − 1

)2 (40)

Define d̂ =
∑
vj∈Ni

aij, applying the Euler formula, the fol-

lowing equation (41), as shown at the bottom of the next page,
can be obtained.

Suppose that ωio is the first intersection point of Qi
(
ejω

)
on real axis, combining with (41), we can get equation (42).

d̂iiεijp [(φi − γi) sin (ωi0τi + ω) − φi sinωi0τi]
2 (cosωi0 − 1)

= 0 (42)

where d̂iεijp [(φi − γi) sin (ωτi + ω) − φi sinωτi] = 0
Similarly, if γ ̸= φ, after some calculations, we have

τi =
2 (φi − γi)

2γi + ω2
i0 (φi − γi)

(43)

In addition, the first crossover point ωi0 of Qi
(
ejω

)
on the

real axis is located int the unit circle, the following inequal-
ity (44) can be obtained.

∣∣∣Qi (ejω)∣∣∣ =


(
d̂iεijp[(γi−φi) cos(ωτi+ω)+φi cosωτ ]

2(cosω−1)

)2
+

(
d̂iεijp[(φi−γi) sin(ωτi+ω)−φi sinωτi]

2(cosω−1)

)2


1
2

< 1

(44)

After some calculations, the following inequality (45), as
shown at the bottom of the next page, can be obtained.

Combining with (45) and (42), one has, (46), as shown at
the bottom of the next page.

If γi = φi, the point (−ϑ, j0), ϑ ≥ 1 is not in the Q, i ∈ σ1,
then it cannot be enclosed in the Nyquist curve. Thus, the
following inequation (47) can be obtained.∣∣∣∣∣−ϑ −

[
γi + φi

(
ejω − 1

)]
p̂diεije−jωτi(

ejω − 1
)2

∣∣∣∣∣
>

∑
j∈Ni

∣∣∣∣∣
[
γi + φi

(
ejω − 1

)]
pεijaij(

ejω − 1
)2 e−jωτij

∣∣∣∣∣ (47)

After some calculations, one has

τi <

√
1

pεijd̂iβi
(48)

Note that the inequation (48) is one of the necessary insuf-
ficient conditions of inequation (45).
Therefore, when i ∈ σ2 the upper bound of the delay is

(49), as shown at the bottom of the next page.
where di = d̃i ∪ d̂i =

∑
vj∈Ni

aij, i ∈ σ1 ∪ σ2

To sum up, the proof of Theorem 1 is completed.
Remark 1: The variable weighting coefficient αi, βi, γi, φi

of the control protocols (7) and (8) are designed to make the
state of agents converge to any target state. The controller
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designed in this paper has strong flexibility, adaptability, and
can speed up the grouping consensus of the system.
Remark 2: When i ∈ σ1, according to equation (24)

and Gerschgorin disc theory, we can get equation (22).
If αi ̸= βi, according to the Euler formula, equation (24)
and (27), we can get equation (31). If αi = βi according to
equation (32) and Euler formula, we can get (37). According

to the analysis of the above results, the formula (9) can
be obtained. When i ∈ σ2, according to similar methods,
formula (10) in can be obtained.
Remark 3: From Theorem 1, we can know that the control

parameters (αi, βi, γi, φi), εij and p are the key factors for
themulti-agent systems achievingweighted group consensus.
The system tolerance can be improved and control costs can

ω2
i0 >

(̃diεijpβi) (βi − αi) +

√
(̃diεijpβi)2 (αi − βi)

2
+ 4((̃diεijp)2 (αi − βi)

2
+ β2

i )

2
(30)

τi <
4 (βi − αi)

4αi + ((̃diεijpβi) (βi − αi) +

√
(̃diεijpβi)2 (αi − βi)

2
+ 4((̃diεijp)2 (αi − βi)

2
+ β2

i )) (βi − αi)

(31)

∣∣∣∣−ϑ − pεijd̃i
[αi + βi (cosω + j sinω − 1)] (cosωτi − j sinωτi)

(cosω + j sinω − 1)2

∣∣∣∣
>

∑
j∈Ni

∣∣∣∣pεijaij [γi + φi (cosω + j sinω − 1)]

(cosω + j sinω − 1)2
(
cosωτij − j sinωτij

)∣∣∣∣ (33)

∣∣∣∣−ϑ −
pεijd̃iβi cosωτi

2 (cosω − 1)
+ j

βipεijd̃i sinωτi

2 (cosω − 1)

∣∣∣∣ >
∑
j∈Ni

∣∣∣∣ φipεijaij
2 (cosω − 1)

∣∣∣∣ (34)


τi <

4 (βi − αi)(
d̃iεijp

)2
βi (βi − αi)

2
+ 4αi + d̃εijp (βi − αi)

√(
d̃iεijp

)2
β4
i (αi − βi)

2
+ 4α2

i

, αi ̸= βi

τi <

√
1

pεijd̃iβi
, αi = βi

(38)

Qi
(
ejω

)
=
d̂iεijp [(γi − φi) cos (ωτi + ω) + γi cosωτ ] + ĵdiεijp [(φi − γi) sin (ωτi + ω) − φi sinωτi]

2 (cosω − 1)
(41)

ω2
i0 >

(
d̂iεijp

)2
φi (γi − φi) + d̂iεijp

√(
d̂iεijp

)2
φ4
i (γi − φi)

2
+ 4γ 2

i

2
(45)

τi <
4 (φi − γi)(

d̂iεijp
)2

φi (γi − φi)
2
+ 4γi + d̂iεijp (φi − γi)

√(
d̂iεijp

)2
φ4
i (γi − φi)

2
+ 4γ 2

i

(46)


τi <

4 (φi − γi)(
d̂iεijp

)2
φi (φi − γi)

2
+ 4γi + d̂iεijp (φi − γi)

√(
d̂iεijp

)2
φ4
i (γi − φi)

2
+ 4γ 2

i

, γi ̸= φi

τi <

√
1

pεijd̂iφi
, γi = φi

(49)
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FIGURE 1. Bipartite digraph topology of the heterogeneous multi-agent
system.

FIGURE 2. The state trajectories of the agents under undirected topology
in Figure 1 with different input time delays where p = 0.5, εij = 1,
τ1 = 0.6, τ2 = 0.2, τ3 = 1.6, τ4 = 0.1, τ5 = 0.05, τ6 = 0.1.

be reduced if we have set control parameters reasonably
for information interactions between agents. Meanwhile, the
communication time delay τij has no fundamental impact
on weighted group consensus of the multi-agent systems.

FIGURE 3. The state trajectories of the agents under undirected topology
in Figure 1 with different input time delays where p = 1, εij = 1, τ1 = 0.3,
τ2 = 0.2, τ3= 0.5, τ4 = 0.2, τ5 = 0.1, τ6 = 0.15.

Yet, the input time delay τi has impact on weighted group
consensus of the multi-agent systems.
Remark 4: In order to achieve weighted group consensus

of discrete heterogeneous multi-agent systems, many con-
trol protocols based on cooperation or competition relation
between agents have been proposed, while the protocols
based on competition-cooperative relation are relatively rare.
At the same time, the control parameters (αi, βi, γi, φi), εij
and p setting under the novel protocol are strict, and the
setting values also affect the group consensus of the systems.
If the above problems can be handled effectively, the system
can achieve group consensus.

IV. SIMULATIONS
In this section, we will verify the correctness and effective
of the weighted group consensus for discrete-time hetero-
geneous multi-agent systems in the cooperative-competitive
network with time delays.

A heterogeneous multi-agent system under the bipartite
digraph topology which has a spanning tree is designed as
Figure 1. The system has eight agents which are divided into
two subgroupsG1 andG2. Agents 2,4 and 6 are second-order
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FIGURE 4. The state trajectories of the agents under undirected topology
in Figure 1 with different input time delays where p = 1, εij = 0.1,
τ1= 1.1, τ2 = 0.45, τ3= 2, τ4 = 0.2, τ5 = 0.15, τ6 = 0.3.

FIGURE 5. The state trajectories of the agents under undirected topology
in Figure 1 with different input time delays where
p = 0.5, εij = 1, αi = βi = 1.6, γi = φi = 0.7 τ= 1.

agents. Agents 1,3 and 5 are first-order agents. Thus, the
system is a heterogeneous multi-agent system.

FIGURE 6. The state trajectories of the agents under undirected topology
in Figure 1 with different input time delays where
p = 0.5, εij = 1, αi = βi = 0.7, γi = φi = 1.6 τ= 1.

For simplicity, we assume each edge in the bipartite
digraph to be aij = 1, i, j = (1, 2, 3, 4, 5, 6). The
initiate state of the system (7) and (8) is xi (0) =[
8, 13, 6, −8, 11, −11

]T . Considering that the control
parameters are dynamic, we set different values for them.

Example 1: Assume α ̸= β, γ ̸= φ,{
α1, α2, α3, α4, α5, α6

}
=

{
0.9, 0.2, 0.25, 0.6, 2.9, 0.4

}{
β1, β2, β3, β4, β5, β6

}
=

{
2, 0.8, 1.7, 0.8, 3.5, 0.6

}{
γ1, γ2, γ3, γ4, γ5, γ6

}
=

{
0.35, 0.8, 0.2, 1.5, 1.9, 2.3

}{
φ1, φ2, φ3, φ4, φ5, φ6

}
=

{
1, 1.2, 0.8, 2, 2.4, 3.3

}
(1) Let p = 0.5 and εij = 1, according to Theorem 1, we can
get

0 < τ1 < min
{
0.766, 1.62

}
, 0 < τ2 < min

{
0.36, 2.58

}
,

0 < τ3 < min
{
1.7, 2.28

}
, 0 < τ4 < min

{
0.29, 0.32

}
,

0 < τ5 < min
{
0.17, 0.229

}
, 0 < τ6 < min

{
0.27, 0.47

}
.

Let{
τ1, τ2, τ3, τ4, τ5, τ6

}
=

{
0.6, 0.2, 1.6, 0.1, 0.05, 0.1

}
.
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FIGURE 7. The state trajectories of the agents under undirected topology
in Figure 1 with different input time delays where
p = 1, εij = 1, αi = βi = 1.6, γi = φi = 0.7 τ = 0.5.

The simulation results are shown as follows:
(2) Let p = 1 and εij = 1, we can get

0 < τ1 < min
{
0.397, 0.97

}
,

0 < τ2 < min
{
0.39, 1.63

}
, 0 < τ3 < min

{
0.54, 1.89

}
,

0 < τ4 < min
{
0.24, 1.55

}
, 0<τ5<min

{
0.13, 0.19

}
and

0 < τ6 < min
{
0.16, 0.45

}
.

Let{
τ1, τ2, τ3, τ4, τ5, τ6

}
=

{
0.3, 0.2, 0.5, 0.2, 0.1, 0.15

}
.

The simulation results are shown as follows:
(3) Let p = 1 and εij = 0.1, we can get

0 < τ1 < min
{
1.15, 1.79

}
, 0 < τ2 < min

{
0.49, 2.89

}
,

0 < τ3 < min
{
2.3, 5.18

}
, 0 < τ4 < min

{
0.33, 3.03

}
,

0 < τ5 < min
{
0.20, 0.26

}
and 0<τ6<min

{
0.40, 0.49

}
.

Let{
τ1, τ2, τ3, τ4, τ5, τ6

}
=

{
1.1, 0.45, 2, 0.2, 0.15, 0.3

}
.

The simulation results are shown as follows:

FIGURE 8. The state trajectories of the agents under undirected topology
in Figure 1 with different input time delays where
p = 1, εij = 0.1, αi = βi = 1.6, γi = φi = 0.7 τ= 2.

Example 2: Assume α = β, γ = φ.
(1) Let p = 0.5, εij = 1, αi = βi = 1.6, γi = φi = 0.7,

we can get 0 < τ < min
{
1.12, 1.68

}
. Let τ = 1. The

simulation results are shown as follows:
(2) Let p = 0.5, εij = 1, αi = βi = 0.7, γi = φi = 1.6,

we can get 0 < τ < min
{
1.12, 1.69

}
. Let τ = 1. The

simulation results are shown as follows:
(3) Let p = 1, εij = 1, αi = βi = 1.6, γi = φi = 0.7,

we can get 0 < τ < min
{
0.79, 1.2

}
. Let τ = 0.5.The

simulation results are shown as follows:
(4) Let p = 1, εij = 0.1, αi = βi = 1.6, γi = φi = 0.7,

we can get 0 < τ < min
{
2.5, 3.78

}
. according to the upper

bound calculated, we assume τ = 2. As can be seen from
Figure 8, the system is divergent at this time.

V. CONCLUSION
This paper has studied the weighted group consensus for
discrete-time heterogeneous multi-agent systems. An adap-
tive controller is designed for this system and a grouping
consensus protocol is proposed. For the systems composed
of first-order and second-order agents with cooperative-
competitive relation, a novel weighted group consensus
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protocol is designed to promote the multi-agent systems
to achieve weighted group consensus. The effects of time
delays, packet loss, cooperative-competitive relation and cou-
pling strength between agents are considered. We derived
the sufficient conditions for the group consensus by using
Graph theory, Matrix theory and complex frequency domain
methods. Finally, simulation examples have been presented
to demonstrate the performance of the proposed protocol.
Our future work will extend to more complex group con-
sensus issues for heterogeneous multi-agent systems. For
example, we will consider group consensus under switching
topologies.
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