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ABSTRACT In this study, we introduce bisymmetric self-dual codes over the finite field F2 of order two.We
developed a method to generate binary bisymmetric self-dual codes from a small-length bisymmetric self-
dual code by increasing its length. Using this method, we produced binary bisymmetric self-dual codes and
discovered that numerous such codes exhibit favorable parameters. Also, we defined the map from binary
bisymmetric self-dual codes to reversible self-dual codes over the ring F2+uF2. This implies that there exists
a one-to-one correspondence between the bisymmetric code over F2 and the reversible self-dual code over
F2 + uF2. Consequently, using this map on generated bisymmetric self-dual codes, we obtained reversible
self-dual codes over F2 + uF2, which were difficult to obtain using previously known methods.

INDEX TERMS Code over a ring, reversible self-dual code, eigenvectors, bisymmetric matrix, bisymmetric
self-dual codes.

NOTATION
C A linear code.
C A binary Code.
D A code over F2 + uF2.
Aut(C) The automorphism group of C .
Symn The symmetric group of degree n.
ρ1 (1, 2n)(2, 2n − 1) · · · (k, 2n − 1 + k)

· · · (n, n+ 1) ∈ Sym2n.
ρ2 (1, n + 1)(2, n + 2) · · · (k, n + k) · · · (n, 2n)

∈ Sym2n.
In The identity matrix of degree n.
Rn The column reversed matrix of In.
AT The transpose of a matrix A.
AF The flip-transpose of a matrix A.
Ar The column reversed matrix of a matrix A.

I. INTRODUCTION
In this study, we consider codes over two distinct rings. The
one is F2, the finite field of order two, and a code over F2 is
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called a binary code. The other is the ring F2 + uF2 =

{0, 1, u, v = 1 + u}, which is defined as a 2-dimensional
algebra over F2 where u2 = 0. We denote this ring R.
Although the coding theory began with binary codes, codes
over the ring R have attracted considerable attention owing
to their usefulness in constructing Hermitian modular forms
[2] and Gaussian lattices [8]. Self-dual codes over the ringR
were introduced by Bachoc [1] and studied intensively in [3],
[7], [8], [12], and [21].

Recently, some researchers found their application on
DNA codes [9], [20]. DNA codes are made of four basic
units which are called nucleotides: Adenine(A), Cytosine(C),
Guanine(G) and Thymine(T ). Siap et al. [22] identified
the four symbols A,C,G,T with the elements in R,
and constructed cyclic DNA codes considering the GC-
content(GC-weight) constraint over R and used the deletion
distance. Our previous papers [5], [15] also introduced
efficient and feasible algorithms for designing DNA codes
from reversible self-dual codes over the finite field GF(4).
We could point out that our algorithms take advantage of
the reversibility and self-duality of reversible self-dual codes
over GF(4) in [5], [15]. We expect similar algorithms for
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designing DNA codes to apply to reversible self-dual codes
over the ring F2 + uF2 as well.
We can determine all self-dual codes over R of length

up to 8 in [8]. All Lee-extremal and Lee-optimal self-dual
codes over R of lengths 9 through 24 with a non-trivial
automorphism of odd order are classified in [11], [12], [13],
[16], and [17]. For the details of codes over the ring R,
we refer [1], [12], [18], and for the details of reversible
self-dual codes and their application on DNA codes, we refer
[5], [14], [15].

In [14], the authors explored reversible self-dual codes and
presented a construction method by augmenting a generator
matrix with one row and two columns. This method is proven
to construct all the binary reversible self-dual codes up to
equivalence. However, this method is only applicable to
binary codes with standard generator matrices in the form
(In | A), where In is the identity matrix. We cannot generalize
this method to codes over a ring: because code over a ring
may not have a generator matrix in the form (In | A), up to
equivalence. This is the main motivation of this study.

In this study, we develop the construction method of
reversible self-dual codes over R. First, we determine
the relationship between reversible self-dual codes over R
and binary self-dual codes. Next, we introduce a novel
construction method for orthogonal bisymmetric matrices
and use them to generate bisymmetric self-dual codes, which
mean self-dual codes having generator matrices in the form
(In | A), where In is the identitymatrix, andA is a bisymmetric
matrix. Finally, we obtain reversible self-dual codes overR of
length 2n using the relationship between reversible self-dual
codes over R and binary bisymmetric self dual codes.
Furthermore, using this construction method, we obtain
numerous optimal bisymmetric self-dual codes of various
lengths, including the binary extremal bisymmetric self-dual
codes of length 24, and six binary extremal bisymmetric
self-dual codes of length 32, along with their corresponding
reversible self-dual codes overR.
The rest of this paper is organized as follows. In Section II,

we introduce some definitions, some facts, and notations
we need. Also, we describe the necessary and sufficient
conditions for bisymmetric codes. Section III presents the
relationship between reversible codes overR and bisymmet-
ric codes. In Section IV, we introduce a novel construction
method for bisymmetric self-dual codes. In Section V, we list
our computation results obtained using our novel construction
method. We then conclude this study in Section VI. All
computations are performed using MAGMA [4].

II. PRELIMINARIES
LetA be amatrix of sizem×n denoted by (aij)m×n. We denote
the transpose of A by AT ,that is, AT = (aji)n×m. AF is the
flip-transpose of A, which flips A across its anti-diagonal, that
is, AF = (an−j+1,m−i+1)n×m and Ar is the column-reversed
matrix of A, that is, Ar = (ai,n−j+1)m×n. Let In be the n × n
identity matrix and A be an n×n square matrix. Subsequently,
a matrix A is called orthogonal if AAT = In, A is called

symmetric if A = AT , A is called persymmetric if A = AF

and A is called bisymmetric if A = AT = AF .
Let A,B be n×nmatrices and Rn be the n×n anti-diagonal

matrix whose anti-diagonal elements are all one, that is, Rn =

I rn . The following properties are straightforward:

RTn = RFn = Rn,R2n = In,AF = RnATRn,

Ar = ARn, (AF )F = A, (AT )F = (AF )T ,

(A+ B)F = AF + BF , (AB)F = BFAF .

Let u, v be 1 × n matrices or regard them vectors of
length n by the context. The following properties are also
straightforward:

(ur )T = uF , (ur )F = uT , (uF )T = (uT )F = ur ,

uvT = urvF (∵ u · v = ur · vr ),

(uT v)F = uF (vT )F = uFvr , (uFv)T = uT (vF )T = uT vr .

LetR be a finite ring. A linear code of length n over a ring
R is a R-submodule of Rn. In particular, a binary code is a
linear code over F2. We call an element of code a codeword
and the number of non-zero components in a codeword is
called weight of the codeword. The space Rn is equipped
with the standard inner product, x · y =

∑n
i=1 xiyi, where

x = (x1, · · · , xn), y = (y1, · · · , yn) are vectors in Rn. For a
code C of length n over R, the dual code C⊥ is defined by

C⊥
= {v ∈ Rn

| v · w = 0 for all w ∈ C}.

A codeC is called self-orthogonal ifC ⊂ C⊥ and self-dual if
C = C⊥. It is obvious that binary self-dual codes are always
even; every codeword has evenweight. Binary self-dual codes
that are doubly-even are called Type II codes; otherwise, they
are called Type I codes.
Let Symn be the symmetric group on {1, · · · , n}. Two

codes of length n, C and C ′ are called monomial equivalent
if there exists an n× n monomial matrixM over R such that
C ′

= CM . The codes are called permutation equivalent if
there exists P ∈ Symn such that C ′

= CP. A permutation
P ∈ Sn is called an automorphism of C if C = CP. The set
of all automorphisms of C forms the automorphism group
Aut(C) of C .
We use the following notation throughout this paper.
A code is called reversible if it is invariant as a set under a

reversal of each codeword [14]. In particular, for a code C of
length 2n, C is reversible if and only if C = Cρ1 for ρ1 =∏n

k=1(k, 2n − k + 1) = (1, 2n)(2, 2n − 1) · · · (k, 2n − k +

1) · · · (n, n + 1) ∈ Sym2n. A self-dual code that is reversible
is called a reversible self-dual code (RSD code in short). The
properties of RSD codes are investigated in [14]. Since any
binary self-dual code has an even length 2n for an integer n,
it is clear that a binary self-dual code is reversible if and only
if the code has ρ1 as an automorphism. In [14], it is proved
that if C is a binary self-dual code with standard generator
matrix (I | A),C is reversible if and only ifA is persymmetric:
Lemma 1 [14, Lemma 3.3]: Let C be a binary self-dual

code of length 2n with generator matrix in the standard form
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(In | A), and let ρ1 =
∏n

k=1(k, 2n − k + 1) ∈ Sym2n. Then
ρ1 ∈ Aut(C) if and only if A satisfies one of the following:
(i) (Ar )2 = In
(ii) A is persymmetric.
However, one may consider a self-dual code having ρ2 as

an automorphism where ρ2 =
∏n

k=1(k, n+ k) ∈ Sym2n.
Lemma 2: Let C be a binary self-dual code of length 2n

with generator matrix in the standard form (In | A) and let
ρ2 =

∏n
k=1(k, n + k) ∈ Sym2n. Then ρ2 ∈ Aut(C) if and

only if A is symmetric.
Proof: Suppose that ρ2 ∈ Aut(C) for a self-dual code C

and G = (In | A) is a generator matrix of C. Then,

Gρ2 =
(
A In

)
generates C as well. Recall that since C is self-dual, A is
orthogonal, that is, ATA = In. Thus, AT = A−1. It is easy
to verify that A−1G is a generator matrix of C in the standard
form since

A−1G =
(
A−1A A−1In

)
=
(
In A−1

)
=
(
In AT

)
.

The row vectors of A−1G and those of (In | A) generate the
same code C; this implies AT = A, thus A is symmetric. The
reverse argument proves the other direction immediately.
Symmetric self-dual codes were studied in [6] and [19].

We define a bisymmetric self-dual code in the following
Definition.
Definition 3: If a self-dual code C of length 2n has a

standard generator matrix G = (In | A), where the matrix
A is bisymmetric, then C is called a bisymmectric self-dual
code.
Proposition 4: There exists a binary bisymmetric self-dual

code for all even length 2n.
Proof: The matrix

(
In In

)
generates a binary bisymmet-

ric self-dual code of length 2n for every positive integer n.
Example 5: There exist two trivial bisymmetric self-dual

codes with generator matrices,
(
In Rn

)
and

(
In In

)
.

Particularly, when n = 2, there exist only two distinct
bisymmetric self-dual codes in the standard form with
generator matrices,(

I2 R2
)

=

(
1 0 0 1
0 1 1 0

)
,

and (
I2 I2

)
=

(
1 0 1 0
0 1 0 1

)
.

We denote these codes by C4 and C′

4, respectively.
Henceforth, we discuss the relationship between binary

self-dual codes and self-dual codes over the ringR. LetD be
a self-dual code of length n over the ringR. It is well-known
that the Gray image of D is a binary self-dual code of length
2n with a fixed-point-free automorphism of order two [2],
[11]. The Gray map φ is defined as follows [8]:

φ : R → F2
2 by φ(a+ bu) = (a+ b, b),

that is, simply φ(0) = 00, φ(1) = 10, φ(v) = 01, and
φ(u) = 11.When x is in Rn, we apply φ to each component

of x. This map is F2-linear, so φ(D) is a binary linear code
of length 2n, and φ(D) is called the Gray image of D.
Moreover, if D is self-dual, then φ(D) is a binary self-dual
code of length 2n with a fixed-point-free automorphism ρ =

(1, 2)(3, 4) . . . (2n−1, 2n). Conversely, for a binary self-dual
code C of length 2n having a fixed-point-free automorphism
ρ′

= (a1, b1)(a2, b2) . . . (an, bn) of order two, we can find
an equivalent code C′ by rearranging the coordinates of C in
the order of a1, b1, a2, b2, . . . , an, bn. Subsequently, C′ has
the fixed-point-free automorphism ρ = (1, 2)(3, 4) · · · (2n−

1, 2n), and φ−1(C′) is a self-dual code overR. The following
proposition in [2] summarizes the relation between self-dual
codes overR and binary self-dual codes with fixed-point-free
automorphism ρ.
Proposition 6 [2, Proposition 4.3.]: There is a one-to-one

correspondence between C̄ and D̄ given by

[C] → [φ(C), τ ],

where C̄ denote the set of equivalences of codes of length
n over R, D̄ denote the set of equivalences of binary codes
of length 2n with a fixed-point-free involution τ , [C] is
an equivalence class containing C, and [φ(C), τ ] is an
equivalence class containing φ(C) with τ ∈ Aut(φ(C)).

For the details of the relationship between self-dual codes
over R and binary self-dual codes with fixed-point-free
automorphism ρ, we refer [2], [11].

III. THE RELATIONSHIP BETWEEN BISYMMETRIC CODES
AND REVERSIBLE CODES
This section discusses the relationship between bisymmetric
self-dual codes over F2 and reversible self-dual codes over
R. First, we consider the relationship between bisymmetric
codes and their automorphisms.
Theorem 7: Let C be a binary self-dual code of length 2n

with generator matrix in the standard form (In | A). Let ρ1 =∏n
k=1(k, 2n − k + 1) and ρ2 =

∏n
k=1(k, n + k) ∈ Sym2n.

Then ρ1 and ρ2 are in Aut(C) if and only if A is bisymmetric.
Proof: It is shown by Lemmas 1 and 2.

We introduce a permutation map ψ , which defines a
correspondence between binary bisymmetric self-dual codes
of length 4n and RSD codes of length 2n overR.
Henceforth, we denote D and C as an RSD code of

length 2n over R and a binary self-dual code of length 4n,
respectively. Recall that the Graymap φ on a codeword x ∈ D
as

φ(x) = (x1,1, x1,2, · · · , x2n,1, x2n,2) ∈ F4n
2

for xk,1 = ak + bk and xk,2 = bk where xk = ak + bku is
the k-th coordinate of codeword x. φ(D) is a binary self-dual
code of length 4n with a fixed-point-free automorphism ρ =

(1, 2)(3, 4) . . . (4n− 1, 4n), since D has length 2n.
We define a permutation map ψ acting on φ(x) as follows:

ψ(φ(x)) = (x1,1, x2,1, · · · , xn,1, xn+1,2, · · · , x2n,2, x2n,1,

· · · , xn+1,1, xn,2, · · · , x2,2, x1,2).
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Clearly, C = ψ(φ(D)) is a binary self-dual code of length
4n which is equivalent to φ(D). Subsequently, we have the
following theorem.
Theorem 8: Let ψ and φ be maps defined above. Let σ =∏2n
k=1(k, 4n − k + 1) ∈ Sym4n and τ =

∏2n
k=1(k, 2n + k) ∈

Sym4n. Assume thatD is an RSD code of length 2n overR and
C = ψ(φ(D)). Subsequently, σ and τ are automorphisms of
C.

Proof: Recall that φ(D) has the permutation ρ =

(1, 2)(3, 4) · · · (2k − 1, 2k) · · · (4n − 1, 4n) ∈ Sym4n as an
automorphism, and the permutation ρ permutes each pair of
xk,1 and xk,2 for all 1 ≤ k ≤ 2n of every codeword x ∈ D.
The mapψ is defined to rearrange all the elements xk,1 and

xk,2 for all 1 ≤ k ≤ 2n of every codeword x ∈ D such that
σ =

∏2n
k=1(k, 4n− k+1) ∈ Sym4n is to be an automorphism

of ψ(φ(D)).
Regarding τ , we use the reversibility of D. Since D is

reversible, the permutation ρ1 =
∏n

k=1(k, 2n − k + 1) ∈

Sym2n is an automorphism of D, which means that for every
codeword x = (xi) ∈ D, xr = (xρ1(i)) is also a codeword
in D. The transposition of two elements xi and x2n−i+1 in x
corresponds to two different transpositions under the map φ,
the transposition of xi,1 and x2n−i+1,1 and the transposition
of xi,2 and x2n−i+1,2 of φ(x). It is easy to verify that the map
ψ rearranges elements xk,1 and xk,2 for all 1 ≤ k ≤ 2n of
every codeword x = (xi) ∈ D so that τ =

∏2n
k=1(k, 2n+ k) ∈

Sym4n is to be an automorphism of ψ(φ(D)).
Corollary 9: For any bisymmetric self-dual code C

over F2, there exists a reversible self-dual code D =

φ−1(ψ−1(C)).
Proof: It is straightforward, as evident from Theo-

rem 7, 8, and Proposition 6.
Example 10: (i) From the trivial bisymmetric self-dual
code C4 with the generator matrix(

1 0 0 1
0 1 1 0

)
,

we obtain φ−1(ψ−1(C4)), a reversible self-dual code
overR with the generator matrix(

u 0
0 u

)
,

whereas from the trivial bisymmetric self-dual code C′

4
with the generator matrix(

1 0 1 0
0 1 0 1

)
,

we obtain φ−1(ψ−1(C′

4)), a reversible self-dual code
overR with the generator matrix(

1 1
)
.

(ii) Let E8 and E ′

8 be equivalent extremal bisymmetric
self-dual codes with the generator matrices

1 0 0 0 1 1 1 0
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 0 1 1 1

 ,

and 
1 0 0 0 1 1 1 0
0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1

 ,
respectively.
We verify that the RSD code φ−1(ψ−1(E8)) over R has
the generator matrix (

1 0 u v
0 1 1 u

)
,

whereas the RSD code φ−1(ψ−1(E ′

8)) over R has the
generator matrix  1 1 1 v

0 u 0 u
0 0 u u

 ,
which shows that φ−1(ψ−1(E8)) and φ−1(ψ−1(E ′

8)) are
neither permutation equivalent nor monomial equiva-
lent.

Remark 11: We highlight that the map (ψ ◦ φ)−1 does
not preserve the equivalence. As we can see in Example 10,
even if two bisymmetric self-dual codes C and C′ in
Example 10 are (permutation) equivalent to each other,
reversible self-dual codes φ−1(ψ−1(C)) and φ−1(ψ−1(C′))
are neither monomial nor permutation equivalent.

IV. CONSTRUCTION OF BISYMMETRIC SELF-DUAL CODES
Proposition 12: Let x be a binary vector of length 2n, and

let A be a 2n× 2n bisymmetric matrix. Subsequently,
(i) AR2n = R2nA.
(ii) xxF = xrxT = 0.
(iii) xxT = xrxF , that is, xxT + xrxF = 0
(iv) if x is an eigenvector of A (AxT = xT ), then xA =

x,AxF = xF , and xrA = xr .
(v) if x is an eigenvector of AR2n (AR2nxT = xT ), then

AxF = xT , xA = xr ,AxT = xF , and xrA = x.
Proof:

(i) Since A is bisymmetric, A = AF = R2nATR2n =

R2nAR2n. Therefore, AR2n = R2nA.
(ii) xxF = xrxT =

∑2n
i=1 xix2n−i+1=2

∑n
i=1 xix2n−i+1 = 0.

(iii) xxT + xrxF = xxT + xR2nR2nxT = 2xxT = 0
(iv) Since x is an eigenvector of A, AxT = xT . If we

transpose both sides, xA = x. AxF = AR2nxT =

R2nAxT = R2nxT = xF . xrA = xR2nA = xAR2n =

xR2n = xr .
(v) Since x is an eigenvector of AR2n, AR2nxT = xT .

Therefore, AxF = AR2nxT = xT . If we flip both sides,
xA = (xT )F = xr . AxT = AR2nR2nxT = R2nAR2nxT =

R2nxT = xF , and xrA = xrR2nR2nA = xAR2n =

xrR2n = x. ■
Theorem 13: Let A be a bisymmetric(symmetric and

persymmetric) matrix and (In | A) be a generator matrix
of a binary bisymmetric self-dual code of length 4n.
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Subsequently, the matrix

(
I2n+2 A′

)
=

 I2n+2

a x b
xT A+ E xF

b xr a


generates a binary bisymmetric self-dual code of length
4n+ 4 where a, b and a vector x and a matrix E are decided
as follows:
(i) If A has an eigenvector x of eigenvalue one with odd

weight, then

a = b = 0,E = xT x + xFxr .

(ii) If A has an eigenvector x of eigenvalue one with even
weight such that x = xr , or if x is the zero vector, then
set

a = 1, b = 0,E = O.

(iii) If AR has an eigenvector x of eigenvalue one with odd
weight, then

a = b = 1,E = xT x + xFxr .

(iv) If AR has an eigenvector x of eigenvalue one with even
weight such that x = xr , or if x is the zero vector, then

a = 0, b = 1,E = O.

Proof: By the assumption, we have that AA = I2n.
It is easy to check that E is bisymmetric, therefore A′ is
also a bisymmetric matrix. Thus, we only to show that A′ is
orthogonal, that is. A′(A′)T = A′A′

= I2n+2.
Case (i) Since x has an odd weight, we have xxT = 1 and

xrxF = 1. Since x is an eigenvector ofA, we know thatAxT =

xT ,AxF = xF , xAT = x, and xrAT = xr .

(A+ xT x + xFxr )(A+ xT x + xFxr )

= AA+ AxT x + AxFxr + xT xA+ xFxrA

+ (xT x + xFxr )(xT x + xFxr )

= I2n + xT x + xFxr + xT x + xFxr

+ (xT x + xFxr )(xT x + xFxr )

= I2n + xT xxT x + xT xxFxr + xFxrxT x + xFxrxFxr

= I2n + xT xxT x + xT 0xr + xF0x + xFxrxFxr

= I2n + xT x + xFxr .

Therefore,

A′(A′)T =

 0 x 0
xT A+ xT x + xFxr xF

0 xr 0

2

=

 xxT xAT + xxT x + xxFxr xxF

. . . xT x + (I2n + xT x + xFxr ) + xFxr . . .

. . . . . . . . .


=

 1 x + 1x + 0xr 0
. . . xT x + (I2n + xT x + xFxr ) + xFxr . . .
. . . . . . . . .



=

 1 O 0
OT I2n OF

0 OR 1


= I2n+2.

Here, ‘. . .’ means that the block does not need to be
calculated, because of the bisymmetricity of the matrix
A′(A′)T . Indeed, the only four blocks we calculated determine
the whole matrix A′(A′)T .

Case (ii) By the assumption, x = xr , thus xF = xT . Since
x has an even weight, we have xxT = 0 and xrxF = 0.
Since x is an eigenvector of A, AxT = xT ,AxFxF , xAT = x,
xrAT = xr . Therefore,

A′(A′)T =

 1 x 0
xT A xF

0 xr 1

 1 x 0
xT A xF

0 xr 1


=

 1 + xxT x + xA xxF

. . . xT x + AA+ xFxr . . .

. . . . . . . . .


=

 1 x + x 0
. . . I2n + xT x + xT x . . .
. . . . . . . . .


=

 1 O 0
OT I2n OF

0 Or 1


= I2n+2.

Case (iii) Since x has an odd weight, we have xxT = 1 and
xrxF = 1. Since x is an eigenvector of AR, AxF = xT , AxT =

xF , xAT = xr , xrA = x.

(A+ xT x + xFxr )(A+ xT x + xFxr )

= AA+ AxT x + AxFxr + xT xA+ xFxrA

+ (xT x + xFxr )(xT x + xFxr )

= I2n + xFx + xT xr + xT xr + xFx

+ (xT x + xFxr )(xT x + xFxr )

= I2n + 0 + xT xxT x + xT xxFxr + xFxrxT x

+ xFxrxFxr

= I2n + xT xxT x + xT 0xr + xF0x + xFxrxFxr

= I2n + xT x + xFxr .

Therefore,

A′(A′)T =

 1 x 1
xT A+ xT x + xFxr xF

1 xr 1

2

=

 xxT x + xAT + xxT x + xxFxr + xr xxF

. . . xT x + (I2n + xT x + xFxr ) + xFxr . . .

. . . . . . . . .


=

 1 x + xr + 1x + 0xr + xr 0
. . . xT x + (I2n + xT x + xFxr ) + xFxr . . .
. . . . . . . . .


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=

 1 O 0
OT I2n OF

0 Or 1


= I2n+2.

Case (iv) x has an evenweight, that is, xxT = 0 and xrxF =

0. Since x is an eigenvector of AR, AxF = xT ,AxT = xF ,
xAT = xr , xrA = x.

A′(A′)T =

 0 x 1
xT A xF

1 xr 0

 0 x 1
xT AT xF

1 xr 0


=

 xxT + 1 xAT + xr xxF

. . . xT x + AAT + xFxr . . .

. . . . . . . . .


=

 xxT + 1 xr + xr xxF

. . . AAT . . .

. . . . . . . . .


=

 1 O 0
OT I2n OF

0 OR 1


= I2n+2.

The following examples illustrate our construction meth-
ods of binary bisymmetric self-dual codes and RSD codes
overR.
Example 14: The extremal bisymmetric self-dual code

E8 in Example 10 has the generator matrix(
I4 A

)
=

( 1 0 0 0 1 1 1 0
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 0 1 1 1

)
,

and it is easy to check that eigenspaces of matrix A
and AR corresponding to one are both generated by
{(1, 0, 0, 1), (0, 1, 1, 0)}. Therefore, A and AR have only
even weight eigenvectors of eigenvalue one. If we take the
eigenvector x = (1, 0, 0, 1), then x = xr and applying the
method (ii) in Theorem 13, we obtain a generator matrix of a
bisymmetric [12, 6, 4] code 1 0 0 0 0 0 1 1 0 0 1 0

0 1 0 0 0 0 1 1 1 1 0 1
0 0 1 0 0 0 0 1 0 1 1 0
0 0 0 1 0 0 0 1 1 0 1 0
0 0 0 0 1 0 1 0 1 1 1 1
0 0 0 0 0 1 0 1 0 0 1 1

 .
If we proceed to apply the map φ−1

◦ ψ−1 on this [12, 6, 4]
code, we obtain a RSD code of length 6 over R having the
generator matrix( 1 0 0 u u 1

0 1 0 0 1 u
0 0 1 v 0 u

)
.

Example 15: The matrix

(
I6 A

)
=

 1 0 0 0 0 0 0 1 1 1 0 0
0 1 0 0 0 0 1 0 1 1 0 0
0 0 1 0 0 0 1 1 1 0 1 1
0 0 0 1 0 0 1 1 0 1 1 1
0 0 0 0 1 0 0 0 1 1 0 1
0 0 0 0 0 1 0 0 1 1 1 0


is a generator matrix of a bisymmetric self-dual [12, 6, 4]
code. The eigenspaces of matrix A corresponding to one is

generated by row vectors of( 1 0 0 1 0 1
0 1 0 1 0 1
0 0 1 1 0 0
0 0 0 0 1 1

)
.

If we take the odd weight eigenvector x = (1, 0, 0, 1, 0, 1)
to apply the method i) in Theorem 13, we obtain the matrix

E = xT x + xFxr =

 0 0 1 1 0 0
0 0 0 0 0 0
1 0 1 0 0 1
1 0 0 1 0 1
0 0 0 0 0 0
0 0 1 1 0 0

 ,
we consequently obtain a generator matrix of an extremal
bisymmetric self-dual [16, 8, 4] code

1 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0
0 1 0 0 0 0 0 0 1 0 1 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 0
0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0
0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 1
0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0

 .
If we proceed to apply the map φ−1

◦ ψ−1 on this extremal
[16, 8, 4] code, we obtain a RSD code of length 8 over R
having the generator matrix( 1 0 0 0 1 v 1 0

0 1 0 0 v 0 v 1
0 0 1 0 1 v 0 v
0 0 0 1 0 1 v 1

)
.

V. EXTREMAL BISYMMETRIC SELF-DUAL CODES AND
REVERSIBLE SELF-DUAL CODES OVER R
A binary self-dual code is called type II if the weight of all
its codewords is divisible by 4. Otherwise, it is called type
I. In [10], it was reported that there exists unique extremal
self-dual type II codes of length 24 over F2. Using the
bisymmetric construction method, we obtain the type II self-
dual code of length 24 over F2 in bisymmetric form.
Theorem 16: There exists the extremal bisymmetric

self-dual type II [24, 12, 8] code with a generator matrix,



1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 0
0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 1 1
0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 0 1
0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 1 1 0 0 1


,

whose weight enumerator is

x24 + 759x16y8 + 2576x12y12 + 759x8y16 + y24.

We denote this code by E24.
In Table 1, we illustrate a chain of self-dual codes

constructed by using Theorem 13, successively from a [4,2,2]
code C4 to a [24,12,8] code E24.
We give generator matrices of all the bisymmetric self-dual

codes in the building-up chain from C4 to E24 in Table 1.
• A bisymmetric self-dual [4,2,2] code C4 with(

1 0 0 1
0 1 1 0

)
.
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TABLE 1. Construction of the extremal code E24.

• A bisymmetric self-dual extremal [8,4,4] code with( 1 0 0 0 1 1 1 0
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 0 1 1 1

)
• A bisymmetric self-dual [12,6,4] code with

 1 0 0 0 0 0 1 0 1 1 0 0
0 1 0 0 0 0 0 1 1 1 0 0
0 0 1 0 0 0 1 1 0 1 1 1
0 0 0 1 0 0 1 1 1 0 1 1
0 0 0 0 1 0 0 0 1 1 1 0
0 0 0 0 0 1 0 0 1 1 0 1


• A bisymmetric self-dual extremal [16,8,4] code with

1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1
0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1
0 0 1 0 0 0 0 0 1 0 0 1 0 0 1 0
0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 1
0 0 0 0 1 0 0 0 1 1 0 1 1 1 0 0
0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1
0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 0
0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 1


• A bisymmetric self-dual [20,10,4] code with

1 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 0
0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0
0 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0
0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 1
0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 1 0 1 1
0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1


• A bisymmetric self-dual extremal [24,12,8] code with

1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 0
0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 1 1
0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 0 1
0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 1 0 0 1 1
0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 1 1 0 0 1


• D12 = φ−1(ψ−1(E24)): 1 0 0 1 0 1 0 1 1 0 1 u

0 1 0 1 0 1 1 u 0 1 0 1
0 0 1 1 0 0 1 v 1 v 1 1
0 0 0 u 0 0 1 1 0 u 1 v
0 0 0 0 1 1 1 v 0 u u 0
0 0 0 0 0 u 0 u 1 v v 1


In [10], it was reported that there exist eight inequivalent

extremal self-dual codes of length 32 over F2. Among
them, three codes are type I and five are type II. Using
the bisymmetric construction method, we found all the
inequivalent type I and three inequivalent type II self-dual
codes of length 32 over F2 in bisymmetric form.
Theorem 17: There exist at least six extremal bisymmetric

self-dual codes of length 32 over F2, and we denote each
extremal code by E i32 for 1 ≤ i ≤ 6. Among them, E132, E

2
32,

and E332 are type I, whereas E
4
32, E

5
32, E

6
33 are type II.

• E132 is an extremal type I self-dual code which has the
generator matrix in the bisymmetric form:

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 1 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 0 0 1 0 0 1 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 0 0 1 1 1 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 0 1 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 1 1 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 1 1 0 1 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1 1 1 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 0 1 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 1 1 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 1 1 1 0 1 0


,

whose weight enumerator is W1(x, y) = x32 +

364x24y8 + 2048x22y10 + 6720x20y12 + 14336x18y14 +

18598x16y16+14336x14y18+6720x12y20+2048x10y22+
364x8y24 + y32.

• E232 is an extremal type I self-dual code that has the
generator matrix in the bisymmetric form:

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 1 1 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1 1 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 1 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 1 1 1 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 1 1 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 1 0 0 1 0 0 1 1 0
0 0 0 0 0 0 0 0 0 a 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 1 1 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 1 1 0 1 0 0 0


,

whose weight enumerator is W1(x, y).
• E332 is an extremal type I self-dual code that has the
generator matrix in the bisymmetric form:

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 1 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 1 0 1 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 0 1 1 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 0 1 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 1 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 1 0 1 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 1 0 0 0 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 0


,

whose weight enumerator is W1(x, y).
• E432 is an extremal type II self-dual code that has the
generator matrix in the bisymmetric form:

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 1 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 0 1 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 1 1 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 1 1


,

whose weight enumerator is W2(x, y) = x32 +

620x24y8+13888x20y12+36518x16y16+13888x12y20+
620x8y24 + y32.
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• E532 is an extremal type II self-dual code that has the
generator matrix in the bisymmetric form:

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 1 1 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 0 1 0 1 1 1 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 1 0 1 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 1 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 1 1 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 1


.

whose weight enumerator is W2(x, y).
• E632 is an extremal type II self-dual code which has the
generator matrix in the bisymmetric form:

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 1 1 1 1 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 0 1 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 0 0 0 0 1 1 0 1


,

whose weight enumerator is W2(x, y).
In the following, we illustrate the chain of bisymmetric

self-dual codes consecutively constructed from C4 to the
extremal codes E332 using Theorem 13.

TABLE 2. Construction of the extremal code E3
32.

• A bisymmetric self-dual [4, 2, 2] Code over GF(2)(
1 0 0 1
0 1 1 0

)
• A bisymmetric self-dual [8, 4, 4] Code over GF(2)( 1 0 0 0 1 1 1 0

0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 0 1 1 1

)
• A bisymmetric self-dual [12, 6, 4] Code over GF(2) 1 0 0 0 0 0 0 1 0 0 1 1

0 1 0 0 0 0 1 1 1 1 0 1
0 0 1 0 0 0 0 1 0 1 1 0
0 0 0 1 0 0 0 1 1 0 1 0
0 0 0 0 1 0 1 0 1 1 1 1
0 0 0 0 0 1 1 1 0 0 1 0


• A bisymmetric self-dual [16, 8, 4] Code over GF(2)

1 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0
0 1 0 0 0 0 0 0 1 0 1 0 0 1 1 1
0 0 1 0 0 0 0 0 0 1 1 1 1 0 1 0
0 0 0 1 0 0 0 0 1 0 1 0 1 1 0 1
0 0 0 0 1 0 0 0 1 0 1 1 0 1 0 1
0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 0
0 0 0 0 0 0 1 0 1 1 1 0 0 1 0 1
0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1



• A bisymmetric self-dual [20, 10, 4] Code over GF(2)
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0
0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 1 0 1 1 0
0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 1 0 1 1
0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0 1 1 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0


• A bisymmetric self-dual [24, 12, 6] code over GF(2)

1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 0 1 1
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 0 1 1 0 1
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 1 1
0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 1 0 1
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 1
0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 1 1 1 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 0 1 1 1 1
0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 1 0 1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 1 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 0 1 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 0 1 0 1


• A bisymmetric self-dual [28, 14, 6] code over GF(2)

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 1 0 1 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 1 1 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 1 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 1 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 1 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 0 1 1 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 0 1 1 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1


• A bisymmetric self-dual code E332.

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 1 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 1 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 1 1 0 0 1 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 1 1 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 1 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 1 0 1 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 0 1 1 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 1 0 1 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 1 1 1 1 0 1 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 1 0 1 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 1 0 0 0 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 1 1 0 0 0 1 1 0


• We provide examples of reversible self-dual codes over
R made from extremal bisymmetric self-dual codes,
using Corollary 9. D3

16 = φ−1(ψ−1(E332)):
1 0 0 0 0 0 0 0 u 1 0 u 1 1 v 1
0 1 0 0 0 0 1 0 v 0 v 0 1 u 1 u
0 0 1 0 0 0 0 0 v 0 v 1 u 1 u 1
0 0 0 1 0 0 0 0 0 1 u 1 0 u 0 1
0 0 0 0 1 0 1 0 u 0 1 v 0 1 0 v
0 0 0 0 0 1 1 0 v 1 v 0 v v u 1
0 0 0 0 0 0 u 0 0 1 v 1 u 0 1 u
0 0 0 0 0 0 0 1 0 0 v u 0 v v u


VI. CONCLUSION
In this study, we introduced bisymmetric self-dual codes and
their construction method and investigated their relationship
with reversible self-dual codes over R = F2 + uF2, where
u2 = 0. Using this construction method, we succeeded
in constructing numerous extremal bisymmetric self-dual
codes, and we consequently obtained reversible self-dual
codes over F2 + uF2, which were difficult to obtain using
previously known methods.

We point out that there are two well-known methods of
constructing self-dual codes over R as far as we know. The
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first is Proposition 4.3 in [2], and this method can generate
all self-dual codes over a certain length. However, to use this
method, we must have all binary self-dual codes with a fixed-
point-free involution. Also, we need to collect and classify
only the reversible codes among all the generated codes
to get the reversible self-dual codes. Hence, computational
complexity gets much higher than our method as the code’s
length increases. The second is the decomposition method
introduced in [12]. It is the method of constructing self-dual
codes with an automorphism of odd order over R. However,
every reversible self-dual code has an automorphism of
even order. Therefore, our method is novel and efficient in
generating reversible self-dual codes over R, which is our
paper’s main contribution.

In future work, we aim to investigate the application of
reversible self-dual codes overR over DNA codes.

APPENDIX.
CONSTRUCTION OF EXTREMAL SELF-DUAL CODES OF
LENGTH 32
In Table 3, we summarize constructions of bisymmetric self-
dual codes, starting from the code C4 up to the extremal
codes E132 using Theorem 13. We then illustrate the chain of
bisymmetric generator matrices consecutively constructed.

TABLE 3. Construction of the extremal code E1
32.

• A bisymmetric self-dual code over GF(2)(
1 0 0 1
0 1 1 0

)
• A bisymmetric self-dual [8, 4, 2] code over GF(2)( 1 0 0 0 0 0 0 1

0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0
0 0 0 1 1 0 0 0

)
• A bisymmetric self-dual [12, 6, 4] code over GF(2) 1 0 0 0 0 0 1 1 1 1 1 0

0 1 0 0 0 0 1 0 0 0 1 1
0 0 1 0 0 0 1 0 0 1 0 1
0 0 0 1 0 0 1 0 1 0 0 1
0 0 0 0 1 0 1 1 0 0 0 1
0 0 0 0 0 1 0 1 1 1 1 1


• A bisymmetric self-dual [16, 8, 4] code over GF(2)

1 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0
0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 0
0 0 1 0 0 0 0 0 1 1 0 0 0 1 1 1
0 0 0 1 0 0 0 0 1 1 0 0 1 0 1 1
0 0 0 0 1 0 0 0 1 1 0 1 0 0 1 1
0 0 0 0 0 1 0 0 1 1 1 0 0 0 1 1
0 0 0 0 0 0 1 0 0 0 1 1 1 1 1 0
0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1



• A bisymmetric self-dual [20, 10, 4] code over GF(2)

1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0
0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1
0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1
0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 1 1 0 0 0
0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 1 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 1 0


• A bisymmetric self-dual [24, 12, 6] code over GF(2)

1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1
0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 0 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 1 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 1 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 1 0 0 1


• A bisymmetric self-dual [28, 14, 6] code over GF(2)

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 1 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 0 0 1 1 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 0 0 1 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 1 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 0 1 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 1 1


• A bisymmetric self-dual code E132

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 1 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 1 0 0 1 0 0 1 1 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 0 1 0 0 0 1 1 1 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 1 1 0 1 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 1 1 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 1 1 0 1 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 1 1 0 1 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 1 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 1 1 1 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 0 1 0 0 1 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 0 0 1 1 1 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 1 1 1 0 1 0


• D1

16 = φ−1(ψ−1(E132)):
1 0 0 0 0 0 0 1 1 1 v v 0 v 0 v
0 1 0 0 0 0 0 0 1 0 0 u 1 0 u 1
0 0 1 0 0 0 0 1 0 0 v v u 1 1 u
0 0 0 1 0 0 0 0 1 v 1 1 0 v 1 1
0 0 0 0 1 0 0 0 1 v 1 v 1 u u u
0 0 0 0 0 1 0 1 1 v 0 0 0 u 1 v
0 0 0 0 0 0 1 0 1 1 u v v 1 0 0
0 0 0 0 0 0 0 u 1 u v u u 1 u v


In Table 4, we summarize constructions of bisymmetric

self-dual codes, starting from the code C4 up to the
extremal codes E232 using Theorem 13. We then illustrate
the chain of bisymmetric generator matrices consecutively
constructed.

• A bisymmetric self-dual [4,2,2] code over GF(2)(
1 0 0 1
0 1 1 0

)
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TABLE 4. Construction of the extremal code E2
32.

• A bisymmetric self-dual [8,4,4] code over GF(2)(
1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0

)
• A bisymmetric self-dual [12,6,4] code over GF(2)

1 0 0 0 0 0 0 1 1 1 1 1
0 1 0 0 0 0 1 0 1 1 1 1
0 0 1 0 0 0 1 1 0 1 1 1
0 0 0 1 0 0 1 1 1 0 1 1
0 0 0 0 1 0 1 1 1 1 0 1
0 0 0 0 0 1 1 1 1 1 1 0


• A bisymmetric self-dual [16,8,2] code over GF(2)

1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 0
0 0 1 0 0 0 0 0 0 1 0 1 1 1 1 0
0 0 0 1 0 0 0 0 0 1 1 0 1 1 1 0
0 0 0 0 1 0 0 0 0 1 1 1 0 1 1 0
0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 0
0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1


• A bisymmetric self-dual [20,10,4] code over GF(2)

1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0
0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1
0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 1 0 0
0 0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 1 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0


• A bisymmetric self-dual [24,12,6] code over GF(2)

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 1
0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1 0 1 1
0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 1 1 0 1
0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 1 1 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1 1 0 1 0 1 0 1
0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 0 1 0 1 0 1 1
0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 1 1 0 0 0 1
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 1 1 1 1 0 0


• A bisymmetric self-dual [28,14,6] code over GF(2)

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 1 0 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 1 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 1 1 0 1 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 1 1 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 1 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 1 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 1 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 0 1 1 1 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 0 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1



• A bisymmetric self-dual code E232

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 1 1 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 1 0 1 1 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 1 0 0 1 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 1 1 1 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 1 1 1 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 0 1 0 0 0 1 0 1 1 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 1 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 1 1 1 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 0 0 0 1 0 0 1 0 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 1 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 1 1 0 1 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 0 0 1 1 0 1 0 0 0


• D2

16 = φ−1(ψ−1(E232)):
1 0 0 0 0 0 0 0 0 v u u 0 v 1 0
0 1 0 0 0 0 0 0 v v 0 1 0 u 1 1
0 0 1 0 0 0 0 0 1 0 1 u u 0 u v
0 0 0 1 0 0 0 0 v u 1 v 0 u 0 0
0 0 0 0 1 0 0 0 0 1 u 0 v u 1 u
0 0 0 0 0 1 0 0 1 v 1 u 1 1 0 u
0 0 0 0 0 0 1 0 u 1 v 1 u 0 v v
0 0 0 0 0 0 0 1 1 u 1 0 v 1 v 0


In Table 5, we summarize constructions of bisymmetric self-
dual codes, starting from the code C′

4 up to the extremal
codes E432 using Theorem 13. We then illustrate the chain of
bisymmetric generator matrices consecutively constructed.

TABLE 5. Construction of the extremal code E4
32.

• A bisymmetric self-dual [4, 2, 2] code over GF(2)(
1 0 1 0
0 1 0 1

)
• A bisymmetric self-dual [8, 4, 2] code over GF(2)( 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

)
• A bisymmetric self-dual [12, 6, 4] code over GF(2) 1 0 0 0 0 0 0 1 1 1 1 1

0 1 0 0 0 0 1 1 0 0 0 1
0 0 1 0 0 0 1 0 1 0 0 1
0 0 0 1 0 0 1 0 0 1 0 1
0 0 0 0 1 0 1 0 0 0 1 1
0 0 0 0 0 1 1 1 1 1 1 0


• A bisymmetric self-dual [16, 8, 4] code over GF(2)

1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1
0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 0
0 0 1 0 0 0 0 0 1 1 1 0 0 0 1 1
0 0 0 1 0 0 0 0 1 1 0 1 0 0 1 1
0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 1
0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 1
0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0
0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0


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• A bisymmetric self-dual [20, 10, 4] code over GF(2)
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1
0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1
0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1
0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 1 0 0
0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 1 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 1


• A bisymmetric self-dual [24, 12, 6] code over GF(2)

1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 1 0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1
0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 1
0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 1
0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0


• A bisymmetric self-dual [28, 14, 6] code over GF(2)

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 1 1 1 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 1 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 0 1 0 1 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 0 1 1 0 0 0


• A bisymmetric self-dual code E432.

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 1 0 0 0 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 1 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 0 1 0 1 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 1 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 1 0 1 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 1 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 1 1 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1 0 0 1 1


• D4

16 = φ−1(ψ−1(E432)):
1 0 0 0 0 0 0 0 v 1 1 0 0 u 0 u
0 1 0 0 0 0 0 0 0 1 v u v v 1 0
0 0 1 0 0 0 0 0 1 v 0 u 0 0 v u
0 0 0 1 0 0 0 0 u v 1 v v 0 v 0
0 0 0 0 1 0 0 0 v v u u v u u 0
0 0 0 0 0 1 0 0 0 1 v u 1 0 v 1
0 0 0 0 0 0 1 0 v 0 1 v v v 1 1
0 0 0 0 0 0 0 1 1 v 0 v u 1 0 v


In Table 6, we summarize constructions of bisymmetric

self-dual codes, starting from the code C′

4 up to the extremal
codes E532 using Theorem 13. We then illustrate the chain of
bisymmetric generator matrices consecutively constructed.

• A bisymmetric self-dual [4, 2, 2] code over GF(2)(
1 0 1 0
0 1 0 1

)
• A bisymmetric self-dual [8, 4, 2] code over GF(2)( 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

)

TABLE 6. Construction of the extremal code E5
32.

• A bisymmetric self-dual [12, 6, 4] code over GF(2)
1 0 0 0 0 0 0 1 1 1 1 1
0 1 0 0 0 0 1 1 0 0 0 1
0 0 1 0 0 0 1 0 1 0 0 1
0 0 0 1 0 0 1 0 0 1 0 1
0 0 0 0 1 0 1 0 0 0 1 1
0 0 0 0 0 1 1 1 1 1 1 0


• A bisymmetric self-dual [16, 8, 4] code over GF(2)

1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1
0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 0
0 0 1 0 0 0 0 0 1 1 1 0 0 0 1 1
0 0 0 1 0 0 0 0 1 1 0 1 0 0 1 1
0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 1
0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 1
0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0
0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0


• A bisymmetric self-dual [20, 10, 4] code over GF(2)

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1
0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1
0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1
0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 1 0 0
0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 1 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 1


• A bisymmetric self-dual [24, 12, 6] code over GF(2)

1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 1 0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1
0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 1
0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 1
0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0


• A bisymmetric self-dual [28, 14, 6] code over GF(2)

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 1 1 1 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 1 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 0 1 0 1 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 0 1 1 0 0 0


VOLUME 12, 2024 1127



H. J. Kim, W.-H. Choi: Reversible Self-Dual Codes Over the Ring F2 + uF2

• A bisymmetric self-dual code E532.

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 1 1 1 1 1 1 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 0 0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1 1 0 1 0 1 1 1 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 1 0 1 1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 1 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 1 1 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 1 1


• D5

16 = φ−1(ψ−1(E532)):
1 0 0 0 0 0 0 1 0 0 v v u v 0 v
0 1 0 0 0 0 0 0 1 0 0 u 1 1 v 1
0 0 1 0 0 0 0 0 0 u v u u u 1 v
0 0 0 1 0 0 0 0 1 0 0 v 1 u 1 v
0 0 0 0 1 0 0 0 1 1 0 u v u u u
0 0 0 0 0 1 0 1 0 v 0 1 1 v 1 v
0 0 0 0 0 0 1 1 0 1 v 0 1 u 1 0
0 0 0 0 0 0 0 u 1 1 1 u u 0 u 1


In Table 7, we summarize constructions of bisymmetric

self-dual codes, starting from the code C′

4 up to the extremal
codes E632 using Theorem 13. We then illustrate the chain of
bisymmetric generator matrices consecutively constructed.

TABLE 7. Construction of the extremal code E6
32.

• A bisymmetric self-dual [4, 2, 2] code over GF(2)(
1 0 1 0
0 1 0 1

)
• A bisymmetric self-dual [8, 4, 2] code over GF(2)( 1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

)
• A bisymmetric self-dual [12, 6, 4] code over GF(2) 1 0 0 0 0 0 0 1 1 1 1 1

0 1 0 0 0 0 1 1 0 0 0 1
0 0 1 0 0 0 1 0 1 0 0 1
0 0 0 1 0 0 1 0 0 1 0 1
0 0 0 0 1 0 1 0 0 0 1 1
0 0 0 0 0 1 1 1 1 1 1 0


• A bisymmetric self-dual [16, 8, 4] code over GF(2)

1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1
0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 0
0 0 1 0 0 0 0 0 1 1 1 0 0 0 1 1
0 0 0 1 0 0 0 0 1 1 0 1 0 0 1 1
0 0 0 0 1 0 0 0 1 1 0 0 1 0 1 1
0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 1
0 0 0 0 0 0 1 0 0 1 1 1 1 1 0 0
0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0



• A bisymmetric self-dual [20, 10, 4] code over GF(2)
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 1
0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 1
0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 1
0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 1 1
0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 1 0 0
0 0 0 0 0 0 1 0 0 0 1 1 1 0 0 1 0 1 0 0
0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 1


• A bisymmetric self-dual [24, 12, 6] code over GF(2)

1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 0 0
0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 1 1 0 1
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1
0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 0 1
0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 1
0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 1 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 0 1 1 0


• A bisymmetric self-dual [28, 14, 6] code over GF(2)

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1 0 1 1 1 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 0 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 1 1
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 1 0 1 0 1 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 1 0 1 1 0 0 0


• A bisymmetric self-dual code E632

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 1 1 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 1 1 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 1 0 1 1 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 1 1 1 1 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 1 1 0 1 1 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 1 0 0 1 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 0 1 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1 0 1 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 0 0 0 0 1 1 0 1


• D6

16 = φ−1(ψ−1(E632)):
1 0 0 0 0 0 0 0 1 1 v u 0 0 0 u
0 1 0 0 0 0 0 0 0 1 v u v v 1 0
0 0 1 0 0 0 0 0 v 1 u u 0 0 v 0
0 0 0 1 0 0 0 0 u v 1 v v 0 v 0
0 0 0 0 1 0 0 0 1 1 0 u v u u u
0 0 0 0 0 1 0 0 0 v v 0 1 u v v
0 0 0 0 0 0 1 0 1 0 v 1 v 1 1 1
0 0 0 0 0 0 0 1 1 1 0 1 u v 0 1


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