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ABSTRACT The development of deep residual network (ResNet) has contributed significantly to the
progress of computer vision and image classification, expanding the applicability of convolutional neural
networks to different fields. Researchers continue to improve the classification accuracy of ResNet by
increasing parameter sizes or model complexity. However, enlarging the network parameter size would
significantly increase the training workload. In this work, we adjusted the scale and variation pattern of
ResNet18 channel numbers, evaluated their performance differences using different datasets, and designed
a flask-like channel structure, which enabled ResNet18 to reduce model parameters while maintaining
accuracy. Then, we use MNIST and STL10 datasets validate the effectiveness of FLC structure. Finally,
we extend the FLC structure to other ResNet models with different layers, such as ResNet34, ResNet50,
ResNet101, and ResNeXt. By testing these ResNet models on the CIFAR10 dataset, our experiments showed
that the ResNet models with the FLC structure (namely ResNet_FLC) can maintain or improve the accuracy
of the model by approximately 1% while reducing the number of model parameters and FLOPs.

INDEX TERMS Deep residual network, deep learning, channel size, parameter size, image classification
accuracy.

I. INTRODUCTION
Convolutional Convolutional Neural Networks (CNNs) are
the most popular deep learning neural networks used in
computer vision [1], [2], [3], [4], natural language process-
ing [5], [6], audio processing [7], and video processing [8].
Multiple convolutional and pooling layers in CNNs facilitate
the better capturing of image features, making them a popular
choice for image classification [1], [2], target detection, face
recognition [3], and image segmentation [4]. The earliest
CNN architecture, named LeNet [9], was proposed by LeCun
et al. in 1998. The LeNet’s structure contains an input layer,
a convolutional layer, a fully connected layer, and an output
layer, where the convolutional layer is specific to CNNs.
Researchers have investigated the convolution, activation,
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and pooling structures of the convolutional layer to develop a
variety of complicated and high-performing CNNs. In 2012,
Krizhevsky et al. [10] introduced AlexNet, which contains
five convolutional layers and three fully connected layers,
and achieved significant success in image classification.
ZFNet [11], proposed in 2013, improved AlexNet by employ-
ing deconvolutional visualization. In 2014, GoogleNet [12]
utilized its Inception module core for multi-scale feature
extraction and fusion, which is more effective in image
characterization. Furthermore, VGGNet [13] attained better
performance by incorporating more layers.

The development of CNNs has shown that a model’s
performance would positively correlate with the network’s
depth within a specific range. Nevertheless, the model’s
accuracy would be deteriorated with increasing depth when
the depth exceeds a specific range, leading to network
degradation. In 2016, He et al. [14] provided a deep
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residual network (ResNet) to address the problems of gradient
explosion, gradient disappearance, and network degradation
caused by increasing depth. ResNet uses residual links for
cross-layer information propagation by adding ‘‘jump links’’
in convolutional neural networks (CNNs). These links avoid
information decay and distortion of data in deep networks,
improving the training effectiveness and accuracy of the
network. As a result, ResNet makes it possible to train
extremely deep networks, which is essential for image clas-
sification. Inspired by ResNet, researchers have significantly
improved representation ability, classification accuracy, and
parameter size by increasing network depth, expanding
network width [15], and refining network structure [16], [17].
In particular, image classification accuracy, defined as the
ratio of the number of images correctly predicted by the
classifier to the total number of images, is the most intuitive
indicator for evaluating classification performance [18].

Huang et al. [19] proposed a training method called
stochastic depth (SD) to enhance the image classification
accuracy of ResNet models. In the training process, the deep
network randomly dropouts some layers, thereby becoming
a shallow network, while the original deep network is still
present in the testing process. This treatment effectively
reduces training time while enhancing model accuracy.
Convolutional Residual Memory Networks (CRMNs) [20]
use long short-term memory (LSTM) algorithm to train a
residual network with deep layers, which showed excellent
performance in testing on the CIFAR-100 dataset. To enhance
ResNet performance, Targ et al. [21] presented the RiR
network by adding a small ResNet to each residual block,
thereby increasing the network depth and nonlinear capa-
bility. The Wide Residual Network (WRN) [15] improves
network expression and accuracy by increasing channel sizes.
ResNeXt network, developed by Xie et al. [22], improves
model accuracy by augmenting the number of paths with
the same topology. Meanwhile, Gao et al. [23] proposed the
Res2Net network, which constructs hierarchical residual-like
connections to represent multi-scale features within a single
residual block and increase the receptive field range of each
network layer, thus achieving strong feature representation
and high prediction accuracy. Shen et al. [24] presented
the Weighted Residual Network (WResNet) by introducing
trainable weight parameters to boost ResNet’s performance.
Likewise, the ResNeSt method proposed by Zhang et al. [25]
decomposes feature maps into subspaces, which allows
each subspace to learn its features before concatenating the
features from all subspaces. These improvements of ResNet
can help to extract rich and distinctive features. However,
the complexity of these models requires highly demanding
network parameters, resulting in a significant computational
workload.

In order to reduce the parameter size, Huang et al. [26]
proposed Densely Connected Convolutional Networks
(DenseNet) by connecting each layer to other layers in
a feedforward manner. For each layer, the feature maps
of all preceding layers are used as inputs, and its feature

FIGURE 1. Flow chart for selecting the top models with optimal balance
between parameter size, FLOPs and classification accuracy.

maps are used as inputs into all subsequent layers, which
enhances the reuse of features and significantly reduces
the number of parameters. Chen et al. [27] developed the
Dual Path Network (DPN) by integrating the strengths of
ResNet and DenseNet. DPN employs dual paths to explore
new features, considerably reducing parameter size while
ensuring the extraction of rich features. Han et al. [28]
presented Pyramid Residual Networks (PyramidNet), which
incrementally increases the feature map dimension of all
ResNet units in a pyramid-like model. Appropriate feature
map dimensions for each unit can curtail the parameter size
in the model. Nonetheless, it is necessary to perform more
systematic research on how the channel structure in ResNet
impacts model accuracy and parameter size.

This work aims to systematically evaluate the impact of
various channel structures on the performance of ResNet
models by following the flow chart in Figure 1. This
paper is organized as follows. In section II, we presented
our 25 ResNet18_X_N models and the selected models used
to test the Butterfly50 dataset’s performance. In Sections III
and IV, six publicly available datasets (Print0-9, CIFAR10,
Vegetable, Sign-50, Sign-85, and Time datasets) were used
to validate and analyze the performance of the selected
models. In Sections V, we verify the effectiveness of the FLC
structure. Finally, in Section VI, we present our conclusions
and outlook.

II. BUILDING AND SCREENING MODELS
A. BUILDING RESNET18_X_N MODELS
The original ResNet18 model (Figure 2a) consists of 17 con-
volutional layers and one fully connected layer. The 18 layers
can be divided into five channel regions: channel-1 (green),
channel-2 (blue), channel-3 (orange), channel-4 (yellow),
and channel-5 (purple). One can modify the ResNet18
model’s channel structures by adjusting the channel size in
each channel region. For instance, we generated different
ResNet18_X_N models (Figure 2b) by altering the channel
sizes in five regions (channel-1 through channel-5). In these
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FIGURE 2. The framework of (a) original ResNet18 model and (b) ResNet18_X_N models with different channel
structures. The 18 layers of the ResNet18 model are divided into five regions (channel-1 through channel-5), each of
which is indicated by green, blue, orange, yellow, and purple colors, respectively. The variable X represents the type of
the first channel transformation (channel1) while the variable N corresponds to the type of the subsequent four
channel transformations (channel-2 through channel-5).

ResNet18_X_N models, the variable X defines the first
channel type (channel-1), such as X = C8, C32, C64, and
C128. It should be noted that the stacking of multiple layers
of small convolutions can have the same receptive field
as the large convolution kernel, and can introduce more
nonlinearity. Therefore, we use the 3 ×3 convolution kernel
at all positions in ReNe18. The variable N corresponds to
the type of the subsequent four channel regions (channel-
2 through channel-5). Figure 3 illustrates the five different
types of channel structures with N = 1, 2, 3, 4, and 5. For
example, when N= 1, the variation of the ratio of the channel
number in the five regions concerning the first channel region
is 1→ 11→ 12→ 14→ 18 (funnel-like channel structure).
When N = 2, the variation is 1→ 11→ 12→ 14→ 12
(flask-like channel structure). When N = 3, the variation is
1→ 12→ 14→ 18→ 116 (pyramid-like channel structure
). When N = 4, the variation is 1→ 12→ 14→ 12→ 11
(diamond-like channel structure). When N = 5, the variation
is 1→ 12→ 14→ 18→ 14 (vase-like channel structure).

These 5 channel transformations belong to the category
of channel quantity arrangement and combination. Finally,
we would have 25 types of ResNet18_X_N models, in which
the channel numbers, parameter sizes and the floating point
operations (FLOPs) are given in Table 1.

B. SCREENING RESNET18_X_N MODELS
Among the 25 models for ResNet18, the original ResNet18
model is equivalent to the ResNet18_C64_1 model (shown
as a black and bold style in Table 1). From Table 1, it is seen
that the parameter size of ResNet18_C64_1 is 42.63MB and
FLOPs is 2.23G. In this work, we selected the models with
smaller parameter sizes and smaller FLOPs, and deleted those
models where parameter sizes and FLOPs are all greater than
ResNet18_C64_1’s (shown as a red style in Table 1), which
yielded 18 models.

We tested the 18 models and compared their classification
accuracy(Acc), F1 value (F1), 95% confidence interval
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TABLE 1. ResNet18_X_N Model channel numbers, parameter size and floating point operations (FLOPs). ResNet18_C64_1 is the original ResNet18 model
(black bold), the models with both parameters size and FLOPs greater than ResNet18_C64_1 are marked in red, and these models will be removed.

FIGURE 3. The ResNet18_X_N models with different values of N (channel structure): (a) funnel-like channel
structure when N = 1, (b) flask-like channel structure when N = 2, (c) pyramid-like channel structure when N = 3,
(d) diamond-like channel structure when N = 4, and (e) vase-like channel structure N = 5.

of AUC (CI_AUC) and confidence interval size of AUC
(CI_Width) using various iterations (e.g., 20, 40, and 60).
In our tests, we used 7,433 images downloaded from the
Butterfly50 dataset, including 7,183 images for the training
data and 250 images for the test data, all with an image size
of 3 ×224 ×224, as shown in Figure 4.

To evaluate a single category, we define TP (True Positive)
as the number of instances where the model correctly predicts
the positive class, FP (False Positive) as the number of
instances where the model incorrectly predicts the positive
class when the actual class is negative, TN (True Negative) as
the number of instances where the model correctly predicts
the negative class, and FN (False Negative) as the number of
instances where the model incorrectly predicts the negative
class when the actual class is positive. Then, we calculated
Acc and F1 values using the following formula.

Acc =
TP+ TN

TP+ FP+ TN + FN
(1)

F1 =
2PR
P+ R

(2)

P =
TP

TP+ FP
(3)

R =
TP

TP+ FN
(4)

Calculate the AUC value for various iterations(e.g., 20, 40,
and 60) and calculate the CI _AUC based on the AUC of
all iterations. The calculation formula for the CI_AUC and
CI_Width are as follows.

CI_AUC = (mean_auc−z×
std
√
n
,mean_auc+ z×

std
√
n
(5)

CI_Width = 2 × z×
std
√
n

(6)

Among them, mean_auc is the mean of AUC, std is the
standard deviation of AUC, and n is the number of AUCs,
which is the epoch value. z is the quantile of the standard
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FIGURE 4. Representative images obtained from the Butterfly50 dataset.

FIGURE 5. The calculated scores of 18 ResNet18_X_N models used in the
testing of Butterfly50 dataset. The average score of 18 models is 78.33.
It is seen that the scores of six models are below the average score.

normal distribution. When the confidence level is 95%, z =

1.96, which can be found in the normal distribution table.
The calculation steps for each model’s rating are shown

in the following formula. We believe that the smaller the
confidence interval, the better the model, so we assign a
negativeweight to CI_Width, as shown in formula 7. calculate
the Score_epoch_i (Formula 7, epoch = 20, 40, and 60) of
each model based on CI_Width_i and acc_avg_i, f1_avg_i in
Table 2. Finally, calculate the final score for each model as
shown in formula 8.

Score_epoch_i =
acc_avg_i

2
+
f 1_avg_i

2
− CI_Width_i

(7)

Score_i =
Score_20_i

6
+
Score_40_i

3
+
Score_60_i

2
(8)

We display the scores of the model in Figure 5. Six models
scored below the average (Figure 5) and will not be used in
further testing. Consequently, we selected the top 12 models

FIGURE 6. Representative images of the six public datasets downloaded
from Kaggle: (a)Print0-9, (b)CIFAR10, (c)Vegetable, (d)Sign-50, (e)Sign-85,
and (f)Time.

(shown as a bold style in Table 2) as candidates for the
subsequent experiments.

III. EXPERIMENTS
A. DATASETS
The Kaggle datasets (https://www.kaggle.com/datasets/)
offer a massive collection of free data that data scientists
and machine learning competitions frequently employ. For
our experiments, we chose five public datasets from Kaggle,
namely, Print0-9, CIFAR10, Vegetable [29], Sign-50, Sign-
85, and Time datasets. Table 3 provides a specific description
of the six datasets, and the representative images used in our
experiments are depicted in Figure 6.

B. EXPERIMENT SETTINGS
We preprocessed all six datasets by adjusting the image
size, random graying, tensor conversion, and standardization.
However, we did not augment the data in any way that
could enhance image representation or the training models’
robustness. Between each convolution layer and the active
layer, we adopted batch normalization (BN [30]). Then,
we initialized weights for random samples from a normal
distribution with a mean of 0 and a standard deviation of
0.1. Please note that we trained the plain/residual nets from
scratch. In our experiments, we employed the cross-entropy
loss function, set the batch size to 256, and used SGD as the
optimizer with a learning rate of 0.1, a momentum of 0.9,
and a weight decay of 0.0001 in training and testing. Because
all the datasets were small classification datasets, only the
top-1 error rate was evaluated. The algorithm for training and
testing is presented as Algorithm 1.

IV. RESULTS AND DISCUSSION
A. THE IMPACT OF CHANNEL-1 ON THE PERFORMANCE
OF RESNET18_X_N MODELS
Tables S2-S7(in Supplementary material) present the cal-
culated results for the six datasets, including the averaged
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TABLE 2. The average accuracy (acc_avg) and average F1 values (f1_avg) for five independent experiments, 95% Confidence Interval of AUC (CI_AUC) and
95% Confidence Interval Size of AUC (CI_Width) for one of the experiments, which obtained from the experiments using the Butterfly50 dataset at epoch
= 20,40,60.

TABLE 3. The six public datasets used for our experiments.

FIGURE 7. Four groups of the ResNet18 models: ResNet18_C8,
ResNet18_C16, ResNet18_C32, and ResNet18_C64.

error (error_avg) and F1 value (f1_avg) obtained from five
independent experiments. Based on variable X in channel-1,
the selected ResNet18 models are divided into four groups
(i.e., ResNet18_C8, ResNet18_C16, ResNet18_C32, and
ResNet18_C64) shown in Figure 7.We computed the average
error (X_error_avg) and F1 value (X_f1_avg) for each group
and displayed them in Table 4. Additionally, Figure 8 depicts
the impact of the number of iterations on X_error_avg.

In the calculated results of the Print0-9 dataset, it can
be seen that the performance of the ResNet18_C16 and
ResNet18_C64 groups is superior to the other two groups.
However, for the three datasets (CIFAR10, Vegetable, and

Time), the ResNet18_C64 group significantly outperforms
the ResNet18_C16 group. In the Sign-50 and Sign-85
datasets, the performance of the four groups is similar. Thus,
our work suggests that the ResNet18_C64 group should be
the best choice for the six testing datasets, and the channel
size in the channel-1 region should preferably be set to 64 (or
X = 64). In addition, based on Table 1 and Figure 7, we find
that the average parameter size of the ResNet18_C64 group
is 31.42 MB.

B. THE IMPACT OF VARIABLE N ON THE PERFORMANCE
OF RESNET18_X_N MODELS
According to the variable N, the ResNet18 models can be
divided into five groups (Figure 9), such as ResNet18_X_1,
ResNet18_X_2, ResNet18_X_3, ResNet18_X_4, and
ResNet18_X_5. Figure 3 illustrates that the five groups
represent distinct channel structures, such as funnel-like,
flask-like, pyramid-like, diamond-like, and vase-like chan-
nels. For each channel type, we calculated the average error
(N_error_avg) and F1 value (N_f1_avg), as shown in Table 5.
In addition, we determined the score of each group using the
following algorithm (Algorithm 2).

By analyzing the final scores in Table 5, we observed
that the ResNet18_X_2 group (with a flask-like channel
structure) outperforms all other groups (or other channel
structures). It can be seen from Table 1 and Figure 9 that
the ResNet18_X_2 group has an average parameter size of
20.66 MB. In addition, our analysis reveals that the original
ResNet18 model is equivalent to the ResNet18_C64_1 model
(with a funnel-like channel structure), which has a parameter
size of 42.63 MB. Table 1 indicates that the parameter size
of the ResNet18_C64_2 model is 37.93 MB, a reduction
compared to that of the original ResNet18 model (or
ResNet18_C64_1 model).
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FIGURE 8. The impact of the number of iterations on X_error_avg using different datasets
(a) Print0-9, (b) CIFAR10, (c) vegetable, (d) Sign-50, (e) Sign-85, (f) Time.

TABLE 4. The calculated results of the X_error_avg and X_f1_avg values for four groups of models, where X = C8, C16, C32 and C64.

V. VERIFICATION CONCLUSION
A. VERIFY THE EFFECTIVENESS OF FLC FRAMEWORK
Wecompared the classification error curves of ResNet18_Ori-
ginal (ResNet18_C64_1) and ResNet18_FLC models
(ResNet18_C64_2), as shown in Figure 10. It is encour-
aging that the ResNet18_FLC model outperforms the
ResNet18_Original model. Specifically, in the CIFAR10,
Sign-50, and Sign-85 datasets, ResNet18_FLC performs
significantly better than ResNet18_Original. Although the
classification error of both models gradually converges as
epochs increase, ResNet18_FLC consistently exhibits lower
errors. In the other three datasets (Print0-9, Vegetable,
and Time), one can see that the performance of the

ResNet18_Original and ResNet18_FLC models is similar.
However, the error converges more rapidly using the
ResNet18_FLC model than the ResNet18_Original model.
Overall, the ResNet18_FLC model (with FLC structure) can
improve the classification accuracy of the original ResNet18
model while substantially reducing the parameter size from
42.63 MB to 37.93 MB.

Then, we validated the effectiveness of the FLC frame-
work using the MNIST, MNIST_balance, and STL10
datasets, the CINIC10 classification dataset, and the Cal-
tech101 classification dataset. The introduction of each
dataset is shown in Table 6. It should be noted that
we have removed 100000 unsupervised data from the
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TABLE 5. The calculated results of N_error_avg and N_f1_avg for four groups of models, where N = 1, 2, 3, 4 and 5. The scores of the five groups were
determined according to Algorithm 2.

FIGURE 9. Five groups of the ResNet18 models: ResNet18_X_1,
ResNet18_X_2, ResNet18_X_3, ResNet18_X_4, and ResNet18_X_5.

TABLE 6. The two public datasets used in this section.

STL10 dataset and only used the training and testing
set of STL10.

In this section, we select the same experiment as the
third section to train and test the model. We obtained the
error, Confidence Interval and Confidence Interval width of
AUC of ResNet18_Original and ResNet18_FLCmodels, and
calculated the running time of each model in the experiment.
As shown in Table 7, ResNet18_FLC has smaller error,
CI_Width, and running time.

TABLE 7. Experimental results of training ResNet18_Original (Or) and
ResNet18_FLC (FLC) models using two public datasets in Table 6.

B. COMPARATIVE STUDY OF VARIOUS RESNET MODELS
WITH AND WITHOUT FLASK-LIKE CHANNEL STRUCTURES
We applied the flask-like channel (FLC) framework to other
ResNet models with varying layers, such as ResNet34,
ResNet50, ResNet101, and ResNeXt models. However,
as the number of layers deepens, the number of parameters
increases exponentially, significantly increasing the com-
putational cost of the model. To reduce the computational
resources of the model, we used a smaller batch size (show
in table 8). Similarly, we calculated the average errors and
F1 values of these models using the CIFAR10 dataset,
presented in Table 8. A comparison (Figure 11) of the results
obtained from the original ResNet models and the proposed
FLC model revealed that the FLC models significantly
reduce parameter sizes by 31.86% to 56.61%, reduce
FLOPs approximately by 9.38% to 28.57% and improves
classification accuracy by roughly 1%. This comparative
analysis demonstrates the FLC framework’s transferability to
other ResNet models.
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FIGURE 10. Comparison between the ResNet18_Original (ResNet18_C64_1) and
ResNet18_FLC (ResNet18_C64_2) models in the calculations of classification accuracy (error)
using different datasets (a) Print0-9, (b) CIFAR10, (c) Vegetable, (d) Sign-50, (e) Sign-85,
(f) Time.
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FIGURE 11. Comparison between the original ResNet models and our proposed ResNet_FLC models in
(a) parameter size, (b) FLOPs and (c) calculated error, obtained from the experiments using the CIFAR10 dataset.

Algorithm 1 Training and testing with ResNet18_ X_ N
models
Input: Epoch; model; optimizer; Loss function: criterion;
input data: dataloaders; hyper-parameters: opt
Output: epoch_acc; epoch_f1
1: epoch_acc = []
2: epoch_f1 = []
3: model.train()
4: for batchidx, data in enumerate(dataloaders[’train’], 0):
5: inputs, target = data
6: inputs, target = inputs.to(opt.device),
target.to(opt.device)
7: outputs = model(inputs)
8: loss = criterion (outputs, target)
9: optimizer.zero_grad()
10: loss.backward()
11: optimizer.step()
12: loss += loss.item() 13: pred = outputs.argmax(dim=1)
14: model.eval()
15: y_true = []
16: y_pred = []
17: with torch.no_grad():
18: for inputs, target in dataloaders[’test’]:
19: inputs, target = inputs.to(opt.device),
target.to(opt.device)
20: outputs = model(inputs)
21: _, pred = torch.max(outputs, 1)
22: y_true.extend(target.cpu().numpy())
23: y_pred.extend(pred.cpu().numpy())
24: acc = accuracy_score(y_true, y_pred) * 100
25: f1 = f1_score (y_true, y_pred, average=’weighted’) *
100
26: epoch_acc.append(acc)
27: epoch_f1.append (f1)
28: return epoch_acc, epoch_f1

VI. CONCLUSION AND OUTLOOK
In this study, we aim to search for the optimal compromise
between the ResNet complexity and performance by con-
structing different types of channel structures for ResNet
models to systematically evaluate their impact on perfor-

Algorithm 2 Calculating the score in Table 5
Input: Weight s for each row in Table 11, s = [2, 4, 6, 2, 4,
6, 2, 4, 6, 2, 4, 6, 2, 4, 6, 2, 4, 6] Score ‘score_i’ for each
category, initial value is 0, i = 1, 2, 3, 4, 5 error_avg:18
rows and 5 columns of data for N_error_avg in Table 5
Output: Score ‘score_i’ for each category, i = 1, 2, 3, 4, 5
1: for i in len(N_error_avg) do
2: h = error_avg[i]. index (min(error_avg[i]))
3: if h == 0 then
4: score_1 += s[i]
5: if h == 1 then
6: score_2 += s[i]
7: if h == 2 then
8: score_3 += s[i]
9: if h == 3 then
10: score_4 += s[i]
11: if h == 4 then
12: score_5 += s[i]
13: return score_1, score_2, score_3, score_4, score_5

TABLE 8. The calculated results obtained from ResNet_original (Or)
models and our proposed ResNet_FLC (FLC) models in the experiments of
CIFAR10 dataset.

mance.We created 25models with varying channel structures
for ResNet18 and selected 18 models with smaller parameter
sizes and smaller FLOPs than the original ResNet18 model.
Using the Butterfly50 dataset, we tested these 18 mod-
els’ performance, and the top comprehensive performance
12 models were chosen for subsequent studies. Secondly,

11720 VOLUME 12, 2024



D. Li et al.: Deep Residual Networks With a Flask-Like Channel Structure

we applied twelve ResNet18 models to six publicly available
image datasets, such as Print0-9, CIFAR10, Vegetable, Sign-
50, Sign-85, and Time. After extensive experiments, the
Flask-like Channel (FLC) structure demonstrated the best
performance among the five channel structures. We validated
the effectiveness of the model using MNIST and STL10
public datasets. Finally, we applied the FLC framework
to various ResNet models with different layers, such as
ResNet34, ResNet50, ResNet101, and ResNeXt. Then,
we compared the performance of these models (with and
without the FLC structure) in the CIFAR10 dataset. Our
results reveal that the ResNet models using the FLC structure
can maintain or improve the accuracy of the model by
approximately 1% while reducing the number of model
parameters and FLOPs.

The number of classifications in all datasets used in this
study was below 144. Future experiments will be conducted
to assess the robustness of the Flask-like Channel (FLC)
framework by applying it to datasets with larger numbers
of classifications (beyond 144), like ImageNet. In addition,
wewill attempt to apply the FLC structure to other fields [31],
[32] of deep learning, in order to investigate the effectiveness
of the FLC structure in other application scenarios in future
work.
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