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ABSTRACT Brain-computer interface (BCI) systems have been developed to assist individuals with
neuromuscular disorders to communicate with their surroundings using their brain signals. One attractive
branch of BCI is steady-state visual evoked potential (SSVEP), which has acceptable speed and accuracy and
is non-invasive. However, SSVEP-based EEG signals suffer from eye-fatigue problems, resulting in artifacts
that affect the accuracy of the system. Thus, researchers are still working to improve SSVEP-based BCI
systems. This paper proposes robust machine-learning algorithm for single-flicker SSVEP detection. A novel
approach based on fast independent component analysis and filter-bank canonical correlation analysis (fast
ICA-FBCCA) is developed to extract features from the single-flicker SSVEP signal. The clean features
learned by fast ICA-FBCCA are then applied to a discrete wavelet transform (DWT) technique and fed to a
convolutional neural network (CNN) with only one convolutional layer and a smaller number of parameters.
The effectiveness of the proposed technique is evaluated using two datasets. The results were evaluated using
two datasets. The findings clearly demonstrate that the proposed method outperforms traditional methods,
with average target recognition accuracy and standard deviation values of 97 ± 3.1% among 6 subjects
for dataset 1 and 82.12 ± 10.7% among 12 subjects for dataset 2. Overall, these findings suggest that the
proposed method is a promising approach for improving the accuracy and reliability of the single-flicker
SSVEP-based BCI systems.

INDEX TERMS Brain–computer interface (BCI), single-flicker steady-state visual evoked potential, fast
independent component analysis (fast ICA), filter-bank canonical correlation analysis (FBCCA), convolu-
tional neural network (CNN).

I. INTRODUCTION
Brain-computer interface (BCI) is a communication device
that allows individuals to control computers or other devices
using their brain signals, thereby enabling communication or
control without the need for muscle movement [1], [2]. The
primary objective of research and advancement in the field
of BCIs is to develop an innovative communication tool that
can be used specifically for people who have experienced
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stroke, neurological disorders, muscle impairment, or spinal
cord injuries. These individuals face significant challenges
in effectively engaging with their environment using con-
ventional communication methods, necessitating the devel-
opment of alternative means to facilitate their communi-
cation capabilities. BCIs enable individuals to issue com-
mands directly to a computer, robot, or smart prosthesis
through their brain signals. The important application of
BCI performed by machine learning (ML) is device control
such as wheelchairs [3], robots [4], car [5], cursor [6], and
spellers [7]. Various techniques are used to measure brain
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activity in BCIs, predominantly relying on the acquisition
of electrical signals via invasive or non-invasive approaches.
Invasive methods involve the insertion of electrodes either
intracranially, or on the surface of the cortex, while non-
invasive approaches employ specialized scalp sensors to
receive electrical waves and hence are more suitable for
human experiments. Electroencephalogram (EEG) is often
used for measuring non-invasive brain signals in BCI appli-
cations such as steady-state visual evoked potential (SSVEP)
[8], [9], P300-based event-related potential (ERP) [10], [11],
sensorimotor rhythm (SMR) [12], and slow cortical potential
(SCP) [13]. SSVEP is of great interest due to its high com-
munication rate, making it well-suited for spelling systems
where a high information transfer rate (ITR) is crucial [14].

SSVEP signals refer to periodic visual cortical responses
that occur in the occipital cortex in response to visual flicker
stimulation at specific frequencies. A typical SSVEP graph-
ical user interface (GUI) consists of various visual posi-
tions (stimuli) set at fixed frequencies. When individuals pay
attention to these stimuli, the power in their EEG signal
increases, which can be used as a feature in signal pro-
cessing [15], [16]. Nevertheless, employing a GUI featuring
multiple frequencies can potentially induce visual strain and
increase eye fatigue [17]. To address this, some SSVEP-
based BCIs employ a single-flicker frequency for multiple
stimulus. Single-flicker SSVEP is a novel BCI that uses only
one flickering stimulus to generate multiple commands from
the user’s brain signals [18], [19]. It is based on the principle
of retinotopic mapping, which means that the brain response
depends on the spatial position of the stimulus relative to
the center of gaze [20]. Although it reduces visual fatigue,
improves the signal-to-noise ratio, and enhances the spatial
attention mechanism of the brain, it can be more sensitive to
eye movements and blinks, and more affected by individual
differences in retinotopic mapping. Consequently, the design
of algorithms for single-flicker SSVEP presents certain obsta-
cles, including determining the optimal stimulus design,
selecting appropriate features and classifiers, and calibrating
and customizing the system for each user [19], [21], [22].
Furthermore, there is currently a dearth of available datasets
and suitable algorithms for analyzing this type of signal. The
primary objective of this study is to investigate the shortage
of comparative algorithmic research and develop effective
solutions to address this issue. These systems’ effectiveness
relies heavily on the ability to extract the most relevant fea-
tures and classification accuracy. Therefore, identifying the
optimal algorithm for analyzing this type of SSVEP signal
can be a significant step toward developing more effective
and user-friendly single-flicker SSVEP-based BCIs.

The selection of an appropriate feature extraction tech-
nique plays an important role to enhance the accuracy and
reliability of the system’s performance in a single-flicker fre-
quency SSVEP-based BCIs. Power spectral density analysis
(PSDA) is one of the earliest technique used for SSVEP anal-
ysis [19], [20], [23]. However, the PSDA has limited applica-
tion due to the sensitivity of the SSVEP signal to noise and the

low-frequency resolution in short-time windowing [24]. Fur-
thermore, PSDA does not consider the spatial information of
the EEG signal, which makes it less suitable for single-flicker
SSVEP analysis. The results of Lin et al. [23] on multiple
subjects showed the high performance of the canonical cor-
relation analysis (CCA) in feature learning of SSVEP signals
in comparison with the PSDA approach. The CCA finds the
linear composition of channels to maximize the correlation
between the two multidimensional signals (reference signal
and EEG signal). Filter bank CCA (FBCCA) [25] has been
proposed as a powerful spatial filter for analyzing single-
flicker SSVEP signals, with the ability to utilize harmonic
frequency information to enhance the CCA. FBCCA is a
powerful method that decomposes a signal with multiple fil-
ters into different sub-bands and performs CCA on each sub-
band. To extract more distinct and appropriate features with
more details, especially in temporal and frequency domains,
discrete wavelet transform (DWT) can be used to reduce
the amount of data required for SSVEP analysis. This can
make the analysis faster and more efficient. Moreover, this
technique is used to identify and remove artifacts (such as
ocular artifacts) from the SSVEP signal and can improve the
accuracy of the analysis. Nonetheless, the method may not be
able to effectively remove artifacts in situations where there
is an overlap between the signal spectrum, which can limit its
effectiveness in some cases [26]. The regression methods are
widely used in ocular removal artifacts [27]. But this tech-
nique severs several limitations for the practical application
of BCI-based systems such as computational complexity [28]
and the need for a suitable reference signal (e.g., electroocu-
lographic channel (EOG) in ocular removal [29]). To over-
come the lack of an extra reference signal, blind source
separation (BSS) techniques such as independent component
analysis (ICA), and CCA have been suggested [30], [31].
Fast ICA is a more flexible method that has been widely
used to remove separate artifacts such as eye blinks by
constructing a new mixture of sources [32], [33]. Although
the fast ICA reduces the computational complexity in real-
time and makes BCI applications more accurate [34], this
technique does not effectively eliminate artifacts with vari-
able spatial distribution such as electromyography (EMG)
[35]. The CCA has been proposed as an alternative approach
to remove EMG artifacts from EEG [36]. Due to the sim-
ilarity of the nature of the EMG signals to white noise
(low autocorrelation coefficient), CCA is used to remove
the EMG artifacts by extracting the independent sources
with maximum autocorrelation coefficient [37]. The current
study has combined the fast ICA with the filter-bank CCA
(FBCCA) to generate a clean signal and optimally extract
spatial features for single-flicker SSVEP signals, offering a
comparison between FBCCA and traditional CCA method
for feature extraction purposes. Furthermore, following the
extracted optimal spatial features by a combination of the
fast ICA and FBCCA, the DWT is used to reduce the sample
size and make a tradeoff between the time and frequency
resolution [38].
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FIGURE 1. Overall schematic of the BCI speller protocol related to (a) Dataset 1 and (b) Dataset 2. In (a), the
following steps are performed in the experimental run: First, three characters to be spelled in that run are
displayed for 2 seconds. Next, the target character for the trial is displayed for another 2 seconds. Then,
a sequence of 45 stimuli is presented, with 9 groups repeated 5 times each. At the same time, a white square at
the center of the screen is flickering at 15 Hz. The subject sits in front of a monitor and the EEG signals are
acquired by the EEG-recorded device and its accessories (including 10-20 EEG caps, and electrodes). Then, the
collected data is processed during experiments with 24 offline runs. In (b), a flickering square at 15 Hz was
presented at the center and the indicated small white squares (N, W, S, and E) prompt participants to focus their
gaze, causing landscape movement in the respective direction. During training, the target was highlighted in red.
The participants looked at the N target where N for the Dataset 1 and 2 is set to be 3 and 4, respectively.

The next step in the single-flicker SSVEP detection
algorithm involves the classification of the extracted fea-
tures. Previous studies has employed conventional classifiers
for target detection in SSVEP analysis and have demon-
strated improved performance by leveraging deep learning
(DL) techniques [39], [40], [41]. Convolutional neural net-
work (CNN) is a widely used deep learning (DL) approach
for extracting feature representations in image classification
problems [42], [43], [44], and its capacity for discovering
invariant features has shown potential for enhancing methods
applied in EEG signal analysis [45], [46], [47], [48]. Recently,
CNN has attracted attention in SSVEP-based EEG [41],
[49], [50], [51] and demonstrated higher performance in
comparison with other traditional classifier methods [39],
[40], [41] such as the CCA (when used as the classifier [3],
[52]), neural network (NN), k-nearest neighbor (K-NN), lin-
ear discriminant analysis (LDA), and support vector machine
(SVM) methods. Moreover, CNN has advantages including
(i) local connections [53], (ii) extract hierarchical features
by sharing the weights [54], and (iii) pooling and the use of
many layers [55]. However, the large number of parameters
makes it a problem to realize the real-time implementation
of such DL models. Ensuring real-time processing is crucial
for practical applications, as delayed responses can hinder
user experience and usability. Actually, it enables smooth
interaction with the environment. However, as mentioned,
most DL models require parameters in their structure. There-
fore, the current study tries to introduce a new approach
for CNN (as a classifier) with a small number of param-
eters. In this paper, we present a novel ML algorithm for
SSVEP detection that introduces several innovative features,
including:

• A novel hybrid feature extraction approach is intro-
duced. This method combined the fast ICA with
FBCCA to extract spatial features from the single-flicker
SSVEP signal. Additionally, DWT is used for dimension

reduction and to make a trade-off between time and
frequency resolution before the classification stage.

• A novel CNN classification architecture is proposed,
which employs temporal convolution for identifying dis-
tinct target classes in EEG signals. This represents the
first implementation of deep neural networks (DNN) in
single-flicker SSVEP based systems.

• To the best of our knowledge, this study provides the
opportunity for the first time to consider and compare
several traditional methods for single-flicker SSVEP.

The effectiveness of the proposed single-flicker SSVEP-
based BCI technique is evaluated on two BCI dataset [20],
[56], and the results are compared with previous works. The
obtained results demonstrate reliable classification.

II. MATERIALS AND METHOD
A. DATASET AND PREPROCESSING
1) DATASET 1
All BCI experiments performed in [56] were used in the
current study which are approved by the Ethics Committees
of Iran’s Medical Sciences. The experiments were carried out
in accordance with the relevant guidelines and regulations.
All participants provided written informed consent according
to the institutional guidelines for datasets. Fig. 1(a) illustrates
the overall schematics of the BCI speller protocol related
to the RSVP-single flicker SSVEP dataset. The dataset was
obtained by recording data from six subjects (male, aged
22–27, mean 24.8) who participated in the rapid serial visual
presentation (RSVP)-single-flicker SSVEP paradigm using a
BCI speller [56]. The visual stimulus consists of 27 letters
arranged into nine groups, with each group containing three
distinct letters that are encircled by a single flickering square
that blinks at a frequency of 15 Hz. The nine groups of letters
are displayed randomly on the screen five times (repetitions)
as visual stimuli. This repeated presentation ensures com-
prehensive data collection and robust analysis. The approach
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FIGURE 2. Overview of the proposed method. The methodology comprises three stages: preprocessing, feature extraction,
and classification. In the preprocessing stage, EEG data undergoes band-pass filtering and epoch segmentation. The feature
extraction phase employs a hybrid fast ICA-FBCCA technique with mapping weights (W , V ) and then the discrete wavelet
transforms. Finally, in classification stage, the extracted features feed into a CNN for target character detection.

outlined in this protocol involves a fusion of the RSVP and
single-flicker SSVEP techniques. By leveraging the single-
flicker SSVEP attributes, the system identifies the target
direction, while the utilization of the RSVP protocol, which
triggers a P300 response, facilitates the recognition of the tar-
get stimulus. In the experiment, each participant completed a
total of 24 offline runs. Each run consisted of three trials, with
each trial involving the spelling of three characters. During
each trial, a total of 45 stimuli were presented to the partic-
ipant. The subject sits in front of the monitor and focuses
on the task. The electrodes were placed on the head and
recorded the EEG signals from 32-channel g.Hlamp device
at a sampling rate of 512 Hz. The right earlobe electrode
was designated as the reference channel, while the forehead
electrode was considered as the ground (GND). This study
utilized only a single-flicker SSVEP signals for evaluation
that consist of 3 targets (related to three characters surrounded
by 15 Hz flickering square at the center of the screen). For
the analysis of single-flicker SSVEP signals, 10 channels
(P7, P3, Pz, P2, P8, PO7, PO3, PO4, PO8, and Oz in the
international 10-20 system) were selected according to [56]
which they covered the occipital and parietal regions. The
EEG signals were filtered using a 1-47 Hz band-pass filter
and segmented into 10.5 s epochs in the preprocessing step.
The extracted SSVEP signals were then fed into the feature
extraction block.

2) DATASET 2
All BCI experiments performed in ref. [20] were used
in the current study which are approved by the ethics
committee of the medical association of the city of
Hamburg, Germany.This dataset comprises recordings from

12 participants who engaged in the single-flicker SSVEP
paradigm utilizing a BCI setup as detailed in [20]. The
experiments were carried out in accordance with the relevant
guidelines and regulations. All participants provided written
informed consent according to the institutional guidelines for
datasets. As depicted in Fig. 1(b), a flickering square at a
frequency of 15Hzwas displayed, eliciting SSVEP responses
from the participants. Four smaller squares were positioned
around the flickering square, serving as target classes for
participants to focus their gaze on (please refer to [20] for
more specifics). The EEG signals were captured using the
32-channel BioSemi ActiveTwo AD-box (BioSemi Instru-
mentation, Amsterdam, The Netherlands) with a high sam-
pling rate of 2048 Hz. All recording channels were employed
for SSVEP signal analysis. During the preprocessing stage
for SSVEP, the EEG signals were filtered via a band-pass
filter set at 1-80 Hz and were subsequently segmented into
epochs lasting 3.5 seconds each. Subsequently, the data were
downsampled to a frequency of 512 Hz.

B. THE PROPOSED ARCHITECTURE FOR SINGLE-FLICKER
DETECTION
The proposed method consists of three main phases: prepro-
cessing, feature extraction, and classification, as illustrated
in Fig. 2. The EEG data is first filtered using a band-pass
filter and subsequently, the filtered signals are segmented into
epochs. The preprocessed signals are then fed into the feature
extraction stage (X = RCh×T ) where Ch and T denote spatial
and temporal features, respectively. In the second phase, the
features from the preprocessed data are extracted using the
new hybrid fast ICA-FBCCA technique by two mapping
weights (W , V ) followed by the DWT technique. Finally, the
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new CNN architecture is proposed for detecting the target
character. All analyses are performed by MATLAB R2019b.

1) FEATURE EXTRACTION
In the SSVEP protocol, high artifacts due to eye fatigue prob-
lems are a troubling issue for real-time implementation. ICA
is a flexible method that has been widely used to remove sep-
arate artifacts by constructing a mixture of sources [32], [33].
However, the fast ICA reduces the computational complexity
in real-time and makes BCI applications more accurate [34]
compared to ICA. Hence, the fast ICA-based blind source
separation algorithm is utilized to remove these kinds of arti-
facts. The fast ICA algorithm is based on the maximization
entropy principle across the channels (Ch). Therefore, a total
of N training classes (related to N different directions in
single-flicker SSVEP GUI, denoted as Xc, c = 1, 2, ..,N )
are fed to fast ICA process. This results in the derivation
of N weights (designated as Wc, c = 1, 2, ..,N ) intended to
purify the single-flicker SSVEP signal by removing artifacts
(X̃c = Wc × Xc, c = 1, 2, ..,N ). Furthermore, since there
are different characters in the different regions surrounding
the single-flicker stimulus (15 Hz), their spatial properties
change in different regions of the brain accordingly [56].
FBCCA is an efficient spatial filter to make more discrimina-
tive theN difference classes. Hence, it is applied to the output
of the fast ICA method to extract the spatial features. The
FBCCA is a modified CCA to incorporate fundamental and
harmonic frequency components and consists of two steps
including (1) the filter and (2) the CCA. Firstly, a filter bank
analysis divides the signal into distinct passbands, indicated
by ‘‘I ’’, achieved through sub-band decompositions using
multiple filters. Secondly, in the CCA step, it finds projec-
tion matrices Ṽ and B for each sub-band to maximize the
canonical correlations (ρ = [ρ1, . . . ,ρM ]) between Ṽ X̃c and
BY where X̃c and Y are modified signals by fast ICA and
reference signals, respectively. The ith canonical correlation
is calculated as ρi = ρ(Ṽ (i)X̃c,B(i)Y ) which the number of
canonical variables is M = min

(
rank

(
X̃c

)
, rank(Y )

)
. The

reference signals are created by a sinusoidal-cosine signal
of 15 Hz and its 10 harmonics as follows [56]:

Y = [sin (2π ft) ; cos (2π ft) ; sin (4π ft) ; cos (4π ft);

. . . ; sin (10π ft) ; cos (10π ft)] (1)

where f is the stimulation frequency (15 Hz) and t is the num-
ber of data samples. In the current study, the projection matri-
ces Ṽc and Bc are calculated for each class (c = 1, 2, ..,N ).
Subsequently, forK trials, each sample of the modified signal
through fast ICA, denoted as X̃c,k = Wk×Xc,k where k =

1, . . . ,K , is then multiplied by Ṽc to yield zc,k = Ṽ c×X̃c,k .
Finally, the elements of zc,k (c = 1, 2, ..,N ) are concatenated
into the form of Fk =

[
z1 z2, . . . , zk

]
to achieve a high-level

clean SSVEP signal. The fast ICA-FBCCA code description
is given below in Algorithm 1.

In the next phase of feature extraction, DWT is used to
reduce the sample size and improve frequency resolution.
It decomposes the signal into a coarse approximation and

detail information by filtering the input vector through a
series of low- and high-pass filters, respectively. The signals
are decomposed into different frequency bands, and then, the
features with more information are selected. The one level of
decomposition for input L is performed by applying a high-
pass filter g[.], and a low-pass filter h [.] to each channel
vector of L (i.e. b [n]) as follow:

D1 [k] =

∑
n
b [n] .g[2p− n] (2)

A1 [k] =

∑
n
b [n] .h[2p− n] (3)

where in (2) and (3),D1 and A1 are the first level of detail and
approximation coefficients, respectively and p and n are the
scaling and translation parameters, respectively. In the current
study, the 5th decomposition level of Daubechies wavelet
transform is applied to b and the last detail coefficients (D5)
is extracted for reducing the size of the features and make a
tradeoff between the time and frequency resolution [38]. The
adoption of the Daubechies wavelet is motivated by its excep-
tional equilibrium between temporal and frequency localiza-
tion, rendering it well-suited for the detection of transitory
attributes such as EEG signal [56], [57]. The attribute D5 is
correlated with the frequency range of 8 to 16 Hz, proving
to be a highly advantageous choice for the examination of
SSVEP specifically at 15 Hz. Following calculating the D5
for each channel, they are concatenated to apply as the input
to the classifier (Dtotal = [D5,1;D5,2;D5,3; . . . ;D5,10]). The
maximum iteration of n = 20 was selected heuristically for
updating the weights in the fast ICA-FBCCA algorithm. The
number of sub-bands in the filer bank is considered as five
according to [25]. The low and high frequency cut-off were
designed as: (10,16) Hz, (16,22) Hz, (24,30) Hz, (32,38) Hz
and (40,46) Hz [25] for both datasets.

2) CLASSIFIER
CNN is one of the most common DNNmodels used in image
and video recognition [58], [59], recommender systems [60],
image classification [61], natural language processing [62],
and particularly SSVEP-based BCI [41], [49], [50], [51].
In the current study, CNN is applied as a robust classifier to
the input features (explained in the feature extraction section)
for recognizing the targets. As shown in Fig. 2, the proposed
CNN contains four layers: two batch normalization (BN)
layers, a temporal convolutional layer, and a fully connected
softmax classification layer. ABN layer is applied to the input
feature space, and subsequently, a total of 50 filters with a size
of 1× 30 for Dataset 1 and 80 filters with a size of 1× 70 for
Dataset 2 is convolved into the output of the first BN layer,
with stride sizes of 1 in each dimension. It is worth noting
that the input sizes of the proposed CNN vary across different
feature extraction methods which may lead to change the
final performance. Nevertheless, based on our prior analy-
ses and experiments, there is no substantial variance in the
results obtained using various parameters optimized for the
specific structure of the proposed CNN. Therefore, the filter
size and the number of filters are heuristically determined to
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FIGURE 3. The t-SNE visualization illustrating the distribution of the two most discriminative features obtained
using three distinct methods for Dataset 1. The methods include: (a) preprocessed step involving filtering and
segmentation, (b) fast ICA-FBCCA, and (c) fast ICA-FBCCA-DWT. The visualization showcases their application
across three classes.

optimize classification performance for different extraction
methods and then fixed throughout the experiments to obtain
the results. The convolutional layer uses kernels to capture
structural information of the input data automatically which
are calculated as follows [63]:

x l = m(x l−1
∗ wl + bl) (4)

where x l−1 is the input of the layer l, x l is the feature map
of the layer l, wl is the connecting weight, bl is the offset
of features of layer l, and m is the activation function which
introduces nonlinearity to the NN. Following the temporal
convolutional layer, a second BN layer is employed to dimin-
ish the covariate shift of the feature maps. The output of this
layer undergoes a nonlinear Rectified Linear Unit (ReLU)
activation function, which activates neurons with positive
inputs while returning 0 for negative values. Subsequently,
the features are flattened and linked to a fully connected layer,
serving as anN (number of classes) hidden NNwithN output
neurons (N = 3 and 4 for Dataset 1 and Dataset 2, respec-
tively). In the concluding layer of the network, the softmax
activation function assigns probabilities to each output of the
fully connected layer. The softmax function takes an input

vector p= (p0, . . . pk ) in a c-class problem and computes the
probability of each class i as follows:

σ (p⃗)i =
epi∑c
j=1 e

pj
, i = 1, . . . ,N (5)

This equation shows how the softmax function normalizes
the exponentials of the input values to produce meaningful
predictions that sum up to 1.

III. RESULTS
The performance of the proposed algorithm is evaluated
using two single-flicker SSVEP datasets and the results are
compared with the previous work [20], [56]. To evaluate
the performance of the proposed algorithm, 3-fold and 5-
fold cross-validation was utilized for the Dataset 1 according
to [56] and Dataset 2, respectively. The final 15 percent of
train data was used for the validation.

A. RESULTS OF DATASET 1
The t-Stochastic Neighbor Embedding (T-SNE) is designed
to optimize the pairwise distances of data points in a reduced
space to match the distances in the original manifold. The
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FIGURE 4. The average classification accuracy rates for Dataset 1 across all subjects, considering various classifiers and feature
extraction methods over five repetitions. The term ‘‘fICA’’ denotes the fast ICA method.

method is a powerful visualization technique that facilitates
the mapping of data points from high-dimensional spaces to
lower-dimensional spaces, typically two or three dimensions
(2D or 3D) [64]. In our case, we sought to represent each
point in a 2D space to better visualize the impact of our
proposed method. As depicted in Fig. 3, the features of dif-
ferent classesweremore distinguishable in fast ICA-FBCCA-
DWT when compared to both fast ICA-FBCCA and prepro-
cessed data. Furthermore, the features of the classes learned
by fast ICA-FBCCA were more distinct in comparison with
those of the preprocessed data. Additionally, when mea-
suring the correlation between the two most discriminative
features, fast ICA-FBCCA-DWT achieved a p-value of 0.02
(t-test), compared to 0.16 for fast ICA-FBCCA and 0.56 for

the preprocessed step (which involved segmentation and
filtering).

This study aims to evaluate the performance of fast ICA-
FBCCA-DWT in comparison with the other feature extrac-
tion algorithms including FBCCA [25], task related compo-
nent analysis (TRCA) [65], and DWT [38], applied to dif-
ferent classifiers such as linear discriminant analysis (LDA)
[66], support vector machine (SVM) [67], K-NN [68], and
spatial-temporal CNN (STCNN). The STCNN architecture
incorporates a batch normalized layer, followed by two con-
volutional layers. The first convolution layer performs con-
volution across the spatial domain with a kernel dimension of
[number of channels×1] and a stride of 1, while the second
layer performs convolution across the time domain with a
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Algorithm 1 Fast ICA-FBCCA
Input:

• A set of EEG signal X ∈ RCh×T , where Ch and T are the number of channels and temporal samples, respectively.
• A set of reference signals by the sinusoidal cosine of 15 Hz Y ∈ R10×T .
• The number of iterations n.
• The number of sub-bands in the filter bank fb.

—————————————————————————————————————————————————
Initialization:

• Set W = randn(Ch,Ch)
• Normalize W : W =

W
norm(W )

for i = 1 : ch do
for m = 1 : n do

y = W T
i X;

g = tanh(y);
tialg = 1 − g2;
Wi = XgT − E(tialg)Wi;
if i > 1 do

Wi = Wi −
i−1∑
j=1

W T
j WjWj

end
Wi =

Wi
norm(Wi)

;

end
end
X̃ = WX;

for j = 1: fb do
[V (j), B] = canoncorr (X̃ ,Y )

end
• canoncorr (X̃ ,Y ) finds optimal V and B which maximize V × X̃ and B× Y
• Concatenate the V in line j and achieve Ṽ .

—————————————————————————————————————————————————
Output: W , Ṽ .
—————————————————————————————————————————————————
Note: canoncorr () is a MATLAB function

kernel dimension of 1 × 30 and a stride of 1. Both convo-
lutional layers have 50 kernels. Fig. 4 displays the average
classification accuracy for the aforementioned algorithms.
Because of memory constraint, we limited our comparisons
to one or two repetitions. However, we performed five rep-
etitions using fast ICA-FBCCA-DWT with all classifiers.
Additionally, due to its low-dimensional features and min-
imal computational burden in classifiers, we employed
DWT features for all repetitions. The results illustrate that the
proposed fast-ICA-FBCCA-DWToutperforms all other algo-
rithms across all classifiers. Although both the TRCA and
our proposed feature extraction method (fast ICA-FBCCA-
DWT) demonstrated closely aligned results during the second
repetition, a notable disparity emerged in the first repeti-
tion. In this instance, our method exhibited an appreciable
accuracy enhancement of approximately 5%. Unfortunately,
due to the substantial computational demands associated with
the TRCA, we encountered space limitations within MAT-
LAB, precluding us from conducting additional repetitions

to further explore its performance. Both STCNN and CNN
produce similar results, as evidenced by a t-test, which
did not reveal any significant differences between the two
types of CNN when using our proposed feature extraction
method (p-value < 0.05). However, the proposed CNN has
fewer parameters than STCNN, making it more suitable
for real-time implementation. Table 1 summarizes the aver-
age of accuracy over six subjects using the proposed Fast
ICA-FBCCA-DWT+CNN (Fast ICA-FBCCA-DWT as the
feature extraction and CNN as the classifier) algorithm for the
single-flicker SSVEP in comparison with the results reported
in [56] and FBCCA+CNN, DWT+CNN, TRCA+CNN, and
RAW+CNN methods, which is consistent with those pre-
sented in Fig. 4. These results clearly indicate that the pro-
posed method achieves high classification accuracy across all
repetitions (p ≤ 0.05 for repetitions 1-5) in comparison with
the DWT+CNN method.
Fig. 5 shows the average classification accuracy over six

subjects using the proposed fast ICA-FBCCA-DWT+CNN
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TABLE 1. The average of accuracy (± one standard deviation) over six subjects using the proposed Fast ICA-FBCCA-DWT+CNN algorithm for the Dataset
1 in comparison with the results reported in [56] and FBCCA+CNN, DWT+CNN, TRCA+CNN, and RAW+CNN. The cells of the table with ‘‘-’’ indicate that no
analysis was performed.

FIGURE 5. The average classification accuracy for Dataset 1 over six subjects, contrasting the
performance of the fast ICA-FBCCA-DWT+CNN approach with previously reported results from
ICA+LDA [69], CCA+LDA [69], CCA-DWT+LDA [69], CCA+MCSVM [56] on this dataset. Note:
∼nonsignificant, ∗p < 0.05.

compared with the previous works that reported their
results on this dataset including the ICA+LDA [69],
CCA+LDA [69], DWT+LDA [69], CCA-DWT+LDA [69],
and CCA+multi-class kernel SVM (MCSVM) [56] tech-
niques. All analysis in previous studies used 3-fold cross
validation for this dataset. The t-test results indicate that top
average classification performance was achieved for three
first repetitions with p-value < 0.05, 0.008, and 0.03, respec-
tively. However, although the fast ICA-FBCCA-DWT+CNN
achieved higher performance compared to ICA+LDA,
CCA+LDA and DWT+LDA in two last repetitions, there

is no significant results compared to the CCA-DWT+LDA
in repetitions 4 and 5. In BCI-based applications, achieving
higher performance in low repetitions is a critical issue,
because this is caused by the increasing the speed of BCI-
based systems that are in line with real-time implementation.

B. RESULTS OF DATASET 2
In this section, we focused on evaluating the outcomes
of our proposed method, known as fast ICA-FBCCA-
DWT+CNN, across a cohort of 12 subjects. This method
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TABLE 2. The average of accuracy (± one standard deviation) over 12 subjects using the proposed FAST ICA-FBCCA-DWT+CNN algorithm for dataset 2 in
comparison with the results of CCA+CNN, FBCCA+CNN, and TRCA+CNN.

was compared against several other techniques include
CCA+CNN, FBCCA+CNN, and TRCA+CNN. These
results are comprehensively summarized in Table 2, pre-
senting an overview of the achieved accuracy. For more
evaluation we applied the t-test conducted between the pro-
posed method results with other compared method. These
results were confirming the superiority of our proposed
approach with all compared methods (p< 0.005). Moreover,
we conducted a statistical t-test to compare the results of
FBCCA+CNNwith those of TRCA+CNN and CCA+CNN.
The analysis revealed noteworthy distinctions between these
methods, with a significance level of p < 0.05. This
underscores the superior performance of FBCCA in the
context of this specific dataset focused on single flicker
SSVEP.

IV. DISCUSSION AND CONCLUSION
MLmethods are crucial for EEG-based BCI systems, as they
establish a connection between mental intentions and exter-
nal commands. The process entails capturing brain signals,
transmitting them to a computer, and subsequently employing
ML techniques to categorize the intended target for the pur-
pose of enabling control or communication. These systems
are particularly useful for neuromuscular patients who are
unable to use their muscles to operate rehabilitation tools.
ML-based BCI systems have various applications, including
device control for wheelchairs, robots, and spellers. However,
a significant challenge in SSVEP-based BCI systems is the
problem of eye fatigue. To overcome this issue, the single-
flicker SSVEP approachwas introduced, but there is currently
no suitable analysis available for this type of signal because
it is a new approach in the field of BCI systems, especially in
speller-based BCI. In the current study, we especially focus
on the design of the new feature extraction algorithm based
on fast ICA-FBCCA and DWT to extract the robust features
from the single-flicker SSVEP signal. The fast ICA-FBCCA-
DWT+CNN method increased the accuracy of the first and
two repetitions (Table 1 and Fig. 4). By achieving suitable
performance with few repetitions, we address a critical chal-
lenge in the field. This improves the efficiency of EEG-based
tasks and data collection and alleviates participant fatigue.
Therefore, this makes our research suitable for practical
implementation.

Generally, single-flicker SSVEP is analyzed based on spa-
tial information of the brain. The authors in [56] analyzed

the single-flicker SSVEP signal using traditional methods
based on the CCA technique (which is based on extracting
the spatial features) for feature extraction and the SVM for
classification. However, they could not obtain a high accu-
racy of classification useful in real-time BCI applications in
the small number of the repetitions (especially first repeti-
tion). This motivated us to develop a CNN-based classifica-
tion approach in addition to introduce the feature extraction
method. This is the first application of DNNs according to
our knowledge for analysis of single-flicker SSVEP signals.
Although the temporal information of EEG signals represents
the nonlinear dynamics and nonstationary processes of EEG
and the spatial information captures the dependencies among
electrodes or brain regions, the study [70] suggested that
temporal signals carry spatial information. Therefore inspired
by the [70], we have limited our approach to extracting the
optimal spatial features in the feature extraction technique
and have considered only convolutional temporal layers in
the classification. The previous works [41], [49], [51] utilized
both temporal and spatial convolutional layers embedded in
the complicated structure of the CNN. However, we devel-
oped a FBCCA-based approach which is a powerful spatial
filter for the analysis of single-flicker SSVEP as the input to a
temporal convolutional layer without requiring to the spatial
layer. Fig. 4 demonstrated suitable results of our proposed
CNN compared to a STCNN including two convolutional
layers (one spatial layer and one temporal layer), respectively.
One problem that should be considered in a real-time BCI
application is obtaining high performance with small training
data. In the structure of the STCNN, due to the large number
of parameters to be adjusted, the network requires more
training data for achieving high performance which limits the
real-time implementation because of the increased calibration
time from recording more training data. Moreover, in [62]
several fully connected layers with more tunable parameters
have been utilized. In contrast, in the current paper, to reduce
the number of adjusted parameters in the training phase and to
prevent overfitting, only one fully connected layer with three
neurons (corresponding to three classes) was considered as
the output layer.

V. LIMITATIONS AND FUTURE WORK
While the single-flicker SSVEP paradigm holds promise
for BCI applications, our study has certain limitations that
suggests potential avenues for future research. Firstly, it is
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important to note that the utilization of a single-flicker fre-
quency introduces a constraint on the number of selectable
targets, potentially restricting the scope of more complex
BCI applications. In future work, expanding the paradigm
to encompass multiple-flicker frequencies could address this
limitation and enable a broader range of target selections.
This can be achieved by incorporating a hybrid approach,
such as integrating the P300 or motor imagery paradigms
with the single-flicker SSVEP. Additionally, although some
BCI literature such as [71] and [72] used several subjects in
their study, our evaluation process was impeded by the lack
of available state-of-the-art datasets that align precisely with
the parameters of the study. This limitation could be over-
come in subsequent research by either generating purpose-
designed datasets or collaborating with other researchers
to acquire suitable data for comprehensive evaluation. Fur-
thermore, while the single-flicker SSVEP paradigm presents
advantages in terms of reduced eye fatigue compared to its
multiple-flicker counterpart, it is not impervious to the influ-
ence of noise and artifacts originating from eye movements,
muscle activity, and external factors. The impact of these
sources of interference on the reliability and consistency of
the SSVEP signal warrants further investigation. This can be
accomplished by creating techniques to reduce signal noise or
by comparing various denoising methods, such as principal
component analysis (PCA), common spatial pattern (CSP),
and their combinations. Future studies could focus on refin-
ing signal processing techniques [73], [74], [75], possibly
incorporating advanced noise reduction methods [76], [77],
[78] or adaptive filtering algorithms to enhance the signal
quality and robustness. In addition to the above limitations,
in the current study, we used FBCCA algorithm as a powerful
spatial filter for the analysis of single-flicker SSVEP. But,
FBCCA has a higher computational cost in comparison with
the standard CCA method, because it uses multiple filters
and weights to process the SSVEP signals. However, FBCCA
can achieve better performance than CCA by capturing more
frequency components of SSVEPs. In our work, we used
only 5 sub-band, which reduced the computational cost of
FBCCA while maintaining a performance level close to that
of traditional CCA. Nevertheless, there are several spatial
filters which could potentially contribute to the overall perfor-
mance improvement. Exploring the efficacy of these spatial
filters in the context of our single-flicker SSVEP paradigm
remains an area of potential exploration in future research.
Moreover, it is worth noting that our proposed method neces-
sitates a training signal for model calibration. This training
requirement could present challenges in real-time scenarios,
where rapid adaptability is crucial. To mitigate this limita-
tion, future investigations could explore the use of transfer-
learning techniques, which could allow the model to adjust
more effectively to novel users or scenarios with minimal
retraining. This technique leverages the knowledge learned
from a source domain to improve the performance on a target
domain and reducing the need for large amounts of labeled
data. Such techniques could also improve the generalization

and robustness of the model across different domains and
tasks.
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