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ABSTRACT Bronchiectasis, one of the most neglected chronic lung conditions, has a high individual
disease burden and economic cost and causes poor quality of life in children/adolescents and adults.
Advances in image quality and a dramatic reduction in acquisition times, multiple high-resolution chest
tomography (HRCT) acquisitions, and reconstructions of the lung have resulted in accurate categorization
and determination of the extent of lung parenchyma and airway abnormality. For bronchiectasis, the
diagnosis is confirmed using the key feature of abnormally increased broncho-arterial (B.A.) ratio (BAR),
with or without other abnormalities, e.g., bronchial wall thickening, lack of bronchial tapering, and mucus
plugging. Most of these features require shape analysis of the airway and artery regions to perform various
assessments that can have inter-rater variability and are time-consuming. This challenge is amplified in
pediatric patients due to age-related anatomical variations. The anatomical differences and variations in
airway structures between Infants, Early Childhood, and middle Childhood can impact how the images can
be processed and analyzed. To address this, we proposed two novel image-processing methods to detect and
measure the B.A. pairs. The first method uses an optimized connected component labelling (CCL) algorithm
to construct bounding boxes around the objects (airway, artery) and extract the regions of interest (ROIs) for
potential B.A. pairs. The second method allows us to calculate 4 or 6 diameters for each object in the ROIs
and use their mean value as the final diameter, demonstrating agreement with manual readings. Evaluating
against a diverse set of HRCT scans from various categories validates the significance and practical utility
of our proposed methods in detecting and measuring the disjointed B.A. pairs to assess increased BAR.

INDEX TERMS Airway, artery, broncho-arterial ratio, bronchiectasis, connected components, HRCT scans,
pediatrics.

I. INTRODUCTION
Bronchiectasis in children is defined as a clinical syndrome
of recurrent or persistent (>3) episodes of chronic (> four
weeks) wet/productive cough, in combination with abnormal

The associate editor coordinating the review of this manuscript and
approving it for publication was Yongjie Li.

bronchial dilatation on chest computed tomography (C.T.)
scans [1], [2]. Bronchiectasis is regarded as a heterogenous
chronic pulmonary disorder. Although there are similari-
ties between pediatric and adult bronchiectasis [1], multiple
risks and etiologic factors differ between age groups [2],
[3]. Identifying the factors contributing to the severity of
bronchiectasis can help define various ‘treatable traits’ [2],

4730

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0001-9804-2732
https://orcid.org/0000-0001-7572-9750
https://orcid.org/0000-0002-0396-8370
https://orcid.org/0000-0002-3053-2281
https://orcid.org/0000-0003-4946-4175


A. Beeravolu et al.: Methods for Detection and Measurement of Potential B.A. Pairs

FIGURE 1. A thin section C.T. scan (HRCT) slice (0.67 mm) of a subject obtained from the right side of the lung at window width of 1500 HU and window
level of -500 HU shows multiple Broncho-Arterial (B.A.) pairs (small-to-large); (B): The pixel intensity ranges (RGB) for airway wall of different B.A. pairs
on a Grayscale DICOM slice.

[4], aiding clinicians in achieving a cure for at least a subset
of children [2], [7]. Current clinical management guide-
lines for bronchiectasis are primarily based on adult data.
Still, in recent years, clinicians have emphasized the need to
conduct clinical research separately for children and adoles-
cents [7], [20].

Bronchiectasis is confirmed radiographically using chest
C.T. scan feature of increased B.A. ratio (BAR). It is often
accompanied by other features, e.g., bronchial wall thick-
ening, lack of bronchial tapering, and mucus plugging [2].
A high-resolution C.T. scan (HRCT) allows assessment of
airway abnormality and severity of bronchiectasis from cylin-
drical (mild) to varicose, then cystic (severe) well-accepted
severity markers are part of various radiographically based
bronchiectasis scales [6].

Manual inspection of the available C.T. scans reveals
that younger children generally have smaller airways than
older children and adults. As children grow, their airways
also become larger to accommodate the increased airflow
demands associated with physical development. Careful eval-
uation and validation are required to detect B.A. pairs in
HRCT scans of children of various ages. Therefore, we cre-
ated three sets of full-length HRCT scans for different age
groups: Infants (under two years), Early Childhood (2-6
years), andMiddle Childhood (6-12 years). Working on these
sets allowed us to check the differences between the required
image processing parameters, validate the methods against
many full-length scans, and prove the significance of the
proposed methods for real-life scenarios.

A. BA PAIRS, BAR, & THE NEED FOR AUTOMATED
SYSTEMS
The B.A. pairs in an HRCT scan can appear in various sizes,
shapes (irregular), forms, and red, green, and blue (RGB)
intensities. They can be large, medium, or small and appear in

discrete pairs or accompanied by pulmonary veins, depending
on the broncho-pulmonary segment and lobe they are situated
in (Fig. 1A). Similarly, the RGB intensities of the airway
walls can also differ based on their location (Fig. 1B). These
are some of the essential aspects to keep in mind while
developing a fully automated system for detecting potential
B.A. pairs in HRCT scans.

The upper limit for the normal BAR in children was found
to be 0.76. Thus, current guidelines recommend using a lower
cutoff of >0.8 to define abnormality in children [2], [7], [8].
However, there is ongoing debate and different opinions on
how B.A. ratios should be defined and determined. When
determining BAR, some clinicians prefer to use the outer
airway diameter [14]. However, the ERS pediatric guide-
lines [7] recommend using the inner airway diameter for
the BAR, but this was a conditional recommendation due
to limited evidence [7]. More studies on the prevalence of
bronchiectasis in children are required; however, manually
inspecting B.A. pairs in HRCT scans of various age groups
can take a long time, limiting the scope of experimentation.
And when there are no clinical symptoms present, a BAR >

0.8 for a single B.A. pair may not always indicate abnormality
(increased BAR) in children, similar to how a BAR larger
than 1 does not always reveal the presence of bronchiectasis
in adults [15]. We need image processing/machine learning
methods for detecting and calculating the ratios for most
B.A. pairs. The methods can allow the researchers to classify
the B.A. pairs according to their segment/sub-segments and
provide comprehensive airway tree evaluations and severity
scores for optimal patient management.

Since most B.A. pairs in an HRCT scan have irregu-
lar shapes (both the bronchus and the artery), measuring
inner airway and outer artery diameters with just one
diameter (like for a circle) is insufficient. Clinicians have
used [15] electronic calipers to measure two diameters
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FIGURE 2. Airway tree branching and constructing perimeter with inner airway border pixels and measuring the Euclidean
distance between all the coordinates to find 4 or 6 diameters and their mean.

(maximum and minimum) for each artery and bronchus.
The image processing methods described in this study
(Section III) can measure four to six diameters (Fig. 2)
based on the size of the objects. The start and endpoints
(x1,y1) and (x2,y2) of the (4 or 6) diameters are found
by computing the pixel distance (Euclidean) between every
combination of border pixels (Fig. 2) in an object (air-
way, artery) boundary and finding the pairs that range from
maximum to minimum lengths. Section III explains the
algorithm proposed in this research to find and compute the
diameters.

Currently, clinicians depend on personal observations by
using electronic calipers to measure the BARs of the lung
C.T. images to diagnose bronchiectasis [15]. In research,
multiple measurements are recorded, and the mean values
are used for the BARs. These approaches are very time-
consuming, especially when evaluating the entire airway
structure. Currently, there needs to be more published lit-
erature on the automated detection of B.A. pairs and their
BARs in HRCT scans of adults. There is even less for
children. Prasad. et al. [21] proposed a three-stage pro-
cess involving detecting potential bronchovascular pairs,
detecting discrete pairs, and identifying abnormal pairs with
severity levels. They demonstrated that their automated scor-
ing system was comparable to an experienced radiologist’s
(kappa > 0.5).

Similarly, Odry et al. [22] demonstrated that automat-
ically selected arterial regions agree with those chosen
by human readers in 75.3% of the cases, compared to a
65.6% agreement between human readers. They also found
that the computer-reader variability in measuring the lumen
diameters was slightly lower (7%) than that of the human
readers. They concluded that this variability is acceptable,
and their automated system can provide an accuracy com-
parable to that of human readers. The experimental results
of Naseri et al. [23] also demonstrated that semi-automated
methods can measure the airway and adjacent vessel dimen-
sions better than most existing methods. Techniques such as
thresholding [24], [25], full-width-half maximum (FWHM)
[26], [27], phase congruency [28], and model-based meth-
ods [29] are used to measure the diameters of inner airways
and arteries, showing promising results.

To detect the B.A. pairs from the HRCT scans, one of
the primary steps in our proposed method is to label the
connected components of different objects. Labelling of con-
nected components in a binary image is one of the most
fundamental operations in image analysis, image understand-
ing, pattern recognition, and computer vision [18]. It is handy
in real-time applications such as automated surveillance and
target tracking [30]. Several CCL algorithms have been
proposed over the years [18] to improve the efficiency of
labelling for real-time applications. Our optimized connected
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components labelling algorithm allows us to identify the
edges of various objects in a binary image of an HRCT
scan created using pre-defined conditions for airway and
artery regions. These edges are used to draw bounding boxes
around the objects (inner airway, outer artery) and extract
ROIs (discrete B.A. pairs) to measure their diameters and
the B.A. ratios. The extracted ROIs can also allow us to
assess many radiographic features of bronchiectasis, but this
research mainly focuses on increased B.A. ratio, which is a
primary pediatric radiographic sign seen in HRCT scans.

The methods proposed in this research are based on the
2D plane, which presents various anatomical structures of the
bronchial tree in a flat way, which does not represent the cur-
vatures and intricate details of the tree.Moving from 2D to 3D
imaging methods may enhance the accuracy and reliability of
evaluating the entire bronchial tree. This can help to monitor
and assess changes in the bronchial structures effectively. Our
proposed methods are designed to expand them in the future
to generate 3D reconstructed models of bronchial structures.
Various advanced image segmentation and recognition stud-
ies in the medical field have shown promising results using
3D-based methods. These studies described improvements
compared to the 2D level, such as incorporating the spatial
information to account for depth and perspective [37], [38],
[39], transforming 2D segmentation methods into a volu-
metric approach (combining multiple planes (axial, coronal,
sagittal)) [40], [41], [42], capturing long-range dependencies
for precise segmentation using graph-based models [43], and
the use of neural networks to capture the 3D structures using
the relationships across multiple 2D slices [44], [45]. Our
primary goal with our proposed 2D methods is to expand
them in the future, using knowledge of clinical and radio-
graphic features related to bronchiectasis. Developing novel
3D reconstruction methods can help us relate variations in
a lobe or the tree to clinical aspects based on input from
radiologists and clinical experts.

B. NOVELTY OF THE PROPOSED METHODS IN
BRONCHIECTASIS STUDIES
The approach introduced in this study is distinct from con-
ventional studies in bronchiectasis diagnosis. The emphasis
of most studies is primarily on adult cohorts, whereas this
study focuses on pediatric patients, highlighting their unique
anatomical differences and variations in airway structures.
Other contributions compared to existing studies related to
bronchiectasis diagnosis are:

• Novel Image-Processing Methods: We introduce an
optimized connected component labelling (CCL)
algorithm for bronchiectasis diagnosis. The algorithm is
tailored to the objects (airway, artery, veins, trachea, etc.)
it is detecting. This allows us to differentiate variations
between each object’s lobes (upper, middle, lower). For
example, it is evident that the size of bronchi and arteries
gets smaller as we branch out further into the bronchial.

Using various size conditions, anatomical differences
can be detected.

• Novel Implementation for Diameter Measurement: This
method uses a streamlined process to calculate diam-
eters. Our method can reduce inter-rater variability by
calculating the average of multiple diameters (4 or 6)
for each object within the regions of interest (ROIs).
Most existing studies in the 2D plane have either used
the average of the minimum and maximum diameters
or minor and major axis lengths. The proposed method
allows us to store all the coordinates that are part of
an object’s perimeter boundary. This can facilitate more
comprehensive analysis and measurements of broncho-
arterial abnormalities.

• Validation Against Diverse HRCT Scans: The pro-
posed methods are validated against various diverse
HRCT scans from various categories (Infants, Early
Childhood, Middle Childhood) and thickness/lengths
(0.67/1/2/3/5 mm). This indicates that the proposed
methods can be used across different scan types and
patient conditions, something that has not been exten-
sively explored in existing studies.

• Utilization of Full-Length CT Scans: The proposed
methods utilize full-length C.T. scans instead of single
images. This allows for a more comprehensive evalua-
tion of broncho-arterial abnormalities.

• 3D Volume Creation from Extracted Coordinates: The
proposed 2D methods can extract the inner airway and
artery regions from an ROI (B.A. pair) and store them
as coordinates. This can allow us to expand the cur-
rent methods in the future to stack a series of frames
of the C.T. scans and create 3D volumes of segments
and sub-segments in the bronchial tree of a patient.
The current methods are proposed with the intention of
expanding them towards 3D imaging.

In essence, this study distinguishes itself from the existing
studies through its emphasis on pediatric patients and novel
image-processing methods/approaches tailored for the detec-
tion and measurements of the objects in the B.A. pairs. The
utilization of full-length C.T. scans and the potential for
3D volume creation from extracted coordinates in the future
can offer a more comprehensive approach and analysis for
diagnosing bronchiectasis.

II. MATERIAL AND METHODS
A. DATA DESCRIPTION
The data is from a large pediatric prospective study (HREC
07/63) conducted at Royal Darwin Hospital, Northern Ter-
ritory, Australia. Each subject in the data showcased some
clinical symptoms related to bronchiectasis. The Human
Research Ethics Committee (HREC), Menzies School of
Health Research has provided the ethical clearance to use
the de-identified HRCT scans from Royal Darwin Hospital,
Darwin, Australia (Approval Code: HREC-07/63 and Date:
Apr 22, 2022).
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HRCT imaging of the lungs is a well-established technol-
ogy for diagnosing and monitoring airway diseases. Optimal
acquisition and interpretation of HRCT images requires both
knowledge of anatomy and pathophysiology [31], and famil-
iarity with the underlying physics and engineering principles
of C.T. Although many of the operations of a C.T. scanner
are automated, many technical parameters remain operator-
dependent [31]. The parameters used significantly affect the
diagnostic value of an HRCT examination. As shown in
Table 1, researchers must provide the technical parameters
used to collect their data.

1) DATA INCLUSION AND EXCLUSION IN CT SCAN
COLLECTION
The original collection comprises of C.T. scans obtained from
various scanners over time, each with varying resolutions and
angles. For this study, we selected the C.T. scans (Subjects)
collected with a specific scanner (Philips Ingenuity Core 64).
For each subject, a minimum of six C.T. scans were used, with
thicknesses varying from 0.67 to 9 mm. However, not all the
subjects have an identical number of C.T. scans. Therefore,
initially, we selected only 0.67 mm C.T. scans (as they hold
more information than other scans), and after that, we used
a random selection process to select 1/2/3/5mm C.T. scans.
Based on the criteria described below, we categorized the C.T.
scans according to age groups.

In children, airway size can be influenced by various
factors, including age, height, weight, body composition,
and underlying health conditions. The anatomical differences
and variations in airway structures between infants, early
Childhood, and middle Childhood can impact how images
are processed and analyzed. Manual inspection of the avail-
able C.T. scans reveals that younger children generally have
smaller airways than older children and adolescents. This is
unsurprising in the context of children’s development/growth
of body size and anatomy over time.

Therefore, we’ve created three categories of full-length
HRCT scans for different age groups: Infants (under two
years), Early Childhood (2)-6 years), and Middle Childhood
(6-12 years). Working on these categories allowed us to
check the differences between the required image process-
ing parameters (for detecting and measuring B.A. pairs) by
validating the methods against a large number of full-length
scans and proving the significance of the proposed methods
for real-life scenarios.

Each category consists of 10 - 25 full-length axial
plane HRCT scans that are reconstructed with slice thick-
ness and intervals of 0.67 mm, 1 mm/2 mm/3 mm, and
5 mm. These HRCT scans belong to various subjects who
showed clinical symptoms of bronchiectasis. All the HRCT
scans are divided into two sets, one for testing and val-
idating the proposed methods and the other to prove its
statistical significance (Table. 1). Set 1 consists of 15 full-
length HRCT scans reconstructed with a slice thickness of
0.67mm. Set 2 consists of 41 full-length HRCT scans of

TABLE 1. Technical parameters: The categories and their associated scans
from different reconstruction lengths.

FIGURE 3. Steps to detect discrete B.A. pairs.

lengths 1/2/3/5 mm. They were all imaged using a high-
resolution 64-slice Multi-Detector CT (MDCT) capable of
acquiring near-isotropic data throughout the thorax in a
single breath-hold. This permits the acquisition of volumet-
ric single-breath-hold datasets, allowing spaced, contiguous,
and overlapping HRCT images to be reconstructed. With
MDCT, the volumetric data enables multiplanar (axial, coro-
nal, sagittal) thin-section HRCT reconstruction (MPR). Each
subject in this study had ∼9 types of reconstructed images
from different planes. Each patient was imaged without any
intravenous contrast enhancement, and the images were cre-
ated using a standard reconstruction kernel and stored in
DICOM format. Table. 1 provides the technical parameters
and number of slices available for each patient at different
intervals/thicknesses.
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B. LOCATING AIRWAYS, ARTERIES/VEINS, POTENTIAL B.A.
PAIRS, AND DETECTING DISCRETE B.A. PAIRS
Locating discrete B.A. pairs involves constructing bounding
boxes (B.B.) (Fig. 3) around the relevant objects: inner air-
ways (red), arteries (blue), and potential B.A. pairs (green).
Constructing the B.B.s for each object requires similar steps
but with different size conditions. The generated B.B. coor-
dinates of the objects are drawn in their respective frames
(Fig. 3). This allows us to identify locations of discrete B.A.
pairs, with red and blue B.B.s inside a green B.B. Fig. 3
illustrates the step-by-step process proposed in this research
to detect the discrete B.A. pairs.

The frames for the HRCT scans were created using the
C.T. lung window (W: 1500, L: -500). The frames are 768 ×

768 and have three channels (R, G, B). The steps shown in
Fig. 3 are applied to these frames to get the bounding box
coordinates for all the objects and detect the discrete B.A.
pairs. The following steps and the pseudocodes explain the
process of locating the objects and detecting the discrete B.A.
pairs.

1) STEP 1: CREATING BINARY IMAGES BASED ON
CONDITIONS
The algorithm for step 1 is used for pre-processing the slices
so that the connected components algorithm in step 2 can
generate the B.B.s. We applied two conditions to replace the
pixel values in a grayscale DICOM image with two RGB
values. The condition rgb[0] <= 20 (R-value) creates the
binary images that are used to detect the inner airway and
potential B.A. pair B.B.s. It replaces the pixel values that
are below 20 with (0,0,0) and the rest with (80,80,80) or
another single RGB value (>= 80). Similarly, the condition
for arteries/veins, rgb[0] <= 45, is used to replace all the
pixel values that are below 45 with (0, 0, 0) and the rest with
(80, 80, 80) or another single RGB value (>= 80) in the lung
window images. This process is illustrated in Pseudocode. 1.

Pseudocode 1
Step 1: Creating Binary Images
pixel1 = [ ]
pixel2 = [ ]
coordinates = [ ]
for a in range(0, width):

for b in range(0, height):
rgb = px[a, b]
coordinates.append([a,b])
if rgb[0] <= 20: //Airway, Potential Pair
pixel1.append((0,0,0))

else:
pixel1.append((80,80,80))

if rgb[0] <= 45: //Artery
pixel2.append((0,0,0))

else:
pixel2.append((80,80,80))

FIGURE 4. Types of edges for inner airway, potential B.A. Pair, Artery.

2) STEP 2: APPLICATION OF OPTIMIZED TWO-SCAN
CONNECTED COMPONENTS LABELLING (OCL) ALGORITHM
In graph theory, connected components are subgraphs of a
connected graph, connected to no other node in the super
graph, and have paths only between two nodes. The same
concept can be applied to the connected components in an
image because images are a ‘grid of pixels (nodes)’ that
are connected by edges (Grid Graph [19]). The algorithm
looks for pixels with the same value connected through ‘four-
pixel’ connectivity along the edges. Here, an edge is defined
as a pixel whose grey level differs from an adjacent pixel’s
(Fig. 4).
The binary image generated for airways and potential B.A.

pairs has two types of edges: 80 –> 0 and 0 –> 80 (Fig. 4).
Using the matching pixel (0,0,0) allows the algorithm to find
a set of coordinates (connected components) along the inner
airway boundaries in the binary lung window images. Sim-
ilarly, the matching pixel (80,80,80) allows the algorithm to
get boundary coordinates for potential B.A. pairs. To generate
the connected components for the arteries, the algorithm uses
the same binary lung window image to look for edges 0 –>
80, using the matching pixel (80,80,80); and finds a set of
coordinates for the artery boundary.

These sets of coordinates are used as inputs for the first
scan (Pseudocode 2) of the OCL algorithm to generate all
pairs of neighboring pixels. The neighboring pixels are gener-
ated similarly to most conventional labelling algorithms [18].
The first scan assigns a provisional label to each foreground
pixel. For an N x N binary image, we use p(x, y) to denote the
image’s pixel value at coordinate (x, y). For the pixel p(x, y),
the pixels p(x-1, y-1), p(x, y-1), p(x+1, y-1), p(x-1, y) are the
four connected neighbors, as illustrated in Pseudocode 2 (first
scan). The coordinates generated for the neighboring pixels
are inputs for the second scan (Pseudocode 2) of the OCL
algorithm, which generates connected components as a set of
nodes (or coordinates).

After the first scan generates all the neighboring pairs for
the matching pixels, the second scan finds a representative
label for each group of equivalent neighboring pairs and
relabels all the foreground pixels in the first scan with a usual
label. This allows us to detect the connected components
(edge coordinates) for the inner airways, potential B.A. pairs,
and arteries.
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Pseudocode 2 First Scan: Generate All Pairs of Neighbor-
ing Pixels
Function neighbors(coordinates)
coordinates = set(coordinates)
for x, y in coordinates:
if (x - 1, y - 1) in coordinates:

yield (x, y), (x - 1, y - 1)
if (x, y - 1) in coordinates:

yield (x, y), (x, y - 1)
if (x + 1, y - 1) in coordinates:

yield (x, y), (x + 1, y - 1)
if (x - 1, y) in coordinates:

yield (x, y), (x - 1, y)
yield (x, y), (x, y)

Pseudocode 2 Second Scan: Generate Connected Compo-
nents as Set of Nodes
Function connected_components(edges):
neighbors = defaultdict(set)
for a, b in edges:

neighbors[a].add(b)
neighbors[b].add(a)

seen = set()
Function component(node, neighbors=neighbors,

seen=seen, see=seen.add):
unseen = set([node])
next_unseen = unseen.pop
While unseen:

node = next_unseen()
see(node)
unseen | = neighbors[node] - seen
yield node

Return (set(component(node)) for node in neighbors if
node not in seen) //(coordinates)

3) STEP 3: GENERATING BOUNDING BOX COORDINATES
FOR OBJECTS (INNER AIRWAY, POTENTIAL BA PAIR, ARTERY)
To generate the bounding box coordinates for each object, the
minimum and maximum values ((min(xs), min (ys), max(xs),
max(ys)) are computed for each set of edge coordinates gen-
erated in the previous step, this is illustrated in Pseudocode 4
below.

Using the formula for the rectangular area (area = length
∗ width), the area for the bounding boxes is computed and
filtered based on five conditions (Fig. 5):

• Condition 1 (50 <= area <= 500) is used to draw
the bounding boxes for the inner regions of medium-
to-small airways of potential B.A. pairs, outlined in red
(255,0,0) in Fig. 5.

• Condition 2 (20<= area< 50) is used for the rest of the
inner airway regions.

• Condition 3 (500 < area <= 1000) is used to find
the bounding boxes for potential B.A. pairs, outlined in
green (0,255,0) in Fig. 5.

FIGURE 5. Bounding boxes for various objects detected in a portion of a
C.T. scan using multiple conditions.

Pseudocode 3
Function boundingbox(coordinates):

xs, ys = zip(∗coordinates)
co = [(min(xs), min(ys), max(xs), max(ys)]
//example [(221,470, 231, 477)]
realco = [ ]
for cords in co:
a = cords[0]; b = cords[1]; c = cords[2];
d = cords[3];
length = c - a
breadth = d - b
area = length ∗ breadth //area of rectangle
if 50 <= area <= 500:

realco.append((a,b,c,d))
for rect in realco:
draw.rectangle(rect, outline=(0, 255, 0))

• Condition 4 (50 <= area <= 500) uses the same filter
as Condition 1, but it is used to draw the bounding
boxes for small to medium arteries/veins, outlined in
blue (0,0,255) in Fig. 5.

• Condition 5 (500 < area) is used for larger or remaining
arteries/veins.

4) STEP 4: COMBINING THE BOUNDING BOXES TO DETECT
DISCRETE BA PAIRS
All the bounding boxes generated are plotted on their respec-
tive slices/frames (i.e., red /and blue boxes inside green
boxes), as shown in Fig. 6. This allows us to write a program
that can easily identify the regions that contain boxes of all
three colors together (i.e., red and blue inside green). Once
such regions are identified, they are outlined by replacing
the green boxes with cyan boxes (Fig. 6). These cyan boxes
indicate the presence of discrete B.A. pairs. The bounding
box coordinates for all cyan boxes are saved in a CSV file for
further processing.

The image processing steps allowed us to locate most
large-to-small airways and arteries/veins and detect most of
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FIGURE 6. Combining all the B.B.s and converting the green boxes to
cyan (0, 255, 255).

the discrete B.A. pairs in the axial plane images, recon-
structed with thickness and intervals of 0.67 mm.

C. BAR
One of the primary steps to measure the BAR is to get the
perimeter coordinates for the inner airway and outer artery
objects and calculate the Euclidean distance between each
combination. Using the distances and their coordinate combi-
nations, our method can select four or six combinations that
pass through or near the center of an object and calculate their
average (i.e., the mean diameter). This process involves five
steps:

• Extracting ROIs, the patches inside the Cyan bounding
boxes.

• Processing/enhancing these patches.
• Detecting ‘matching sequences’ of pixel values in each
row of the patch and constructing the coordinates for the
regions of the objects.

• Obtain the coordinates for the perimeter of the objects
and calculate the Euclidean distances.

• Selecting four or six diameters for the objects, taking the
average, and calculating the BARs.

1) STEP 2: PROCESSING/ENHANCING ROI PATCHES
The algorithm for Step 2 is used for pre-processing the
ROIs so that the object’s region can be detected easily. The
algorithm uses two conditions to replace the pixel values in a
grayscaled ROI patch. The condition rbg[0]<= 20 (R-value)
is used for the airway region to remove the noise (replace
with (0,0,0)) and improve the soft-tissue intensity (80,80,80)
in the ROIs (Fig. 7). Similarly, the conditions rbg[0] <=

20, 20 < rgb[0] <= 45, and 45 < rgb[0] <= 100, are used
for the artery region to replace the pixel values with (0,0,0),
(255,0,0), and (80,80,80) respectively (Fig. 7).

2) STEP 3: MATCHING SEQUENCES AND CONSTRUCTING
COORDINATES FOR THE INNER AIRWAY AND OUTER
ARTERY REGIONS
This step allows us to check the ‘Matched Sequences’ in the
pixel values of each row of a Processed ROI and construct the
coordinates for the Inner Airway and Outer Artery regions.
Once the ROIs are processed, we use the Pseudocode for

FIGURE 7. Step 2 - conditions for processing ROIs.

FIGURE 8. Matching sequences (inner airway & outer artery).

step 3 to get the list of pixel values (rgb[0] (R-Value)) in each
row (Fig. 7) of the ROI. For example, inRowM in Fig. 8 (red
line), the list of pixels in the processed artery ROI is [0, 255,
80, 80, 80, 80, 80, 80, 80, . . . ., 255, 0, 0, . . . ., 0]. Similarly,
the list of pixels inRow P of the processed Airway ROI looks
like [0, 0, . . . , 80, 80, 80, 80, . . . . . . . . . , 0, 0, 0]. Most of the
rows in the processed ROI follow the same pattern. In the
pixel value lists for the airway and artery, the algorithm will
look for matching sequences (Fig. 8) and return their index
positions in the list as a range (output example Pseudocode.
4.1).

The row.items() in Pseudocode. 4.1 represents a dictionary
with rows and their list of pixel values (R values). All the
sequences in Fig. 8 are checked in each row of the processed
airway ROI (Fig. 7), and the index numbers (column num-
bers) for the matches are combined, as shown in the output
example of Pseudocode. 4.1. Here, the index is the column
number in a row where a pixel match is found.

For ‘row463’ in the output example (Pseudocode. 4.1), the
values (257, 273) represent the column numbers (or index
positions) between which a matching sequence (Fig. 8) is
found. Using the row number and the column range, the
algorithm (Pseudocode. 4.2) can get all the coordinates that
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Pseudocode 4.1
m = {}
for a, b in row.items():

g1 = [(i, i+len(S1)) for i in range(len(b)) if
b[i:i+len(S1)] == S1]
g2 = [(i, i+len(S2)) for i in range(len(b)) if

b[i:i+len(ff)] == S2]
g3 = [(i, i+len(S3)) for i in range(len(b)) if

b[i:i+len(gg)] == S3]
g4 = [(i, i+len(S4)) for i in range(len(b)) if

b[i:i+len(hh)] == S4]
:
gn = [(i, i+len(Sn)) for i in range(len(b)) if

b[i:i+len(Sn)] == Sn]
m[a] = g1 + g2 + g3 + g4 +.. +.. + gn

Output (Example)
{’row463’: [(257, 273)],
’row464’: [(256, 271), (506, 524)],
’row465’: [(254, 270), (506, 524)],
’row466’: [(506, 524)]}

are part of the inner airway and the outer artery regions,
as shown in the output example of Pseudocode 4.2.

Pseudocode 4.2
row = 0
AirwayCos = []
for x, z in m. items()
for y in z:

value = y[0]
value 1 = y[1] − 1
for i in range (1, value 1 -

value):
value 2 = value +i
AirwayCos.append

([value 2, p])
p = p + 1

row = 0
ArteryCos = []
for x, z in m. items ():

for y in z:
value = y[0]

value 2 = y[1]
for i in range (0,

value 2 - value):
value 2 = value +i
ArteryCos.append

([value 2, p])
p=p + 1

Output (Example) for ‘row463’:[[258, 463], [259, 463], [260,
463], [261, 463], [262, 463], . . . . [272, 463]]

For most of the processed ROIs (airway and artery), the
obtained coordinates cover their respective object regions
accurately (Fig. 9). In some cases, there can be a few coordi-
nates missing, similar to No. 2 in the artery region (Fig. 9)),
which can be dilated later using a (2, 2) kernel.

3) STEP 4: PERIMETER COORDINATES AND THEIR
EUCLIDEAN DISTANCES
After filling the constructed coordinates with different pixel
values, we apply conventional methods, such as detecting
contours or blobs. Step 4 allows us to get the coordi-
nates of the object contours (inner airway, artery) from
the filled regions (Fig. 9). To draw a perimeter around the
object, the algorithm uses the drawContours() function of
OpenCV (cv2.drawContours(ROI, contours[i], contourIdx =

−1, color = (r, g, b), thickness = 1) to overlay the contours
on the ROI. Using a thickness of 1 allows the algorithm to

FIGURE 9. Plotting the constructed coordinates for inner airway and
outer artery.

overlay the contour boundary (or perimeter), as shown in
Fig. 10.

Using the perimeter coordinates, Pseudocode 5 calcu-
lates the Euclidean distance between each combination of
boundary pixels of an object. For example, to get the perime-
ter coordinates for the ‘orange-colored airway’ in Fig. 10,
we need to get all the coordinates with blue (3, 117, 186)
pixels and compute the Euclidean distances between each
combination.

Pseudocode

co = ⌈⌉

for a in range (0,w):
for b in range (0, h):
rgb = px[a, b]
if rgb = (3, 117, 186):
co.append ((a, b))

// Coordinates

dis = ⌈⌉

for i in range(len(co)):
for i in range (i + 1, len(co)) :

distance =math.dist(co[i],
co[j])

dis.append((co[i],
co[i], distance))

dis.sort(key=lambda x:
(-float(x[2]),
x[1], x[0]), reverse=True)

4) STEP 5: SELECTING FOUR OR SIX DIAMETERS FOR THE
INNER AIRWAY AND OUTER ARTERY REGION AND THEIR
BAR
Once all the distances for the combinations are calculated,
they are appended to a list in this format: ((269, 476), (282,
471), 13.93). Here, the Euclidean distance is in pixels (px).
After appending to a list, the numbers (float) in the list are
sorted using a lambda function so that the algorithm can
access the combination that has ‘maximum Euclidean dis-
tance’ (MED) (dis[-1]). The MED is also the measure of an
object’s length. Drawing a line using that combination will
always produce a ‘major axis’ (M.A.) (the longest line that
can fit an object), which passes through (or near) the object’s
center. The algorithm in step 5 uses themajor axis coordinates
of an object to find the rest of the diameters (four or six).
The number of diameters is dependent on the size of the
objects. If the major axis length is >20px, six diameters are
measured for the objects. Similarly, if the length is < 20px,
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FIGURE 10. Contour boundary (perimeter) of the objects in different
colors.

FIGURE 11. Diameter endpoints for inner airway (4) and outer artery (6).

four diameters are measured. The algorithmworks bymoving
the coordinates of the major axis from both ends. One end
of the axis will move by -4 and the other by +4, based on
the size. This produces two new coordinates as endpoints
that pass through (or near) the center of the object (Fig. 11).
This process is repeated till four or six diameters (endpoints)
are found for an object (major axis + others). Once found,
the algorithm calculates the Euclidean distance between the
endpoints and averages them to produce diameters for the
inner airways and outer arteries (Fig. 11).
Using the diameters for the inner airway and artery region,

we calculate the BAR ratio (13.22 px:21.21 px) to check
whether the B.A. pair is abnormal (signet-ring appearance
and/or increased BAR (>0.8)) or not. The BAR (13.22/21.21)
for the pair shown in Fig. 11 is 0.62, less than 0.8, indicating
that this B.A. pair is normal.

III. RESULTS AND DISCUSSION
A. TESTING THE PROPOSED DETECTION METHOD WITH
SET 1
Set 1 consists of 15 HRCT scans that belong to various age
groups: Infancy (5), early Childhood (7), and middle Child-
hood (3). We applied our proposed detection methods on
these scans to locate the objects (airway, artery/vein, potential
B.A. pair). Each HRCT scan consists of 400 – 600 frames
of size 768 × 768. Table. 2 provides the number of frames

TABLE 2. Total number of located objects for each condition F: Number
of frames, C1: medium-to-small airways (50 <= area <= 500); C2:
Smaller Airways (20 <= area < 50); C3: Potential BA pairs (500 < area <=

1000); C4: medium-to-small artery/vein (50 <= area <= 500); TDBA:
Total discrete BA pairs.

available in each scan (0.67 mm) and the number of objects
located using each bounding box area condition. Using differ-
ent conditions (Table. 2) allowed us to differentiate between
airways and artery/vein structures in the HRCT scans and
assess the differences among various age groups. Most dif-
ferences can be noticed in the number of objects located
using each condition. This could be because their anatomy
is still developing, and their airways need to grow and mature
over time. Table. 2 provides a comparison between various
categories.

In the Infancy (< 2 years) category, the number of smaller
airways (20 <= area <= 50) detected using our methods is
more when compared with other categories; this is despite
having a smaller number of frames. Most airways are below
50 (area) for infancy subjects and above 50 for most early
and middle childhood subjects. A significant difference is
noticed in the C3 and C4 conditions, where the proposed
methods have detected fewer potential disjoint B.A. pairs
for the infancy subjects and healthy numbers for other cat-
egories. Manual inspection of the HRCT scans also reveals
the same. In some cases, the number of potential B.A. pairs
(C3) detected can be fewer. This can signify that the subject
has some disease/abnormality related to the airways or lungs,
as shown in Fig. 12. Comparing the results of various cate-
gories of conditions C1, C3, and C4 also indicates that the
number of detected objects increased with age.

1) PROVING STATISTICAL SIGNIFICANCE USING SET 2
Set 2 consists of 41 HRCT scans of lengths 1/2/3 and
5mm. The number of frames drastically decreases as the
length/thickness increases from 0.67 mm (Table. 3). Proving
the statistical significance of a method for object detec-
tion in images typically involves rigorous experimentation
and statistical analysis. It is important to remember that
proving statistical significance doesn’t always guarantee the
real-world effectiveness of the proposed method. To enhance
the robustness and reliability of our statistical analysis,
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FIGURE 12. A frame from an HRCT Scan from the infancy category
showing signs of a disease.

FIGURE 13. Confusion matrixes for individual classes.

we have created multiple sets (X1, X2, and X3) using
the 41HRCT scans fromSet 2. Each set (X) consists of HRCT
scans that belong to a specific age category. In these sets
(X), all the frames in their respective scans are combined and
divided into three classes of images: 1) Images with No B.A.
Pairs, 2) Images with one Disjointed B.A. Pair, and 3) Images
with more than one Disjointed B.A. Pair. After manually
inspecting the HRCT scans and drawing the bounding boxes
for the Disjointed B.A. pairs, the frames are divided into
their respective classes. We have used evaluation metrics
such as Precision (P) and Recall (R) to provide insights into
how well the proposed method can detect the objects in the
images. To calculate these metrics for each class, we should
initially measure the true positive (T.P.), true negative (T.N.),
false positive (F.P.), and false negative (F.N.) values for each
class separately by following the confusion matrixes shown
in Fig. 13. Fig. 13 also provides the values for all the classes
in set X1 separately.

To calculate the evaluation metrics for each class,
we should first generate the values for Precision and Recall
using the definitions provided below:

Precision (P) =
TP

TP + FP
(1)

Recall (R) =
TP

TP + FN
(2)

Using the confusionmatrixes in Fig. 13, we repeated the same
approach to get the T.P., TN, F.P., and F.N. values for the
classes in sets X2 and X3, as shown in Table. 3. We have
used Macro Precision and Macro Recall scores to treat all
the classes in a set (X) equally and evaluate the algorithm’s
performance across all the classes in one value.

TABLE 3. True positive, true negative, false positive, false negative,
precision, and recall values of different classes in each set.

The Macro scores are computed by averaging all the pre-
cision and recall values in a set. For example, the Macro
Precision and Recall scores for set X1 are obtained by averag-
ing (94.3+ 90.3+ 96.7) / 3 and (88.5+ 93+ 88) / 3, which is
93.8% and 89.8 %. Similarly, we computed the Macro scores
for sets X2 and X3, yielding 96.03 % and 95.7% for precision
and 93.8% and 93.2% for Recall.

B. VALIDATING THE BA RATIOS WITH MANUAL READINGS
Using the proposed 2D measurement method, the size of
various anatomical structures can be quickly and easily
determined, making it useful for routine clinical practice.
However, it assumes that the structure being measured is
approximately circular on the 2D plane, which may only
sometimes be the case. Also, the root problem with 2D imag-
ing/measurements is that it fails to consider body curvature,
especially for surfaces such as the chest and abdomen, lead-
ing to inaccurate measurements. Therefore, to validate the
proposed methods, we have compared our automated results
with manual measurements from ImageJ software (Table. 4).
The manual measurements are taken from the unprocessed
original scans and done twice (M1 and M2) to consider
potential ‘human error’ during measurements. In geometry,
an ellipse is a closed curve that looks like a stretched-out
circle. It has two main axes: the major axis and the minor
axis. The major axis is the longest diameter of the ellipse
that travels through the center from one end to the other. The
minor axis is the shortest diameter of the ellipse perpendicular
to the major axis. We averaged the major and minor axes’
lengths to get the manual measurements/diameters for the
airway and artery, as shown in Table. 4 The proposed method
requires the object’s contour (ROI coordinates in Table. 4) as
input to perform the measurements. Therefore, we selected
12 disjoint B.A. pairs from the HRCT scans of six subjects (2
each).

The results in Table. 4 shows that the diameters from our
proposedmethods are in agreement with themanualmeasure-
ments, assuring that our methods can provide reliable B.A.
ratios for the detected disjoint B.A. pairs.

IV. LIMITATIONS
While this study provides valuable insights into detecting and
measuring broncho-arterial pairs in pediatric chest C.T. scans,
several limitations should be acknowledged.
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TABLE 4. Automated vs. manual measurements inner airway and artery diameters (in pixels) from 12 B.A. Pairs.

• Sample Size and Diversity: Initially, this research aimed
to develop methods using C.T. scans with a thickness
of 0.67 mm for each available patient. However, due
to the limited availability, we decided to include C.T.
scans of different dimensions (1/2/3/5 mm). Larger and
more diverse cohorts of patients could provide a more
comprehensive understanding of broncho-arterial pairs
in other demographics.

• Variations Between Lobes: The asymmetrical nature of
the lung lobes can lead to variations in the branching pat-
terns of bronchi and arteries between different lobes. For

instance, the left lung, comprised of two lobes, exhibits
distinct branching patterns and dimensions compared
to the right lung’s three lobes. These asymmetries can
pose a challenge in standardizing detection methods for
broncho-arterial pairs across the entirety of the lungs.
We believe that developing airway and artery 3D recon-
struction methods in the future can help to improve
standardization.

• Manual Annotations and Generalizability: While the
study focuses on detection methods, the clinical sig-
nificance or implications of identifying broncho-arterial
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FIGURE 14. Stacking a series of frames with ‘‘ROI’’ to create 3D
reconstructed models of the segments and subsegments between the
branching points (B.P.s) in the bronchial tree and comparing the 3D
measurement methods with 2D for validation.

pairs in children may not have been fully explored. This
will be continued in the future work.

• Validation and Comparison with Gold Standards: There
might be a lack of validation or comparison of the
proposed methods with established gold standards or
alternative techniques. Most of the existing research
into this topic is based on adult cohorts and isolated
scans, and a gold standard for children is still a topic
of discussion. Comparison with state-of-the-art existing
studies and developing 3D reconstruction methods may
lead to better standardization.

• Constraints of 2D Representation: 2D imaging, like
traditional C.T. scans, presents various anatomical struc-
tures of the bronchial tree in a flat two-dimensional
plane), without capturing the curvature in the segments,
sub-segments, and branching points of the bronchial
tree. Assessing the extent of bronchial dilation solely in
2D can lead to inaccuracies, especially when measuring
diameters or evaluating changes over time. Developing
methods to generate reconstructed 3D models of the
bronchial tree can help accurately capture its curvature
and spatial relationships.

These limitations will be addressed in our future work.
We aim to create a diagnostic tool for a specific lobe (lower
lobe) by developing novel 3D reconstruction methods so
that clinically relevant variations in that lobe (segments, sub-
segments, branching points) can be validated with the help of
radiologists and clinical experts of this team.

V. CONCLUSION
In conclusion, the study introduces two novel methods
for detecting and measuring broncho-arterial (B.A.) pairs
in full-length HRCT scans of pediatric patients to assess
increased BAR. To verify the practicability and reliability
of these methods in children of different ages, the study
conducted thorough validation by employing various HRCT
scans (Infants, Early Childhood, and Middle Childhood)

with thicknesses (0.67/1/2/3/5 mm). Metrics such as Pre-
cision and Recall are crucial in evaluating the detection
method, particularly in medical imaging for object detection
and localization. Averaging the precision and Recall scores
obtained for each set yielded 95.17% ((93.8+96.03+95.7)/3)
and 92.27% ((89.8+93.8+93.2)/3), showcasing promising
results. Similarly, the findings from our validation study for
the measurement method also showed encouraging results,
as we observed minimal discrepancies when comparing them
to manual measurements.

Consequently, these methods demonstrate significant
potential to help enhance the domain of pediatric radiology.
More specifically, these methods have the potential to help
characterize additional notable radiographic features associ-
ated with bronchiectasis, such as bronchial wall thickening,
bronchial tapering, and mucus plugging.

VI. FUTURE WORK
Our future work will explore 3D imaging methods, like vol-
umetric C.T. scans or reconstructed 3D models. This may
improve the accuracy, precision, and reliability of assessing
and monitoring changes in the bronchial tree, potentially
leading to more effective diagnosis and treatment plans.

In this research, we have proposed two methods for detect-
ing and measuring the B.A. pairs instead of combining them
into one form. This will allow us to expand our 2D-based
detection method towards reconstructing specific segments
and subsegments in the bronchial tree and comparing the
results from 2D measurement methods with 3D techniques.
Fig. 14 illustrates this.

REFERENCES
[1] A. B. Chang, K. Grimwood, J. Boyd, R. Fortescue, Z. Powell, and

A. Kantar, ‘‘Management of children and adolescents with bronchiectasis:
Summary of the ERS clinical practice guideline,’’ Breathe, vol. 17, no. 3,
Sep. 2021, Art. no. 210105, doi: 10.1183/20734735.0105-2021.

[2] A. B. Chang, A. Bush, and K. Grimwood, ‘‘Bronchiectasis in children:
Diagnosis and treatment,’’ Lancet, vol. 392, no. 10150, pp. 866–879, 2018,
doi: 10.1016/S0140-6736(18)31554-X.

[3] G. B. McCallum and M. J. Binks, ‘‘The epidemiology of chronic suppura-
tive lung disease and bronchiectasis in children and adolescents,’’Frontiers
Pediatrics, vol. 5, p. 27, Feb. 2017, doi: 10.3389/fped.2017.00027.

[4] G. B. McCallum, V. M. Oguoma, L. A. Versteegh, C. A. Wilson, P. Bauert,
B. Spain, and A. B. Chang, ‘‘Comparison of profiles of first nations and
non-first nations children with bronchiectasis over two 5-Year periods in
the northern territory, Australia,’’ Chest, vol. 160, no. 4, pp. 1200–1210,
Oct. 2021, doi: 10.1016/j.chest.2021.04.057.

[5] S. C. L. Hewer, ‘‘Is limited computed tomography the future for imaging
the lungs of children with cystic fibrosis?’’ Arch. Disease Childhood,
vol. 91, no. 5, pp. 377–378, May 2006, doi: 10.1136/adc.2005.086660.

[6] V. Goyal, K. Grimwood, J. Marchant, I. B. Masters, and A. B. Chang,
‘‘Pediatric bronchiectasis: No longer an orphan disease,’’ Pediatric Pul-
monol., vol. 51, no. 5, pp. 450–469, May 2016, doi: 10.1002/ppul.23380.

[7] A. B. Chang, R. Fortescue, K. Grimwood, E. Alexopoulou, L. Bell,
J. Boyd, A. Bush, J. D. Chalmers, A. T. Hill, B. Karadag, F. Midulla,
G. B. McCallum, Z. Powell, D. Snijders, W.-J. Song, T. Tonia, C. Wilson,
A. Zacharasiewicz, and A. Kantar, ‘‘European respiratory society guide-
lines for the management of children and adolescents with bronchiectasis,’’
Eur. Respiratory J., vol. 58, no. 2, Aug. 2021, Art. no. 2002990, doi:
10.1183/13993003.02990-2020.

[8] N. Kapur, J. P. Masel, D. Watson, I. B. Masters, and A. B. Chang, ‘‘Bron-
choarterial ratio on high-resolution CT scan of the chest in children without
pulmonary pathology,’’ Chest, vol. 139, no. 6, pp. 1445–1450, Jun. 2011.

4742 VOLUME 12, 2024

http://dx.doi.org/10.1183/20734735.0105-2021
http://dx.doi.org/10.1016/S0140-6736(18)31554-X
http://dx.doi.org/10.3389/fped.2017.00027
http://dx.doi.org/10.1016/j.chest.2021.04.057
http://dx.doi.org/10.1136/adc.2005.086660
http://dx.doi.org/10.1002/ppul.23380
http://dx.doi.org/10.1183/13993003.02990-2020


A. Beeravolu et al.: Methods for Detection and Measurement of Potential B.A. Pairs

[9] T. L. Badger, ‘‘Bronchiectasis; treatment and prevention,’’ New England
J. Med., vol. 237, pp. 937–941, Jan. 1947.

[10] W. Finke, ‘‘Prospects for prevention of chronic bronchitis and bronchiec-
tasis; rational management of bronchopulmonary infections by penicillin
aerosol therapy,’’ J. Pediatrics, vol. 33, pp. 29–42, Jul. 1948.

[11] C. E. Field, ‘‘Bronchiectasis in childhood: II. Aetiology and pathogenesis,
including a survey of 272 cases of doubtful irreversible bronchiectasis,’’
Pediatrics, vol. 4, pp. 231–248, Jul. 1949.

[12] E. A. Gaillard, H. Carty, D. Heaf, and R. L. Smyth, ‘‘Reversible bronchial
dilatation in children: Comparison of serial high-resolution computer
tomography scans of the lungs,’’Eur. J. Radiol., vol. 47, no. 3, pp. 215–220,
Sep. 2003.

[13] H. Ouellette, ‘‘The signet ring sign,’’ Radiology, vol. 212, no. 1, pp. 67–68,
Jul. 1999.

[14] A. Brody and A. Chang, ‘‘The imaging definition of bronchiectasis in
children: Is it time for a change?’’ Pediatric Pulmonol., vol. 53, no. 1,
pp. 6–7, Jan. 2018.

[15] S. Matsuoka, K. Uchiyama, H. Shima, N. Ueno, S. Oish, and Y. Nojiri,
‘‘Bronchoarterial ratio and bronchial wall thickness on high-resolution
CT in asymptomatic subjects: Correlation with age and smoking,’’ Amer.
J. Roentgenol., vol. 180, no. 2, pp. 513–518, Feb. 2003.

[16] T. Fischer, Y. E. Baz, N. Graf, S. Wildermuth, S. Leschka, G.-R. Kleger,
U. Pietsch, M. Frischknecht, G. Scanferla, C. Strahm, S. Wälti,
T. J. Dietrich, and W. C. Albrich, ‘‘Clinical and imaging features of
COVID-19-Associated pulmonary aspergillosis,’’ Diagnostics, vol. 12,
no. 5, p. 1201, May 2022.

[17] V. Goyal and A. B. Chang, ‘‘Bronchiectasis in childhood,’’ Clinics Chest
Med., vol. 43, no. 1, pp. 71–88, 2022.

[18] L. He, X. Ren, Q. Gao, X. Zhao, B. Yao, and Y. Chao, ‘‘The connected-
component labeling problem: A review of state-of-the-art algorithms,’’
Pattern Recognit., vol. 70, pp. 25–43, Oct. 2017.

[19] E. W. Weisstein, ‘‘Grid graph. From MathWorld—A wolfram web
resource,’’ Wolfram Research, Inc., IL, USA, 2012. [Online]. Available:
https://mathworld.wolfram.com/GridGraph.html

[20] R. Davies, ‘‘Anne chang: A champion of childhood lung health,’’ Lancet,
vol. 392, no. 10150, p. 811, Sep. 2018.

[21] M. Prasad, A. Sowmya, and P. Wilson, ‘‘Automatic detection of bronchial
dilatation in HRCT lung images,’’ J. Digit. Imag., vol. 21, no. S1,
pp. 148–163, Oct. 2008.

[22] B. L. Odry, A. P. Kiraly, C. L. Novak, D. P. Naidich, and J. F. Lerallut,
‘‘An evaluation of automated broncho-arterial ratios for reliable assessment
of bronchiectasis,’’ Proc. SPIE, vol. 6915, pp. 807–815, Mar. 2008.

[23] Z. Naseri, S. Sherafat, H. Abrishami Moghaddam, M. Modaresi, N. Pak,
and F. Zamani, ‘‘Semi-automatic methods for airway and adjacent vessel
measurement in bronchiectasis patterns in lung HRCT images of cystic
fibrosis patients,’’ J. Digit. Imag., vol. 31, no. 5, pp. 727–737, Oct. 2018.

[24] G. G. King, N. L. Müller, K. P. Whittall, Q.-S. Xiang, and P. D. Paré,
‘‘An analysis algorithm for measuring airway lumen and wall areas from
high-resolution computed tomographic data,’’ Amer. J. Respiratory Crit.
Care Med., vol. 161, no. 2, pp. 574–580, Feb. 2000, doi: 10.1164/ajr-
ccm.161.2.9812073.

[25] E. U. Mumcuoglu, J. Prescott, B. N. Baker, B. Clifford, F. Long, R. Castile,
and M. N. Gurcan, ‘‘Image analysis for cystic fibrosis: Automatic lung
airway wall and vessel measurement on CT images,’’ in Proc. Annu. Int.
Conf. IEEE Eng. Med. Biol. Soc., Sep. 2009, pp. 3545–3548.

[26] Y.Nakano, S.Muro, H. Sakai, T. Hirai, K. Chin,M. Tsukino, K. Nishimura,
H. Itoh, P. D. Paré, J. C. Hogg, and M. Mishima, ‘‘Computed tomographic
measurements of airway dimensions and emphysema in smokers: Correla-
tion with lung function,’’ Amer. J. Respiratory Crit. Care Med., vol. 162,
no. 3, pp. 1102–1108, Sep. 2000, doi: 10.1164/ajrccm.162.3.9907120.

[27] O. Weinheimer, T. Achenbach, C. Bletz, C. Duber, H.-U. Kauczor, and
C. P. Heussel, ‘‘About objective 3-D analysis of airway geometry in com-
puterized tomography,’’ IEEE Trans. Med. Imag., vol. 27, no. 1, pp. 64–74,
Jan. 2008, doi: 10.1109/TMI.2007.902798.

[28] R. S. J. Estépar, G. G. Washko, E. K. Silverman, J. J. Reilly, R. Kikinis,
and C.Westin, ‘‘Accurate airwaywall estimation using phase congruency,’’
in Proc. Int. Conf. Med. Image Comput. Comput.-Assist. Intervent. Berlin,
Germany: Springer, 2006, pp. 1–10.

[29] O. I. Saba, E. A. Hoffman, and J. M. Reinhardt, ‘‘Maximizing quantitative
accuracy of lung airway lumen and wall measures obtained from X-ray CT
imaging,’’ J. Appl. Physiol., vol. 95, no. 3, pp. 1063–1075, Sep. 2003, doi:
10.1152/japplphysiol.00962.2002.

[30] L. He, Y. Chao, K. Suzuki, and K. Wu, ‘‘Fast connected-component
labeling,’’ Pattern Recognit., vol. 42, no. 9, pp. 1977–1987, Sep. 2009.

[31] ACR-STR Practice Parameter for the Performance of High-Resolution
Computed Tomography (HRCT) of the Lungs in Adults, American College
of Radiology, Reston, VA, USA, 2019.

[32] S. Rizvi, C. J. Wehrle, and M. A. Law, ‘‘Anatomy, thorax, medi-
astinum superior and great vessels,’’ in StatPearls [Internet]. Treasure
Island, FL, USA: StatPearls Publishing, Jan. 2022. [Online]. Available:
https://www.ncbi.nlm.nih.gov/books/NBK519576/

[33] I. J. C. Hartmann and N. J. Screaton, ‘‘Pulmonary circulation
and pulmonary thromboembolism,’’ in Grainger & Allison’s
Diagnostic Radiology, 2 Volume Set E-Book, 7th ed. Amsterdam,
The Netherlands: Elsevier, 2020. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/B9780702033896000228

[34] S. Standring, Pleura, Lungs, Trachea and Bronchi, Gray’s Anatomy
E-Book: The Anatomical Basis of Clinical Practice. Amsterdam,
The Netherlands: Elsevier, 2021.

[35] K. Wu, E. Otoo, and K. Suzuki, ‘‘Optimizing two-pass connected-
component labeling algorithms,’’ Pattern Anal. Appl., vol. 12, no. 2,
pp. 117–135, Jun. 2009.

[36] M. Skalski, ‘‘Lobar and segmental bronchial anatomy,’’ Case Study.
Accessed: Aug. 2023. [Online]. Available: https://doi.org/10.53347/rID-
23285

[37] S. Guo, X. Liu, H. Zhang, Q. Lin, L. Xu, C. Shi, Z. Gao, A. Guzzo,
and G. Fortino, ‘‘Causal knowledge fusion for 3D cross-modality cardiac
image segmentation,’’ Inf. Fusion, vol. 99, Nov. 2023, Art. no. 101864.

[38] Y. Zhang, Q. Liao, L. Ding, and J. Zhang, ‘‘Bridging 2D and 3D seg-
mentation networks for computation-efficient volumetric medical image
segmentation: An empirical study of 2.5D solutions,’’ Computerized Med.
Imag. Graph., vol. 99, Jul. 2022, Art. no. 102088.

[39] A. Liew and H. Yan, ‘‘Current methods in the automatic tissue segmenta-
tion of 3D magnetic resonance brain images,’’ Current Med. Imag. Rev.,
vol. 2, no. 1, pp. 91–103, Feb. 2006.

[40] S. Zhao, X.Wu, B. Chen, and S. Li, ‘‘Automatic vertebrae recognition from
arbitrary spineMRI images by a category-consistent self-calibration detec-
tion framework,’’Med. Image Anal., vol. 67, Jan. 2021, Art. no. 101826.

[41] J. Jang and D. Hwang, ‘‘M3T: Three-dimensional medical image classifier
using multi-plane and multi-slice transformer,’’ in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2022, pp. 20686–20697.

[42] R. Siega, E. J. R. Justino, J. Facon, F. Bortolozzi, and L. R. Aguiar,
‘‘Automatic volumetric segmentation of encephalon by combination of
axial, coronal, and sagittal planes,’’ Res. Comput. Sci., vol. 147, no. 4,
pp. 111–123, Dec. 2018.

[43] S. Zhuang, F. Li, A. N. J. Raj, W. Ding, W. Zhou, and Z. Zhuang,
‘‘Automatic segmentation for ultrasound image of carotid intimal-media
based on improved superpixel generation algorithm and fractal theory,’’
Comput. Methods Programs Biomed., vol. 205, Jun. 2021, Art. no. 106084.

[44] J. Chen, L. Yang, Y. Zhang, M. Alber, and D. Z. Chen, ‘‘Combining fully
convolutional and recurrent neural networks for 3D biomedical image
segmentation,’’ in Proc. Adv. Neural Inf. Process. Syst., vol. 29, 2016,
pp. 3036–3044.

[45] P. Mlynarski, H. Delingette, A. Criminisi, and N. Ayache, ‘‘3D convo-
lutional neural networks for tumor segmentation using long-range 2D
context,’’Computerized Med. Imag. Graph., vol. 73, pp. 60–72, Apr. 2019.

ABHIJITH REDDY BEERAVOLU is currently
pursuing the Ph.D. degree in biomedical engineer-
ing with Charles Darwin University, Casuarina,
NT, Australia. His thesis is on ‘‘Providing inter-
pretability for diverse medical AI systems.’’
This requires working with real-world medi-
cal data encompassing images, videos, clini-
cal records, and text to create diagnostic tools
and model-specific interpretability techniques.
He aims to improve local and global communities

by generating innovative ideas to address real-world challenges.

VOLUME 12, 2024 4743

http://dx.doi.org/10.1164/ajrccm.161.2.9812073
http://dx.doi.org/10.1164/ajrccm.161.2.9812073
http://dx.doi.org/10.1164/ajrccm.162.3.9907120
http://dx.doi.org/10.1109/TMI.2007.902798
http://dx.doi.org/10.1152/japplphysiol.00962.2002


A. Beeravolu et al.: Methods for Detection and Measurement of Potential B.A. Pairs

SAMI AZAM is currently a leading Researcher
and a Senior Lecturer with the Faculty of Sci-
ence and Technology, Charles Darwin University,
Casuarina, NT, Australia. He is also actively
involved in computer vision, signal processing,
artificial intelligence, and biomedical engineer-
ing research. He has several publications in
peer-reviewed journals and international confer-
ence proceedings.

MIRJAM JONKMAN (Member, IEEE) is cur-
rently a Lecturer and a Researcher with the Faculty
of Science and Technology, Charles Darwin Uni-
versity, Casuarina, NT, Australia. Her research
interests include biomedical engineering, signal
processing, and the application of computer sci-
ence to real-life problems.

I. BRENT MASTERS has been a Pediatric Respi-
ratory Physician in Calgary, Canada, and Brisbane,
Australia, since 1984. He has been the Head or
the Director of Pediatric Respiratory Medicine at
major hospitals in Brisbane, since 1987, he has
extensive clinical expertise, including outreach
work in aboriginal and Torres Strait Island com-
munities. His specializations include flexible bron-
choscopy, respiratory teaching, and integrating
C.T. and bronchoscopy 3D anatomy. He has

trained professionals from nine countries, conducted workshops, and con-
tributed to over 150 peer-reviewed publications. Additionally, he has served
as anAdvisor and a CommitteeMember for the Thoracic Society of Australia
and New Zealand (TSANZ) and Royal Australasian College of Physicians
(RACP) on matters related to pediatric bronchoscopy training. He completed
the thoracic medicine training in Melbourne and gained additional experi-
ence in Calgary.

RAHUL J. THOMAS is a Respiratory and Sleep
Pediatrician with Queensland Children’s Hospital,
Brisbane. He is also a NHMRC Ph.D. Scholar
with the Queensland University of Technology
Hospital Foundation, supported by Queensland
Hospital Foundation, and the CRE in his field of
interest, i.e., large airway diseases, and diagnostic
modalities of flexible bronchoscopy and thoracic
radiology.

ANNE B. CHANG is currently a Senior Staff
Specialist with Queensland Children’s Hospital,
Brisbane. She leads the Cough and Airways
Group, Queensland University of Technology. She
is also the Leader of the Child Health Division,
Menzies School of Health Research at Darwin,
Darwin. She is also a Clinician recognized for her
research contributions to evidence-based manage-
ment and clinical care in pediatric cough, asthma,
bronchiectasis, and indigenous child lung health.

Her original works include the world’s first description of protracted bac-
terial bronchitis and international multicenter trials involving children with
bronchiectasis. She has been a NHMRC Practitioner Fellow, since 2004,
and has published over 580 articles. Her primary research interests include
undertaking clinical research that improves indigenous health management,
cough, and suppurative lung disease in children.

GABRIELLE B. MCCALLUM is currently a Senior
Research Fellow, a Senior Lecturer, and the Pro-
gram Leader of the Child Health Respiratory
Team, Menzies School of Health Research at
Darwin, Darwin. With a career spanning more
than two decades in the NT, USA, she is also
dedicating to enhancing clinical outcomes for
children susceptible to adverse lung health out-
comes, primarily by addressing early and recurrent
acute lower respiratory infections. Her approach

involves conducting evidence-based research, developing culturally relevant
educational materials, and translating research results into meaningful and
culturally appropriate outcomes. Her expertise has extended beyond national
boundaries, with her contributions recognized nationally and internation-
ally, including in regions, such as New Zealand, Alaska, Malaysia, and
Timor-Leste.

FRISO DE BOER is currently a Professor in
engineering with the Faculty of Science and Tech-
nology, Charles Darwin University, Casuarina,
NT, Australia. His research interests include
signal processing, biomedical engineering, and
mechatronics.

4744 VOLUME 12, 2024


