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ABSTRACT Tumor samples clustering based on subspace segmentation is an effective method to discover
cancer subtypes. Accurate and reliable identifications of cancer subtypes are crucial for understanding cancer
pathogenesis as well as clinical diagnosis and treatment. Joint learning-based subspace clustering methods
utilize the high correlation between data affinity and data segmentation for better clustering results. However,
existing joint learning-based methods only provide an approximation of the segmentation cost in the joint
optimization term, which could lead to sub-optimal results. To address this problem, we propose an algorithm
named joint learning of spectral clustering and low-rank representation based on precise segmentation
cost (JLSLPS) for cancer subtype identification. In our method, we impose non-negative and symmetric
constraints on the low-rank representation matrix so that the representation coefficient can be equivalent to
data affinity for the precise representation of segmentation cost. Therefore, the spectral clustering objective
can be represented precisely to guide the learning of data affinity and segmentation more effectively. Finally,
we solve the optimization problem of JLSLPS by using the linearized alternating direction method with
adaptive penalty. We run JLSLPS on 8 cancer gene expression datasets and used 9 state-of-the-art clustering
methods for comparison. Experimental results show that our method can increase ACC by 1.00-7.95% and
NMI by 2.7-12.22% compared with the other methods, which proves the superiority of the proposed method.

INDEX TERMS Low-rank representation, spectral clustering, joint learning, gene expression data, cancer
subtype identification.

I. INTRODUCTION
Cancer, as one of the most malignant diseases since the
21st century, has been a key concern and research challenge
for the medical community [1]. Several studies have shown
that tumor samples clustering can be used to discover the
pathological characteristics of the samples and thus identify
biologically significant cancer subtypes. Therefore, it is
important for understanding the pathogenesis of cancer and
promoting personalized cancer therapy [2], [3], [4], [5].

The associate editor coordinating the review of this manuscript and

approving it for publication was Wentao Fan .

Cancer gene expression data are characterized by a small
sample size and a high feature dimensionality [6], which
makes it challenging to cluster efficiently and accurately.
In recent years, several scholars have found that it is
promising to explore the cluster structure of high-dimensional
data in the sub-feature spaces [7], [8], [9], [10], [11].
Generally, there are two most representative methods among
the popular subspace clustering methods, which are sparse
subspace clustering (SSC) [12] and low-rank representation
subspace clustering (LRR) [13], [14]. Both methods apply
the self-representation property of the data, i.e., using the
data itself as a dictionary. Specifically, SSC learns a sparse
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self-representation matrix by imposing l1 norm on the
representation coefficients, while LRR adopts the nuclear
norm as a convex approximation of the rank function
to construct a low-rank representation matrix. SSC only
considers the sparse representation of the data in each
subspace, lacking the ability to capture the global structure
of the data [15]. Besides, LRR is derived from a strict
mathematical proof [16]. Therefore, LRR has become a
research focus in subspace clustering and has been widely
used in image processing and tumor samples clustering [8],
[15], [16], [17], [18], [19].

One of the challenges of LRR is to construct a representa-
tion model that can reveal the true subspace structure of high-
dimensional data [11]. A couple of methods focus on propos-
ing various constraints. For example, in literatures [20], [21],
and [22], the sparse, non-negative, symmetric constraints
are used respectively to enhance the discriminability of the
representation matrix. Besides, several methods consider
introducing different regularizations into LRR, such as [8],
[19], [23], [24], and [25]. In [23], the compound schatten
p-norm is used to replace the nuclear norm to induce
adaptive affinity matrix. The rest of the methods utilize
graph Laplacian regularization based on manifold learning
to capture local information of data. Noting that the
above methods fail to utilize the high correlation between
data affinity and data segmentation, the structured sparse
subspace clustering (S3C) [26] is presented to co-optimize
the representation matrix and segmentation matrix of spectral
clustering. Consequently, a series of subspace clustering
methods based on the joint learning framework of S3C
have been proposed [27], [28], [29]. However, the subspace
structured norm causes the approximate representation of
the segmentation cost of data in the joint learning frame-
work. Therefore, these methods fail to precisely measure
the disagreement between the representation matrix and
segmentation matrix, which directly affects the clustering
performance.

In view of the mentioned discussions, we attempt to design
an algorithm that could precisely represent the segmentation
cost of data for joint learning. Inspired by the subspace
structured norm in S3C, we consider improving the joint
optimization term so that it can be an equivalent replacement
for the objective function for spectral clustering. To this
end, we propose a method called joint learning of spectral
clustering and low-rank representation based on precise
segmentation cost (JLSLPS). Specifically, we impose non-
negative and symmetric constraints on the representation
matrix. This idea is mainly motivated by the fact that, when
both constraints are imposed, the representation coefficients
can be equivalently transformed into the data affinity. Thus,
the spectral clustering objective can be represented precisely
in the joint learning framework. It greatly differs from
the subspace structured norm in S3C. The improved joint
optimization term contains precise rather than approximate
segmentation cost of data, thereby enhancing the clustering
performance. For simplicity, we give the abbreviations and

their corresponding full names in Table 1. The specific
contributions of our work are as follows:

TABLE 1. Abbreviations and their full names.

(1) The proposed algorithm makes full use of the high
correlation between the representation matrix and segmenta-
tion matrix to learn them jointly under a unified framework.
On this foundation, we utilize non-negative and symmetric
constraints to improve the joint optimization term, which
leads it to be equivalent to the spectral clustering objective
for precisely describing the cost of segmentation.

(2) We design a loop iteration solution for the optimization
of the proposed algorithm. We introduce manifold learning
into LRR and solve for a better representation matrix by
LADMAP. Then, we use spectral clustering to obtain a
segmentationmatrix and utilize it to update the representation
matrix for the next iteration.

(3) We construct several multi-cancer integrated datasets
using data from The Cancer Genome Atlas (TCGA) to
perform comparative experiments. We also perform compar-
ative experiments with clustering visualization at different
numbers of clusters. The experimental results demonstrate
the practical significance of our work in the field of cancer
subtype identification.
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II. RELATED WORK
A. LOW-RANK REPRESENTATION (LRR)
Low-rank representation (LRR) is a subspace clustering
method widely used for data mining. Its main idea is to
represent data samples as linear combinations of dictionary
data and find the lowest-rank representation of the data [14],
[23]. LRR assumes that the data X = [x1, x2, . . . , xn] ∈Rm×n

are sampled from a union of d orthogonal subspaces∪dj=1Sj in
the data space, where X contains m features and n samples as
its rows and columns. It uses the rank of a matrix to measure
its sparsity, and the model is represented as follows [14]:

min
Z ,E
∥Z∥∗ + λ∥E∥2,1 s.t. X = XZ + E (1)

where Z ∈ Rn×n is the low-rank representation matrix and zi
is the coefficient vector of datum x i represented by other data.
∥Z∥∗ is the nuclear norm of Z as a convex approximation of
its rank, i.e., the sum of all singular values of the matrix [14].
E ∈Rm×n is the error matrix and ∥E∥2,1 is the l2,1 norm of E
to describe sample-specific corruptions. λ > 0 is the penalty
parameter used to balance the role of each part in Eq. (1). The
constraint is a self-representation of the data choosing data
matrix X itself as the dictionary. Then, the affinity matrix can
be constructed by the representation matrix as the input for
spectral clustering.

Ideally, the representation matrix Z learned by LRR with
a block diagonal structure can describe the global structure
of the data well, which can lay a solid foundation for the
subsequent clustering analysis [15], [16], [17]. However,
LRR ignores the local geometric information implicit in
the data and their neighbors [19], [24], [25]. Therefore,
we attempt to solve this problem to achieve better clustering
results.

B. SUBSPACE CLUSTERING BASED ON JOINT LEARNING
The subspace clustering methods based on joint learning
utilize the intrinsic connection between the data affinity and
data segmentation to learn the representation matrix and
segmentation matrix in a joint optimization framework. The
representative method of these methods [26], [27], [28], [29]
is structured sparse subspace clustering (S3C) [26].
The S3C algorithm first defines a binary segmentation

matrix Q ∈ Rn×d , in which the element qij denotes the
membership of sample x i to subspace S j. If x i belongs to S j,
then qij = 1; otherwise, qij = 0. This segmentation matrix
should satisfy Q ∈ �, where � = {Q ∈ {0,1}n×d : Q1 = 1,
rank(Q) = d}. After learning the representation matrix Z , the
affinity matrix can be calculated based on Eq. (2):

A =
1
2

(
|Z | +

∣∣∣Z⊤∣∣∣) (2)

where |Z | indicates the absolute value matrix.
It can be seen that the affinity matrix A is symmetric

with all elements positive. Besides, spectral clustering [30]
relaxes the constraint onQ toQ⊤Q= I , thus, the optimization

objective of spectral clustering can be expressed as:

min
Q

1
2

∑
i,j

aij
∥∥Qi,: − Qj,:∥∥22 s.t. Q⊤Q = Id (3)

where Qi,: is the i-th row of Q, Id is the identity matrix with
size d × d .
To reflect the connection between data affinity and

segmentation, S3C defines the following subspace structured
norm:

∥Z∥Q
.
=

∑
i,j

∣∣zij∣∣ (12 ∥∥Qi,: − Qj,:∥∥22
)
= ∥2⊙ Z∥1 (4)

where 2 ∈ Rn×n is the subspace structure matrix with
element θi,j = (∥Qi,: − Qj,:∥22)/2, ⊙ denotes the Hadamard
product. Then, Li et al. constructed the S3C model based on
SSC with the following objective function [26]:

min
Z,E,Q

∥Z∥1 + ω∥Z∥Q + λ∥E∥1

s.t. X = XZ+ E, diag(Z) = 0,Q⊤Q = I (5)

where ω and λ are non-negative penalty parameters. S3C is
a generalization of the standard SSC by adding ∥Z∥Q
as the joint optimization term. The method integrates
the optimization of the representation matrix and spectral
clustering into a unified optimization framework, utilizing
these two to guide their iterations of each other.

III. PROPOSED METHOD
Despite the success of the existing subspace clustering
methods based on joint learning [26], [27], [28], [29], they
have a common drawback, that is, they fail to precisely
incorporate the segmentation cost into the joint learning
framework. It can be seen that the subspace structured norm
∥Z∥Q replaces aij in Eq. (3) with |zij|, so ∥Z∥Q is only
an approximation of the segmentation cost. This problem
undoubtedly affects the performance of joint learning.
As pointed out in the literature [12] and [22], when using
|Z | as the pairwise affinity relationships directly, some
data in the same subspace may not necessarily be chosen
to represent each other, this inevitably leads to loss of
intrinsic correlation of data. Therefore, in this paper, a joint
learning of spectral clustering and low-rank representation
based on precise segmentation cost (JLSLPS) is proposed
for the cluster analysis of cancer gene expression data.
By imposing non-negative and symmetric constraints on the
representation matrix, JLSLPS enables the representation
coefficients to equivalently replace the data affinity in the
joint optimization term. Therefore, the segmentation cost is
precisely described in the joint learning framework, which
can effectively overcome the above-mentioned limitation and
further enhance the clustering performance.

A. PROPOSED OBJECTIVE FUNCTION
In this paper, from the perspective of improving the precision
of the segmentation cost in joint learning, the proposed
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JLSLPS algorithm imposes non-negative and symmetric
constraints on the low-rank representation matrix Z . In this
case, the representation coefficients in Z can be directly used
as the affinity between data. Therefore, the spectral clustering
objective Eq. (3) can be rewritten in the following form:

min
Q

1
2

∑
i,j

zij
∥∥Qi,: − Qj,:∥∥22

s.t. Z = Z⊤,Z ≥ 0,Q⊤Q = I (6)

Eq. (6) is the spectral clustering objective, aiming to
find the segmentation matrix Q that minimizes the cost
of data partition. Moreover, it precisely quantifies the
interdependence between matrices Z and Q. It can be seen
that if Q is correct and Z reflects the true subspace structure
of data, then Eq. (6) is equal to zero; otherwise, Eq. (6) is
positive, in which case the data partition with the minimum
cost can be found. The proposed JLSLPS algorithm imposes
the non-negative and symmetric constraints on Z for the
following two reasons:

1) The non-negative and symmetric constraints guarantee
the elements in Z strictly satisfy |zij| = zij and zij = zji.
Therefore, according to Eq. (2), the data affinity aij in Eq. (3)
can be replaced equivalently by the representation coefficient
zij to describe the segmentation cost. Compared with the
subspace structure norm defined in Eq. (4), Eq. (6) is fully
equivalent to the spectral clustering objective, which can
precisely reflect the interdependence between representation
coefficients and segmentation.

2) Applying non-negative constraint on Z is beneficial
to obtain a more interpretative representation matrix and
prevent negative representation coefficients from affecting
data partition [21]. Besides, the symmetric low-rank rep-
resentation can guarantee the consistency of the affinity
of data pairs. Thus, the symmetric constraint imposed on
Z is favorable for preserving the subspace structure of
high-dimensional data and learning a more discriminative
representation matrix [22].

In this paper, we introduce Eq. (6) into the low-rank rep-
resentation subspace clustering as a joint optimization term,
which is used to measure the correlation of representation
coefficients and segmentation. The objective function of the
proposed JLSLPS algorithm is as follows:

min
Z,E,Q
∥Z∥∗ + λ1∥Z∥1 +

α

2

∑
i,j

zij
∥∥Qi,: − Qj,:∥∥22

+ λ2tr
(
ZLZ⊤

)
+ λ3∥E∥1

s.t . X = XZ+ E,Z = Z⊤,Z ≥ 0,Q⊤Q = I (7)

where λ1, λ2, λ3, and α are positive penalty parameters.
The first term of Eq. (7) is the same as LRR, which plays
a key role in capturing the global low-rank structure of the
high-dimensional data. The second term is a sparse constraint
based on l1 norm, whose aim is to weaken the affinity
of inter-class data and partition similar data into the same
subspace. The third term is the joint optimization term based

on Eq. (6), which exploits the row information of Q to guide
the learning of Z and achieve the co-optimization of Z andQ.
The fourth term is the graph regularization based on manifold
learning to capture the local manifold structure of data [8],
[19], [24], [25]. Finally, the error term is adjusted from ∥E∥2,1
to ∥E∥1 as suggested by literatures [8] and [25], which is used
to portray the sparse random noise in cancer gene expression
data.

Based on the objective function, the proposed JLSLPS
algorithm establishes a joint learning framework for represen-
tationmatrix Z and segmentationmatrixQ. By imposing non-
negative and symmetric constraints on Z , the proposed joint
learning framework enables Z to be more diagonal, which
helps to learn Q closer to the real partition. Additionally,
spectral clustering can be regarded as a process of obtaining
the partition by denoising [7], [26], so feeding back Q to Z
can correct some of the errors in Z . Therefore, the partition
information from the previous step can be used as a better
initialization to enhance the discriminability of Z . When the
termination criterion is met, we impose K-means clustering
on Q to obtain the final clustering results.

B. OPTIMIZATION OF OBJECTIVE FUNCTION
For the JLSLPS model (7) proposed in this paper, the fol-
lowing two sub-problems are solved by using an alternating
optimization strategy to achieve joint learning:

1) Fix Q and solve the model (7) to learn Z and E .
2) Fix Z and E and solve the spectral clustering problem

to learn Q.
For sub-problem 1), the linearized alternating direction

method with adaptive penalty (LADMAP) [31] is used for
solving the problem. First, the second and third terms of the
model (7) are combined to simplify the optimization process:

λ1∥Z∥1 +
α

2

∑
i,j

zij
∥∥Qi,: − Qj,:∥∥22 = ∥(λ1I + α2)⊙ Z∥1

(8)

Second, we introduce the auxiliary variable J to make
the objective function Eq. (7) separable, and consider the
following equivalent optimization problem:

min
Z,E,J
∥Z∥∗ + ∥(λ1I + α2)⊙ J∥1 + λ2tr

(
ZLZ⊤

)
+ λ3∥E∥1

s.t. X = XZ+ E,Z = Z⊤,Z ≥ 0,Z = J (9)

Then, Eq. (9) can be converted into an unconstrained
optimization problem by using the augmented Lagrange
multiplier (ALM) [32]. The augmented Lagrangian function
is:

L (Z,E, J,Y1,Y2) = ∥Z∥∗ + ∥(λ1I + α2)⊙ J∥1

+ λ2tr
(
ZLZ⊤

)
+ λ3∥E∥1+ < Y1,X

− XZ− E > + < Y2,Z− J >

+
µ

2
∥X − XZ− E∥2F +

µ

2
∥Z− J∥2F

(10)
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where <A,B >= tr(A⊤B) is the inner product of thematrices,
Y 1 and Y 2 are Lagrange multipliers, µ > 0 is the penalty
parameter. Further, Eq. (10) is divided into three optimization
problems to be solved separately.

Update Z : Fix the other variables in Eq. (10), and update
Z by the following problem:

min
Z=Z⊤

∥Z∥∗ + λ2tr
(
ZLZ⊤

)
+ < Y1,X − XZ− E >

+ < Y2,Z− J > +
µ

2
∥X − XZ− E∥2F

+
µ

2
∥Z− J∥2F (11)

First, define the following formula:

f (Z) = λ2tr
(
ZLZ⊤

)
+

µ

2

∥∥∥∥X − XZ− E+ Y1

µ

∥∥∥∥2
F

+
µ

2

∥∥∥∥Z− J + Y2

µ

∥∥∥∥2
F

(12)

Let Z (k ) be the representation matrix obtained at the k-th
iteration, we derive the first derivative of f (Z ) with respect to
Z (k ) as:

∂f (Z)(k)

∂Z(k)
= λ2

(
Z(k)L+ Z(k)L⊤

)
+ µ(k)X⊤

(
XZ(k) − X + E(k)

−
Y (k)
1

µ(k)

)

+ µ(k)

(
Z(k) − J (k) +

Y (k)
2

µ(k)

)
(13)

According to LADMAP, Eq. (11) can be replaced by
solving the following problem:

min
Z=Z⊤

∥Z∥∗+ <
∂f (Z)(k)

∂Z(k)
,Z− Z(k) > +

η

2

∥∥∥Z− Z(k)∥∥∥2
F

(14)

where η = 2λ2∥L∥2 + µ(k)(1 + ∥X∥22). Then, Eq. (14) is
transformed as follows:

min
Z=Z⊤

1
η
∥Z∥∗ +

1
2

∥∥∥∥Z− (Z(k) − ∂f (Z)(k)

∂Z(k)
/η

)∥∥∥∥2
F

(15)

Equation (15) is solved by the following lemma:
Lemma [22]: Given a square matrix H ∈ Rn×n, the unique

closed-form solution to the optimization problem:

argmin
G

1
ϕ
∥G∥∗ +

1
2
∥G−H∥2F s.t. G = G⊤ (16)

takes this form:

G∗ = Ur

(
6r −

1
ϕ
Ir

)
V⊤r , (17)

We set H̃ = (H + H⊤)/2, H̃ = U r6rV⊤r is the skinny
singular value decomposition (SVD) of the matrix H̃ . 6r =

diag(δ1, δ2, . . . ,δr ), δr is a singular value larger than 1/ϕ, U r
and V r are the corresponding singular vectors of H̃ .

According to the above lemma, we set

Z̃(k+1) =

((
Z (k)
−

∂f (Z )(k)

∂Z (k) /η
)
+

(
Z (k)
−

∂f (Z )(k)

∂Z (k) /η
)⊤)

2
(18)

and perform the SVD on Z̃ (k+1) as Z̃ (k+1)
= U6V . The

diagonal elements of 6 are singular values larger than 1/η,
then the solution of Z (k+1) is:

Z(k+1) = U
(

6 −
1
η
I
)
V⊤ (19)

We then impose a non-negative constraint on Z (k+1) as
follows:

Z (k+1)
i,j =

{
Z(k+1)i,j , Z (k+1)

i,j ≥ 0

0, otherwise
(20)

Update J : Fix the other variables in Eq. (10), and update J
using the following problem:

min
J
∥(λ1I + α2)⊙ J∥1+ < Y2,Z− J > +

µ

2
∥Z− J∥2F

(21)

Then, we transform Eq. (21) into the following formula:

J (k+1) = argmin
J

1
µ(k)

∥∥∥(λ1I + α2)⊙ J (k)
∥∥∥
1

+
1
2

∥∥∥∥∥J (k) −
(
Z(k+1) +

Y (k)
2

µ(k)

)∥∥∥∥∥
2

F

(22)

We use the singular value thresholding (SVT) [33] to solve
Eq. (22). Let P(k+1) = Z (k+1)

+ Y 2
(k)/µ(k), the closed-form

solution of J (k+1) can be found as:

J (k+1)i,j = Sλ1+αθij
µ(k)

P(k+1)i,j (23)

where Sτ (u) is the shrinkage thresholding operator defined
as Sτ (u) = sgn(u) · max(|u| - τ , 0).
Update E : Fix the other variables in Eq. (10), and update

E using the following problem:

min
E

λ3∥E∥1+ < Y1,X − XZ− E > +
µ

2
∥X − XZ− E∥2F

(24)

Similar to the optimization of J , Eq. (24) is firstly
transformed as:

E (k+1)
= argmin

E

1
µ(k)

∥∥∥E(k)
∥∥∥
1

+
1
2

∥∥∥∥∥E(k)
−

(
X − XZ(k+1) +

Y (k)
1

µ(k)

)∥∥∥∥∥
2

F

(25)

The closed-form solution of E (k+1) can be found as:

E(k+1)
= S λ3

µ(k)

(
X − XZ(k+1) +

Y (k)
1

µ(k)

)
(26)
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Algorithm 1 Solving Problem (9) by LADMAP
Input:
Data matrix X , parameters λ1, λ2, λ3, and α

Initialize:
Z (0) = J (0) = E (0) = 2(0) = Y 1

(0) = Y 2
(0) = 0, µ(0) = 10−2,

µmax = 106, ρ0 = 2, ε1 = 10−6, ε2 = 10−2, the number of
iteration k = 0
while not converged do
(1) Update Z (k+1), J (k+1), E (k+1) by (19), (23) and (26);
(2) Update Y 1

(k+1) and Y 2
(k+1):

Y (k+1)
1 = Y (k)

1 + µ(k)
(
X − XZ(k+1) − E(k+1)

)
Y (k+1)
2 = Y (k)

2 + µ(k)
(
Z(k+1) − J (k+1)

)
(3) Update

µ(k+1)
← min

(
µmax, ρ(k)µ(k)

)
where

ρ(k)
=

{
ρ0, if b ≤ ε2
1, otherwise

b = max
{
ηlZ , µ(k)lJ , µ(k)lE

}
[3pt]lZ =

∥∥∥Z (k+1)
− Z (k)

∥∥∥
1

lJ =
∥∥∥J (k+1) − J (k)∥∥∥

1

lE =
∥∥∥E (k+1)

− E (k)
∥∥∥
1

(4) Check the convergence condition∥∥X − XZ (k+1)
− E (k+1)

∥∥
1

∥X∥1
< ε1

or b < ε2, if not converged,then set k← k + 1
end while
Output: Z (k+1) and E (k+1)

The procedure for solving the matrices Z and E is outlined
in Algorithm 1.

For sub-problem 2), after obtaining the matrices Z
and E , the JLSLPS model (7) can be transformed
into:

min
Q

1
2

∑
i,j

zij
∥∥Qi,: − Qj,:∥∥22 s.t. Q⊤Q = I (27)

Since the non-negative and symmetric constraints make
zij = aij, the problem is transformed into a spectral clustering
problem:

min
Q
tr
(
Q⊤LQ

)
s.t. Q⊤Q = I (28)

Thus, the segmentation matrix Q can be learned by
computing the d eigenvectors corresponding to the d smallest
eigenvalues of L.

Algorithm 2 JLSLPS
Input:
Data matrix X , parameters λ1, λ2, λ3, and α, number of
subspaces d
Initialize:
Q(0) = 0
while not converged do
(1) Given Q, update Z and E by Algorithm 1;
(2) Given Z and E , update Q by solving the spectral
clustering problem (33);
end while
Perform K-means on Q to segment X into d subspaces
Output: The clustering results

C. CONVERGENCE CONDITION AND COMPUTATIONAL
COMPLEXITY
The problem solved by Algorithm 1 is a convex optimization
problem, and the convergence analysis of Algorithm 1 is
concisely verified in the Appendix. However, it cannot be
guaranteed that Algorithm 2 can converge to a global or
local optimum due to the relaxed constraint on Q. In spite
of this, the experiment results show that Algorithm 2 can
converge if the parameters are set properly. According to
the suggestion of literature [26], we terminate Algorithm 2
if a predetermined number of iterations is reached, or if
the relative change of the representation matrix Z and the
subspace structure matrix 2 in two consecutive iterations is
less than a certain threshold value, i.e.,∥∥Z (k)

− Z (k+1)
∥∥
1∥∥Z (k)

∥∥
1

< ε3 (29)∥∥2(k)
−2(k+1)

∥∥
1∥∥2(k)

∥∥
1

< ε3 (30)

where Z (k) and 2(k) are the matrices Z and 2 obtained at
the k-th iteration, respectively. ε3 is a small positive constant
(empirically set as ε3 = 10−2).
Then, we further measure the computational cost of

JLSLPS. According to literature [32], the LADMAP method
can reduce the time complexity of LRR to O(rn2), where
r is the rank of matrix Z . Besides, it takes O(mn2) matrix
multiplications to compute XZ . Hence, the computational
cost is O(T1T2(rn2+mn2)), where T1 is the number of
iterations in solving Eq. (7) and T2 is the number of outer
iterations in Algorithm 2.

IV. EXPERIMENTS AND ANALYSIS
A. EXPERIMENT SETUP
In this paper, comparative experiments are conducted in
the publicly available cancer gene expression datasets from
TCGA [34]. For better evaluation, we test our JLSLPS
algorithm using integrated datasets and available benchmark
datasets. The details of the datasets are listed in Table 2.

(1) IntegratedDatasets:Wefirst construct fivemulti-cancer
integrated datasets as suggested by literature [24]. Each of
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TABLE 2. Detailed information of the eight cancer gene expression datasets.

TABLE 3. Parameter selection of JLSLPS.

them is composed of the tumor samples of multiple original
datasets. We select seven cancer datasets, including Adreno-
cortical Carcinoma (AC), Cholangiocarcinoma (CHOL),
Colon Adenocarcinoma (COAD), Esophageal Carcinoma
(ESCA), Head and Neck Squamous Cell Carcinoma
(HNSC), Pancreatic Adenocarcinoma (PAAD), and Rectum
Adenocarcinoma (READ). The five integrated datasets are:
CH-ES-PA, which contains 75 tumor samples (15 from
CHOL, 30 from ESCA, 30 from PAAD), AC-CH-ES, which
contains 150 tumor samples (50 from AC, 20 from CHOL,
80 from ESCA), ES-HN-CH, which contains 266 tumor
samples (70 from ESCA, 160 from HNSC, 36 from CHOL),
CH-PA-RE-HN, which contains 519 tumor samples (36 from
CHOL, 185 from PAAD, 98 from READ, 200 from HNSC),
and AC-ES-CO-CH, which contains 513 tumor samples (80
fromAC, 100 fromESCA, 297 fromCOAD, 36 fromCHOL).

(2) Available benchmark datasets: Three single cancer
datasets with multiple subtypes are also considered: St. Jude
leukemia dataset [35] contains 248 tumor samples, Lung
Cancer dataset [36] contains 197 tumor samples, andNovartis
BPLC dataset [37] contains 103 tumor samples.

To verify the effectiveness of the JLSLPS algorithm
proposed in this paper, JLSLPS is compared with nine
state-of-the-art subspace clustering algorithms, including
SSC [12], LRR [14], Laplacian regularized low-rank rep-
resentation (LLRR, [8]), graph regularized low-rank repre-
sentation under symmetric and sparse constraints (sgLRR,
[24]), non-negative symmetric low-rank representation with
graph regularization (NSLRG, [25]), S3C [26], low-rank
and structured sparse subspace clustering (LRS3C, [27]),
structured graph regularized low-rank subspace clustering
(SGRLRSC, [28]), and structured sparse subspace cluster-
ing and completion (S3C2, [29]). Among the comparison

methods, SSC, LRR, LLRR, sgLRR, and NSLRG are two-
stage methods, in which the affinity matrix is first learned and
then spectral clustering is performed on the affinity graph.
S3C, LRS3C, SGRLRSC, and S3C2 are joint learning-based
algorithms that synergistically optimize the affinity and the
segmentation.

In terms of parameter settings, for JLSLPS, the four
parameters α, λ1, λ2, and λ3 balance the importance of
joint optimization term, sparse constraint term, manifold
learning-based graph regularization term, and error term,
respectively. In our empirical studies, the parameter values
corresponding to the optimal result of different datasets are
determined by the conventional grid search method based on
the suggestion of literature [25] and [26]. Specifically, the
parameter settings for the eight cancer data sets are listed
in Table 3. The parameter analysis of the proposed method
will be further discussed in the following section. For the
comparison methods, as suggested by literature [12], [14],
[25], and [26], we tune the penalty parameter λ of SSC and
LRR within [2−3, 23], the parameter ω of joint optimization
term of S3C, LRS3C, SGRLRSC, and S3C2 within [1−3,
20]. Then, we set the graph regularization term parameter
β = 0.1 for LLRR, sgLRR, NSLRG, and SGRLRSC, and the
other parameters in comparison methods are set as suggested
in the original studies. All algorithms are run 20 times, and
the algorithm performance is evaluated using the mean value
of the results.

We implemented JLSLPS in Matlab. All experiments were
conducted on a Windows machine with an Intel Core i7
CPU at 3.6GHz and 32GB memory. Our method can be
employed in real-time. The source code can be downloaded
at: https://github.com/gglsx/ptk.git.

B. EVALUATION METRICS
In this paper, two evaluation metrics, accuracy (ACC) [7]
and Normalized mutual information (NMI) [38], are used
to assess the partition performance. These two metrics
are widely used to evaluate the performance of clustering
algorithms in data mining and machine learning. ACC is
calculated as follows:

ACC =

∑n
i=1 δ

(
ci,map

(
ĉi
))

n
(31)
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FIGURE 1. Average sort indexes of the nine methods. (a) ACC, and (b) NMI. The x-axis and y-axis
represent different methods and their ranking of ACC or NMI, respectively.

TABLE 4. Clustering results (ACC) of each algorithm on eight cancer gene expression datasets. The optimal and suboptimal results are marked with bold
and italics, respectively.

TABLE 5. Clustering results (NMI) of each algorithm on eight cancer gene expression datasets. The optimal and suboptimal results are marked with bold
and italics, respectively.

where ci and ĉi denote the true label and predicted label of x i,
respectively; map (ĉi) denotes the mapping match between
the true and predicted labels, and δ(ci, map (ĉi)) = 1 when
ci = map (ĉi), otherwise δ(ci, map (ĉi)) = 0.
NMI is calculated by:

NMI =
2I (M ,N )

H (M )+ H (N )
(32)

whereM and N denote the vectors consisting of the true and
predicted labels, respectively; I (M ,N ) denotes the mutual
information measure, H (M ) and H (N ) denote the entropy of
M and N , respectively. Both the ACC and NMI values range
from 0 to 1, and for the two metrics, larger values indicate a
better clustering performance.

C. EXPERIMENTAL RESULTS AND ANALYSIS
Tables 4 and 5 show the ACC and NMI results of ten
algorithms on eight cancer gene expression datasets. To give
an overall comparison, we sort the average ACC and

NMI values in descending order and obtain the sort index.
Therefore, the method with sort index 1 has the highest ACC
or NMI value. We gather statistics on the sort indexes of
the methods. Fig. 1 gives the average sort indexes of the ten
methods, and a smaller average sort index indicates a better
clustering result.From the results in Table 4, Table 5, and
Fig. 1, it can be seen that:

(1) For all datasets, the ACC and NMI results of the
proposed JLSLPS algorithm are significantly superior to
the comparison algorithms. For the two metrics, JLSLPS
ranks first in all cases, which validates the solid performance
of the proposed JLSLPS algorithm in sample clustering.
Additionally, to test the statistical difference among JLSLPS
and other methods, a one-way analysis of variance (ANOVA)
test is applied in this experiment. The results for the one-way
ANOVA test of evaluation metrics have been presented in
Table 6, where DF, SS, MS, F, and P denote degrees of
freedom, adjusted sum of squares, adjusted mean square,
F-value, and probability value, respectively. According to
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TABLE 6. ANOVA test results of the proposed method.

FIGURE 2. Visualizations of the representation matrices on Leukemia. (a) S3C, (b) LRS3C, (c) SGRLRSC, (d) S3C2, and (e) JLSLPS. The x-axis and y-axis
represent the corresponding representation coefficients of matrix Z .

FIGURE 3. Visualizations of different numbers of clusters d on Leukemia. (a) d=4, (b) d=5, (c) d=6, (d) d=7, and (e) d=8.

FIGURE 4. Clustering results of different numbers of d . The x-axis and
y-axis represent the different values of d and the values of ACC and NMI,
respectively.

the ANOVA test results, there are statistically meaningful
differences between the proposed JLSLPS algorithm and
other methods (p≤0.0001).
(2) In most cases, the LRR-based algorithms show better

performance than the SSC-based algorithms. Specifically,
in two-stage methods, the ACC and NMI results of LRR,
LLRR, sgLRR, and NSLRG are higher than those of SSC.
In the joint optimization algorithms, the metric values of
LRS3C, SGRLRSC, S3C2, and the proposed JLSLPS are
higher than those of S3C. This phenomenon is particularly

evident in high-dimensional datasets AC-CH-ES, ES-HN-
CH, CH-PA-RE-HN and AC-ES-CO-CH. As pointed out in
the literature [8], [18], [19], [24], and [25], when dealing
with cancer gene expression data with a large amount of
noise, the global structure of data canmore effectively capture
the subspace structure compared to the sparse structure.
The above results indicate that LRR is more suitable for
analyzing cancer gene expression data and thereby validates
the superiority of JLSLPS in performing sample clustering
based on LRR.

(3) Among the LRR-basedmethods, algorithms with graph
regularization, i.e., LLRR, sgLRR, NSLRG, SGRLRSC, and
the proposed JLSLPS, outperform LRR. Compared with
LRR, these algorithms increase the average ACC values by
5.27%, 6.34%, 6.61%, 6.85%, and 7.95%, and the average
NMI values by 6.07%, 8.13%, 9.52%, 9.15%, and 12.21%,
respectively. Besides, JLSLPS outperforms S3C2, which is
without the graph regularization term. The reason is that
the graph regularization can maintain the local manifold
structure of high-dimensional data in low-dimensional space,
allowing local geometric information between data to be
preserved in the representation matrix [8], [24], [25].
This enhances the separability between different cancer
subtypes [24]. Furthermore, the joint learning-based LRS3C,
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SGRLRSC, S3C2, and the proposed JLSLPS outperform
the two-stage methods LRR, LLRR, sgLRR, and NSLRG.
Specifically, NSLRG can be regarded as the two-stage
version of JLSLPS without the joint optimization term.
Compared with NSLRG, JLSLPS improves the average
ACC and NMI values by 0.98% and 2.70%, respectively.
For the joint learning-based methods, the representation
matrix and segmentation matrix can be optimized alternately
with the guidance of each other. Therefore, joint learning
can synergistically improve the performance of both tasks
by fully considering their inherent relation. The above
experimental results validate the advantage of the joint
learning-based algorithms in performing high-quality sample
clustering.

(4) Compared with the joint learning-based algorithms
S3C, LRS3C, SGRLRSC, S3C2, and the proposed JLSLPS
algorithm has significant advantages, with an improvement
of 1.92%, 1.55%, 1.09%, 1.00% and 5.41%, 4.06%, 3.06%,
3.01% in ACC and NMI, respectively. To illustrate the advan-
tage of the learned structure of JLSLPS, visualization of the
representation matrices of S3C, LRS3C, SGRLRSC, S3C2,
and JLSLPS are plotted on the Leukemia dataset, as shown in
Fig. 2. The diagonal-block structure of Fig. 2(e) is more obvi-
ous and thus it can provide more discriminative information
for cancer samples clustering. The improved joint optimiza-
tion term is completely equivalent to the spectral clustering
objective and precisely represents the segmentation cost,
which can more effectively guide the co-optimization of the
representation matrix and segmentation matrix in the joint
framework. Comparing Fig. 2(a) with (e), it can be seen that
the representation matrix learned by S3C is sparser. However,
S3C only enforces the sparse constraint on the representation
matrix, lacking guidance on the global structure of the
cancer gene expression data. Unlike S3C, JLSLPS gains
the global information of data based on LRR while adding
a sparse constraint as a regularization. Therefore, JLSLPS
can take into account both the low-rankness and sparsity
of the representation matrix, thereby achieving a better
performance.

(5) From a realistic biological perspective, the specific
number of clusters d is usually unknown when performing
cancer samples clustering or subtype identification. A com-
mon approach in this case is to determine the variation range
of d , and the d corresponding to the optimal value of an index
can be chosen as the optimal number of clusters. Based on
this approach, we compared the clustering results at different
numbers of clusters to validate the biological significance of
JLSLPS on the Leukemia dataset. Fig. 3 and Fig. 4 show
visualizations and the clustering results (ACC and NMI) of
different numbers of clusters, respectively. As can be seen in
Fig. 3 and Fig. 4, in the case where the true number of clusters
is unknown, the optimal values of ACC and NMI are obtained
when d = 6. Moreover, the visualization effect of Fig. 3(c)
achieves a more discriminative result. It is consistent with the
true number of subtypes on the Leukemia dataset and further
demonstrates that JLSLPS has a high clustering accuracy. The

above results verify the practical relevance of our method in
the field of cancer subtype identification.

D. PARAMETER SELECTION AND CONVERGENCE
ANALYSIS
In JLSLPS, the four parameters α, λ1, λ2, and λ3 are involved
and affect the efficacy of the joint optimization term, sparse
constraint term, graph regularization term, and the error
term, respectively. This section performs grid search [25] on
the parameters to evaluate their sensitivities and select the
optimal values.

FIGURE 5. ACC of JLSLPS on the Leukemia dataset with different values
of α. The x-axis and y-axis represent the different values of α and the ACC
values, respectively.

FIGURE 6. ACC of JLSLPS on the Leukemia dataset with different
parameter settings. (a) λ1, (b) λ2 and λ3. The x-axis and y-axis in Fig. 4(a)
represent the different values of λ1 and the ACC values, respectively. The
x-axis, y-axis, and z-axis in Fig. 4(b) represent the different values of λ2,
the different values of λ3, and the ACC values, respectively.
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TABLE 7. Clustering results (ACC) of JLSC and JLSLPS on eight cancer gene expression datasets. The optimal results are marked with bold.

TABLE 8. Clustering results (NMI) of JLSC and JLSLPS on eight cancer gene expression datasets. The optimal results are marked with bold.

FIGURE 7. Convergence curves of matrices (a) Z and (b) 2 of JLSLPS on
the Leukemia dataset. The x-axis and y-axis represent the iteration
number and the relative change in Z and 2, respectively.

Taking the Leukemia dataset as an example, we first fix
the other parameters and determine α with a candidate set of
{0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8}.
Fig. 5 shows the ACC results of JLSLPS with different values
of α on the Leukemia dataset. α is the parameter to balance
the importance of the joint optimization term, which is the
key to realizing joint learning. As can be observed, with the
increase of α, ACC shows an increasing trend. Specifically,
the clustering accuracy remains stable and satisfactory when
α ∈ [2, 8]. Particularly, the accuracy arrives at a peak when
α ∈ [5, 5.5]. Ifα < 2, the contribution of the joint optimization
term will be weakened and the clustering accuracy will
significantly decrease. Thus, the joint optimization term can
effectively improve model performance.

For the grid search of λ1, λ2, and λ3, we set the range of
the three parameters within [10−5, 105] with step size 10−1.

We perform two experiments to evaluate their sensitivities.
First, fixing λ2 and λ3, we analyze the effect of λ1 on
clustering accuracy, then we fix λ1 to analyze λ2 and λ3.
The effects of the parameters on the performance of JLSLPS
on the Leukemia dataset are given in Fig. 6. It can be seen
that the optimal performance is achieved when λ1 changes
within the range of [10−3, 10−1]. This is because if λ1 is quite
high, the global information of the representation matrix may
be affected. In addition, we find that the best performance
is achieved at the range where λ2 > 10−1 and λ3 > 1. The
clustering accuracy is relatively stable within this range and
declines significantly in other ranges.

To show the convergence behavior of the proposed
JLSLPS algorithm, we demonstrate the relative changes of
representation matrix Z and subspace structure matrix 2

defined in Eqs. (29) and (30). Fig. 7 gives the convergence
curves on the Leukemia dataset.

As can be seen in Fig. 7, the relative changes of Z and 2

decrease sharply at the beginning and become smooth with
increasing iteration numbers. The two matrices basically stop
changing in approximately 20 iterations and the algorithm
finally converges. The experimental results confirm the
convergence of JLSLPS, and the optimal solution can be
obtained after a few iterations.

E. ABLATION EXPERIMENT
To explore the impact of the precise representation of
segmentation cost in joint learning on the performance of
JLSLPS, an ablation experiment is conducted in this paper.
The ablation algorithm, i.e., JLSLPS without non-negative
and symmetric constraints, is referred to as JLSC. Similar to
S3C, the joint optimization term of JLSC degenerates to the
subspace structure norm defined in Eq. (4). Therefore, zij of
the joint optimization term in Eq. (7) is replaced with |zij| to
approximate the spectral clustering objective by the absolute
value of the representation coefficients.
As shown in Tables 7 and 8, the experimental results show

that the proposed JLSLPS algorithm achieves better clus-
tering performance over JLSC, which confirms the positive
effect of non-negative and symmetric constraints in the joint
learning framework. By introducing the non-negative and
symmetric constraints, the discriminability and interpretabil-
ity of the representation matrix are improved. Additionally,
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these two constraints enable the segmentation cost to be
precisely represented, which can reflect a more informative
subspace structure for the joint learning framework.

V. CONCLUSION
In this article, we reconsider the methods for designing the
joint optimization term in existing joint learning methods and
propose amethod for a precise representation of segmentation
cost in the joint learning framework, called JLSLPS. Specif-
ically, by imposing non-negative and symmetric constraints
on the representation matrix, the representation coefficients
can be directly applied to the joint learning as an equivalent
replacement of the affinity. The improved joint optimization
term can precisely represent the segmentation cost, which
contributes to the joint learning of data affinity and seg-
mentation. We analyze the differences between the existing
related methods and the proposed method to point out
the superiorities of JLSLPS. Finally, plenty of comparative
experiments on cancer gene expression datasets demonstrate
the effectiveness of the proposed method.

There are many potential improvements in our future
works. For instance, we will consider improving the nuclear
norm in LRR to enhance robustness to the noise [39]
and further capture the non-linear structure of data [23].
Moreover, we will consider extending the proposed method
to multi-view clustering of cancer gene expression data to
further improve the clustering performance.

APPENDIX
In this section, we describe a theoretical convergence proof
of the proposed Algorithm 1.
Proposition 1: Algorithm 1 is convergent, and the

sequence {Z (k), J (k), E (k)}generated by Algorithm 1 would
convergent to a stationary point of Eq (9).

Proof: Algorithm 1 aims to minimize the Lagrangian
function of Eq. (9) by alternately updating the variables {Z ,
J , E}. Based on the previous optimization process, we have

Z (k+1)
= argmin

Z
L
(
Z(k), J (k),E(k)

)
= argmin

Z
∥Z∥∗ +

η

2

∥∥∥Z− (Z(k)
−

∂f (Z)(k)

∂Z(k)
/η

)∥∥∥∥2
F

(33)

Note that L
(
Z(k), J (k),E(k)) is a λ-strongly convex with

respect to Z . The following inequality holds:

L
(
Z(k+1), J (k),E(k)

)
≤ L

(
Z(k), J (k),E(k)

)
−

λ

2

∥∥∥Z(k+1) − Z(k)∥∥∥2
F

(34)

According to updating schemes for the rest variables,
it can be seen that J and E have the similar properties to
Z . Therefore, the corresponding inequalities of them similar
to Eq. (34) would hold. By accumulating these inequalities,

we can obtain

L
(
Z(k+1), J (k+1),E(k+1)

)
≤ L

(
Z(k), J (k),E(k)

)
−

(
λ

2

∥∥∥Z (k+1)
− Z(k)

∥∥∥2
F
+

∥∥∥J (k+1) − J (k)∥∥∥2
F

+

∥∥∥E (k+1)
− E(k)

∥∥∥2
F

)
(35)

Accordingly, L
(
Z(k), J (k),E(k)) is monotonically decreas-

ing, which further indicates it is upper bounded. This shows
that Z (k), J (k), and E (k) are also bounded. Then, summing
Eq. (35) over k = 0, 1, . . . , we can obtain

+∞∑
k=1

λ

2

(∥∥∥Z (k+1)
− Z(k)

∥∥∥2
F
+

∥∥∥J (k+1) − J (k)∥∥∥2
F

+

∥∥∥E (k+1)
− E(k)

∥∥∥2
F

)
≤ L

(
Z(0), J (0),E(0)

)
(36)

When k→+∞, Z (k+1) - Z (k)
→ 0, J (k+1) - J (k)→ 0, and

E (k+1) - E (k)
→ 0. According to the definition, obviously,

L
(
Z(k), J (k),E(k)) is non-negative. To sum up, the sequence

{Z (k), J (k), E (k)} would convergent to a stationary point, and
the convergence of Algorithm 1 is guaranteed.
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