
Received 30 November 2023, accepted 16 December 2023, date of publication 25 December 2023,
date of current version 5 January 2024.

Digital Object Identifier 10.1109/ACCESS.2023.3347199

A Scalable Random Forest-Based Scheme to
Detect and Locate Partial Shading in
Photovoltaic Systems
ZAIN MUSTAFA1, MAHER A. AZZOUZ 2, (Senior Member, IEEE),
AHMED S. A. AWAD 3, (Senior Member, IEEE), AHMED AZAB4,
AND MOSTAFA F. SHAABAN 5, (Senior Member, IEEE)
1Department of Electrical and Computer Engineering, Faculty of Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada
2Department of Electrical Engineering, College of Engineering, Qatar University, Doha, Qatar
3Department of Electrical and Computer Engineering, College of Engineering, Sultan Qaboos University, Muscat 123, Oman
4Production and Operations Management Research Laboratory, Faculty of Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada
5Department of Electrical Engineering, Faculty of Engineering, American University of Sharjah, Sharjah, United Arab Emirates

Corresponding author: Ahmed S. A. Awad (a.awad1@squ.edu.om)

This work was supported in part by the Open Access Program from the American University of Sharjah.

ABSTRACT Photovoltaic (PV) systems are prone to partial shading (PS) due to the environmental factors
that they function in such as vegetation, nearby structures, and clouds. All types of PS scenarios can lead to
power loss and hot spots in the PV system due to module mismatch and heating of shaded cells. To mitigate
the power loss that occurs due to PS, it is imperative to detect PS and its characteristics, such as the number of
shaded modules and the associated shading factor (SF), in a reliable manner. This paper proposes a three-step
framework to detect and locate PS, the number of shaded modules, and the SF in the PV system using a
random forest (RF)-based approach. The proposed approach utilizes independent string current and voltage
measurements to distinguish different PS scenarios. This approach allows for a scalable data acquisition
through an uncoupled modeling scheme. PS, the number of shaded modules and the SF are deduced with
accuracies of 99.5%, 92.3%, 90.2%, respectively. Further, the proposed approach is validated through two
testing tiers, and its ability to detect multiple PS scenarios in a PV system has been highlighted. The results
observed through different PS scenarios confirm the high reliability and demonstrate the effectiveness and
scalability of the proposed RF-based approach.

INDEX TERMS Photovoltaic faults, partial shading, random forest, maximum power point tracking.

I. INTRODUCTION
The impact of increasing energy demands due to the rapid
technological advancements has been globally realized, forc-
ing the industry to focus on practices that could help mitigate
the issues that result due to high energy demands [1].
Energy generation through renewable sources such as solar
and wind are gaining heightened attention to combat the
environmental repercussions of conventional fossil energy
generation. These sources have seen a very high adoption
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rate in multiple global markets due to concerns surround-
ing conventional energy generation, especially solar energy.
However, solar photovoltaic (PV) systems are developed in
open and uncertain environments, which makes them prone
to different abnormalities and vulnerabilities. Vulnerabilities
can cause a decrease in power output and, if not detected,
can cause the system to perform at a subpar level constantly.
Partial shading (PS) is one of the vulnerabilities that every
PV system is prone to, whether implemented in an open
space or urban area. Hotspots generated when PS occurs can
cause PV modules to be irreversibly damaged, impacting the
power output of the system. Conventionally, PS is mitigated
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by bypassing shaded modules through bypass diodes; this
decreases the negative impact of PS on the PV system’s power
output [2].

Even with traditional mitigation approaches to decrease
power loss due to PS, it is imperative to detect PS through
a dependable monitoring approach. Conventionally, various
electrical configurations and variations in voltage measure-
ments have been proposed to address power loss due to PS,
but these approaches can still be prone to errors since they
depend on unique sensor placements [1], [2], [3], [4], [5].
In recent studies, researchers have employed various artificial
intelligence (AI) techniques to detect PS as the first step
in decreasing its impact on the system’s power generation.
These machine learning (ML) techniques aim to detect PS by
analyzing data attained from running multiple PS simulations
on a PV array model. The importance of early diagnosis of
anomalies found in PV arrays has been consistently rein-
forced by different researchers. Since PS occurs in all PV
systems, its early diagnosis can help initiate any measures
taken to resolve any degree of effect it has on the system’s
power output [2].

Studies on differentML and deep learning (DL) algorithms
have been carried out to detect PS in a PV array [8]. Literature
that suggests these approaches depends on simulating a com-
plete PV system through irradiance and temperature inputs to
acquire data used to train these algorithms. Machine learning
techniques such as Random Forest (RF) [9], [10], [11], [12],
k-Nearest Neighbor [13], and support vector classification [4]
have been considered to detect PS. There has been an effort
to simply diagnose a PS as an anomaly on its own among
other faults that occur throughout the PV array. The bulk
of the ML approaches found only differentiate between PS
and other faults, i.e., string-to-string and string-to-ground,
in PV systems. Even though these algorithms can detect PS,
they do not predict the shading factor (SF), or the number
of modules shaded in each scenario. References [5], [6], [7],
[8], [9], [10], and [11] have only considered PV arrays of
small size to help accelerate the simulation and data acqui-
sition phase; However, this assumption does not account for
how the algorithm would react when dealing with a larger
system.

The ease of access to incredible computing power
and advanced libraries have allowed researchers to avail
and improve these algorithms, in context of PS detec-
tion, at an incredible rate. These advances and increased
computing resources have led the community to employ
various DL techniques to detect PS. Recent literature
has focused on detecting PS through general artificial
neural networks [14], [15], convolutional neural networks
(CNN) [16], residual neural networks (RNN) [17], and proba-
bilistic neural networks [18], [19]. Like the conventional ML
approaches, DL approaches are simply aiming at detecting PS
and do not emphasize the detection of the associated SF and
the number of shaded modules. Further, the other approaches
have mainly focused on interpreting PS to differentiate it
from faults found within the system. These approaches do

not determine the characteristics associated with the different
PS scenarios. Among the recent efforts, DL algorithms are
utilized more often with the expectation that they would
outperform conventional ML algorithms. However, that does
not hold true for all problems; the performance of ML
algorithms varies depending on the application, dimension-
ality, and size of the dataset [20]. Considering these factors,
RF tends to perform better on average than neural networks,
specifically when the size of the dataset is a considerable
bottleneck [21], [22].

Early detection of PS is of high importance to monitor
and supervise a PV array, and to eliminate the need for pre-
dictive maximum power point tracking (MPPT) algorithms.
PS caused due to cloud cover can cause up to 77% reduc-
tion in power output [23], leading to a major setback in
the overall performance of the system during its lifetime.
When AI techniques are deployed, a lot of initial preparation
goes into building and training a model to work for a PV
system. Previous studies found in the literature are carried
out by simulating complete systems and, as such, their per-
formance relies on the system that the algorithms are trained
for. Decreasing the time needed for simulations and classifier
training is a concern of great importance if AI techniques
are to be adopted by large-scale PV arrays [24]. Since the
current approaches are used per system, they are unable to
detect if the shading ratio differs over different regions of the
PV array, deriving a single generalized label to encompass
the effect of PS over the PV array. Moreover, most of the
previous approaches do not solve the problem of when partial
shading occurs at different irradiance levels across the PV
array and detecting the number of modules shaded [25]. The
findings from recentmajor studies have been summarized and
compared against the proposed approach in Table 1.

This paper proposes an approach that is carried out on
a single string of the PV array to analyze PS, SF, and the
number of shaded modules. Modeling and training one string
allow this approach to be scalable, and hence, be applicable
to any PV array that utilizes the same number of modules per
string. To allow for this scalability, the MPPT is decoupled
from the detection of PS. Thus, the data acquisition from
one string is representative of the response of other strings.
The proposed approach suggests using an RF algorithm on
a comprehensive dataset acquired through automated simu-
lation of a PV array modeled using PSCAD/EMTDC. The
proposed approach can efficiently classify PS scenarios, SF,
and the number of modules shaded with high accuracy of
99.5%, 92.3%, and 90.2%, respectively. For the purpose of
this study, the SF is considered as the decrease in irradiance
due to PS.

The contributions of this paper are as follows:
• A three-step approach is proposed to detect PS, the
number of shaded modules, and the SF by analyzing
string voltage and current measurements by adding a
voltmeter and ammeter at the beginning of each string.
Each category is further divided into classes, ensuring a
detailed understanding of the PS scenario.

VOLUME 12, 2024 2151



Z. Mustafa et al.: Scalable Random Forest-Based Scheme to Detect and Locate PS

TABLE 1. Synthesis matrix comparing recent major studies with the
proposed approach.

• A system architecture is proposed, that uses PSCAD
/EMTDC to simulate the PV system, for data acquisition
in an isolated manner by simulating a single string of
the system instead of the complete 10 × 10 testbed.
PS on each string is independently analyzed to capture
the different levels of shading occurring throughout the
system.

The rest of the paper is organized into six sections.
The system description and effects of PS on the PV sys-
tem are provided in Section II. The proposed algorithm
is elaborated on in Section III. Data acquisition and
the proposed methodology are explained in Section IV.
Results obtained through different case studies are detailed
in Section V. Sections VI and VII include a discussion
on the results observed through testing and the conclusion,
respectively.

II. PARTIAL SHADING IN PV ARRAYS
In this section, the proposed model as well as the impacts of
partial shading on the PV systems are discussed.

A. SYSTEM DESCRIPTION
The model used for testing and validation is created using
PSCAD/EMTDC and consists of a PV array with a cen-
tral inverter topology. As shown in Fig. 1, the PV modules
of the PV array are connected in parallel, leading to a
central inverter. Each string is attached with a voltmeter
and ammeter to capture voltage and current measurements.
The PV array also includes blocking diodes on each string
to prevent current circulation through the strings. The
central inverter consists of two back-to-back converters:
a DC-DC boost converter to track the system’s maxi-
mum power point (MPP) using an observe and perturb
method and a DC-AC converter to regulate the DC-link
voltage.

Fig. 1 illustrates a 10 × 10 PV array testbed that consists
of ten parallel strings and each string contains ten series
modules. Each module contains 60 cells connected in series
and a bypass diode with a 0.4V drop. IMi is the measured
current of the string, VMi is the measured voltage of the first
module at each string, and VPV and IPV denote the total PV
voltage and current, respectively. The focus of this paper is
to develop a scalable detection algorithm to identify PS, the
number of shaded modules, and the SF using the voltmeter
and ammeter placed at the beginning of each string, as shown
in Fig. 1.

The parameter specifications of the PV module under
standard test conditions (i.e., 1000W/m2 irradiance, 25◦C
temperature, and 1.5 air mass) are: open-circuit voltage
VOC = 37.2V , maximum power voltage and current are
Vmp = 29.8V and Imp = 7.8A, respectively, and short-circuit
current Isc = 8.48A. The full specifications of the 235-WBP3
PV modules used for data collection are in [26].

B. EFFECTS OF PARTIAL SHADING
PS can be caused by various objects such as trees, sur-
rounding structures, clouds, and debris, including snow, sand,
and dirt [27]. When PS occurs, the PV modules affected
receive a lower level of irradiation compared to the modules
under normal circumstances. Since the modules per string
are attached in a series formation, the magnitude of current
through each module must be consistent. However, when
a module within the series is shaded, it cannot produce
the same magnitude of current as the other modules and,
in turn, starts acting as a load [28]. Due to the difference
in current, these shaded cells tend to cause hot spots in
the PV system. Bypass diodes are implemented parallel to
each module to mitigate hotspots caused due to PS and pre-
vent reverse bias losses on modules affected by PS. A PV
module without a bypass diode will experience a signif-
icant power loss under PS if reverse bias losses are not
mitigated, a bypass diode prevents this from happening by
providing a path for the current to flow around the shaded
cells.

In PV modules connected in series formation per string,
the voltage between the two modules defers while the current
stays the same; however, in PS scenarios, the current of the
string is bottlenecked by the shaded module. This affects
the I − V and P − V characteristics of the series-connected
modules [29]. The two characteristics of value, i.e., SF and
the number of modules shaded, have an impact on the I − V
and P − V curves of the PV array. Fig. 2 displays this
impact when different numbers of modules are shaded by an
SF of 50%.

PS affects both characteristics even when the number of
modules increases even with a consistent level of shading.
Variability in the SF has a similar result. Local maxima occur
when the SF increases and the number of shaded modules is
consistent. Fig. 3 presents the I−V and P−V characteristics
when six modules in the PV strings are affected by differ-
ent SFs. Considering that I −V and P−V characteristics are
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impacted by both, the number of modules shaded and the SF,
deriving both will help understand the optimal power output
of the system.

Figs. 2 and 3 show the impact of PS on both the I-V
and P-V curves; however, to successfully extract the correct
features from the system for this study, it is important to
understand its impact on the system voltage and current.
Fig. 4 compares the impact on the system current when a PV
module is shaded on a single string versus when the shad-
ing occurs on two strings. A higher drop in system current
is seen when more than one string has a partially shaded
module. Considering the impact that PS has on the system
current, it is important to isolate the system and string param-
eters to reliably deduce PS scenario in an isolated manner.
PS leads to a noticeable drop in power generation, Table 2
shows the percentage drop in power for a given shading
factor.

TABLE 2. Percentage drop in power under stc for a given shading factor
and shaded modules.

FIGURE 1. 10 × 10 PV array with a boost converter.

III. RANDOM FOREST ALGORITHM
RF algorithm is a learning ensemble technique created by
generating multiple decision trees (DTs). A model based on
a tree structure, shown in Fig. 5, represents a DT, where each
node represents a feature, each branch a decision, and each
leaf an output value. RF develops the DTs using resampled
data from the original dataset and utilizes a random feature
selection to decrease the correlation in the generated DTs.
This resampling is done by bootstrapping randomly selected
samples from the original dataset to produce a new dataset

FIGURE 2. P-V and I-V curves when different numbers of modules are
affected by PS.

of the same size to build each DT, and random subsets of
features are considered when splitting at each node. The
output generated by RF is derived bymajority voting from the
generated DTs. RF applications have a few drawbacks. For
instance the trained algorithmsmay be time-consuming when
making predictions on datasets that contain a large number
of features or when training with datasets that have missing
features [30]. However, the proposed approach does not face
either of the drawbacks because when classifying each label,
data from a small window is used for predictions and each
sample extracted has a small number of features for training
and testing.

Neural networks (NN), such as convolutional neural net-
works (CNNs), recursive neural networks (RNNs) and long
short-term memory networks (LSTM), have been gaining a
lot of momentum in recent years due to their ability to com-
bine feature extraction and classification into a single process.
However, there is no single algorithm that works optimally
in all scenarios. RF algorithm can be used to train a reliable
classifier using a relatively small dataset compared to other
ML/DL techniques. They also perform better due to their
ability to train quickly when working towards optimizing
hyper parameters [20]. When considering an algorithm for
a certain problem, it is important to look for factors such
as performance, robustness, comprehensibility, and cost and
time required for training the algorithm. Studies conducted
in [20], [21], [22], and [31] compare the performance of
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FIGURE 3. P-V and I-V curves of different SF affecting 6 modules per
string.

RF and NN algorithms, concluding that in the majority of
the cases, RF tends to have an advantage over NN. In this
paper, RF took precedence due to its ability to outperform
NN algorithms due to the size of the dataset and the available
features.

In the random forest algorithm, forest F is an ensemble of
decision trees where:

F (θ) = {hm (θm)} , m = 1, 2, . . . ,M (1)

where M is the total number of decision trees, θ represents
the parameters in F , and hm is the decision tree model
where:

hm (x) =

∑J

j=1
bjmI (2)

where J is the number of leaf nodes, bjm is the predicted value
for node jm. The proposed algorithm has been configured to
consider a minimum number of 41 leaf nodes per decision
tree. Each tree considers a subset of randomly selected sam-
ples to help reduce the correlation between the trees of the
forest [30].

IV. PROPOSED METHODOLOGY
The proposed approach revolves around uncoupling a string
from the system for data acquisition and training the RF
algorithm. The voltage across the PV array is kept con-
stant during the RF training and the algorithm application

to decouple the MPPT from the detection of partial shad-
ing. This decoupling makes the data acquisition from one
string representative of the response of other strings. Notably,
the number of modules simulated on this string needs to
be consistent with the number of modules expected to be
per string on the PV array testbed. Fig. 6 shows the model
of the decoupled string used for the simulation of the PS
scenario. This uncoupling enables the simulation of the PV
array of a variable number of strings since the PS scenario
is deduced via the data acquired by a single PV module
string in the system. Since the number of strings that needs
to be simulated does not increase with the system size, this
approach is highly scalable and time-effective. The proposed
approach is validated through a 10 × 10 PV system, how-
ever, it is applicable to a system of any size. A change
in system size would require simulations to be carried out
using the string of the system being used. For example, for
a 5 × 5 system, the simulations would be carried out on the
first string that contains five PV modules instead of the ten
being used for the test bed. The model presented in Fig. 6
is used to generate a dataset of 1,425,948 unique samples,
which the RF classifier is trained on to derive if the system
is under PS, the number of modules affected by PS, and
the SF. The acquired data goes through the flow summa-
rized in Fig. 7 for classifier training and testing, detailed
in Section IV-A.

FIGURE 4. Impact on system current when the one module is shaded on
different strings of the system.

A. DATA ACQUISITION
The modeled PV array is simulated by PSCAD/EMTDC
is used to assess the proposed approach under PS sce-
narios, deriving the number of shaded modules and the
SF from the data. The string current and voltage, irradi-
ance, and temperature are captured as features from the
simulated system for each time step. The data collected
has been considered with a breadth of variance, consider-
ing PS scenarios for pre-shaded irradiance and temperature
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FIGURE 5. Random forest algorithm.

FIGURE 6. Model of the string extracted from the complete model for
data acquisition.

values between 250 – 1000 W/m2 with a time step size of
250 W/m2 and 0 – 50 ◦C with a step size of 25 ◦C , respec-
tively. A smaller step size is selected for irradiance changes
because partial shading is mainly dependent on irradiance
changes, while the larger step size selected for the tem-
perature is to cover a wide range of temperatures seen in
different ambient conditions. The step size and the range
of these values ensure that the simulated system covers a
range of conditions that a real-time system may experience.
This data is only extracted from the first string of the sys-
tem during each scenario, enabling the diagnosis of PS and
determining the number of modules shaded, and the SF on
any string in the testbed. During each scenario, the string is
split into two halves and a module is selected from each.
The modules selected from the top half of the string stay
consistent throughout the active scenario while the modules
from the bottom half are incremented for each subsequent
iteration. This method of data acquisition addresses all com-
binations of shaded modules occurring anywhere on the
string. For example, to simulate a scenario under standard
testing conditions (i.e., 1000W/m2 irradiance, 25◦C temper-
ature), a module is selected from the top half of the string for

FIGURE 7. Flowchart of training and testing RF classifier to detect PS in
PV arrays.

the first iteration, signifying that one module on the string
is shaded. The second iteration then adds the last module
from the bottom half and each subsequent iteration will add
a module from the bottom half of the string until module 6 is
reached. After module 6 the modules on the bottom half of
the string are reset back to 0 and the modules on the top half
are incremented by one. This process is repeated for each
combination of irradiance, temperature, and shading factor
values.

The data is acquired through detailed PSCAD/EMTDC
simulations, which are well accepted in the industry and can
accurately mimic the accuracy of real-world scenarios [3],
[13], [25]. In addition, the proposed random forest algorithm
is very robust when training on noisy data sets [20], [21], [31].
The experimental verification of the proposed approach was
out of scope of this research work, due to limited resources,
and it can be carried out in future work.

To encompass all the scenarios that could occur due to the
variance in how PS occurs, consideration has been given to
the level of SF and the number of shaded modules in the
simulation. For each of the pre-shaded irradiances, simulation
is carried out with 20% and 80% SF. To ensure that the
RF model can accurately infer the number of shaded mod-
ules, the 20% and 80% shading configurations are applied
to encompass shading occurring from one module to the
string being completely shaded. After the simulations have
been carried out, each sample is labeled under three cate-
gories: PS, modules shaded, and SF. These categories are
then divided into classes. The PS category is divided into two
classes: Normal and PS, where PS denotes the shaded sample.
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Shaded modules are categorized into sets of two modules
for each string, e.g. for a string of 10 modules, it is cat-
egorized into five classes. The shaded modules category
contains the following classes: (1 & 2), (3 & 4), (5 & 6),
(7 & 8), and (9 & 10). Each class represented in the
shaded modules category signifies the range of modules
that are shaded. The SF represents the drop in irradi-
ance for each sample and is divided into two classes:
80% and 20%. These categories and classes are summa-
rized in Table 3. The number of strings in the system
does not impact the label classification for this approach;
however, as the number of modules per string increases,
the label used for the number of shaded modules would
vary.

However, the raw data collected through the simulations
is highly unbalanced. Since the simulations repeatedly run
from the beginning, there are duplicated samples of the
normal class generated for the initial time steps for each
iteration; these duplicates tend to skew the dataset and have
to be removed. Once the duplicates have been removed
through data cleanup, the rest of the classes are balanced
using the synthetic monitoring over-sampling technique
(SMOTE) [32]. This technique synthesizes new samples of
the minority class to build equal proportions of each class
in all three labels. A balanced dataset is imperative to accu-
rately measure and compare the efficiency of the proposed
approach.

B. PARTIAL SHADING DETECTION ON 10 × 10 TESTBED
The proposed approach detects PS, the number of shaded
modules, and SF in two distinct steps. In the first step, the
RF classifier simply detects whether the system is function-
ing normally or whether there is a shaded module present.
If PS is detected, the second step uses separate classi-
fiers to detect the number of modules shaded, and the SF.
Fig. 8 illustrates a flowchart outlining the detection pro-
cess. The detection process is initiated once PS is detected
through the process outline in Section IV-A, retrieving a
subset of voltage and current measurements from the PV
array and diagnosing the number of shaded modules and
the shading factor. This process iterates over all the strings
in the system and detects if any of them are partially
shaded.

TABLE 3. Label classification for the dataset.

V. PERFORMANCE EVALUATION
The performance evaluation of the RF classifier has
been carried out through analyzing the system under the

FIGURE 8. Process flow of PS detection in a 10 × 10 testbed simulation.

PS conditions, deriving the number of shaded modules
and the SF, by acquiring the string current, system volt-
age, irradiance, and temperature from the PV array. The
PV system, displayed in Fig. 1, is modeled and simu-
lated using PSCAD/EMTDC, running on an AMD Ryzen 9
5900X processor at 3.70 GHz with 32 GB of RAM.
An automation tool is employed to run the PS simula-
tions using the PSCAD automation library and Python 3.x.
The proposed algorithms are implemented using Scikit-learn
libraries [33].

A. EVALUATION METRICS
The performance of the trained RF classifier is verified using
five independent runs. These runs are carried out by splitting
the dataset into a 70-30 split, using 70% of the simulated data
to train the classifier and 30% to test the trained classifier.
In addition to the test data acquired from simulating the
uncoupled string to the PV array testbed, further performance
evaluation of the classifier is carried out on an independent
simulation of the PV array testbed.

This latter verification gauges the performance of the
trained classifier on simulations conducted on multiple
strings of the PV array testbed instead of just the initial string
that the training data is acquired from.

The performance of the proposed RF algorithm is deter-
mined using accuracy, which has been the predominant
metric to compare various studies in the literature [10],
[16], [19]. While accuracy is considered the primary metric
for this study, underlined metrics such as precision and speci-
ficity are also considered. These metrics are evaluated using
the numbers of true positive (TP), false positive (FP), true
negative (TN), and false negative (FN) deduced through our
30% held-out data. For the proposed approach, accuracy (A)
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is the number of samples that are classified correctly, preci-
sion (P) is the number of classified examples that are relevant,
and specificity (S) is the number of negative samples that
were correctly classified as negatives.

A =
TP+ TN

TS
(3)

P =
TP

TP+ FP
(4)

S =
TN

TN + FP
(5)

B. TESTING AND EVALUATION
The testing for the trained RF classifier is carried out on data
in two separate tiers: 1) the 30% data held out from the data
acquired through the PSCAD simulation; 2) a variation of
independent PS scenarios carried out on the 10×10 PV array
testbed. These variations are as follows:

1) PS1: 4 Modules are shaded on the 2nd string by 80%.
2) PS2: 2 Modules are shaded on the 4th string by 80%.
3) PS3: 10 Modules are shaded on the 6th string by 20%
4) PS4: a combination of PS1, PS2, and PS3 to detect

multiple PS scenarios on a single PV array.

1) TIER 1–30% HELD-OUT DATA FROM TRAINING DATA
The performance of the classifiers is deduced through
the 30% held-out data from the initial training dataset, and
the average accuracy is captured over five separate runs for
each label. The algorithms are tasked with deducing three
different labels for any given sample: PS fault, the number
of modules shaded, and the SF. Fig. 9 summarizes the com-
parison between RF, CNN, and LSTM algorithms for the
simulated dataset. Both CNN and LSTM algorithms tend to
perform well when detecting PS, but they are not as good as
RF when detecting the number of modules shaded or SF. The
accuracy of the RF algorithm is observed to be 99.5%, 92.3%,
and 90.2% for PS detection, number of modules shaded,
and SF, respectively. Whereas the performance of CNN and
LSTM algorithm did not improve over 85.8% and 88.3%,
respectively, when detecting the number of modules shaded.
Considering the lagging accuracy of the CNN and LSTM
algorithms, Tier 2 evaluations are carried out using the RF
algorithm.

A confusion matrix for each output category is shown
in Figs. 10 – 12. Each matrix represents the accuracy for
each label and can be used to deduce TP, TN, FP, and FN
samples to derive the precision and specificity values. The
RF algorithm is compared against LSTM and CNN algo-
rithms. It is important to note that the results of each matrix
are independent of the other deductions. The classifier can
reliably detect PS and deduce the number of shaded modules
per string and SF. Fig. 11 further clarifies the labels that the
model is unable to classify properly and have impacted the
metric negatively. The bulk of these occurred when four or
six modules are shaded in the simulation. The bulk of the
false predictions made by the proposed RF algorithm are

seen when the samples between the ranges 3 to 4 and 5 to
6 modules are confused, where 5.4% and 6.3% of the samples
from 3 to 4 class and 5 to 6 Mod, respectively, are classified
incorrectly as the other label.

However, the outer labels of the matrix are deduced very
reliably, displaying minimal errors. PS and SF are both
inferred at a high accuracy as well and due to the lower
number of classes for each category, the classifier can cleanly
differentiate between each class in those categories.

FIGURE 9. Accuracy of CNN, LSTM, and RF algorithms tested with 30%
held-out data.

FIGURE 10. PS fault classification results for the proposed RF algorithm.

2) TIER 2–INDEPENDENT PS SCENARIOS
For Tier 2, simulation is conducted with different variations,
as detailed in the introduction of this sub-section. The posi-
tion of the shaded modules is randomly picked on each
PV string for simulation. A single sample from the model
present in Fig. 13 contains voltage and current information
for ten strings. In the first three scenarios, each PS scenario
is simulated independently for analysis, but in the last sce-
nario, all three PS scenarios occur simultaneously over the
system. This data is then pre-processed using the process
defined in Fig. 8, enabling the RF algorithm to analyze each
string separately throughout the system. For this tier, the
original irradiance is assumed to 1000 W/m2 and the SF
is derived difference between the original and post-shading
irradiance.

Simulating the PS scenarios for this tier results in
20 samples of each, since each PS fault occurs over a span
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FIGURE 11. Number of shaded modules per string detection results
through the RF algorithm.

FIGURE 12. SF classification results through the RF algorithm.

of 20 ms every 1 ms is considered an independent sam-
ple. The trained RF algorithm is iterated ten times over a
randomly picked sample, from the set of 20, to deduce a
reliable accuracy for each label. Table 4 displays the accuracy
observed for each PS scenario. For Scenario 4 in the table, the
observed accuracy for each label depends on whether all three
PS scenarios, that are running simultaneously, are accurately
deduced. Testing conducted in Tier 2 shows that the proposed
RF algorithm can reliably infer PS scenarios, the number of
shaded modules, and the associated SF.

VI. DISCUSSION
The proposed data acquisition, simulation techniques, and
the utility of the RF algorithm highlight the reliability of
the proposed approach. It is observed in this study that the
RF algorithm works very efficiently for the application at
hand and proves its ability to deduce PS, the number of
shaded modules, and the SF with tests conducted by two
independent tiers. In comparison to other approaches found

FIGURE 13. PV model to analyzing PS on multiple strings of a 10 × 10 PV
system.

TABLE 4. Average classification accuracy of the independent PS
scenarios.

in the literature, the proposed technique can train a classifier
using the features solely available through the PV strings
instead of relying on system features, enabling a higher level
of independence and scalability. Acquired data considered
a varying number of shaded modules and the SF that the
irradiance differed by. The advantages of the RF algorithm
highlighted in Section III are validated by comparing it with
convolutional and recursive-based ANN’s such as 1D-CNN
and Bi-LSTM. Preliminary investigation demonstrates that,
for the problem at hand, the RF algorithm takes significantly
less time to train and can predict all three labels with greater
reliability.

Compared to other approaches found in the literature, the
proposed system improves the data acquisition, simulation,
and training processes by uncoupling the PV strings from
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the system. The uncoupling decreases the simulation time
required to acquire the initial data by 60%. It also enables
the proposed technique to be highly scalable since the string
parameters from each parallel string are independent of the
variation in system parameters due to different scenarios.
Hyperparameters of the RF algorithm are optimized through
a combination of grid search techniques [34] and the use
of the Hyperopt library [35]. The trained RF algorithm is
observed to achieve very reliable accuracy of 99.5%, 92.3%,
and 90.2% for PS detection, number of modules shaded, and
SF, respectively.

The proposed approach is further verified by conducting
independent simulations on the testbed. These independent
scenarios have verified that the proposed approach is able to
detect PS in different strings of the PV system and enables the
algorithm to detect PS over multiple strings simultaneously.
Since each string is considered independently when deducing
PS, the trained algorithm can also conclude the location of
the shaded strings in a PV system. This approach comple-
ments different shading patterns highlighted in [36] via the
results confirmed through Tier 2 since the PV strings from
each pattern could be broken down to consider their effects
independent of the system parameters.

It is observed through this study that the trained RF clas-
sifier can differentiate between the different classes in each
category with great accuracy, as shown in Figs. 10–12. The
performance of the trained RF algorithm is further validated
by conducting two tiers of tests: Tier 1 uses the 30% held-
out data from the training dataset, and Tier 2 uses data
collected through independent simulations. The proposed RF
algorithm is able to deduce single and multiple PS scenarios
with high accuracy. After identifying the location of the
shaded modules, the current and voltage measurements can
be used to estimate the power-voltage characteristics of the
shaded string. Since the power-voltage characteristics will
vary depending on the number of modules shaded in each
string, the proposed approach can be used for tracking the
global MPP, as in [37].
Once shaded modules and strings are identified, the fol-

lowing corrective actions to improve the performance of the
solar PV system may be take:

• Clean the shaded modules if the modules are shaded by
dirt, leaves, or other debris.

• Trim the source of shading if the modules are shaded by
trees, bushes, or other vegetation.

• Using an enhanced MPPT method to track the global
maximum power point and avoid local maxima [37].

• Redesign the wiring configuration of the system,
if applicable, changing the way the modules are con-
nected to each other can help reduce the impact of partial
shading [38].

VII. CONCLUSION
In this paper, an RF-based approach is proposed to detect
PS, the number of shaded modules, and the associated SF.

The proposed approach decreases simulation time for the data
acquisition and determines the location of the shaded string
by isolating string parameters from the system parameters.
An extensive dataset is generated by acquiring irradiance,
temperature, string voltage and current from a PV model
simulated by PSCAD/EMTDC. The model takes into consid-
eration different irradiance, temperature, and SF to develop a
reliable classifier. The trained classifier is validated through a
multi-tiered testing process, considering independent simula-
tions and detecting multiple PS scenarios occurring in the PV
system. The proposed approach can achieve high accuracy
of 99.5%, 92.3%, and 90.2% for PS detection, the number of
modules shaded, and SF, respectively. The proposed approach
is applicable for real systems because:

• By accurately detecting PS scenarios and quantifying
their effects, the proposed approach provides a practical
tool for system owners and operators to optimize energy
production.

• The independent analysis of each partial shading sce-
nario during validation, the results are highly represen-
tative of what can be expected in practical applications.

• The RF algorithm’s high accuracy in detecting PS sce-
narios, number of shaded modules, and the SF, and the
algorithm’s performance [20], [21], [22] and resiliency
to noisy data [20], [21], [31] demonstrates it’s reliability
in practical scenarios.

The studies highlighted in this paper confirm that the location
of the shaded string and the characteristics of PS scenarios
can be deduced by acquiring current and voltage features
from a PV string instead of the system. The results of this
study could be extended to optimize MPPT for different
shading scenarios detected in the PV system and detect peak
power for each scenario.
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