
Received 3 December 2023, accepted 14 December 2023, date of publication 25 December 2023,
date of current version 5 January 2024.

Digital Object Identifier 10.1109/ACCESS.2023.3346898

K-Focal Search for Slow Learned Heuristics
MATIAS GRECO 1,2, JORGE TORO2, CARLOS HERNÁNDEZ 1,3, AND JORGE A. BAIER 2,4
1Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago 8420524, Chile
2Departamento de Ciencia de la Computación, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
3Centro Científico y Tecnológico de Excelencia Ciencia y Vida, Santiago 8580000, Chile
4Instituto Milenio Fundamentos de los Datos, Santiago 7820436, Chile

Corresponding author: Matias Greco (matias.greco@uss.cl)

This work was supported in part by Vicerrectoría de Investigación y Doctorados of Universidad San Sebastián, under
Grant VRID_APC23/27; in part by the National Agency for Research and Development (ANID), Doctorado Nacional,
under Grant 2019-21192036; in part by Centro Nacional de Inteligencia Artificial (CENIA), FB210017, BASAL, ANID;
and in part by Centro Ciencia y Vida, FB210008, Financiamiento Basal para Centros Científicos y Tecnológicos de
Excelencia, ANID.

ABSTRACT Bounded suboptimal heuristic search is a family of search algorithms capable of solving hard
combinatorial problems, returning suboptimal solutions within a given bound. Recent machine learning
approaches have been shown to learn accurate heuristic functions. Learned heuristics, however, are slow
to compute; concretely, given a single search state s and a learned heuristic h, evaluating h(s) is typically
very slow relative to expansion time, since state-of-the-art learned heuristics are implemented as neural
networks. However, by using a Graphics Processing Unit (GPU), it is possible to compute heuristics using
batched computation. Existing approaches to batched heuristic computation are specific to satisficing search
and have not studied the problem in the context of bounded-suboptimal search. In this paper, we present
K-Focal Search, a bounded suboptimal search algorithm that in each iteration expands K states from the
FOCAL list and computes the learned heuristic values of the successors using a GPU. We experiment over
the 24-puzzle and Rubik’s Cube using DeepCubeA, a very effective and inadmissible learned heuristic. Our
results show that K-Focal Search benefits both from batched computation and from the diversity in the
search introduced by its expansion strategy. Over standard Focal Search, K-Focal Search improves runtime
by a factor of 6, expansions by up to three orders of magnitude, and finds better quality solutions, keeping
the theoretical guarantees of Focal Search.

INDEX TERMS Bounded-suboptimal search, heuristic search, learned heuristics.

I. INTRODUCTION
There exists a variety of problems in AI that require the use
of algorithms developed by the heuristic search community;
e.g. A* [1] or an A*-like algorithm [2], [3]. Heuristic search
relies on the use of a heuristic to guide search, which is a
function h is such that h(s) is a cost-to-go estimate, that is,
it estimates the cost of path that reaches a goal state from
s. In hard search problems, i.e. problems with a large state
space, the heuristic function is invoked many times, and a
substantial fraction of the time spent during the search is used
to compute the heuristic. Therefore, computing h quickly is
key to efficiency.

The associate editor coordinating the review of this manuscript and

approving it for publication was Alberto Cano .

In the last few years, a number of machine learning
techniques have been proposed to learn heuristic functions,
which allows to find suboptimal results faster [4], [5], [6].
As the main technique used are neural nets, the evaluation
of h(s) can become quite slow. For example, in the 15-puzzle,
the Manhattan Heuristic, which is a formula computable
in linear time in the size of the puzzle size, takes on
average 3 orders of magnitude less time that DeepCubeA
heuristic, which is a very effective neural network heuristic
trained with Reinforcement Learning. Indeed, our data shows
that up to 80% of search runtime can be consumed computing
a neural-net heuristic.

Slow heuristic computation has been tackled by previous
work by exploiting the computational power of Graphics
Processing Units (GPUs), which allows evaluating neural
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nets in parallel. Batched Weighted A* (BWAS) [6] is a
search algorithm similar to Weighted A* but in which K
states are extracted from the OPEN list in each search
iteration.

Because BWAS [6] is based on A*, it does not provide
optimality guarantees when used with black-box learned
heuristics, which are typically inadmissible. Another related
approach is BatchA* [7], which is a version of A* that
uses batched heuristic computation. While the authors of
BatchA* propose a method to learn admissible heuristics,
their approach cannot exploit any given black-box learned
heuristic without additional training.

In this paper we address the problem of exploiting slow
learned heuristics on a branch of heuristic search known
as bounded suboptimal heuristic search, which returns a
solution whose suboptimality is within a given bound.
We propose K -Focal Search (K-FS) a new search algorithm
which generalizes Focal Search [8] addressing the efficiency
issues raised by the use of black-box inadmissible learned
heuristics by using a GPU while providing guarantees on
solution quality. In addition, by increasing exploration,
compared to FS, it may reduce expansions substantially,
avoiding regions of the state space where the learned heuristic
is not well informed. Instead of expanding the best state in
FOCAL, it expands the best K states in FOCAL, producing
a batch of successors, whose heuristic values are computed
by the GPU. After extraction, if the goal has not been found,
all K states are sequentially expanded, and the heuristic
values for the union of their successors are evaluated via
batched computation. Batched computation reduces heuristic
computation times per state significantly, ultimately reducing
total runtime.

We prove that K-FS is complete and w-optimal and
study additional theoretical properties of the algorithm.
Empirically, we show the applicability of K-FS solving two
standard benchmarks: the 24-puzzle and the Rubik’s cube,
using DeepCubeA [6], a very effective learned heuristic.

Our empirical results show a reduction of up to three
orders of magnitude in the number in of expansions compared
to FS. Such large effects on runtime had not been observed
in the past with algorithms that expand multiple states from
the Open list, like KBFS [9] in combination with standard
heuristics. Also, K-FS can reduce the time spent to compute
the learned heuristic up to three orders of magnitude, and
return solutions 10 times faster.

K-FS is related to other algorithms that exploit parallelism
within search [10], [11], [12], [13]. Perhaps the approach
most related is PA*SE [14] which is designed for search
problems with slow expansions, and thus parallelizes expan-
sions, which still sequentially evaluates the heuristic values
of successor states.

The main contributions of this paper are:
1) We propose K-FS, a new bounded suboptimal

algorithm which exploits batched GPU computation
to address the problem of slow heuristic computation.
The most related algorithms in the literature to

K-FS are those proposed by Spies et al. [15]
and Araneda et al. [16], which use of neural-net
inadmissible heuristics in combination with admissible
heuristics in a Focal Search (FS) framework. However,
these approaches do not address the problem of slow
heuristic computation.

2) We analyze the theoretical properties of K-FS.
3) We evaluate the proposed algorithm in two standard

benchmarks for different suboptimality bounds and
compare it with other bounded suboptimality search
algorithms.

This article extends a previous SoCS-22 extended
abstract [17]. The following items describe materials not
included in the previous publication.

• A complete description of the algorithm, which include
the pseudocode.

• An analysis of the theoretical properties of the
algorithm.

• An extended experimental analysis, which includes two
domains: 24-Puzzle and the Rubik’s Cube, with two
differents suboptimality bounds.

The rest of the paper is organized as follows. We start
by describing the most essential background concepts,
which include search and neural network heuristics. Then,
we present the new algorithm.We continue with the empirical
analysis and finalize with conclusions.

II. BACKGROUND
In this section we review the backround for the rest of the
paper.

A. SEARCH
A search task is a tuple P = (G, sstart , sgoal), where G is a
search graph, sstart ∈ S is the start state, and sgoal ∈ S is the
goal state. A search graph has the form G = (S,E, c) where
S is a set of states, E ⊆ S × S is a finite set of edges, and
c : E → R≥0 is a cost function associating a non-negative
cost with every edge.

A path is a sequence of states σ = s1s2 . . . sn, whose
cost is c(π ) =

∑n−1
i=1 c(si, si+1). We denote the cost of

a minimum-cost path from s to sgoal by h∗(s). A solution
(resp. optimal solution) to a search task is a path (resp.
minimum-cost path) connecting sstart and sgoal . A solution
σ is w-optimal, where w ≥ 1, when its cost does not exceed
the cost of an optimal solution multiplied by w.

A heuristic h is a function h : S → [0,∞) such that h(s)
estimates the cost of a path from s to sgoal . A heuristic h is
admissible iff h(s) ≤ h∗(s), for every s ∈ S.

B. NEURAL-NET HEURISTICS
A neural network (NN) is a function which map a set of input
values to a output values, such that g = σ (Wx + b), where x
is the input vector, W the matrix of trainable weights, b the
bias offset vector, g the hidden layer, and σ (.) a non-linear
activation function. The output of the neural network is
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TABLE 1. Time spending for calculate the heuristic estimates for a
number of Rubiks cube states in CPU, GPU on sequential mode and GPU
per batches, using DeepCubeA in a tesla K80 GPU from Google Colab.

obtained by ŷ = Vg + b, with a weight matrix V and
output bias vector b [18]. Every layer before the output is
called hidden layer. A deep neural network is composed by
adding many hidden layers, where the output of the previous
layer is used as input for the next layer. The computational
complexity of a deep neural network is governed by matrix-
vector multiplications.

A NN heuristic h is a heuristic computed by a neural
network. During training, the weightsW are updated to min-
imize a loss function that represents the difference between
h(s) and h∗(s). Usually, NN heuristics are implemented as
deep neural networks and trained with stochastic gradient
descent and reinforcement learning [6], [19] or imitation
and supervised learning [20], [21]. Learned heuristics are
inadmissible; this is due to the inductive nature of the
deep NNs.

A Graphics Processing Unit (GPU) is a piece of hardware
containing thousands of processing units (cores). GPUs can
parallelize matrix multiplications and therefore can evaluate
the output of a number of neural nets in parallel. To take
advantage of the power of a GPU, it is necessary to provide
a batch of inputs whose neural network outputs can be
calculated in parallel, which in our case are search states.

Table 1 shows the time spent to compute the heuristic
values per each state using different batch sizes and different
modes (i.e., the hardware where it is calculated). Using a
GPU per batch, we observe that the time spent dramatically
decreases up to two orders of magnitude as batch size
increases, while the time used sequential methods remains
constant. When the batch size exceeds the memory available
per gpu, the time per state does not improve because it is
converted to mini-batches.

C. KBFS AND BWAS
K-Best-First Search (KBFS) [9] is a generalization of
Best-First Search (BFS). KBFS expands the best k states from
the OPEN list in each expansion cycle. The difference with
BFS is that, in BFS, after the successors of the best state are
added to OPEN, a new cycle begins. In KBFS, the successors
of a state are not examined until the rest of the previousK best
states are expanded, and their successors are added to OPEN.
We refer to KBFS with K = k as KBFS(k).
The value of k has influence on the properties of the

resulting algorithm. KBFS(1) is BFS, and KBFS(∞) is a

Breadth-First search. Felner et al. [9] claim that KBFS can
avoid the poor decisions made by BFS in zones of the state
spaces where the heuristic has large errors.
Batched Weighted A* (BWAS) was proposed with the

DeepCubeA learned heuristic [6]. BWAS is a specification
of KBFS where, in each iteration, a batch of the best K
states is expanded from OPEN. This algorithm uses the WA*
evaluation function f (s) = g(s) + w ∗ h(s) to choose the
best states to expand. It exploits GPU batch processing to
compute the learned heuristic, which is implemented as a
neural network, calculating the h values of all generated
states in each expansion cycle in parallel. Both algorithms
are closely related to K-FS, but none of these algorithms
provides suboptimality guarantees if a NN heuristic is used,
even in their most basic formwithK = 1, because the learned
heuristic is not admissible.

The structure of BWAS algorithm is similar to WA*. The
algorithm extracts the best K states in OPEN and adds them
to an auxiliary set to generate their successors. If the learned
heuristic of the generated states has not been calculated,
it is added to a batch to compute their heuristic in a GPU
and inserted to OPEN with f = g + wh as its evaluation
function.

D. FOCAL SEARCH
Focal Search (FS) [8] is bounded-suboptimal heuristic
search algorithm that, in each iteration, expands a single
state from the FOCAL list until goal state is selected for
expansion. As WA*, FS receives a parameter w to control
the suboptimality of the returned solution. FS maintains
two priority queues: OPEN and FOCAL. FOCAL contains
the subset of states of OPEN which satisfy a sub-optimality
bound w, given the information currently gathered by search;
specifically, it contains all states s ∈ OPEN such that f (s) ≤
w ∗ f (top), where top is the element at the top of Open.
Similar to A*, the OPEN list is sorted by f (s) = g(s) + h(s)
where h(s) is an admissible heuristic function. FOCAL list is
sorted by hFOCAL, an arbitrary priority function that can be
inadmissible. FS can acquire different behaviors according to
how the suboptimality bound w is configured. With w = ∞,
FS behaves like Greedy-BFS guiding the search by hFOCAL.
On the other hand, withw = 1.0 FS acts like A* breaking ties
by hFOCAL.

III. K-FOCAL SEARCH
K-Focal Search (K-FS(k)) is a generalization of Focal Search.
Instead of selecting one state for expansion, K-FS(k) extracts
the best k states from FOCAL, and unless the goal is among
the extracted states, it expands all such states, computing the
heuristic values of all their successors using GPU batched
computation. In case where the FOCAL list contains less than
k states, it selects for expansion all states in the FOCAL
list. K-Focal Search with k = 1 [K-FS(1)] executes the
exact procedure that Focal Search, but computes the heuristic
values of all the successors of the expanded state in parallel
using the GPU.
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Algorithm 1 K-Focal Search
Input: A search task P = (G, sstart , sgoal),

an admissible heuristic h, a suboptimality
bound w, a neural-net heuristic hFOCAL, a K
parameter

Output: A goal node reachable from nstart
1 foreach s ∈ S do
2 g(s)←∞

3 g(sstart )← 0
4 parent(sstart )← null
5 f (sstart )← h(sstart )
6 CLOSED← ∅
7 Insert sstart to OPEN and FOCAL
8 while FOCAL is not empty do
9 fmin← f-value of node at the top of OPEN
10 K ′ = max(K , | FOCAL |)
11 TO-EXPAND← empty set
12 while |TO-EXPAND| < K ′ & FOCAL ̸= ∅ do
13 Extract s from FOCAL which minimizes

hFOCAL
14 Remove s from OPEN
15 Add s to CLOSED
16 if s = sgoal then
17 return s

18 Add s to TO-EXPAND

19 BATCH← empty set
20 foreach s ∈ TO-EXPAND do
21 foreach t ∈ Succ(s) do
22 if g(s)+ c(s, t) < g(t) then
23 parent(t)← s
24 g(t)← g(s)+ c(s, t)
25 f (t)← g(t)+ h(t)
26 Insert t into OPEN
27 if f (t) ≤ w ∗ fmin then
28 Add t to BATCH

29 top← state at the top of OPEN
30 if fmin < f (top) then
31 foreach n ∈ OPEN do
32 if w ∗ fmin < f (n) ≤ w ∗ f (top) then
33 Add n to BATCH

34 Compute the hFOCAL-values of states in BATCH
on GPU

35 Insert each state in BATCH to FOCAL

36 return ‘‘no-solution’’

The suboptimality bound (w) configured in K-FS plays an
important role in the algorithm. K-FS with larger values of w
can perform more batched computation, because more states
enter FOCAL. K-FS with w = 1 essentially performs an A*
search, breaking ties by the hFOCAL, and computes the learned
heuristics values on the GPU.

Algorithm 1 shows the pseudocode of K-FS. The algorithm
receives two heuristics as input: an admissible heuristic h,
and a neural-net heuristic hFOCAL. In Line 10, the algorithm
chooses a K ′ value as the maximum between the configured
K and the size of FOCAL. In Lines 12–17, the K best states
in FOCAL are selected for expansion. If a chosen node for
expansion is a goal state, then it is returned, otherwise, it is
added to TO-EXPAND list.

Lines 19–28 correspond to the generation of successor
states. For each state s in the TO-EXPAND list, the algorithm
expands s, adding the successors to OPEN. If the successor
t ∈ Succ(s) satisfies the suboptimality bound (i.e. it is such
that f (t) ≤ w ∗ fmin), then t is added to BATCH. Since
the value of fmin may increase during execution and states
that are in OPEN are not in FOCAL, Lines 29–33 verify
if fmin increased and insert in BATCH the states that must
be inserted in FOCAL because are within the suboptimality
bound. Finally, the hFOCAL-values of all states in BATCH are
computed using the GPU and added to the FOCAL list.

Besides the computation of hFOCAL using batched compu-
tation, an important difference between K-FS and FS is that
more states are expanded in the same expansion cycle; that
is in the same iteration of the while loop of Line 8. This has
the potential of radically changing the order in which states
are expanded, since the children of states that would have not
been expanded by FS are added to FOCAL.
In summary, K-FS introduces two significant changes

to FS. First, it increases the exploration power of FS by
expanding the best k states from FOCAL; without losing
theoretical properties, as we see below. Second, it exploits
the batch processing capabilities of a GPU, reducing the time
required. As we see later in our experimental evaluation, the
first change implies a reduction in the number of expanded
states, because, unlike FS, KFS is able to explore areas of
the search space that are not necessarily explored by FS.
When the learned heuristic is not well informed this results
in finding solutions much earlier. The second change has a
significant impact in the runtime of KFS.

Other algorithms such as BWAS and KBFS perform a
similar method to expand various states in the same iteration.
Nevertheless, they cannot provide suboptimality guarantees,
even with an admissible heuristic, because they cannot ensure
that the selected states are the best in the search frontier or
are within the bound. However, K-FS uses fmin to prove the
suboptimality of each state, and every state that is in FOCAL
are within the bound, providing suboptimality guarantees.

IV. PROPERTIES OF K-FS
K-Focal Search has the following theoretical properties,
which are significantly related to the properties of Focal
Search and KBFS. First, K-FS, just like FS, is w-optimal.
Theorem 1: K-FS is complete and w-optimal using an

admissible heuristic to sort OPEN.
Proof: Because K-FS does not change the conditions

under which a state is added to FOCAL or OPEN, every state
s in FOCAL is such that f (s) < wmint∈Open g(t) + h(t) and
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thus when a goal is extracted from FOCAL, it follows that the
suboptimality bound is met. □
This following proposition could be helpful to estimate of

how many states will be generated at each expansion cycle
and the memory needed.
Proposition 1: During successive expansion cycles in

which fmin remains constant, K-FS(∞), expands states in
FOCAL in breadth-first order. As a consequence, when fmin
remains constant, then every path in FOCAL at expansion
cycle i+ 1 is a path that was in FOCAL at expansion cycle i,
extended with an additional edge.

Proof: At each expansion cycle, K-FS(∞) expands all
states in FOCAL. In the next expansion cycle and before fmin
changes, all states in FOCAL will be the successors of states
generated in the previous iteration. Once fmin has changed,
the states in FOCALmay have been generated in any previous
expansion cycle. □

Proposition 1 is related to a property of KBFS(∞), which
establishes that KBFS(∞) is equivalent to Breadth-First
search since, at each expansion cycle, it expands all states in
the OPEN list, and all states in OPEN has the same depth. For
K-FS(∞), because not all states in OPEN are in FOCAL, this
property is maintained just until the fmin changes.
The follow theorem establishes that a specific configura-

tion of K-FS does not perform more expansions cycles than
regular FS. On problems with unitary cost, the minimum
length of the solution is equal to the cost of the optimal
solution. As we see in our experimental evaluation, it is
usually the case that K-FS performs significantly fewer
expansion cycles than FS.
Theorem 2: Let EC(A) be the number of expansion cycles

needed to solve a particular search instance by algorithm A.
Then, given the same search instance and weight, the
following relation holds:

EC(K-FS(∞)) ≤ EC(FS).

Proof: We start off by proving that the following three
inequalities hold throughout the execution of the algorithm:

FOCALFS ⊆ FOCALKFS ∪ CLOSEDKFS , (1)

OPENFS ⊆ OPENKFS ∪ CLOSEDKFS , (2)

f FSmin ≤ f
KFS
min , (3)

where FOCALFS and FOCALKFS denote the contents of the
FOCAL list of FS and K-FS(∞), respectively, OPENFS and
OPENKFS denote the contents of the OPEN list of FS and
K-FS(∞), respectively, and CLOSEDFS and CLOSEDKFS

denote the contents of the CLOSED list of FS and K-FS(∞),
respectively.

Specifically we prove that at every expansion cycle of FS,
(1), (2), and (3) hold true. We do this by induction on the
number of expansion cycles. We assume that it an algorithm
terminates at expansion cycle j, then for every expansion
k ≥ j, the data structures remain constant.

Our proof is by induction on the number of expansion
cycles. For the base case (0 expansion cycles), both properties

hold because all data structures and variables are identical in
both algorithms.

Induction. We assume that we are at expansion cycle i and
that the property has been held true in every expansion cycle,
up to cycle i.

Now we prove that (1) and (2), hold at expansion cycle
i + 1. Specifically, we show that if FS expands s, then each
successor t of s that is added to FOCALFS at the cycle i will
be in FOCALKFS ∪ CLOSEDKFS at cycle i+ 1. Furthermore,
we show that each successor t that is added to OPENFS at
cycle i will be in OPENKFS ∪ CLOSEDKFS at cycle i+ 1. Let
s be the state that is expanded by FS at cycle i. We identify
two cases.

1) s is in FOCALKFS

2) s is in CLOSEDKFS

For case 1. If s is expanded by FS, s is also expanded by
K-FS(∞). Now we prove that every successor of s that is
added to FOCALFS , is added to FOCALKFS , and therefore is
added to OPENKFS or is in CLOSEDKFS .

Let t be a successor of s. Because K-FS(∞) expands s,
t may be added to FOCALKFS (it may not be added if t
was generated by KFS in a previous cycle), which implies
that conditions (1) and (2) hold true at expansion cycle
i + 1. If t has been generated in a previous expansion
cycle, then t is either in FOCALKFS and OPENKFS or in
CLOSEDKFS at cycle i (because f FSmin ≤ f KFSmin ). This implies
that at cycle i + 1, t belongs to CLOSEDKFS , which implies
that the conditions (1) and (2) are satisfied at expansion
cycle i+ 1.
For case 2, let t be a successor of s that is added to OPENFS

at expansion cycle i + 1. Since s ∈ CLOSEDKFS at cycle
i, then at some previous expansion cycle j (j < i), K-FS
expanded s and added t to OPENKFS , unless t was already
in CLOSEDKFS . This means that at every expansion cycle
after j, state t is in OPENKFS ∪CLOSEDKFS . This implies that
at cycle i + 1 (2) is fulfilled. Finally, suppose that at cycle
i + 1 it holds that t ∈ FOCALFS then t ∈ FOCALKFS also
holds, because f FSmin ≤ f

KFS
min . This implies that (1) holds true at

cycle i+ 1.
To prove that (3) holds true at cycle i+1, we observe that if

the property (2) holds true in i+ 1, then each state s that is in
OPENKFS or is a state that is in OPENFS or is a descendant of a
state t that belongs to OPENFS . Also, if s is in OPENFS but not
in OPENKFS , then some (possibly empty) set of descendants
of s are found in OPENKFS . On the other hand, since h is
consistent, f (s) ≤ f (t) if t is a descendant of s. Therefore,
at cycle i + 1, f FSmin = mins∈OPENFS f (s) ≤ mins∈OPENKFS
f (s) = f KFSmin .

We have proven that (1), (2), and (3) hold true throughout
execution. To finish the proof for the theorem, we observe that
if FS terminates at a certain expansion cycle k , then the goal
state is either in FOCALKFS or in CLOSEDKFS . If the former
holds, KFS returns at expansion cycle k . If the latter holds,
it returns the goal at an expansion cycle less than k , which
finishes the proof. □
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TABLE 2. Results on 24-puzzle.

TABLE 3. Results on Rubik’s cube.

V. EMPIRICAL RESULTS
Our empirical evaluation seeks to evaluate the performance
of our algorithm and the impact of the k parameter with two
different suboptimality bounds.

We evaluated our algorithm on two domains: the 24-puzzle
and Rubik’s cube. We use the publicly available trained
models of DeepCubeA [6] as learned heuristic for both
domains.

All algorithms were implemented in Python 3, and the
experiments were run on an Intel Xeon E5-2630machinewith
64GB RAM, using a single CPU core and one GPU Nvidia
Quadro RTX 5000. For all experiments, we use a 30-minute
timeout.

Our algorithm was compared with FS in sequential
mode (FS) using the same neural-net heuristic, which
calculates the hFOCAL for each state that is inserted in
FOCAL at the moment that it is inserted. Furthermore,
we compare to two other state-of-the-art bounded subopti-
mality search algorithms: Weighted A* (WA*) and Dynamic
Potential Search (DPS) [22], which is a bounded-suboptimal
version of potential search [23]. In our experimental eval-
uation, we do not include Explicit Estimation Search [24],
which is another state-of-the-art bounded suboptimal search
algorithm, because, as its authors assert, it does not sig-
nificantly outperform WA* in domains with unitary costs,
like the ones used in this evaluation. We also not include

wGePA*-SE [25]. Even though this algorithm exploits
parallel computation, it does not aim to parallelize the
computation of the heuristic neither does it use a GPU for
parallel computation.

K-FSwas tested with different k values, from k = 1 to 960.
We did not include K-FS(∞) (i.e., K-FS which expands all
states in FOCAL) because it runs out of memory on some
instances.

The result tables show the coverage (percentage of solved
instances), average expansion cycles (EC), average expan-
sions (exp.), average solution cost in the solved instances,
average runtime, average time spent to compute the learned
heuristic per state (h time), and the percentage of the search
time which was used to compute the learned heuristic (htis
[heuristic time in search]), for the instances solved by all
algorithms in the domain, per each suboptimality bound.
If an algorithm does not solve a particular instance with a
suboptimality bound, it is not included in the table.

A. 24-PUZZLE
This is the 5 version of the classic sliding-tile puzzle.
As admissible heuristics estimators, we use the Linear
Conflict Heuristic [26]. For the evaluations, we use Korf’s
50 instances for the 24-puzzle [27]. Table 2 shows the results
in the 24-puzzle domain using two suboptimality bounds.
With a small bound (i.e. w = 1.15), we observe that the
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FIGURE 1. Results on 24-puzzle.

FIGURE 2. Results on Rubik’s cube.

algorithms that do not use the learned heuristic (i.e., WA*
and DPS) cannot solve instances. FS and K-FS(1), which use
the learned heuristic, cannot solve instances. Both execute the
same procedure, but due to the GPU parallelization, K-FS(1)
can perform more expansions in the same runtime, resulting
in a lower time spent to generate a state. Of the total time
used in the search (1,800 seconds), in FS(seq), we observe
that 79.7% was used only in calculating the heuristic, which
decreases to 72% with K-FS(1). As k increases between
5 and 240, K-FS improves and can solve all problems in the
set. K-FS(10) performs, on average, 3 orders of magnitude
fewer expansions than K-FS(1), and finds solutions with
better cost. In addition, K-FS reduced the percentage of time
used to compute the heuristic from 72.04%, with k = 1,
down to 2% with k = 240. An important observation is that,
as k increases, the number of expansion cycles and the time
spent calculating the heuristic for each state decrease, but the
number of expansions and the runtime reaches its minimum
in k = 10.
With suboptimality bound w = 1.5, WA* and DPS

obtains just 68% and 80% of coverage, resp. FS (seq) and
K-FS(1) 96% of coverage and find the same solutions, but
K-FS can perform more expansions with the same runtime.

As k increases, K-FS can obtain 100% of coverage, show
better performance, finding better solutions with fewer
expansions, and spend less time generating a state. In this
case, K-FS(5) can perform one order of magnitude less
expansions than K-FS(1) and three orders of magnitude
than DPS and WA*. Same as the previous suboptimality
bound, as higher K , the time spent computing the heuristic
dramatically decreases, but the best results in terms of
expansions and runtime are in k = 5.
Figure 1 shows the coverage vs. runtime per each

algorithm in both suboptimality bounds. In the figure, with
suboptimality bound w = 1.15, we observe that K-FS(25)
solves the complete problem set in less than 5 seconds per
problem. Similar behavior occurs in w = 1.5, where K-FS(5)
and K-FS(10) solve all problems in less than 2 seconds per
problem.

B. RUBIK’S CUBE
This is the classic 3×3×3 combinatorial puzzle. As admissi-
ble heuristics estimators, we use a Pattern Database [28]. The
pattern database, as the author recommends, was separated
into three databases: one for the eight corner cubies (which
has 8! ∗ 37 states) and two for the twelve edge cubies
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(each has 12!/6! ∗ 26 states). The pattern databases were
populated with Breadth-First Search. The final heuristic
estimate is obtained by getting the maximum between the
values stored in the three pattern databases for the state.
For the evaluations, we use 100 random instances from
the DeepCubeA test set, which was generated by randomly
scrambling the goal state between 1,000 and 10,000 times.
Table 3 shows the results on the Rubik’s Cube domain using
two different suboptimality bounds: w = 2.5 and w = 4.0.
In this problem, we choose higher suboptimality bounds than
in the 24-puzzle because the state space is larger and the
admissible heuristic is less informed. With suboptimality
bound w = 2.5, WA* and DPS cannot solve instances
within the deadline. On the other hand, FS (seq) could solve
9% of the instances and K-FS(1) just two more instances
because batch processing accelerates the computation of the
learned heuristic. On average, between the instances solved
by all algorithms, FS (seq) spent 48.57% of the search time
calculating the learned heuristic, and K-FS(1) reduces the
time to 17.20%.

As k increases, the coverage increases up to 95% using
K-FS(960), which, on average, is one order of magnitude
fewer expansions than K-FS(1), finding better cost solutions.
The time spent computing the heuristic, per each state, was
reduced by almost three orders of magnitude as k increases,
and it went from 48% of the search time to only 0.7%.
An important observation is that the number of expansion
cycles performed by K-FS(960) is equal to the solution cost,
which in practice means that K-FS(960) behaves similar to
K-FS(∞), and according to Proposition 1, which expands the
search tree in Breadth-First order. In the selected instances,
with w = 2.5, the best configuration of K in terms of
expansions and runtime is K-FS(100).

With suboptimality bound w = 4.0, WA* cannot solve any
instance, and DPS can solve only one. For that reason, in this
table, DPS was not taken into account to select instances
solved by all algorithms.

On the other hand, FS (seq) and K-FS(1) obtain 81%
and 86% of coverage, respectively. As k increases, K-FS
shows better performance, achieving 100% coverage and
finding better cost solutions. With this suboptimality bound,
the best performance in terms of expansions and runtime was
obtained with k = 25, performing one order of magnitude
fewer expansions than FS (seq). In this domain, the time
spent computing the heuristic value per state was reduced as
k increases, but to a lesser extent than in the puzzle domain.
In Rubik’s Cube domain, one expansion generates twelve
successors that can be enough to make a batch that exploits
the GPU’s batch processing.

Figure 2 shows the coverage vs. runtime per each
algorithm. With suboptimality bound w = 2.5, we observe
that K-FS with smaller K can quickly solve a part of the
problems and slightly improves with time. As k increases,
it can be slower to return a solution, but finally, it can
solve most instances, such as K-FS(960), which solves
the complete problem set. We observe a similar behavior

with w = 4.0, but in this case, K-FS(25) is the fastest and
solves all instances.

In summary, K-FS can reduce the time spent calculating the
learned heuristic up to three orders of magnitude, increasing
the number of solved instances and obtaining better cost
results. However, the performance of K-FS depends on the
value of k and w, which suggests that calibration of the
k parameter is required. In general, with higher values
of k , the number of expansions cycles will reduce. But an
excessively high k value can increase the runtime and the
number of expansions because the algorithm will expand a
large segment of the FOCAL list in each expansion cycle.

VI. SUMMARY AND CONCLUSION
In this paper, we presented K-FS, a generalization of
Focal Search which expands k states from FOCAL at every
expansion cycle. The algorithm builds a batch of states to
compute the learned heuristic value of a number of states
in parallel exploiting the batch processing capability of a
GPU. Theoretically, we prove that K-FS is complete and
w-optimal and other properties of the K-FS that are related to
those of KBFS. On the experimental side, we demonstrate the
effectiveness of our algorithm in two classical domains, the
24-puzzle, and the Rubik’s Cube, using DeepCubeA, a very
effective inadmissible learned heuristic. We show that our
approach outperforms others bounded-suboptimal heuristic
search algorithms such as WA* and DPS and FS using the
learned heuristic by two orders of magnitude in the number
of expansions and three orders of magnitude in the time spent
computing the heuristic. As the k value increases, the number
of expansions cycles decrease, but the number of expansions
may increase. This decrease in the number of expansion
cycles suggests that K-FS does explore different sections of
the state space compared to FS.We believe that the expansion
strategy introduces more diversity to the search. However,
a deeper analysis of this behavior is left for future work.

We also observe that the performance of K-FS depends on
bothw and k . This suggests that machine learning approaches
to calibrate the k parameter may be of practical relevance, in a
similar way that the job done by [29].

We also observed that K-FS is a general approach and
is not restricted to learned heuristics. This paper focuses
on a learned heuristic to take advantage of the batched
computation on a GPU. Still, as future work we propose
to explore the benefits of K-FS with a well-informed
inadmissible calculated heuristic, such as FF [30].

As future work, we seek to move this approach to a
concurrent algorithm that can generate the successors and
explore the different zones of the state space in parallel, like
PRA* [12] does.
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