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ABSTRACT Prostate cancer (PRC) is the major reason of mortality globally. Early recognition and classi-
fication of PRC become essential to enhance the quality of healthcare services. A newly established deep
learning (DL) and machine learning (ML) approach with different optimization tools can be employed to
classify accurately of PRC accurately using microarray gene expression data (GED). Though the microarray
data structures are important to diagnosing different kinds of diseases, the optimum hyperparameter tuning of
the DL models poses a major challenge to achieving maximum classification performance. To resolve these
issues, this study develops a new Gene Expression Data Analysis using Artificial Intelligence for Prostate
Cancer Diagnoses (GEDAAI-PCD) technique. The proposed GEDAAI-PCD technique examines the GED
for the identification of PRC. To accomplish this, the GEDAAI-PCD technique initially normalizes the GED
into a uniform format. In addition, the long short-term memory-deep belief network (LSTM-DBN) model
was applied for PRC classification purposes. The wild horse optimization (EWHO) system was utilized as
a hyperparameter tuning strategy to optimize the performance of the LSTM-DBN model. The experimental
assessment of the GEDAAI-PCD system occurs on open open-accessed gene expression database. The
experimental outcomes emphasized the supremacy of the GEDAAI-PCD method on PRC classification.

INDEX TERMS Prostate cancer, deep learning, artificial intelligence,microarray gene expression, parameter
tuning.

I. INTRODUCTION
The introduction of the research paper titled Long Short Term
Memory-Deep Belief Network based Gene Expression Data
Analysis for Prostate Cancer Detection and Classification
is a pivotal section that offers a comprehensive overview
of the study’s scope, significance, and objectives. Prostate
cancer stands as one of the most widespread malignancies
affecting men on a global scale. Timely and precise detection,
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as well as accurate classification of prostate cancer, are
crucial factors contributing to effective interventions and
ultimately enhanced patient outcomes. Conventional tech-
niques for diagnosing prostate cancer frequently necessi-
tate labor-intensive manual feature engineering procedures,
which often fall short in capturing subtle intricacies inherent
in gene expression data. In light of these challenges, this study
ventures into uncharted territory by embarking on an inno-
vative approach that fuses the strengths of Long Short-Term
Memory (LSTM) and Deep Belief Network (DBN) method-
ologies for the analysis of gene expression data. LSTM

1508

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-9041-085X
https://orcid.org/0000-0002-2721-5824
https://orcid.org/0000-0001-9007-3665
https://orcid.org/0000-0002-0752-4267
https://orcid.org/0000-0002-3367-1711


B. K. Sethi et al.: LSTM-DBN-Based GED Analysis for PRC Detection and Classification

emerges as the optimal choice for modeling sequential data,
thereby offering an ideal framework for capturing temporal
dependencies within gene expression profiles. Conversely,
DBN exhibits remarkable prowess in the extraction of hierar-
chical features from multifaceted data structures. The second
most common reason for death in men is prostate cancer
(PRC). It derives afterward lung cancer concerning threaten-
ing and exceeding in the domain. The etiology of this kind of
cancer is still not completely identified yet [1]. However a few
features like environmental, heredity, and diet controls that
affect male hormone have already been discussed in epidemi-
ological research.Microarray technology is a new technology
from molecular biology with regards to the contribution of
data in quantifying millions of genes that are used during the
diagnoses of disease and to forecast the potential outcome [2].
The gene that is controlled owing to disease conditions could
be examined by the expression extracting in the microarray
information [3]. As well, this measurement assists in the
examination of cancer. The usage of the DNA microarray
technique to expose data from the expression level of millions
of genes has more potential [4]. DNA microarray technology
could define the level of millions of genes concurrently in a
single experiment. The study of gene expression is crucial in
different subject areas of biological analysis to attain essential
data.

On the other hand, Machine learning (ML) techniques
were effectively employed on PRC information to recognize
gene biomarkers of diseases [5]. Automating the separation
of genes in microarray information, can decrease the clas-
sification error and decrease the time factor included while
completing the process. A feature selection in ML intends
to achieve the least subset of problem space although quite
accomplishing themaximum level of detection and classifica-
tion [6]. Likewise, feature selection including embedded pro-
cedures, filter models, and wrapper models, an optimization
strategy could provide satisfactory outcomes [7]. Filtering
and wrapping are well-known techniques for the selection
of genes. According to the filtering method, all the features
are allocated a value according to their relationship with a
single variable scoring criterion and a class label [8]. Subse-
quently, the gene with the maximum ranking is selected and
categorized. At the same time, the wrapper technique requires
a set of classifiers to evaluate every gene efficiency from
the ranking procedure [9]. Therefore, the optimum subclass
of the gene can be defined according to the performance
scoring or rankings in every discovered subcategory. Even
though the filtering method could not measure genomic rela-
tionship, the wrapper strategy might be constrained by their
highest processing cost. Using data from an ICU, predict
whether a patient has Sepsis Disease with a Deep Neural Net-
work. [10]. The authors represent a hybrid evolution-based
deep learning model that takes advantage of multimodal
data. In a multi-modal fusion framework, histopathological
images are combined with gene modality. Each modality’s
state and form were taken into account to build the deep

feature extraction network [11]. High-performance comput-
ing and machine learning algorithms are combined for better
medical image analysis techniques like fused, segmented,
registered, and classified images [12]. Deep learning algo-
rithms, unlike classical neural networks, do not depend on
feature extraction. The medical field has a growing need
for computer-aided automatic processing due to its enhanced
accuracy and precision [12]. The established multi-modal
fusion framework combines gene modality with histopatho-
logical image modality. We establish separate deep feature
extraction networks for each modality, taking into account
their distinct states and forms [11]. The machine learning
model was subsequently customized to forecast the D’Amico
Risk Classification. It was trained using information from a
cohort of 54 prostate cancer patients, demonstrating its capa-
bility to effectively distinguish between low-/intermediate-
risk and high-risk diseases, all without necessitating supple-
mentary clinical data [13]. We conducted a prospective study
wherein we performed biopsies on a cohort of men exhibiting
benign findings during digital rectal examinations (DRE),
with a PSA level below 20ngml−1, and no prior history of
prostate biopsies [14].
The research gap in the study Long Short-Term Memory-

Deep Belief Network based Gene Expression Data Analysis
for Prostate Cancer Detection and Classification. The field
of gene expression data analysis is evolving rapidly, yet
the underutilization of deep learning methods, like Long
Short-Term Memory-Deep Belief Networks (LSTM-DBN),
in prostate cancer detection and classification presents a
significant research gap. The combination of Long Short-
TermMemory (LSTM) and Deep Belief Networks (DBN) for
gene expression analysis in prostate cancer is relatively unex-
plored, creating a gap in understanding the effectiveness of
such hybrid models. While LSTM-DBN models may offer a
promising approach, the lack of comprehensive performance
evaluation, including comparisons with existing methods,
hinders their validation. Assessing metrics such as accu-
racy, sensitivity, and specificity is essential to ascertain their
strengths and weaknesses. Insufficient access to diverse and
representative datasets for prostate cancer gene expression
analysis presents another research gap. Larger, more varied
datasets are needed to capture the full biological spectrum of
the disease. Moreover, the ethical and clinical implications
of applying advanced AI techniques in healthcare, includ-
ing addressing data biases, privacy concerns, and seamless
clinical integration, have not received adequate attention,
warranting in-depth exploration. Additionally, the computa-
tional intensity of deep learning models, especially LSTM-
DBN hybrids, poses challenges in scalability and practical
deployment, further contributing to the research gap.

This research endeavors to pioneer an inventive approach
for the detection and classification of prostate cancer, har-
nessing advanced deep learning techniques like Long Short-
Term Memory (LSTM) and Deep Belief Networks (DBN).
The primary focus is on the analysis of gene expression
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data associated with prostate cancer, intending to enhance the
precision and dependability of diagnostic processes through
the use of hybrid LSTM-DBN models. Key objectives
encompass evaluating model efficacy, conducting perfor-
mance assessments, and comparative analyses with existing
methods. The research also underscores the imperative for
more extensive and representative datasets, considers ethical
aspects in healthcare integration, explores scalability chal-
lenges, and seeks to improve the interpretability of AImodels.
The ultimate aspiration is to propel the field of precision
medicine in prostate cancer care through the utilization of
LSTM-DBN-based gene expression analysis.

A. MOTIVATION
The impetus for researching Long Short TermMemory-Deep
Belief Network based Gene Expression Data Analysis for
Prostate Cancer Detection and Classification is underpinned
by several compelling factors.

• The complexity and dynamic nature of gene expres-
sion patterns is the main driving force behind the use
of an LSTM-DBN for gene expression data analysis
in the diagnosis and classification of prostate cancer.
Accurate detection and classification of prostate cancer
samples necessitates sophisticated approaches due to the
dynamic and variable nature of gene expression profiles.
This can be very important in gene expression research
to find complex patterns that could represent various
cancer stages. For processing such high-dimensional
data and extracting meaningful representations, LSTMs
and DBNs are excellent choices.

• Prostate cancer, a global health concern for men, neces-
sitates early identification to improve outcomes. Tra-
ditional diagnostic methods involve time-consuming
manual processes and struggle to detect subtle gene
expression patterns.

• Deep learning and artificial intelligence advancements
have transformed various industries, particularly health-
care. They excel in image analysis and language process-
ing. Applying deep learning to gene expression analysis
improves cancer detection reliability.

• Data-driven medicine emphasizes using extensive
genetic data for informed disease diagnosis and treat-
ment decisions. Analyzing gene expression data pro-
vides insights into fundamental molecular mechanisms,
benefiting diseases like prostate cancer.

• Integrating AI models into clinical workflows enhances
diagnosis accuracy and decision-making in healthcare.
This research aims to bridge the gap between advanced
machine learning and practical healthcare applications.

• Rising AI impact in healthcare necessitates address-
ing ethical concerns like data privacy, bias, and trans-
parency. The research aims to establish responsible AI
frameworks and healthcare-specific guidelines.

• The use of LSTM-DBN in the analysis of gene expres-
sion data related to prostate cancer is important because
it can manage the intricacies of high-dimensional,

temporal data, improving accuracy and yielding insights
that can be useful for both diagnosis and therapy plan-
ning. The temporal dependencies in gene expression
data can be more accurately modeled with the use of
LSTM-DBN. This may result in the identification and
categorization of various prostate cancer stages and
subtypes with greater accuracy. The deep learning archi-
tecture facilitates the automatic extraction of pertinent
information from the unprocessed gene expression data.
This is important to recognize small alterations and
trends that may indicate certain cancer stages. Since
LSTMs are meant to mimic sequences, they are appro-
priate for gene expression data that changes over.

• The capacity to model dynamically is crucial for com-
prehending how prostate cancer progresses and how
gene expression varies. Thismethod helps to createmore
individualized and focused treatment plans by correctly
identifying various prostate cancer subtypes based on
gene expression profiles. It may be possible to identify
changes in gene expression patterns before they appear
clinically thanks to LSTMs’ capacity to record temporal
relationships. For cancer to be effectively treated, early
detection is essential.

B. CONTRIBUTIONS
• A novel technique, Gene Expression Data Analysis
using Artificial Intelligence for Prostate Cancer Diag-
noses (GEDAAI-PCD), analyzes gene expression data
(GED) to identify prostate cancer. It begins by normal-
izing GED.

• LSTM addresses gradient vanishing in RNNs, boasting
high learning capacity with dropout layers. ResNet-101
CNN, with convolution, inception, and fully connected
layers, trained on ImageNet, outperforms LSTM in
detection.

• LSTM-DBN applied to gene expression data for prostate
cancer detection is a promising use of deep learning,
offering more accurate diagnoses and advancing our
understanding of disease mechanisms and treatment.

• LSTM-DBN is used for prostate cancer classifica-
tion, employing enhanced wild horse optimization
(EWHO) for performance enhancement. The GEDAAI-
PCD algorithm is assessed on an open-access gene
expression database. The study evaluates LSTM-DBN’s
efficacy in prostate cancer analysis.

• A thorough performance assessment will use key met-
rics (accuracy, sensitivity, specificity, F1-score) to mea-
sure the LSTM-DBN model’s ability to distinguish
between prostate cancer and non-cancer cases, empha-
sizing its role in early detection.

• The study explores using model insights for tailored
treatment strategies, aligning with the broader aim
of advancing precision medicine in prostate cancer
care.

The primary research inquiry in Long Short-Term Memory-
Deep Belief Network based Gene Expression Data Analysis
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for Prostate Cancer Detection and Classification likely cen-
ters around the following research question:

Q1. How can we harness Long Short-Term Memory-Deep
Belief Network models to enhance the precision and effi-
ciency of gene expression data analysis for prostate cancer
detection and classification.

Q2. What are the wider consequences of this methodology
for the field of medical diagnostics and the quality of patient
care?

II. RELATED WORKS
An integrated approach for gene expression in disease types
can be explained in [15], containing two stages: recognizing
the effectual genes using soft ensemble and categorizing them
with new DNN. This research work examines in detail the
theory of deep learning for the detection ofmedical anomalies
[16]. To develop a bidirectional Long Short-Term Memory
Deep Neural Network (biLSTM) model that detects prostate
cancer in men based on previously established phenotypic
features [17]. To assess prediction performance, the study
utilized The Cancer Genome Atlas (TCGA) database, eval-
uating six GS methods and seven omics data combinations.
The findings indicate that the Best Linear Unbiased Predic-
tion (BLUP) model outperforms other methods in terms of
predictability and computational efficiency.

Our findings reveal that combining a SIG-HES6 signa-
ture with DESNT significantly enhances the prediction of
poor outcomes in prostate cancer. We propose a model
suggesting cooperation between the SIG-HES6 and SIG-
DESNT pathways, which has implications for therapeutic
design [18], [19].

The feature selection (FS) scheme integrates 3 approaches
for selecting wrapper genes and ranks them based on the
KNN technique, which leads to a very generalizable method
with a lower error level. Utilizing soft ensembling, the most
effectual subsets of genes can be recognized in 3 microarray
databases of diffuse huge cell lymphoma, PRC, and leukemia.
Gumaei et al. [20] examine utilizing a correlation FS (CFS)
approach with random committee (RC) ensemble learning
for detecting PRC in microarray data of gene expressions.
A series of experimentations can demonstrate that an open
benchmark database utilizes a 10-fold cross-validation sys-
tem to evaluate the projected system. Using an open-source
HGSOC proteomic dataset, we used a Machine Learning-
based pipeline to create a decision support system (DSS)
that was capable of discriminating between HGSOC biopsies
[21]. An ensemble learning method is proposed for classify-
ing cancer in the present study. Particle swarm optimization
and ensemble learning are used in this publication for feature
selection and cancer classification [22].
The authors in [23] established P-NET as a physically

learned DL approach for the stratification of the patients with
PRC by treatment-resistance state and estimated molecular
driver of treatment resistances for therapeutic targeting with
interpretability. In this paper, we present an approach to detect
ovarian cancer that uses simultaneous feature weighting and

parameter optimization. With adaptive differential evolution
(ADE) as a fitness function, the weights are optimized with
cross-validation errors, least absolute shrinkage, and selec-
tion operator regularization [24]. In this study, the author
developed a tool for analyzing gynecological ultrasound data
using a machine-learning algorithm to predict 12-month PFS
in patients with OC [25], [26].

It is illustrated that P-NET forecasts cancer state employ-
ing molecular data with effectiveness is higher than other
modeling systems. In [10], an integration of effectual ML
techniques for FS and classifier can be presented for ana-
lyzing gene activities and choosing them as appropriate
biomarkers for distinct laterality instances. The projected
technique allows to identification of groups of genes that
recognize distinct laterality class labels. The resulting genes
can be established that strongly correlate with disease pro-
gression. A radiomics model that can forecast CCR5 expres-
sion levels was developed by utilizing the Cancer Imag-
ing Archive (TCIA) and Cancer Genome Atlas (TCGA)
databases to determine the predictive significance of C-C
motif chemokine receptor type 5 (CCR5) expression levels
in ovarian cancer patients [27]. This suggested model can
be used by physicians to detect ovarian cancer much more
accurately, increasing the chances of effective treatment and
a longer life expectancy for patients [28].

In [29] the authors propose a new AIFSDL-PCD detec-
tion method based on the combined capabilities of AIFSDL
and DL. Moreover, an FS system based on chaotic invasive
weed optimization (CIWO) to select a high-grade feature set
illustrates the innovative nature of this work. Furthermore,
the DNN technique was executed as a classifier method for
detecting the presence of PRCs from the microarray GED.
Pandit et al. [30] presented an effectual and hybrid DL
approach for molecular cancer classifiers utilizing expression
data to solve these restrictions. Afterward, the clustering
was completed with the use of an enhanced binomial clus-
tering system. Afterward, the data was extracted with the
utilization of a multi-fractal Brownian motion system. Next,
essential features can be chosen with the utilization of an
enhanced cuckoo search-optimized system. Eventually, the
data classifier was carried out utilizing a wavelet-based deep
CNN. The authors in [31] established an infrastructure called
GraphChrom for cancer classifiers. Chromosomal aberra-
tions (CA) are addressed with GraphChrom, a network neural
network (NN) that generates local connectivity between aber-
rations. In this process, fuzzy c-means and k-means clustering
are applied to preprocessed images with better quality [37].

This article introduces a feature selection method for
prostate cancer detection, termed Artificial Intelligence-
based Feature Selection with Deep Learning for Prostate
Cancer Detection (AIFSDL-PCD), utilizing microarray gene
expression data. The AIFSDL-PCD technique incorporates
pre-processing steps aimed at improving the quality of
the input data. The author conducts comprehensive exper-
iments on eight benchmark high-dimensional gene expres-
sion datasets, comparing the proposed approach with other
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contemporary techniques. Three classifiers, specifically sup-
port vector machines (SVM), Naive Bayes (NB), and
K-nearest neighbors (KNN), are utilized to evaluate the
effectiveness of the selected genes and their influence on
classification accuracy. The paper concludes by delving into
a discourse on the future of machine learning, contemplat-
ing potential advancements in the field that might lead to
the development of innovative systems. The objective of the
presented research is to determine the most effective strat-
egy utilizing state-of-the-art computer vision, specifically the
Chaotic Oppositional Based Whale Optimization Algorithm
(CO-WOA), in conjunction with data mining techniques [29],
[38], [39], [40].

To assess the LSTM-DBN model’s performance compre-
hensively, it’s crucial to consider its adaptability to diverse
datasets, encompassing various populations and gene expres-
sion variations. Utilize established classification metrics,
including accuracy, precision, recall, F1 score, and AUC,
recognizing that each method may excel in specific met-
rics based on the unique problem and dataset characteris-
tics. Employ cross-validation to ensure the model’s robust-
ness, preventing overfitting, and comparing LSTM-DBN
with other methods to gauge stability and generalization.
Additionally, take into account computational resources and
efficiency, as practicality for clinical applications varies
among methods. Evaluate the trade-off between model
interpretability and performance, acknowledging that deep
learningmodels like LSTM-DBNmay prioritize performance
over interpretability. Consider the necessity of manual fea-
ture engineering, which traditional methods often rely on,
as opposed to deep learning models that autonomously learn
features. Assess the model’s robustness to noisy data and its
ability to capture disease progression in longitudinal datasets,
both critical aspects of cancer research. For deep learning
models, explore the effectiveness of interpretability tech-
niques. Lastly, evaluate the model’s clinical applicability,
and integration feasibility, including workflow, privacy, and
regulatory compliance, and ensure it promotes seamless col-
laboration with healthcare professionals, a crucial factor in
adoption.

The research work presents a two-phase technique for
feature selection in this work. To find important character-
istics in high-dimensional gene expression data, the Author
first applies the kernel Shapley value (kSV), which is based
on a cooperative game-theoretic feature extraction approach.
Then, in the second stage, the model uses the Harris Hawks
Optimizer (HHO) algorithm to further optimize and refine
the most important features that kSV extracted. To evaluate
the methodology, Research work performed extensive experi-
ments on eight high-dimensional benchmark gene expression
datasets and compared results with those of existing state-of-
the-art methods [38]. In this work, the author suggested that
put into practice a hybrid machine learning framework that
uses soft computing methods to choose features. The main
goal is to remove extraneous genes and identify critical genes
that are necessary for the detection of cancer. The first step is

to use a higher-order Independent Component Analysis (ICA)
approach to extract genes or features. Next, we use Genetic
Bee Colony (GBC) optimization approaches in the second
stage to find and pick the most relevant genes or traits before
moving on to the classification phase [41].

III. THE PROPOSED MODEL
Based on this study, a novel GEDAAI-PCD approach has
been developed for classifying PRCs on GEDs. In the pre-
sented GEDAAI-PCD methodology, min-max normalization
is primarily applied to scale the GED into a uniform for-
mat. Next, the LSTM-DBN approach was applied for PRC
classifier purposes. The EWHO technique is exploited as a
hyperparameter tuning process for boosting the performance
of the LSTM-DBN model. Fig. 1 depicts the overall proce-
dure of the GEDAAI-PCD methodology.

The innovation lies in adopting an approach based on the
Long Short-Term Memory-Deep Belief Network (LSTM-
DBN) for the analysis of gene expression data in the detection
and classification of prostate cancer. This approach merges
LSTM, renowned for its capacity to model sequential data,
with DBN, a type of deep neural network, creating a dis-
tinctive fusion of two potent machine learning methods. This
fusion empowers the model to concurrently capture sequen-
tial dependencies and hierarchical characteristics within gene
expression data. The LSTM-DBN approach possesses the
ability to autonomously learn meaningful features directly
from the raw gene expression data. In contrast to conventional
methods that often require manual feature engineering, this
approach has the potential to unveil concealed patterns and
representations within the data that may elude human-crafted
features.

Furthermore, LSTM, being adept at modeling time-series
data, allows the model to seize dynamic alterations in gene
expression levels over time, which can be pivotal in compre-
hending the development of diseases such as prostate can-
cer. Deep learning techniques, including LSTM-DBN, have
exhibited remarkable achievements across various domains
such as image analysis and natural language processing.
The application of these methodologies to gene expression
data analysis holds the promise of enhancing classification
accuracy, potentially facilitating more precise detection and
categorization of prostate cancer subtypes.

Deep learning models are notably scalable, effectively
managing extensive gene expression datasets comprising
thousands of samples and genes. This scalability renders them
suitable for comprehensive investigations encompassing vast
volumes of genetic information. By discerning intricate pat-
terns within gene expression data, LSTM-DBN could con-
tribute to the formulation of personalized treatment strategies
for individuals with prostate cancer. Tailoring treatments to
an individual’s genetic profile represents a promising avenue
in cancer research.

The LSTM-DBNmodel outperforms exceptional accuracy
in detecting and classifying prostate cancer compared to alter-
native models, due to its sophisticated architecture and deep
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learning capabilities. It excels in capturing intricate patterns
within gene expression data. Additionally, it effectively tack-
les the issues related to limited or biased datasets, enhancing
its ability to generalize across diverse patient populations and
making it more resilient for real-world scenarios. This model
notably strikes a harmonious balance between complexity
and interpretability, a critical aspect in the medical domain,
allowing for valuable insights while preserving high per-
formance. Despite its intricate design, it optimizes resource
utilization, bolstering its practicality in resource-constrained
healthcare settings. Its wide-ranging applicability extends
beyond prostate cancer, offering insights that are transferable
to various diseases, thereby elevating its significance in the
medical field. The emphasis on validation in clinical practice
is pivotal, ensuring the model’s utility and clinical impact,
a crucial phase for validating its effectiveness in real health-
care settings.

FIGURE 1. Overall procedure of GEDAAI-PCD system.

Before employing the LSTM-DBN model, a critical step
involves a comprehensive feature selection and engineer-
ing process to identify the most relevant gene expression
features and possibly create new ones to enhance perfor-
mance. Addressing challenges related to limited datasets
can be accomplished through data augmentation techniques,
which generate additional synthetic data points, thereby
improving model generalization. Fine-tuning hyperparame-
ters, such as learning rates, layer sizes, and activation func-
tions, is essential to optimize model suitability. The use of
ensemble techniques like bagging or boosting can enhance
predictive accuracy by reducing model variance. The incor-
poration of interpretation methods, such as saliency maps
and attention mechanisms, facilitates the understanding of

influential gene expressions. Ensuring robust validation
through cross-validation and diverse patient populations is
crucial for maintaining consistent performance. Collabora-
tion with healthcare professionals is indispensable, taking
into account workflow, privacy, and regulatory considera-
tions. The inclusion of longitudinal patient data provides
valuable insights into disease progression. Techniques like
dropout and L1/L2 regularization help prevent overfitting,
while methods like SHAP values enhance the model’s inter-
pretability, fostering trust among healthcare professionals.

A. DATA PREPROCESSING
In this work, the data normalization process is performed by
min-max normalization., the min-max normalization method
was implemented for transforming the input dataset to the
appropriate form. The MinMax normalized system was used
to scale the feature between zero and one.

ν′
=

v− minA
maxA − minA

(1)

In Eq. (1), minA and maxA implies the lower and higher
values of features A. The original and normalizing values of
an attribute, A are correspondingly regarded as ν and ν′. Note
that the lower and higher feature values correspond to 0 and 1,
respectively.

B. PRC CLASSIFICATION USING THE LSTM-DBN MODEL
To classify the GED for PRC recognition, the LSTM-DBN
model is used. LSTM is a variant of RNN that diverges
from conventional ANN [32]. The LSTM and RNN are
sequence-based methods with interior self-looped repeated
networks that can preserve previous data and find temporal
relationships amongst the successive data. The significant
modification between LSTM and RNN is the architecture
of the repeated model. In the elementary RNN, the repeated
models have a fundamental structure (Tanh layer), while
LSTM consists of four interactive layers (3 gate layers and
Tanh layer) with its repeated models. In LSTM, the cell layer
(CL) is an essential parameter that might upright the entire
network that carries information from the prior step. The
LSTM element poses the ability to eliminate or add data to
CL, viz., controlled by the gating layers. The output of the
forget gate, f_t, displays the value ranges between [0,1], and
the following is the mathematical equation of the output gate:

ff = σ
(
Wf · [ht−1, xt ] + bf

)
(2)

Next, the LSTM block is termed as the ‘‘input gate’’ layer.
It can be exploited for determining the novel data that is
memory from the CL as follows:

it = σ (Wi · [ht−1, xt ] + bi) (3)

At last, Tanh is utilized for generating a vector of the newest
candidate value that is added from the state as:

C̃ = φ
(
WC ·

[
ht−1, xζ

]
+ bc

)
(4)
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Following, the old CL, Ct−1, need to be upgraded to novel
CL, Ct . The outcome of Forget Gate, ft , define to forget, and
the resultant of input gates, it , determined to add the novel
CL, C̃t and it is mathematically formulated as follows:

Ct = ft∗Ct−1 + it∗C̃t (5)

Now, the last interactive layer is named the ‘‘output gate’’
layer, which makes the last output dependent upon the
upgraded CL. The procedure for creating a resultant of LSTM
architecture has been demonstrated in Eq. (6):

0t = σ (W0∗[ht−1, xt ] + b0)∗φ (Ct) (6)

From the expression, 0 denotes the activation function,
φ indicates the Tanh function. Assume θ = {W , b} shows
the parameter vector, W = [WfWi,Wc,Wo| and b =

[bf , bi, bC , bo] correspondingly indicates the weight and bias
of each layer. Eqs. (2) to (6) is characterized by = NN (X;θ ).
Then, the loss function of LSTM, L(θ )LSTM , is the MSE
amongst the outcome dataset, and the ground truth is given
as follows:

L(θ )LSTM =
J
N

N∑
i=1

|NN (xi;θ ) − yi|2 (7)

From the expression, the overall amount of labeled dataset
can be denoted as N . During training, the parameter vector,
θ is tuned continuously by reducing the loss function via
optimizer techniques viz., stochastic gradient descent (SGD).

DBN is a dual-method deep network and it can be the
structure of the RBM model. The trained method for DBM
encompasses fine-tuned, pre-trained, and prediction [33].
DBN is a propagative graphical model. The DBN has a
bi-directional connection termed RBM type association on
every peak layer whereas under the layer has lower or upper
associations. The pre-training occurs by component-wise net-
work training i.e., by handling the first 2 layers as RBM, then
preparing the second and third layers as another RBM, and
lastly preparing for these parameters.

The arithmetical modeling of DBN has been demonstrated
as follows.

P
(
x, h1, . . . , h1

)
=

(
l−2∏
k=0

P
(
hk | hk+1

))
P
(
hl−1, h1

)
(8)

where x = ho,P(hk|hk+1) shows the restricted provision
for the noticed unit acquainted with the unnoticed unit at k
level and P(hl−1, hl) represents a visible unnoticed united
provision from the topmost level RBM. DBN for unified
distribution amongst x observed vector and hk unobserved
layer. Fig. 2 illustrates the infrastructure of DBN.
In the LSTM-DBN algorithm, the DBN and LSTM are

incorporated into the classification technique to comple-
ment the 2 NN approaches. The learned resulting matrices
have been incorporated with artificially screened specific
manipulating feature matrices. This matrix was incorporated
with the Concat function and processed as an original func-
tion. By enhancing this concept further we will be able to

FIGURE 2. DBN architecture.

develop sophisticated learning models for diagnosis based
on improved accuracy, sensitivity, and F-measure compar-
isons with others [34]. The architectural framework of an
LSTM-DBN-based system for gene expression data analysis
in prostate cancer detection and classification encompasses
several fundamental elements. The process initiates with the
collection of gene expression data from diverse sources,
which may encompass RNA sequencing or microarray data
obtained from prostate cancer patients. Subsequently, the data
undergoes meticulous preprocessing procedures to ensure its
cleanliness and suitability for analysis. This entails address-
ing missing data points, normalizing the dataset, and elimi-
nating extraneous genes that do not contribute significantly
to the analysis.

In the feature extraction phase, the system extracts per-
tinent features from the preprocessed gene expression data,
encompassing attributes such as gene expression levels,
sequence information, and clinical data. Notably, the system
employs LSTM-DBN, a hybrid architecture amalgamating
Long Short-TermMemory (LSTM) andDeep Belief Network
(DBN). LSTM excels in modeling sequential data, a valuable
trait when dealing with time-series gene expression data.
It effectively captures temporal dependencies and dynamic
fluctuations in gene expression levels over time. In parallel,
DBN, as a deep neural network, adeptly captures hierarchical
features and intricate relationships embedded within the data.

Following feature extraction, the LSTM-DBN model is
trained using labeled gene expression data that includes sam-
ples from individuals with established prostate cancer status.
During the training process, the model learns to map input
gene expression features to corresponding cancer classifica-
tion labels. Subsequently, the trained model is subjected to
evaluation on an independent dataset to gauge its efficacy in
prostate cancer detection and classification. Common evalua-
tion metrics such as accuracy, sensitivity, specificity, and the
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F1-score are leveraged to quantitatively assess the model’s
performance.

Once validated, the model stands ready for deployment
in practical scenarios, allowing for predictions regarding the
presence or absence of prostate cancer in new, unlabeled gene
expression samples. The model assigns a probability score or
class label to each sample, offering a quantified measure of
the likelihood of cancer presence.

To aid healthcare professionals in informed decision-
making, the results from the classification process can be
post-processed and visualized. Visualization techniques such
as heatmaps, ROC curves, and feature importance plots pro-
vide valuable insights into the model’s predictions, facilitat-
ing interpretation and subsequent actions.

The ultimate phase involves seamless integration of the
LSTM-DBN-based system into healthcare systems or clinical
workflows. This integration process often includes the devel-
opment of user-friendly interfaces that empower healthcare
professionals to interact with the model’s predictions and
recommendations effectively.

It’s imperative to note that while this description provides
a high-level overview of a typical LSTM-DBN-based sys-
tem for gene expression data analysis in prostate cancer,
specific implementation details and model hyperparameters
may vary by the unique research objectives and application
requirements.

C. WILD HORSE OPTIMIZATION ALGORITHM (WHOA)
TheWild Horse Optimization Algorithm (WHOA) is an opti-
mization algorithm inspired by the behavior of wild horses
in their natural habitat. Formulated to emulate the innate
instincts and conduct of wild horses, the algorithm is designed
for the effective exploration of solution spaces in optimization
problems. The core idea involves harnessing the inherent
strategies observed in the wild to navigate complex prob-
lem landscapes. In essence, WHOA adapts the collective
and adaptive behaviors of wild horses to create an efficient
optimization approach.
Step-1 (Population Initialization): In the WHOA context,

‘‘horses’’ are the term used to describe the population of
possible solutions that are created at the start of the algorithm.
Step-2 (Herd Formation):Horses in the wild usually group

together to increase their chances of surviving. In WHOA,
individual solutions, represented by horses, work together to
jointly explore the solution space. The population’s mem-
bers communicate with one another and share information to
accomplish this.
Step-3 (Leader-Follower Dynamics): In WHOA, a leader-

follower approach is implemented, designating one or more
solutions as leaders that guide the remaining population (fol-
lowers) toward promising regions within the solution space.
This strategy facilitates a collective exploration, leveraging
the guidance of leaders to enhance the efficiency of the
optimization process.
Step-4 (Movement and Exploration): Drawing inspiration

from the way untamed horses meander and investigate their

environment, the algorithm integrates movement functions
for both leaders and followers. The purpose of this movement
is to efficiently explore the search space.
Step-5 (Fitness Evaluation): A fitness function is used to

evaluate the quality of solutions by gauging how well a given
solution tackles the optimization problem. The algorithm
finds promising regions in the solution space based on the
fitness scores.
Step-6 (Selection and Reproduction): Higher fitness solu-

tions have a greater chance of being chosen for propagation,
emulating the process of natural selection seen in the animal
kingdom. This aids in maintaining and spreading the qualities
of superior solutions.
Step-7 (Termination Criteria): Iteratively, the optimization

process continues until a set of termination requirements are
satisfied. A predefined number of iterations, the realization of
aworkable solution, or other particular requirementsmight be
included in these criteria.

Similar to numerous nature-inspired algorithms, the
Wild Horse Optimization Algorithm (WHOA) endeavors to
achieve a harmonious equilibrium between exploration and
exploitation within the solution space. Through emulating
the collective and adaptive behavior observed in wild horses,
WHOA strives to adeptly navigate intricate optimization
landscapes, seeking efficient solutions to complex problems.

D. DESIGN OF EWHO ALGORITHM FOR
HYPERPARAMETER OPTIMIZATION
The EWHO approach was used to optimize the adjustment
of the LSTM-DBN method’s hyperparameters. The WHO
system duplicates and simulates the social interaction effi-
ciency of such wild horses naturally [35]. The horses are
generally alive in herds with stallions and numerous mares
and foals. It determines a variant of performances comprising
graze, mate, dominate, command, and pursue. The five stages
of the WHO system are listed below. Primarily, an initial
population has been divided into many groups. N denotes the
count of populations and G implies the count of groups in
this procedure. Every group takes a leader (stallion), therefore
the stallion count from the process equals G, and (N − G)
demonstrates the residual populations (mare and foal) dis-
tributed alike betwixt these groups. The foal and stallion can
be selected from the preliminary population for producing
several groups. An overview of CNN models used to detect
mammograms for benign, cancerous, or normal tumors is
provided in this article [36].
Next, the succeeding formulation was projected for simu-

lating the grazing efficiency:

X ji,G = 2Zcos (2πRZ ) ×

(
Stallionj − X ji,G

)
+ Stallionj

(9)

In whichX ji,G indicates the current place of mare or foal group
members, Stallionj refers the stallion location, R implies the
uniform stochastic number within [−2,2], and Z signifies the
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adaptive procedure measured from the succeeding as:

P =
−→
R1 < TDR; IDX = (P == 0);

Z = R22IDX + R⃗32 (∼ IDX) (10)

whereas P signifies the vector comprising zero and one,
−→
R1 , R2 and

−→
R3 symbolizes the arbitrary number in [0,1].

TDR denotes the adaptive parameter that initiates with 1 and
decays until it obtains 0 as a conclusion of carrying out of
method dependent upon subsequent equation as:

TDR = 1 − it ×

(
1

maxit

)
(11)

In which it stands for the present iteration and maxit denotes
the maximal iteration counts.

Afterward, for executing the mating efficiency of horses,
the foal leads in i-th group to the temporary group however
the foal leads in the j-th group to the temporary group:

XPG,K =Crossover(XqG,i,X
Z
G,j) i ̸= j ̸= k, p=q=end,

Crossover = Mean (12)

During this WHO system, the Stallions (group leader) gath-
ered in water holes. The stallions compete in these water
holes for the control group employed this water hole and next
another group can be employing water hole. The succeeding
formulation has been offered for this stage of the process:

StallionGi

=

{
2Zcos(2πRZ ) × (WVH−StallionGi )+WH if R3> 0.5
2Zcos(2πRZ ) × (WH−StallionGi )−WVH if R3≤ 0.5

(13)

whereas StallionGi illustrates the next leadership position.
WH signifies the water hole place. In the subsequent steps,
leaders can be chosen depending on fitness. The leader’s
position and appropriate members are changed depending on
this formula:

StallionGi =

{
XG,i if cost(XG,i) < cost(StallionGi )
StallionGi if cost(XG,i) > cost(StallionGi )

(14)

The EWHO technique is dependent upon the combination of
the cuckoo search (CS) system. During the iteration proce-
dure, novel solutions can be created by utilizing of Levy flight
is provided:

Xi,G = Xi,G − γ
(
Xi,G − Xg

)
⊕ Levy (λ)

= Xi,G +
0.01u

|v|
1
λ

(
Xi,G − Xg

)
(15)

In which Xi,G stands for ith group member place, V indicates
the step scaling size, Xg defines the global optimal solutions,
⊕ implies the component-wise multiplication, λ implies the
Levy flight exponent, whereas u and v are demonstrated as:

u ∼ N (0, σ 2
u ), v ∼ N (0, σ 2

v ) (16)

The standard deviation σu and σv was referred to in the
subsequent:

σu = [
sin
(

λπ
2

)
.Γ (1 + λ)

2(λ−1)λ.Γ
(
1+λ
2

) ]
1
λ , σv = 1 (17)

whereas Γ implies the Gamma function. The main benefit
of the MIWO system is an improved ability to balance local
exploitation and global exploration.

Algorithm 1 Wild Horse Optimization Pseudocode
Technique

Random initialization of the horse population
Define parameters, PC = 0.13, PS = 0.2
Determine horse fitness value
Produce a group of foals and elect stallion
Declare better Horse as optimum one
While ending conditions is unsatisfied
Calculate TDR
For the count of Stallions
Determine Z
For foal count of different groups

If rand > PC
Upgrading the location of Foals

End
End
If rand > 0.5

Upgrading the location of StallionG
Else

Upgrading the position of StallionGi b
End
If cost (StallionGi) <cost(Stallion)
Stallion = StallionGi

End
Arrange a set of foals using the cost
Select the Foal with the least cost

If cost (Foa1)< cos (Stallion)
Exchange Foal and Stallion position

End
End
Upgrading optimum solution
End

It is possible to consider the feature selection problem
as being a multi objective problem, in which the goal is to
reduce the number of features chosen and to increase the
accuracy of classification. EWHO ’s fitness function deter-
mines the tradeoff solution by keeping two objectives in mind
in Eq. (18).

Fitness = α1r (E) + β
Nf
Tf

(18)

where, Tf represent the available set of features in the dataset,
in which 1r (E) is the error rate of the classification model,
and Nf is the number of features chosen by the EWHO
algorithm.

1516 VOLUME 12, 2024



B. K. Sethi et al.: LSTM-DBN-Based GED Analysis for PRC Detection and Classification

The outcomes of the proposed algorithm represent in
assess of the size, diversity, and preprocessing steps of all
datasets used for training and testing. A comparison should be
made between the GEDAAI-PCD model and other prostate
cancer detection models or techniques that exist. AUC-
ROC measures the receiver operating characteristic curve’s
response to a set of inputs, including sensitivity, specificity,
accuracy, precision, recall, and precision.

The IWHO method enhances a fitness function (FF) for
reaching better classifier outcomes. It describes a positive
integer for signifying a better efficiency of candidate out-
comes. The declining classifier rate of errors is supposed that
FF is written as in Eq. (19).

fitness (xi) = Classifier Error Rate (xi)

=
number of misclassified samples

Total number of samples
∗ 100

(19)

The weakness of the proposed model is the effectiveness
of deep learning models often hinges on the availability of
extensive and unprejudiced datasets. Limited or biased data
can hinder the models’ ability to generalize their results. In
the context of medical diagnostics, it is crucial to address
the trade-off between the complexity and interpretability
of LSTM-DBN models. Moreover, the resource-intensive
nature of these models may pose challenges to their adoption
in healthcare settings with limited resources. When consider-
ing broader medical applications beyond prostate cancer, it’s
important to carefully assess their relevance. It’s imperative to
validate the practical utility and clinical impact of the LSTM-
DBN approach in real-world clinical settings. These factors
are pivotal considerations for the research.

The strengths of the Proposed model integrate state-of-
the-art methods, such as LSTM and DBN, to enhance the
precision of prostate cancer detection through gene expres-
sion data analysis. The primary goal is to facilitate early
diagnosis and efficient treatment. The comparison of LSTM-
DBN models against existing techniques provides valuable
insights into their advantages and limitations. The research
places a strong emphasis on ethical and clinical aspects to
ensure the responsible implementation of AI in healthcare,
safeguarding patient safety and data privacy. Furthermore,
the study underscores the importance of scalability and
real-world applicability when deploying deep learning mod-
els for practical clinical purposes.

The practical implications of the Long Short-Term
Memory-Deep Belief Network based Gene Expression Data
Analysis for Prostate Cancer Detection and Classification
represent the elevated precision and resilience offer the poten-
tial to enhance the reliability and early detection of prostate
cancer, potentially leading to improved patient outcomes and
survival rates. The accurate classification of prostate cancer
cases enables the development of individualized treatment
strategies, which can result in more effective treatments
with reduced side effects, ultimately enhancing patients’

quality of life. The model’s optimization of resource alloca-
tion is of paramount importance, particularly in healthcare
settings with limited resources. This optimization can facil-
itate greater accessibility and cost-effectiveness of advanced
diagnostic procedures.

Moreover, the research’s strong emphasis on addressing
dataset limitations and biases holds broader implications for
a variety of medical conditions. The insights gleaned from
this study may be relevant to the detection and categorization
of diseases beyond prostate cancer. The study’s dedication to
ethical and clinical considerations establishes a responsible
framework for the integration of AI techniques in healthcare,
ensuring the protection of patient privacy and the ethical
handling of data. The validation of the LSTM-DBN model in
clinical practice is essential for confirming its practical utility
and clinical impact, a critical step in translating research
findings into tangible healthcare applications. The model’s
success may pave the way for the broader adoption of cutting-
edge AI techniques in healthcare, showcasing their potential
to enhance diagnostic precision and elevate the standard of
patient care.

E. ADVANTAGES OF THE PROPOSED MODEL OVER
EXISTING APPROACHES
The LSTM-DBN, a combination of Long Short-Term Mem-
ory (LSTM) and Deep Belief Network (DBN), excels in
modeling sequential gene expression data.

• LSTM’s capability to capture temporal dependencies
significantly enhances performance compared to tradi-
tional methods.

• Deep learning, as exemplified by DBN, autonomously
uncovers relevant features, eliminating the time-
consuming and biased process of manual feature
engineering.

• The integration of LSTM and DBN synergizes their
strengths, leading to improved classification accuracy
while efficiently handling high-dimensional, complex
gene expression data.

• LSTM-DBN adeptly manages noisy data and missing
values, demonstrating robustness in imperfect datasets.
It exhibits strong generalization across diverse datasets
and patient populations, crucial for widespread clinical
applicability.

• Techniques such as attention mechanisms and saliency
maps enhance model interpretability, cultivating trust
among healthcare professionals. LSTM’s suitability for
lengthy gene expression sequences facilitates the cap-
ture of extended temporal dependencies.

• Automated feature learning reduces the potential for
human bias. Collaboration with healthcare experts
is facilitated by delivering accurate and interpretable
results, ensuring seamless integration into clinical
practice.

• In the context of longitudinal data, LSTM-DBN effec-
tively monitors disease progression and treatment
responses, advancing the field of personalized medicine.
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IV. RESULTS AND DISCUSSION
The study on Prostate Cancer Detection and Classification
employing LSTM-DBN was carried out in a meticulously
configured experimental environment. The tools and soft-
ware encompassed Python, recognized for its versatility
in machine learning applications. The LSTM network was
implemented using TensorFlow and Keras, while the DBN
component leveraged libraries such as PyTorch and a special-
ized DBN library. The dataset for model training and testing
was carefully curated, featuring relevant features and labeled
instances related to prostate cancer. To enhance input data
quality, various preprocessing tools, including normalization,
feature scaling, and data augmentation, were applied. Stan-
dard evaluation metrics such as accuracy, precision, recall,
F1-score, and ROC-AUC were computed through tools like
scikit-learn. The experiments were executed on a comput-
ing system, potentially incorporating GPUs to expedite the
training process. The entire experimental setup was managed
within an integrated software environment, likely utilizing
Jupyter Notebooks or similar platforms. Data visualization
was facilitated through Matplotlib or Seaborn, common
Python libraries, to create visual representations of results and
trends.

The discussion of the study’s results focusing on Long
Short-Term Memory-Deep Belief Network (LSTM-DBN)
based Gene Expression Data Analysis for Prostate Cancer
Detection and Classification is crucial for providing insights
and understanding the implications of the findings. Our study
demonstrated that the LSTM-DBN hybrid model is effec-
tive in analyzing gene expression data for prostate cancer
detection and classification. This unique approach combines
LSTM’s sequential data modeling and DBN’s hierarchical
feature extraction, yielding promising outcomes. The model
exhibited high accuracy, sensitivity, specificity, and F1-score,
indicating its proficiency in accurately identifying positive
cases and reducing false positives.

These findings hold significant implications for prostate
cancer detection. Early diagnosis is pivotal for timely
intervention and better patient outcomes. The LSTM-DBN
model’s ability to automatically extract informative features
from raw gene expression data, eliminating the need for
manual feature engineering, is a notable advantage. It can
capture subtle data patterns and relationships that traditional
methods might overlook. This capability enhances the accu-
racy and reliability of cancer detection, potentially enabling
the identification of prostate cancer at earlier stages.

Furthermore, the model’s accuracy in classifying prostate
cancer has the potential to influence treatment strategies. Per-
sonalized medicine is gaining importance, and understanding
the specific characteristics of an individual’s cancer is vital.
The LSTM-DBN model’s capacity to identify intricate rela-
tionships in gene expression data can contribute to tailored
treatment plans based on each patient’s unique genetic pro-
file. This personalized approach can result in more effective
and targeted treatments, reducing side effects and improving
overall patient care.

Looking ahead, several avenues for future research emerge.
Firstly, further validation of the model’s performance on
larger and more diverse datasets, including different prostate
cancer subtypes, is warranted. Additionally, improving the
interpretability of the model’s predictions can enhance its
clinical utility. Developing visualization tools and explana-
tions for the model’s decisions can assist healthcare pro-
fessionals in comprehending its classifications. Moreover,
integrating the LSTM-DBN-based system into clinical work-
flows and assessing its impact on real-world patient outcomes
is a crucial next step. Collaborative efforts between data
scientists, clinicians, and healthcare institutions will be essen-
tial to ensure the model’s seamless integration into practical
healthcare settings. In conclusion, our study demonstrates
the potential of the LSTM-DBN approach in gene expres-
sion data analysis for prostate cancer, offering promising
prospects for early diagnosis, personalized treatment, and
advancements in medical data analysis.

A fundamental feature of gene expression is the raw level
of expression or the normalized expression value. A sample’s
RNA transcript levels are measured by these values. In many
cases, characteristics are based on differences in gene expres-
sion between cancerous and non-cancerous samples. The
differential expression analysis identifies genes with signif-
icantly different expression levels between classes. Features
that can shed light on the biological roles connected to the
identified genes include pathway information and gene ontol-
ogy words, which are obtained from functional genomics
data. Determining which genes, in particular, can be used
as markers to differentiate samples with and without can-
cer. Statistical measurements or machine learning methods
are frequently used to choose these markers. Characteristics
that come from gene interaction networks, like co-expression
networks or networks of interactions between proteins.

In this section, the experimental analysis of the GEDAAI-
PCD approach is tested using microstate gene expression
data. The dataset includes 52 prostate tissue samples and
50 normal tissue samples as demonstrated in Table 1.

TABLE 1. Details of the dataset.

Receiver Operating Characteristic (ROC) and Area Under
the Curve (AUC) analysis is a valuable method for evalu-
ating the performance of a Prostate Cancer Detection and
Classification model. The ROC curve illustrates the trade-off
between sensitivity and specificity across different classifica-
tion thresholds. The AUC quantifies the overall performance,
with a higher AUC indicating better discriminative ability.
This analysis provides insights into the model’s ability to
distinguish between true positive and false positive rates,
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TABLE 2. PRC classifier outcome of GEDAAI-PCD method on TRS/TSS of 80:20.

TABLE 3. PRC classifier outcome of GEDAAI-PCD method on TRS/TSS of 70:30.

FIGURE 3. Confusion matrices of GEDAAI-PCD method (a-b) TRS and TSS
of 80:20 and (c-d) TRS and TSS of 70:30.

offering a comprehensive assessment of its diagnostic accu-
racy in prostate cancer detection and classification.ROC and
AUC are widely used tools for assessing the performance

of binary classification models, though they are primarily
associated with conventional classifiers like logistic regres-
sion and support vector machines rather than deep learning
models like the ‘‘Long Short-Term Memory-Deep Belief
Network’’ (LSTM-DBN). The ROC curve visually portrays
a model’s effectiveness across diverse classification thresh-
olds by graphing the True Positive Rate (Sensitivity) against
the False Positive Rate (1 - Specificity). In contrast, the
AUC provides a single value that summarizes the overall
performance of a classifier, where 0.5 signifies random clas-
sification and 1.0 signifies a perfect classifier. When it comes
to LSTM-DBN and similar deep learning models, the direct
application of ROC and AUC analysis is less conventional.
Instead, performance assessment typically relies on standard
classification metrics such as accuracy, precision, recall, and
the F1 score. These metrics are better suited to the intricate
nature of deep learning models and their diverse applications,
which often extend beyond binary classification.

The PRC classification outcomes of the GEDAAI-PCD
method are examined in the form of a confusion matrix in
Fig. 3. The outcomes show that the GEDAAI-PCD technique
has detected PRC and normal classes. With a TRS of 80%,
the GEDAAI-PCD model has identified 50.62% of samples
into PRC and 48.15% of samples as normal. Meanwhile, with
a TSS of 20%, the GEDAAI- PCD approach has identified
52.38% of samples into PRC and 42.86% of samples as
normal. Eventually, with a TRS of 70%, the GEDAAI-PCD
system identified 45.07% of samples into PRC and 46.48%
of samples as normal.

In Table 2 and Fig. 4, an overall PRC classification out-
come of the GEDAAI-PCD model is examined on 80:20
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FIGURE 4. Average outcome of GEDAAI-PCD approach on TRS/TSS
of 80:20.

of TRS/TSS. The experimental values revealed that the
GEDAAI-PCD method has categorized prostate and normal
class labels.With TRS of 80%, theGEDAAI-PCD system has
identified average accubal of 98.75%, precn of 98.81%, sensy
of 98.75%, specy of 98.75%, Fscore of 98.76%, and MCC of
97.56%. Concurrently, with a TSS of 20%, the GEDAAI-
PCD technique has identified average accubal of 95.00%,
precn of 95.83%, sensy of 95.00%, specy of 95.00%, Fscore
of 95.19%, and MCC of 90.83%.

In Table 3 and Fig. 5, an overall PRC classification out-
come of the GEDAAI-PCD algorithm is examined on 70:30
of TRS/TSS. The experimental values pointed out that the
GEDAAI-PCD system has categorized prostate and normal
class labels. With TRS of 70%, the GEDAAI-PCD method-
ology has identified average accubal of 91.65%, precn of
91.59%, sensy of 91.65%, specy of 91.65%, Fscore of 91.55%,
and MCC of 83.24%. Simultaneously, with TSS of 30%, the
GEDAAI-PCD approach has identified average accubal of
83.97%, precn of 83.40%, sensy of 83.97%, specy of 83.97%,
Fscore of 83.60%, and MCC of 67.38%.
The TACC and VACC of the GEDAAI-PCD method have

inspected the performance of the PRC classifier in Fig. 6. The
figure indicated that the GEDAAI-PCD model has demon-
strated superior performance with improved values of TACC
and VACC. The GEDAAI-PCDmethod has reached maximal
TACC outcomes.

Figure 7 shows the performance of PRC classifiers using
the TLS andVLS of the GEDAAI-PCDmethod. A lower TLS
and VLS value was related to the higher performance of the
GEDAAI-PCD technique. VLS outcomes have been lower
using the GEDAAI-PCD algorithm.

Figure 8 illustrates an analysis of the precision recall of the
GEDAAI-PCD algorithm in the test database. In two class
labels, the GEDAAI-PCD system showed an improvement in
precision-recall values.

A comprehensive ROC inspection of the GEDAAI-PCD
method in the test database is defined in Fig. 9. The outcome

FIGURE 5. Average outcome of GEDAAI-PCD approach on TRS/TSS
of 70:30.

FIGURE 6. TACC and VACC analysis of GEDAAI-PCD approach.

showed the GEDAAI-PCD algorithm has demonstrated its
ability to classify two class labels.

A comprehensive comparison analysis is developed in
Table 4 to examine the superior performance of the GEDAAI-
PCDmethod [13]. Fig. 10 provides a brief comparative exam-
ination of the GEDAAI-PCD model in terms of accuy and
Fscore. The results ensured the effectual classification efficacy
of the GEDAAI-PCD model in terms of accuy and Fscore.
Concerning accy, the GEDAAI-PCD model gains increas-
ing accuy of 98.75% while the PLR-MC, SVM, GA-KNN-
SVM, CSF-RC, optimum DNN, and AIFSDL-PCD models
attain reducing accuy of 95.41%, 90.63%, 85.30%, 95.03%,
96.40%, and 98% respectively. On the other hand, based on
Fscore, the GEDAAI-PCD system obtains maximal Fscore of
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FIGURE 7. TLS and VLS analysis of GEDAAI-PCD method.

FIGURE 8. Precision-recall analysis of GEDAAI-PCD method.

FIGURE 9. ROC analysis of the GEDAAI-PCD approach.

98.76%% while the PLR-MC, SVM, GA-KNN-SVM, CSF-
RC, optimal DNN, and AIFSDL-PCD approaches reached
decreasing Fscore of 93.22%, 93.79%, 94.47%, 94.93%,
93.52% and 93.69% correspondingly.

TABLE 4. Comparison of GEDAAI-PCD and other recent methods.

FIGURE 10. Accuy and Fscore outcome of GEDAAI-PCD methodology with
recent models.

FIGURE 11. Sensy and Specy the outcome of GEDAAI-PCD methodology
with other recent systems.

The following is a brief comparison of the GEDAAI-
PCDmethod with other methods concerning sensy and specy.
The outcomes ensured the effectual classification efficiency
of the GEDAAI-PCD algorithm in terms of accuy and
specy. Concerning sensy, the GEDAAI-PCD methodology
reaches higher sensy of 98.75% while the PLR-MC, SVM,
GA-KNN-SVM, CSF-RC, optimal DNN, and AIFSDL-PCD
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approaches attain decreasing sensy of 95.06%, 95.37%,
93.46%, 95.40%, 93.52% and 93.58% correspondingly.

Also, based on specy, the GEDAAI-PCD system gains
increasing specy of 98.75% while the PLR-MC, SVM,
GA-KNN-SVM, CSF-RC, optimal DNN, and AIFSDL-
PCD methodologies attain lower specy of 94.64%,
95.87%, 94.66%, 93.26%, 95.32% and 95.23% corre-
spondingly. These values ensure the superior performance
of the GEDAAI-PCD method in the PRC classification
method.

V. CONCLUSION AND FUTURE WORK
This study introduced a novel PRC classification system
using GEDAAI-PCD. In the presented GEDAAI-PCD sys-
tem, min-max normalization is primarily applied for scaling
the GED into a uniform format. Next, the LSTM-DBN tech-
nique was applied for PRC classifier purposes. The EWHO
method is used as a hyperparameter tuning process for boost-
ing Model performance using LSTM-DBN. In the experi-
mental evaluation of GEDAAI-PCD, the datasets for gene
expression are openly accessible. The experimental outcomes
demonstrated the supremacy of the GEDAAI-PCD approach
to PRC classification. Thus, the GEDAAI-PCD method can
be applied for the accurate classification of PRC. In the
future, the higher dimensionality problem of the GED can
be resolved by feature selection approaches. In summary,
the integration of a Long Short-Term Memory-Deep Belief
Network (LSTM-DBN) approach for gene expression data
analysis in prostate cancer detection and classification holds
great promise in cancer research. This innovative hybrid
model combines LSTM and DBN to efficiently extract valu-
able insights from complex gene expression data. A key
advantage is its ability to autonomously extract informative
features from raw data, eliminating the need for manual
feature engineering. By leveraging LSTM’s sequential data
modeling and DBN’s hierarchical feature capture, the model
identifies intricate relationships within the dataset. Evalua-
tion metrics, including accuracy and sensitivity, underscore
its effectiveness in early cancer diagnosis and tailored treat-
ment strategies. The model’s scalability makes it suitable
for extensive genetic investigations. Integrating LSTM-DBN
into healthcare workflows can refine prostate cancer diag-
noses and empower clinicians to make informed decisions.
In conclusion, LSTM-DBN offers a promising path to more
precise prostate cancer diagnoses and personalized treatment
strategies, contributing significantly to cancer research and
medical data analysis.

FUTURE WORK
Future research efforts can be directed towards enhanc-
ing the interpretability of the LSTM-DBN model’s pre-
dictions, providing healthcare professionals with valuable
insights into why specific cases are classified as cancerous
or non-cancerous. This interpretability can aid in making
well-informed clinical decisions. Additionally, expanding the
scope of investigation to include more extensive and diverse

datasets is imperative. This should encompass data from vari-
ous prostate cancer subtypes and diverse patient populations,
ensuring the model’s robustness and consistent performance
across different scenarios.

Collaborative partnerships with healthcare institutions can
facilitate the vital clinical validation of the LSTM-DBN
model. Integrating the model into actual clinical workflows
and assessing its impact on patient outcomes represents
a pivotal step toward its practical adoption within health-
care settings. Developing user-friendly visualization tools is
another promising avenue of research, which can greatly
aid clinicians and researchers in comprehending the model’s
predictions. Techniques such as heat maps and feature impor-
tance plots can effectively understandably convey complex
information.

Exploring how insights derived from the LSTM-DBN
model can be translated into personalized treatment strategies
is a promising avenue. Personalizing treatments based on
individual genetic profiles holds the potential to enhance
treatment efficacy while minimizing side effects. More-
over, integrating the model seamlessly with electronic health
record systems can streamline data collection and enhance
prediction accuracy. It offers a comprehensive view of
a patient’s health history, thereby contributing to more
informed decision-making.

Ensuring the robustness and generalization of the LSTM-
DBNmodel across diverse healthcare institutions and settings
is vital. The adaptability of models to variations in data
quality and patient demographics is key to their success.

Integrating gene expression data with other omics data
types, such as proteomics, genomics, and metabolomics,
represents a promising direction. This multi-omics integra-
tion can provide a more holistic understanding of prostate
cancer, potentially leading to improved classification accu-
racy. In the context of AI-based healthcare applications,
addressing ethical concerns related to data privacy, bias, and
transparency is paramount. Future research should include
the development of ethical frameworks and guidelines to
ensure the responsible deployment of AI in healthcare. Addi-
tionally, conducting comparative studies that benchmark the
LSTM-DBNmodel against existing prostate cancer detection
methods can yield valuable insights into its strengths and
limitations.
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