IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 22 November 2023, accepted 15 December 2023, date of publication 25 December 2023,
date of current version 3 January 2024.

Digital Object Identifier 10.1109/ACCESS.2023.3346908

==l RESEARCH ARTICLE

Q-Learning Based Cognitive Domain Ontology
Representation and Solving on Low Power
Computing Platforms

NAYIM RAHMAN “!, (Member, IEEE), TANVIR ATAHARY ',
CHRIS YAKOPCIC"'!, (Senior Member, IEEE),
TAREK M. TAHA', (Senior Member, IEEE), AND SCOTT DOUGLASS?

! Department of Electrical and Computer Engineering (ECE), University of Dayton, Dayton, OH 45469, USA
2 Air Force Research Laboratory, Wright Patterson AFB, Dayton, OH 45433, USA

Corresponding author: Nayim Rahman (rahmanm12 @udayton.edu)

This work was supported by Air Force Research Laboratory (AFRL) under Grant AFRL-2021-4287.

ABSTRACT Cognitive agents make systems autonomous through the process of decision automation by
mining an existing knowledge repository at run time. These processes can often be highly compute intensive,
and would thus run slowly on the low-power computing platforms typically seen in autonomous systems.
This paper examines how knowledge be represented in a Q-table and proposes a novel fast algorithm to
mine that knowledge based on constraints. We evaluate this approach for the knowledge mining process of
a specific agent: Cognitively Enhanced Complex Event Processing (CECEP). Within CECEP, knowledge
is represented using Cognitive Domain Ontologies (CDO), and is mined using situational inputs and
constraints. This is a novel approach to store information and is able to accommodate CDOs with millions
of solutions. To show that the approach can run on low power hardware in real-time, this algorithm was
executed on two low-power minicomputing platforms - Intel’s NUC and Asus’s Tinker Board. At present,
no other optimized CDO solvers can generate solutions on these platforms. The algorithm generated the
same amount of solutions as a GPU-enabled optimized path-based forward checking CDO solver, while

consuming around 7.7 and 5.15 times less energy (Joules) on the NUC and Tinker Board respectively.

INDEX TERMS Knowledge mining, cognitive agents, autonomous decision making.

I. INTRODUCTION

Autonomous systems are in high demand because of their
presence in a variety of domains, such as UAVs (Unmanned
Aerial Vehicle), self-driving cars, robots, planning, data min-
ing, and operations research. A cognitive agent within an
autonomous system makes decisions based on its surrounding
environmental inputs and domain knowledge. Several cogni-
tive architectures have been developed [1], [2], [3], [4], [5],
[6], over time, of which SOAR [3] and ACT-R [4], [5], [6],
are the most widely explored. Cognitive scientists have devel-
oped a Cognitively Enhanced Complex Event Processing
(CECEP) architecture [7], [8], [9], [10], by combing complex

The associate editor coordinating the review of this manuscript and

approving it for publication was Angelo Trotta

event processing and cognitive modeling for enhanced
reasoning and complex decision making in a variety of
domains.

The CECEP framework consists of a group of net-centric
event processing components is capable of processing declar-
ative, procedural, and domain knowledge. Within the CECEP
architecture, soaCDO is the knowledge representation and
mining component. Knowledge mining within soaCDO is the
most time-consuming and power-hungry task in the CECEP
architecture. Domain knowledge within a Cognitive Domain
Ontology (CDO) makes a cognitive agent capable of operat-
ing autonomously in multiple contexts using a set of complex
constraints. A CDO can generate either a specific solution or
a group of solutions based on its environmental inputs and
domain knowledge.

© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

VOLUME 12, 2024

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 131

https://orcid.org/0000-0001-9008-5762
https://orcid.org/0000-0002-0268-5002
https://orcid.org/0000-0001-6401-272X
https://orcid.org/0000-0002-0552-2444

IEEE Access

N. Rahman et al.: Q-Learning Based Cognitive Domain Ontology Representation

There is a strong relationship between the scalability
and complexity in these problems with the power and time
required to solve them. Consequently, it is difficult for the
CECEP framework to evaluate complex real-world scenarios
in real-time on power-constrained autonomous systems. The
solution search space of a CDO can be enormous (over 103°
solutions for some of the problems in this study), making
it difficult for existing CDO solvers to perform in real-time
without consuming much power. Among all the existing
CDO solving approaches, only a GPU-enabled highly parallel
approach [11] can solve large-scale CDOs in run-time. The
power and memory requirement of this approach makes it
unfeasible for low power platforms. Thus, there is a need
for new approaches to solve CDOs on low-power systems at
run-time.

This work examines novel approaches for data repre-
sentation and mining within CDOs using Q-learning to
enable real-time execution on low-power systems. We utilize
Q-learning to map a CDO’s knowledge into tabular form
and then mine that knowledge in real-time using a novel
extraction algorithm [12]. The Q-learning algorithm is pri-
marily used where agents interact with their environment
and act based on feedback. It is utilized in various domains
to optimize outcomes and has application in many fields,
including optimal path planning for mobile robots [13],
[14], [15], optimal channel and power allocation for a net-
work [16], [17], urban water resource management [18],
and load balancing of supplier-agents for the electricity
market [19].

The key contribution of this article is a knowledge rep-
resentation and mining approach that is developed using
the Q-learning algorithm. This is a novel concept in both
operations research and artificial intelligence. Our main con-
tributions are summarized as follows:

« We represent knowledge using the strategy of the short-
est pathfinding problem. In the shortest pathfinding
problem, the shortest path is mapped in a Q-table using
Bellman’s equation. In this study, the entire domain
knowledge of a CDO is converted to an equivalent set
of paths that are stored within a Q-table.

« At run-time a novel knowledge extraction algorithm is
used to mine the knowledge from the Q-table. This
algorithm can traverse all directions within the Q-table
to extract knowledge. This new approach does not
require any specific starting point to generate a complete
solution. Any intermediate state (knowledge element) of
an entire path can be used as a starting point.

We ensure that the solutions are successfully mapped in a
Q-table using the shortest path finding approach by validating
with existing CDO solving approaches. Both the knowledge
mapping and extraction process are explained in later sec-
tions. As the CDO knowledge and constraints are stored
within a Q-table during the training phase, a user can easily
understand why a particular input event generates a specific
set of solutions. The explainable feature of this method makes

132

Training Phase Query Phase

i Q-Iearnlng [Qtable Extraftlon
: algorithm Algorithm :

FIGURE 1. Schematic diagram of the knowledge mapping and extraction
process.

the approach reliable. This proposed approach can handle
large search spaces in runtime. It can generate solutions for
complex CDOs while consuming significantly less power
compared to existing optimized CDO solvers.

The approach presented in this paper could potentially be
used in memory modules of other cognitive architectures
with proper mapping. Different cognitive architectures use
different structures of domain knowledge to operate in real-
time. ACT-R uses two kinds of memory modules (declarative
and procedural memory [20]), while SOAR uses a combina-
tion of current sensory data, prior knowledge about solving
problems, and long-term relevant memory to operate in real-
time [21]. As cognitive architectures, such as SOAR, have
applications in many areas including puzzles, games, sim-
ulated pilots, and autonomous robotics systems [22], the
approach in this paper could be useful for cognitive systems
in many areas.

The overall knowledge mapping and extraction process is
shown in Fig. 1. The CDO and constraints are first mapped in
a Q-table using the Q-learning algorithm efficiently during
the training phase. The agent will then generate solutions
from the Q-table using the extraction algorithm based on
assertion during runtime.

Three different configurations of a CDO are tested to
prove our method’s validity and scalability. Eventually, the
Q-learning-based CDO solving approach is compared against
a highly optimized GPU enabled CDO solver [11] to prove
the capability and efficiency of the developed method on low
power platforms.

The experiments in this study are conducted on low power
computing devices, including the Asus Tinker Board and the
Intel NUC. The power consumption of these devices is far
less than the power consumed by multi-core and GPU based
systems that are traditionally used to mine knowledge. Our
proposed approach generated millions of solutions, all while
consuming around 7.7 and 5.15 times less energy than the
GPU-enabled optimized solver, running on the Intel NUC and
the Asus Tinker Board respectively.

The rest of the paper is organized as follows: the
CECEP and CDO architectures are briefly introduced in
Sections II and III respectively. Related works are discussed
in Section IV. Q-learning is discussed in Section V, while
the CDO mapping strategy using Q-learning and knowledge
query are discussed in Section VI. Experimental setup and
results are discussed in Sections VII and VIII. Section IX
concludes the paper.

VOLUME 12, 2024

N. Rahman et al.: Q-Learning Based Cognitive Domain Ontology Representation

IEEE Access

1 balls

. | ball

cp sport cp size cp color
E E E E E E E E

golf football basketball small medium large

E

white orange brown

FIGURE 2. Domain structure of ball CDO.

Il. THE CECEP ARCHITECTURE

The CECEP framework is based on a net-centric architecture
that has been developed for agents specified in a collection
of agent-specification formalisms. The Research Modeling
Language (RML) is a domain-specific language that has been
designed to enable the rapid development and deployment
of intelligent and autonomous agents [8], [9], [10]. RML
requires a user to represent the models and agents as complex
event processing agents through events, event patterns, event
pattern rules, behavior models, and cognitive domain ontolo-
gies to maximize the scalability and interoperability during
execution and simulation.

The CECEP architecture currently consists of the follow-
ing central net-centric components:

soaDM: an associative memory application that allows
RML models and agents to store and retrieve declarative
knowledge [9].

s0aCDO: a knowledge representation and mining applica-
tion that allows RML models and agents to save and exploit
domain knowledge.

Esper: a process that provides a complex event pro-
cessing framework that allows RML models and agents
to perform actions on context assessment and procedural
knowledge [10].

Through these components, the CECEP architecture incor-
porates model and agent capabilities based on declarative,
procedural, and domain knowledge processing to the Esper
framework. Although a detailed description of CECEP is
beyond the scope of this paper, we do describe the CDO
component below.

Ill. COGNITIVE DOMAIN ONTOLOGIES

Cognitive Domain Ontologies (CDOs) formalize the CECEP
Agent’s domain knowledge. A CDO represents the structure
of a domain and the relationships among its components.
Formally, a CDO is a tree with alternating entities and rela-
tions. Entities correspond to domain objects, such as a playing
card’s value or suit. A CDO consists of three major enti-
ties: SubParts (SP), ChoicePoints (CP), and Instances (I =
[0...n]).

A. CDO STRUCTURE
Let’s, consider a simple Ball CDO to understand the
knowledge representation, its complexity, and the solution

VOLUME 12, 2024

TABLE 1. User-defined constraints for the ball CDO.

Specification (User Defined Constraints)

If sport is golf, then size is small, and color is white.

If sport is football, then size is medium, and color is brown.

If sport is basketball, then size is large, and color is orange.

generation process. The Ball CDO in Fig. 2 represents dif-
ferent ball related knowledge, including sport, size, and color
in a hierarchical structure.

In a CDO, SubParts contain a unification relationship with
other entities, where all entities necessarily occur together
(i.e., the ‘ball’ SubParts node in Fig. 2 indicates that ‘sport’,
‘size’, and ‘color’ events must occur together in the solution).

ChoicePoints represent an “either-or” relationship among
entities; only one may be active at a time. For example, the
‘sport” ChoicePoint node in Fig. 2 can be either golf, football,
or basketball. Instances capture the replicated sub-structure.
The CDO in Fig. 2 does not include an example of this type of
structural relationship, but the CDO in Fig. 3 does. A detailed
explanation of the instance entity is discussed in the following
section.

Entities could have zero or more event attributes. User-
defined constraint relationships allow users to connect events
and attributes in a CDO to each other using conditionals
(if, iff), connectives (and, or, not), and attribute comparisons
(<, >, <=, >=, |=, etc.). The three constraints applicable
to the Ball CDO are listed in Table 1. The combination
of structural domain knowledge (see Fig. 2) and relational
domain knowledge (see Table 1) yields a complete CDO.

In Table 1, each constraint is true for all the permutations
of the events of the same constraint. This property of the
constraints is known as the integrity of constraints. For exam-
ple, the first constraint will create the following equally true
constraints:

1) If size is small, then sport is golf, and color is white
2) If color is white, then sport is golf, and size is small.
3) If sport is golf, and size is small, then color is white.
4) If sport is golf, and color is white, then size is small.
5) If color is white, and size is small, then sport is golf.

In the Ball CDO in Fig. 2, each of the ChoicePoints
contains three entities where each entity is an ‘‘either-or”
relationship with other entities within their domain (i.e.,
sport, size, and color). A CDO generates its solution by com-
bining the knowledge from all of the SubParts. If there are no
user-defined constraints for the CDO, then any combination
of these ChoicePoints will be a solution of the CDO. There
are 27 possible solutions available for the Ball CDO without
constraints. Two example solutions are: ‘golf-small-white’,
and ‘golf-medium-brown’.

User-defined constraints restrict valid solutions to a subset
of all possible combinations. Thus, the number of valid solu-
tions for a given scenario varies based on the constraints. The
size of the solution space also depends on the complexity of
the constraints. If the constraints from Table 1 are considered,
the solution space reduces from twenty-seven to three:

133

IEEE Access

N. Rahman et al.: Q-Learning Based Cognitive Domain Ontology Representation

Instances balls {1..n}

Ball{i}y |
Ball(2} ||
Ball{3}

' Ball{n}

i

FIGURE 3. Structural representation of the ball CDO for n instances.

1) Balls{1}
SP)

Sizes{2} !

ball

Sports{2} | Colors{2} |

sport 1 size 1 color 1.
1 1 1
£ sport 2 3 size 2 3
I | I
sport ‘l’ size ‘l’ color “l"
€ € B € € € € € €

FIGURE 4. Structural representation of Ball CDO with the domain
instance.

color 2

1) Sport(golf) — Size(small) — Color(white)
2) Sport(football) — Size(medium) — Color(brown)
3) Sport(basketball) — Size(large) — Color(orange)

B. MULTI-INSTANCE CDO (CDO WITH INSTANCES)

The root node (topmost node) of this Ball CDO is an instance
node in Fig 2. This is denoted by the letter “I’’ next to this root
node. An instance node defines the replication of the remain-
ing CDO structure [11]. Fig. 3 displays a representation of
the Ball CDO, where the ‘balls’ instance node is set to n. The
number of solutions grows when the instance number is set
to a higher value.

Instance nodes can be added to any branch of a CDO.
Also, different constraints can be applied at different instance
levels. Let’s assume three more instances are added to the Ball
CDO at the domain level, e.g., sports, sizes, and colors. If each
of these new domain-level instances (sports{2}, sizes{2}, and
colors{2}) are set to 2, and the balls instance node is set to 1,
then this Ball CDO will appear as shown in Fig. 4.

Each instance contains partial solutions which must be
combined to form a complete solution. The six instance-
level solutions, or partial solutions available for the example
ball CDO are as follows: ‘Golff1} Small{1} White{1}’,
‘Football{1] Medium{1} Brown{l}’, ‘Basketball{l} Large
{1} Orange {1}’, ‘Golff2} Smallf2} White{2}’, Foot-
ball{2} Medium{2} Brown{2}’, and ‘Basketball{2} Large{2}
Orange{2}’ (see Fig. 4).

As each partial solution set contains three solutions, the
total number of complete solutions will be calculated by

134

TABLE 2. Two complete solutions for the ball cdo of fig 4.

Solution No Complete Solution

Golf{1}, Small{1}, White{1}
Golf{2}, Small{2}, White{2}
Football{1}, Medium{1}, Brown{l}
Basketball{2}, Large{2}, Orange{2}

1

2

TABLE 3. Solution space for different instance settings.

Search space without Search space with
Instances
constraints Constraints
balls{1}, sports{1},
sizes{1}, colors{1} 27 3
balls{1}, sports{2},
sizes{2}, colors{2} 729 i
balls{2}, sports{2},
sizes{2}, colors{2} 331441 81

Here, solution space refers to the number of possible solutions to the Ball

CDO with and without Constraints for Different Instance Settings.

multiplying the number of partial solutions (3 x 3 = 9) as
shown in (1). Here ’||” represents the concatenation of the
partial solutions.

balls{1} => (sportl, sizel, color])ipstancel |

(sport2, size2, color2)instance2 (H

A simplified representation of two complete solutions is
shown in Table 2. The total number of solutions is highly
dependent on values of the instance nodes and the com-
plexity of the constraints. For higher instance values, the
possible number of solution combinations is higher, and
thus the number of possible complete solutions becomes
larger.

Constraint satisfying solutions are members of the entire
solution space. Due to the constraints, solvers need to tra-
verse the entire solution space to determine which solutions
are valid. In many application scenarios (such as mobile
platforms), this task needs to be done fast and at low
power.

Table 3 shows the solution search space to the Ball CDO
(see Fig. 4) with and without constraints for different instance
settings. The same constraints (see Table 1) are applied to all
instances. As the instance values increase, the number of valid
solutions also increases for the same CDO.

The solution search space increases exponentially with the
increase in instances. This search space can easily exceed one
nonillion (103°) with the slight increase in instances for a
moderate-sized CDO (see Table 10). Only highly optimized
solvers can solve this problem at runtime.

CECEP agents mine knowledge from CDOs before making
a decision. As a CDO holds structural and relational domain
knowledge about a specific domain, every CDO is unique
based on its domain. A CDO can generate different results
based on the constraints applied, as the constraints define
relations among the entities.

VOLUME 12, 2024

N. Rahman et al.: Q-Learning Based Cognitive Domain Ontology Representation

IEEE Access

IV. RELATED WORKS

A. HIGH PERFORMANCE COMPUTING CDO SOLVING
APPROACHES

Several algorithmic approaches have examined how to solve
CDOs using high-performance computing systems to obtain
all solutions to a problem. They solve larger problems very
fast but require a tremendous amount of computing power
(such as a GPU or multi-processor system). In [7], an exhaus-
tive depth-first search based algorithm was developed to solve
large-scale CDOs, where a CDO was first converted into an
equivalent constraint satisfaction problem (CSP). A paral-
lel version of that algorithm executed on a system with an
Intel Xeon processor and a NVIDIA Tesla C2070 GPU is
about 1000 times faster than the serial version. The latter
was about 30% faster than using screamer + to solve the
CDO. Screamer+ [23] is a LISP based non-deterministic
constraint programming environment. In Screamer-, prob-
lems along with constraints are expressed in LISP lists,
and the Screamer+ algorithm was used to solve CDOs.
A modified version of that exhaustive depth-first search
algorithm [24] implemented with a NVIDIA graphics proces-
sor (Tesla C2070) achieved 100 times speedup over a Xeon
processor implementation and almost 8 times speedup over a
Xeon Phi processor implementation.

Forward checking prunes the solution search space based
on the constrains provided and as such is more efficient than
exhaustive depth first search brute force approaches. A serial
forward checking CDO solver [25] achieved around 10-25
times speedup to generate the first solution and achieved
around half a million times speedup for all solutions com-
pared to a java based CDO solver called Sherlock (based on
the Choco 2.15 constraint solver library [26]). The parallel
version of that path-based forward checking algorithm was
examined on 128 compute nodes at the Ohio Supercomputing
Center and achieved 200 times speedup compared to the serial
version [11]. A solution ranking capable CDO solver [27]
was developed, which was able to rank its solution using
various optimization functions. This utilized the forward
checking-based algorithm to generate all solutions on a CPU,
and these solutions were then ranked using an algorithm
running on a GPU.

The cognitive architecture ACT-R’s memory module,
soaDM (service-oriented architecture Declarative Memory)
was accelerated with GPUs. This was referred to as a Hard-
ware Accelerated Declarative Memory (HADM) system [28].
It achieved approximately 5 times speedup over the previ-
ously used Accelerated Declarative Memory (ADM) sys-
tem [29]. The soaDM memory module is also utilized in the
CECERP architecture as an associative memory application.

B. LOW POWER CDO SOLVING APPROACHES

Apart from conventional approaches, different low power
neuromorphic device-based approaches have been examined.
A convolution neural network-based approach used IBM’s
TrueNorth neuromorphic device and the “Eedn’” framework
to solve small to mid-sized CDOs [12], [30]. The power

VOLUME 12, 2024

consumption for that approach was around 5S0mW. A lookup
table-based approach was used to solve CDOs [31] on IBM’s
TrueNorth neuromorphic device and also consumed around
50mW for small-sized CDOs. Although neuromorphic meth-
ods require many cores to map larger problems, they consume
very little power.

C. KNOWLEDGE MINING APPROACHES

There are several studies about knowledge extraction and
manipulation processes for different domains. In [32], a com-
bined mining approach was proposed for enterprise appli-
cations, such as telecom fraud detection. This approach
extracted information from complex data and is capable
of handling multi-feature, multi-source, and multi-method
related issues. In [33], a knowledge fusing approach was
discussed, where models trained from the sample data were
fused in the level of the parameters to have a combined
model for a distributed system. In that approach, various dis-
tributed agents collected sample data from the environment,
and that combined model was used to extract knowledge
from complex data. In [34], the possibility of using artifi-
cial neural networks such as Self-Organizing Maps (SOM),
Neuro-Fuzzy, ART2, and Backpropagation in data mining
was discussed. In [35], the author proposed a domain-driven
actionable knowledge delivery concept instead of data-
centered knowledge discovery to solve real-world knowl-
edge mining issues by incorporating Ubiquitous Intelligence.
Some of the components of Ubiquitous Intelligence are
domain knowledge/intelligence, data intelligence, and net-
work intelligence, which need to be incorporated into the
solving mechanism.

D. Q-LEARNING APPLICATIONS

Q-learning is typically used in optimal decision-making prob-
lems where agents continuously interact with the environ-
ment. An improved version of the Q-learning algorithm based
on the flower pollination algorithm (FPA) was used to plan an
optimal path for a mobile robot in a static environment [13].
For the dynamic path planning of a mobile robot, Q-learning
was incorporated with some heuristic-based searching strate-
gies to reduce the search space [14]. That approach converged
quickly compared to classical Q-learning. In another appli-
cation to the mobile robot path planning problem, a feed-
forward Artificial Neural Network (ANN) based controller
was developed where Q-learning was used to collect train-
ing samples [15]. A combination of ANN and Q-learning
achieved better performance compared to only one of the two
approaches. Q-learning was used in femtocell networks to
learn optimal channel and power allocation [16]. Femtocell
is a next-generation wireless network used to increase indoor
coverage capacity. In [17],

Q-learning was used to solve the dynamic channel
assignment problem for mobile communications considering
homogenous and inhomogeneous traffic distributions, time-
varying traffic patterns, and channel failures. Some other

135

IEEE Access

N. Rahman et al.: Q-Learning Based Cognitive Domain Ontology Representation

Algorithm 1 Q-learning Algorithm (Training Phase)
Initialization:

1. Define the reward table for each (s, a) pair.

2. Initialize the Q-table for each pair (s, a) with zero.

3. Set y value.

Steps:

4. Observe the current state s.

5. REPEAT:
- Select an action a, randomly.
- Receive immediate reward r (s, a) from the reward
table.
- Observe the new state s, based on the previous action.
- Update the table entry for Q (s, a) as follows:
Q(s,a) =r(s,a) + y * (max (Q(sn, an)))

-5 <8y,

dynamic agent-environment interactive resource manage-
ment applications of Q-learning are the urban water resource
management system [18] and the optimal supplier-agent sys-
tem for the electricity market [19].

V. Q-LEARNING

Q-learning is an off-policy method of Reinforcement Learn-
ing that learns an optimal action-selection policy for any
given finite Markov Decision Process. Q-learning is also
known as a model-free learning algorithm, as it can learn
the optimal policy without being aware of the model of the
environment [36]. In Q-learning, an agent is only aware of
the available states, the possible actions that can be taken
from the current position, and the associated rewards for
each possible action. The agent learns an optimal policy
by iteratively interacting with the environment and updating
itself. The letter Q describes the quality of the action taken in
a specific state. Q-learning tries to learn an optimal policy that
maximizes a global reward by iterating through Bellman’s
equation (2).

Q(s,a) =r(s,a) +y * (max (Q (sn, an))) @

Here Q (s, a) is an estimated utility function, and the goal is
to maximize this utility function by choosing a specific action
a, at step s. The quantity r (s, a) is the immediate reward for
taking a certain action a at step s. The value y is the discount
factor that helps to generate a discounted expected reward for
the best future action to be taken at the next state (s;). The
value y upholds the balance between immediate and future
rewards. Typically, the value of y ranges from O to 1. Actions
a,and an are taken at states s,and s,, respectively. The best
future action is determined using a maximum function, which
helps to optimize the utility function greedily.

The Q-table will be updated with the Q-values Q (s, a)
after each episode. An episode is completed whenever an
agent reaches the endpoint of a decision process. The model
converges after an appropriate amount of training using
Algorithm 1, and the resulting Q-table holds optimal values.

136

TABLE 4. Unique number representation of constraints.

Constraints Number.
Representations
Small, White, Golf (0,3,6)
Medium, Brown, Football 1,4, 7
Large, Orange, Basketball (2,5,8)

The optimal policy will be generated from the Q-table using
a maximum function to select the best action for the current
state during the testing phase.

Vi. CDO MAPPING TO Q-TABLE

The proposed Q-learning approach can generate all possible
solutions to a problem. However, due to memory limitations,
a limited number of solutions are generated for higher-
ordered problems. There are two main challenges when
mapping a CDO to a Q-table. The first challenge is how to
map a CDO along with its constraints to a Q-table during
the training phase. The second is how to extract information
based on assertions from the Q-table during the query phase.
The query phase is similar to the testing phase of the tra-
ditional Q-learning approach, where solutions are generated
using the Q-table. In our application, this phase generates
results based on assertions.

In this approach, knowledge is represented as the shortest
pathfinding problem. Traditionally, in the shortest pathfind-
ing problem, the Q-learning algorithm is used to learn the
best possible action required from each step to achieve the
optimal path. The agent updates the Q-table using Bellman’s
equation, where only the best action will have the highest
values. In the developed knowledge mapping approach, all
the constraint satisfying solutions are considered a set of
shortest paths. All those paths are mapped compactly in a
Q-table efficiently. The knowledge conversion process and
mapping in the Q-table are discussed in the ‘Training Phase’
sub-section. The knowledge extraction from the Q-table is
discussed in the ‘Query Phase’ sub-section.

A. TRAINING PHASE

In the training phase, the domain knowledge of a CDO and
its constraints are mapped into the Q table. This takes place
in three steps: 1) the CDO and its constraints are encoded
numerically to enable mapping to the reward table (R-table);
2) the R-table is initialized followed by the Q-table update
by iterating through the Bellman’s equation; 3) the R-table is
updated.

1) NUMERICAL ENCODING OF CDO

To enable processing of a CDO with Q-learning, all
the decision variables must be encoded numerically. For
example, the Ball CDO’s events can be represented
as small=0, medium=1, large=2, white=3, brown=4,
orange=35, golf=6, football=7, and basketball=8 (see
Fig. 2). Based on the constraints for the given CDO, a set

VOLUME 12, 2024

N. Rahman et al.: Q-Learning Based Cognitive Domain Ontology Representation

IEEE Access

of tuples will be constructed to represent the constraints,
as shown in Table 4.

Each tuple will be arranged in ascending order based on its
event numbers. Rearranging the constraints does not violate
the constraint’s definition (due to the integrity of constraints).
Each tuple is considered as a complete path where the first
number is the starting point, and the last number is the
goal point. During the training phase, all the constraints are
mapped within the Q-table by strengthening the relationship
among events of each constraint.

The total number of CDO events defines the size of the
R-table and the Q-table. For the Ball CDO (see Fig. 2),
both the R-table and Q-table will be structured as 9 x
9 matrices as there are 9 events (small, medium, large, white,
brown, orange, golf, football, and basketball). The R-table
and Q-table will be initialized with -1 and 0, respectively.
The R-table will be updated based on the tuples, while the
Q-table will be optimized using the Q-learning algorithm (see
Algorithm 1). There are three phases in the training process:
1) the R-table is first preprogrammed and used to generate
the Q-table, 2) the Q-table is updated using Algorithm 1,
and 3) the R-table is updated once more to correct the search
directions.

2) FIRST UPDATE OF THE REWARD TABLE AND Q-TABLE
The tuples that are derived from the constraints will be
mapped within the R-table for the immediate reward calcu-
lation. A consecutive set of ascending ordered number pairs,
{(x1, y1),(x2,y2),...,(xi,yi),... }, will be generated from the
tuples. Each (xi,yi) represents a position in the R-table. Only
consecutive adjacent number pairs are considered in this step,
while other pairs are considered in step 3. For example,
if the generated tuple is (0,1,4,5,7,9), then in this step the
considered number pairs are: {(0,1),(1,4),(4,5),(5,7),(7,9)}.

Thus, from the tuple (0, 3, 6) in Table 4, two ascending
ordered number pairs, (0, 3) and (3,6), will be generated.
The number pair that contains the goal point (last number in
tuple) in the y-coordinate position, i.e. (3,6), will be marked
as 100 in the R-table. The opposite coordinate of that pair,
i.e. (6,3), will be marked as O in the R-table. The remaining
number pairs (such as (0,3)) along with their opposite pairs
(such as (3,0)) will be marked as O in the R-table. Table 5
shows the generated number pairs from the constraints of
Table 4 along their values in the R-table. There are three
100 values and nine O values in Table 5, as there are three
constraints considered. All other positions in the Reward
table will be initialized to -1.

There may be some situations where multiple constraints
share the same events. Let us consider a scenario where one
more choice point called ‘Field Type’ is added to the ball
CDO (Fig. 2). ‘Field Type’ will have two events: ‘indoor’
and ‘outdoor’ that will be represented by numerical values
9 and 10, respectively. The updated constraints, along with
their tuple representation, are shown in Table 6.

These sharing events’ positions can be anywhere in the
tuples based on each event’s unique numbering strategy,

VOLUME 12, 2024

TABLE 5. Reward table’s values for constraints in table 4.

Generated Number Pair with Values in
Reward Table

Number Representation

of Constraints

(0,3, 6) (0,3)=0; (3,0)=0; (3,6) = 100; (6,3) =0
1,4,7) (1,4)=0; (4,1)=0; (4,7)=100; (7,4)=0
(2,5,8) (2,5)=0;(5,2)=0; (5,8) = 100; (8,5)=0

TABLE 6. Updated tuple representations of constraints.

Number
Constraints
Representation
Small, White, Golf, Outdoor (0, 3, 6,10)
Medium, Brown, Football, Outdoor (1,4,7,10)
Large, Orange, Basketball, Indoor 2,5,8,9)

as the tuples are arranged in ascending order. If the ‘indoor’
and ‘outdoor’ events of the CDO are represented with
numerical values 3 and 4 respectively, then the tuples
will be rearranged as ‘Small, Outdoor, White, Golf =>
0, 3, 5, 8), ‘Medium, Outdoor, Brown, Footballl => (1,
3, 6, 9), and ‘Large, Indoor, Orange, Basketball’
(2,4,7,10).

A new set of number pairs will be generated from the con-
straints of Table 6 for the R-table. An example of generated
number pairs for the first constraint (‘Small, White, Golf,
Outdoor’ => 0, 3, 6, 10) from Table 6 will be (0,3) = 0;
(3,0) = 0; (3,6) = 05 (6,3) = 0; (6,10) =100; (10,6) = 0.
The immediate reward value of the Bellman’s equation will
be calculated from the R-table. Afterwards, the Q-table will
be trained using Algorithm 1.

=>

3) SECOND UPDATE OF THE REWARD TABLE

After training the Q-table, the R-table will be updated once
again using the same tuples. Some new information will be
incorporated into the R-table without changing any previ-
ously added values.

As with the prior R-table update process, a list of ascending
ordered number pairs will be generated from each tuple.
Those new number pairs were ignored in the first R-table
update process. Thus, for the tuple (0,1,4,5,7,9), the new
number pairs considered are: {(0,4), (0,5), (0,7), (0,9), (1,5),
(1,7, (1,9), (4,7), (4.9), (5,9)}.

For the Ball CDO example, the tuple (0, 3, 6) in Table 4 will
generate number pair (0,6). Those newly generated number
pairs (positions in the R-table) will be marked with any
other number except for 0 and 100 in the R-table. During
the solution generation process, the algorithm looks for the
values in the R-table to continue the search in a particular
direction. The algorithm stops the search if it finds out that
the R-table contains ’-1’ in that search direction. In this
experiment, those new number pairs are updated with a value
of 10 in the R-table. An example of the updated R-table (used
during the query phase) for the ball CDO (Fig. 2) is shown in
Table 7.

137

IEEE Access

N. Rahman et al.: Q-Learning Based Cognitive Domain Ontology Representation

TABLE 7. Updated reward table for ball CDO of fig. 2.

wion | O] 1 2 3 4 5 6 7 8
State

0 -1 -1 -1 0 -1 -1 10 -1 -1

1 -1 -1 -1 -1 0 -1 -1 10 -1

2 -1 -1 -1 -1 -1 0 -1 -1 10

B. QUERY PHASE (EXTRACTING DATA FROM Q-TABLE)
According to the definition of a CDO, a user can assert any
set of events as input, and the solver will generate valid
solutions based on the assertions and constraints. In optimal
pathfinding problems, start and endpoints are required to find
the optimal path from the Q-table. On the contrary, there is
no concept of starting and ending information in the CDO.
A novel knowledge extraction algorithm (Algorithm 2) is
developed to extract all the solutions from the Q-table based
on either a single assertion or a set of assertions. Unlike
Q-learning, this algorithm does not use the maximum func-
tion to extract information. Based on the assertions (starting
point), the algorithm traverses the Q-table in all directions to
obtain valid solutions. The algorithm uses the final updated
R-table to validate the consistency of the solutions with the
constraints.

Algorithm 2 describes the knowledge extraction pseu-
docode. The algorithm uses the trained Q-table and R-table
to generate solutions. Table 8 shows the trained and normal-
ized Q-table of the ball CDO (Fig. 2) that was generated
during the training phase. Here in the Q-table, each ‘state’
and ‘action’ represents a particular event of the CDO, i.e.
state = 0 and action = O represent the event, ‘small’ of
the CDO. Other events ‘state & action’ representations are:
small (state & action =0), medium (state & action =1),
large (state & action =2), white (state & action =3), brown
(state & action =4), orange (state & action =5), golf (state &
action =6), football (state & action =7), and basketball
(state & action =8).

During the solution generation process, ‘state’ represents
the current event of the CDO, which is already the part of
the solution, and ‘action’ presents the future events of the
solution, which will be the part of the solution.

A user can also assert one or multiple events as input. If an
event is asserted as an input state, then the algorithm selects
that event as the starting state. Otherwise, the algorithm
selects the starting state from the input states randomly
(step 1 of Algorithm 2). Asserting more input states helps
the user find narrower sets of solutions. In that scenario, all

138

Algorithm 2 Knowledge Extraction Phase Pseudocode
INPUT: input_states (in_s), Q-table, and R-table
OUTPUT: {solutions}
INITIALIZATION:

1. Select (start_state) from (in_s) randomly.

2. Assign {validation_list}.

3. Load Q-table, and R-table.
STEPS:

4. Select Y(next_state): Q-table[start_state,] > 0

5. Perform search.

i IF V(next_state) > (start_state) THEN

FOR each_state in V(next_state):
IF R-table [start_state, each_state] != —1 THEN
-Generate {solutions} using Forwardgearch.
ii ELSE IF (next_state) < (start_state) THEN
FOR each_state in (next_state):
IF R-table [each_state, start_state] != —1 THEN
-Generate {solutions} using Backwardgearch-
iii ELSE
Select V (backward_states), and V (forward_states)
V (backward_states): Q-table[start_state,] < start_state
V (forward_states): Q-table[start_state,] > start_state
FOR each_state in V (backward_states):
IF R-table [each_state, start_state] != —1
-Generate partial_solution,
FOR each_state in V (forward_states):
IF R-table [start_state, each_state] '= —1
-Generate solution from partial_solution,

6. IF len(validation_list) != 0 THEN,

FOR each_solution in {set of solution}
IF {validation_list} ¢ each_solution THEN
Remove each_solution from {set of solution}

TABLE 8. Trained and normalized g-table for ball CDO of fig. 1.

Action |0 1 2 3 4 5 6 7 3
Small| Med |Large| White | Brown |Orange| Golf |Football|Basketball
State
0: Small 0 0 0 [80:F1 0 0 0 0 5
EMediom | O | O | 0 0 80 0 0 0 5
2: Large 0 0 0 0 80 0 0 0
3: White 641 0 0 0 0 0 [100:F2] © 0
4: Brown 0 |64B2| 0 0 0 0 0 | 100 0
- Orange 0 0 |e4MI| 0O 0 0 0 0 T TooMi
6: Golf 0 0 0 80 0 0 0 0 0
[7: Football 0 0 0 0 80:B1 0 0 0 0
8. Basketball | * 0 0 0 0 80 0 0 0

other states except for the starting state are assigned to the
validation list (step 2). The validation list is used to check the
validity of solutions based on assertions. The algorithm starts
its search based on the starting state (event) and removes those
solutions which do not contain events from the validation

VOLUME 12, 2024

N. Rahman et al.: Q-Learning Based Cognitive Domain Ontology Representation

IEEE Access

list as each solution must contain all the input states (events)
provided by the user.

Based on the starting state and its corresponding next
states’ value, the algorithm selects one of the three search
strategies to generate solutions. These three search strategies
are forward search, backward search, or bi-directional search
(which consists of both forward and backward searches). One
of these three search options are selected in step 5 under
options i, ii, or iii. The details of these search processes are
described below with examples.

1) FORWARD SEARCH

In every step, the algorithm determines all the available states
that it can traverse to form the current state. All the values
in the trained Q-table’s current state row will be zero other
than the traversable states. All those traversable states are
considered as possible next states. The selected next states’
numerical values will either be greater or less than the starting
state’s numerical value as the events of the CDO are repre-
sented with unique numbers. If all the next states’ numerical
values are greater than the starting state’s numerical value,
then the algorithm traverses in the forward direction only.
This forward directional search is described as Forwardgearch
in the algorithm (step 5i). In this forward search approach,
the algorithm will only consider those next states whose
numerical values are higher than the current state. In this
manner, the algorithm explores new states and appends them
to the starting state. If more than one next state is available,
then the algorithm branches the search and generates separate
solutions for each branch. The algorithm will stop the search
when there are no higher numerical states than the current
state.

Let’s consider a user asserted ‘small’ as an input state, then
the starting state will be 0 in this scenario as the numerical
value of ‘small’ is O (‘states’ from Table 8). Also, as only
event is asserted as input, the validation list will be empty
here. As the next traversable state is 3 for the starting state 0
(only Q [0,3] has a value above zero which is marked as ‘F1’
in Table 8), the algorithm will only perform Forwardgearch
in that scenario. From the state 3, the algorithm will only
consider 6 (Q[3,6]: F2 in Table 8) as the next state, as 6 is
greater than 3. Afterward, the algorithm will look for the next
states in the Q[6,_] row. As there is no next state available
(columns labelled 7 and 8 do not have values above zero) the
algorithm will stop its search and return (0,3,6) as its solution.
Here, (0, 3, 6) stands for (small, white, golf).

2) BACKWARD SEARCH
If all the numerical values of the next states are smaller
than the starting state, then the algorithm will traverse in the
backward direction only. This backward directional search is
described as Backwardgeych in Algorithm 2 (step 5ii). In this
search process, the algorithm only considers those next states,
whose numerical values are smaller than the current state.
For example, if ‘football’ is asserted as the input state,
then the next state will be 4 (Q[7,4]: B1 in Table 8). Here

VOLUME 12, 2024

“football’s state value is 7, and only Q[7,4] has values above
zero. As 4 is smaller than 7, the algorithm will only per-
form the Backwardgearch for this assertion. From state 4, the
algorithm will pick 1 as next state as Q[4,1] (B2 in Table 8)
has values above zero, and the numerical value 1 is less than
4. For the assertion of "football’, the algorithm will return (7,
4, 1) as its solution.

The R-table helps the algorithm decide which future states
to consider maintaining the constraints’ consistency. The
algorithm uses (3) for Forwardgeacn (step 5i) and (4) for
Backwardgearcn (step Sii) to decide the validity of the next
state. This feature of the algorithm is useful when the con-
straints share events among themselves.

R [start state, next state]! = —1 3)
R [next state, start state]! = —1 “4)

3) BI-DIRECTIONAL SEARCH
There could be a scenario where some of the next states’
numerical values are higher than the starting state and some
are not. In that scenario, the algorithm has to travel in both
directions to generate a complete solution (step 5iii). Let’s
consider a user asserted ‘orange’ as an input state (state =
5). For this assertion, the algorithm will consider both state 2
and 8 (M1 in Table 8) as Q[5,2] and Q [5], [8] have values
above zero. First, the algorithm will perform Backwardgearch
considering ‘state = 2’ as the next state and will generate
a partial solution. In the Backwardgearch, the algorithm will
only consider those next states, whose numerical values are
smaller than the current state. After that, the algorithm will
perform Forwardgeach considering ‘state = 8’ as the next
state. The algorithm will append newly found states with the
previously generated partial solutions. As mentioned earlier,
the Forwardgearen algorithm will only consider those next
states whose numerical values are higher than the current
state. After traveling both directions, the algorithm will return
a complete solution to the user.

Eventually, If the validation list is not empty, the algorithm
removes those solutions that don’t contain events from the
validation list (step 6).

C. HIGHER ORDERED INSTANCE SEARCH
The instance node replicates the substructure of a CDO.
As described in section III-B, each substructure of the CDO
holds partial solutions. For higher-ordered instances, all of an
instance’s information, along with its constraints, are mapped
within the same Q-table. For the ball CDO in Fig. 2, ‘n’
separate CDO instances are considered for mapping into the
Q-table. Also, for the higher-ordered instance setting, all the
events of each instance will be encoded with unique numbers.
Algorithm 3 describes the knowledge extraction pseu-
docode for the multi-instance scenario. Algorithm 3 uses
Algorithm 2 to generate partial solutions for each instance
and finally concatenates them according to the problem
definition. Algorithm 3 first separates the inputs based on
instances and determines the list of asserted and unasserted

139

IEEE Access

N. Rahman et al.: Q-Learning Based Cognitive Domain Ontology Representation

Algorithm 3 Multi Instance Knowledge Extraction
INPUT: input_states (in_s), Q-table, and R-table
OUTPUT: {solutions}
INITIALIZATION:

1. Sort inputs based on Instances.

2. Find asserted and unasserted instances.

3. FOR each_instance in V (Instances):

4, IF each_instance € V(asserted instance):

5. — Generate partial solutions using Algorithm 2

6. Else IF each_instance € Y(unasserted instance):

7. — Generate partial solutions using Algorithm 2
(mostly some of the partial solution)

8. Concatenate partial solutions.

instances. A user can assert input events for all instances,
or some of the instances. If the ‘n’ in Fig. 2 is set to 3,
then there will be three replicas of the ball CDO. If the
user asserts ‘small’ for the first instance and ‘large’ for the
second instance, then the instances ‘one’ and ‘two’ will be
members of the asserted instances list, and ‘three’ will be a
member of the unasserted list. Algorithm 3 generates all the
partial solutions for the asserted instances. For the unasserted
instances, algorithm 3 generates some of the partial solutions
based on users’ interests.

The Q-learning-based CDO solving approach’s computa-
tional complexity depends on the number of solutions to a
problem. The number of solutions depends on the problem
definition, number of instances, and the user’s assertions.
The Q-learning-based approach has quadratic time (O(n?))
complexity.

Two flags are used to control the total number of gener-
ated solutions. These flags are ‘Generate only one solution,’
and ‘Generate all possible instance-level combinations for
the asserted values.” Three different scenarios are experi-
mented using a combination of two flags. For higher-order
instances, the total number of solutions increases exponen-
tially. As there is no objective function to find the best
solution, these flags can be used to control the total number
of generated solutions.

There are a handful of solvers that have been used to solve
CDOs including Sherlock (based on the Choco 2.15 con-
straint solver library [26]), WAKA solver (a Java based solver
developed by AFRL), and a path-based forward checking
algorithm [11], [25]. There is both a serial [25] and a par-
allel [11] version of the path-based algorithm. These existing
solvers can generate either only one or all the solutions. How-
ever, most of these solvers cannot handle the higher-order
instance property of CDOs quickly, typically taking multiple
weeks to solve the problems evaluated in this study. Only the
parallel version of the path based forward checking algorithm
can handle higher-order CDO instances and generate solu-
tions in runtime. These solvers will require large amounts
of memory and power to deal with larger CDOs as there is
no control to limit the total number of solutions generated.

140

Thus, it is quite difficult for an agent to generate solutions
for higher-order instances in low power consuming platforms
using these previous algorithms. The two flags introduced
to handle this scenario will enable the solver to generate
different numbers of solutions based on user requirements.

When the ‘Generate only one solution’ flag is turned
on, Algorithm 3 will generate only one complete solution
for the problem. Usually, each instance generates a vast
amount of partial solutions based on assertions and con-
straints. As described before in section III-B, the algorithm
creates complete solutions by concatenating partial solutions;
it will randomly generate only one partial solution from each
instance.

When the ‘Generate all possible instance-level combina-
tions for the asserted values’ flag is turned on, Algorithm 3
generates all possible combinations of the partial solutions for
each asserted instance based on the asserted inputs. Instead of
generating all partial solutions for the unasserted instances,
the algorithm generates only one partial solution for this flag.
Algorithm 3 then finally concatenates those partial solutions
and makes several complete solutions for that problem. From
the previous example, Algorithm 3 will generate all the par-
tial solutions for the ‘first’ and ‘second’ instances but will
generate only one partial solution from the ‘third’ instance.

When both flags are turned off, the algorithm generates all
possible combinations of the partial solutions for the asserted
instances based on assertions. For unasserted instances, the
algorithm randomly selects an event from the unasserted
instance and generates all possible combinations of partial
solutions for that instance.

A solution threshold is used to prevent the algorithm from
being out of memory. This option is enabled only for the
higher-ordered instance settings and low memory devices.
After this threshold, the algorithm will stop adding new solu-
tions to the existing solution list. This feature will prevent
a low power device from facing any memory related issues
during run time.

VII. EXPERIMENTAL SETUP
A. EXPERIMENTAL CDO
The broadcast CDO shown in Fig. 5 was used to evaluate the
performance of the Q-learning based algorithm in this study.
This CDO helps users figure out the relation among broad-
casting companies and their associated stations and channels.

This CDO has three different broadcasting companies (abc,
cbs, and nbc), three different stations (kabc, kcbs, and knbc),
and five different channels (chl to ch5). These elements are
the ‘Events’ of the broadcast CDO. In this Broadcast CDO,
three different ‘Instance’ nodes are used, which are Networks,
StationMul, and ChannelMul. This broadcast CDO contains
all the entities of a basic CDO, like ‘Event,” ’Instance,” ‘Choi-
cePoints,” and ‘SubParts.” Six constraints were used in this
study, as shown in Table 9. The six constraints were used on
all levels of instances.

Table 10 shows the solution search space for the broad-
cast CDO with and without constraints for different instance

VOLUME 12, 2024

N. Rahman et al.: Q-Learning Based Cognitive Domain Ontology Representation

IEEE Access

g () broadcast
| () networks

E () network

cP SP(networkstructure

companyChoice EC)
II structure

el el el | |
O 0O 0 10) O

. 1)
[stationMul I channelMul

E(

” channel

Y station

affialiatedChoice

N

kabc kcbs knbc ch1 ch2 ch3 ch4 chs

FIGURE 5. Domain structure of broadcast CDO.

TABLE 9. User-defined constraints for the broadcast CDO.

Specification (User Defined Constraints)
Iff company is cbs, then channel is ch4.
Iff company is cbs, then station is kcbs.
Iff company is abc, then channel is chl or ch2.
Iff company is abc, then station is kabc.
Iff company is nbc, then channel is ch3 or ch5.
Iff company is nbc, then station is knbc.

TABLE 10. Broadcast cdo’s solution space.

SSea;'cc: Search Space
Instances .p with
without Constraints
Constraints

1 45 5

2 455,625 81

3 1.04x10"2 4913

4 5.32x10% 1,185,921

7 9.23x10% 7.41x10'°

10 2.40x10'%2 1.30x10%

settings. An instance value of 4 means that all instance nodes:
Networks, StationMul, and ChannelMul are set to 4. The
same configuration goes for other instance numbers. The
solution search space without constraints is calculated as
[(3")%(3'%5")'] where i is the instance number. As the instance
number increases, the size of the solution space increases
exponentially. Constraints reduce the search space of the
problem.

B. HARDWARE

Two low power devices were used to map and mine
knowledge in this paper: the Asus Tinker Board and the
Intel NUC. The Tinker Board is a single-board com-
puter that has a Rockchip Quad-Core RK3288 processor
(Quad-core ARM Cortex-A17 @upto 1.8GHZ) and 2GB
DDR3 RAM. The maximum power consumption is SW. The

VOLUME 12, 2024

TABLE 11. Three simulation configuration.

Flags Scenarios
Representation
FF Both flags are false
TF Only ‘Generate only one solution” flag is on
FT Only ‘Generate all possible instance-level
combination for the asserted values’ flag is
on

TABLE 12. Assertions used in the experiments.

Instance Assertion
2 abc{l},chl{l 1}
7 abc{l}, chl{l 1}, chl{l 2}, cbs{2}, cbs{3}, cbs{4},

cbs{7}

10 abc{l}, chl{l 1}, chl{l 2}, ch2{l 3}, ch2{l 4},
ch2{1 7}, cbs{2}, cbs{3}, cbs{4}, cbs{5}, cbs{6},
cbs{7}, cbs{8}, nbc{9}, ch3{9 5}, ch5{9 6}, ch3{9 8},
ch3{9 9}

Intel NUC (NUCS8i7BEH) had an Intel Core i7-8559U pro-
cessor (2.7 GHz - 4.5 GHz, Quad-Core, 8MB Cache) and
16GB of DDR4-2400 RAM. The NUC’s idle state power
ranged from 3W to 7W [37]. The Tinker Board and NUC
utilized Debian and Ubuntu 16.04 as their operating system,
respectively.

C. EXPERIMENTAL CONFIGURATION

The algorithm was developed using Python. To verify the
scalability of the solver, the Broadcast CDO was tested with
three different instance settings (2, 7, and 10). As shown in
Table 10, the solution search space for these instance set-
tings is enormous. The combination of two flags (‘Generate
only one solution’ and ‘Generate all possible instance-level
combinations for the asserted values’) made it possible to
use three different scenarios in this study to understand the
performance of the solver, as shown in Table 11.

The algorithm will generate different numbers of solu-
tions depending on flag setting. In this experiment, for
10 instances, the solution threshold was set to 500,000 on the
Asus Tinker Board. As the solution space is enormous for
10 instances, and the Tinker Board has less memory (2GB),
this solution threshold is enabled for the Tinker Board (but
not the NUC).

The assertions (inputs) used in this study for three
instance settings are shown in Table 12. Assertions ["abc_1",
‘ch1_1_1"] for 2 instances (see Table 12) means that the
partial solutions from the first instance must contain infor-
mation about "abc’ and ‘ch1’. The second instance’s partial
solutions can be any valid combination from the broadcast
CDO. The examples of two complete solutions for 2 instances
are: [abc{1)}, kabc{1_1}, kabc{1_2}, chl{1_1}, chl{1_2},
cbs{2}, kcbs{2_1}, kcbs{2_2}, ch4{2_1}, ch4{2_2}] and
labc{ 1}, kabc{l_1}, kabc{1_2}, chl{1_1}, chi{1_2}, nbc{2},
knbc{2_1}, knbc{2_2}, ch3{2_1}, ch3{2_2}].

141

IEEE Access

N. Rahman et al.: Q-Learning Based Cognitive Domain Ontology Representation

TABLE 13. Average training time on both devices.

TABLE 14. Average time to generate partial solutions.

As the algorithm selects an event randomly for the
unasserted instances for the ‘both flags turned off scenario,’
there is a randomness in the number of generated complete
solutions. The number of generated solutions can be prede-
termined by fixing the assertions for all instance levels.

VIIl. RESULT AND DISCUSSION

A. RESULT GENERATION

We validated the algorithm by comparing its outputs for the
CDOs listed earlier in the paper against known correct results
for a variety of assertions and constraints. The solutions gen-
erated for smaller sized CDOs (such as the Ball CDO) were
hand-verified. For larger CDOs (such as the Broadcast CDO),
solutions were compared to those generated by the previously
verified parallel CDO solver in [11]. That solver utilized
a novel parallel path-based forward checking algorithm to
solve CDOs at high speeds and was verified against a variety
of other solvers (all slower), including Screamer+ [23] and
Sherlock [26] During validation, only the ‘FF’ flag setting
was considered as all the existing solvers can either generate
only one or all the solutions. With the ‘FF’ setting, the Q
learning algorithm generates all possible solution combina-
tions for the asserted instances.

B. TIMING

The Q-learning approach updates the Q-table by iterating
through the Algorithm 1 during the training phase. This
training process requires just a CDO definition along with the
constraints. As the training algorithm is a serial process, the
training time depends on the number of iterations required,
which in turn depends on the size and complexity of the
CDO. The Q-table can be trained in low power devices in case
online adaptation is ever required. Table 13 shows the average
training time required for all the instances on both low power
devices. For a specific CDO and set of constraints, the R-table
and Q-table need to be trained only once.

As described in Section III-B, in multi-instance settings,
the algorithm generates each instance’s solutions (partial
solutions) separately and then concatenates them. Generating
all the partial solutions for each instance is very fast on both
the Tinker Board and NUC. Table 14 shows the average time
required to create all the partial solutions.

For example, the algorithm will generate ten sets of partial
solutions for 10 instances of the Broadcast CDO. For gener-
ating each of these ten sets of partial solutions, the algorithm
required an average of 62ms and 4.9ms on the Tinker Board

142

§ Tinker Board NUC Tinker Board NUC
§ Iterations Training Time Training Time Instances Total Set Partial solution Partial
é (Seconds) (Seconds) of Partial generating time solution
5000 3.274 0.334 Solution (ms) generating
20000 137.38 14.143 time (ms)
10 50000 1273.49 251.67 2 2 0.2
7 9.5 0.986
10 10 62 49

TABLE 15. Time to generate a complete solution for flag ‘TF.

Tinker Board NUC
Instances | Solution Time (ms) Time (ms)
(Loading+Generate) | (Loading+Generate)
2 1 66.03 19.8
(62.6+3.442) (19.2+0.62)
7 1 544.54 84.4
(465.0+79.5) (75.8+8.6)
10 1 12813.2 1909.02
(12256.0+557.2) (1812.6+96.416)

TABLE 16. Time to generate complete solutions for flag ‘FT".

Tinker Board NUC
Instances | Solution Time (ms) Time (ms)
(Loading+Generate) (Loading+Generate)
2 2 64.11 19.6
(61.3+2.86) (19.0+0.58)
7 32 547.3 84.81
(474.7+72.63) (76.3+8.535)
10 2048 12878.6 1877.63
(12259.0+619.98) (1784.6+93.01)

and NUC, respectively. The total number of partial solutions
for each instance depends on the assertions and constraints.
An example of multiple numbers of partial solutions is shown
later in this paper in Table 19.

The number of solutions generated will depend on the flags
selected from Table 11. For the ‘TF’ flag, the algorithm will
only generate one complete solution. Table 15 shows the
average time required to generate one complete solution in
milliseconds for three different instances.

With the ‘FT’ flag, the algorithm will generate a fixed num-
ber of solutions based on assertions for different instances.
Table 16 shows the average time needed to generate 2,
32, and 2048 complete solutions for 2, 7, and 10 instances
respectively with the ‘FT” flag. The actual solution generation
process is faster than the table loading time for both ‘TF’
and ‘FT’ flag settings. The required time to load the tables
and generate complete solutions (by concatenating partial
solutions from all instances) increases with the increase in
instances.

VOLUME 12, 2024

N. Rahman et al.: Q-Learning Based Cognitive Domain Ontology Representation

IEEE Access

TABLE 17. Time to generate complete solutions for flag ‘FF.

Tinker Board NUC
Instances Solution Time (ms) Time (ms)
(Loading+Generate) | (Loading+Generate)
2 20r8 64.3 20.1
(61.5+2.75) (19.5+0.601)
524,288 13,413.00 2566.7
(467.7+12,945.7) (75.6+2491.0)
7 4096 581.6 90.3
(474.9+106.7) (76.57+18.25)
32 507.43 81.0
(467.4+39.9) (76.5+4.1)
2,097,152 2048%* 12,782.8
10 (1779.6+11,003.2)
2048 13,006.8 1873.0
(12,488.5+518.3) (1788.4+84.18)

* Algorithm generates 2048 complete solutions due to threshold
flag

As mentioned in section VI-C, with the ‘FF’ flag,
the algorithm selects the starting state randomly for the
unasserted instances. This can lead to a variation in the
number of solutions generated depending on which assertions
are selected by the algorithm. Table 17 shows the possible
number solutions and time needed for the 2, 7, and 10 instance
cases with the ‘FF’ flag. In the 2 instance case, it generates
either 2 or 8 complete solutions for the CDO. If the algorithm
selects channel ‘chs’ for the unasserted instance, then 2 com-
plete solutions will be generated. If either ‘abc’ or ‘nbc’
are selected, then there will be 8 complete solutions. The
example of two complete solutions for 2 instance scenarios
were shown in section VII-C.

Most of the runtime is utilized in concatenating partial
solutions to generate complete solutions rather than cre-
ating partial solutions. To generate all ten sets of partial
solutions for 10 instances, the algorithm spends around
50ms (4.9msx 10, see Table 14), whereas it spends around
10,953ms (11003.2 - 50) and 38.18ms (84.18 - 50) to con-
catenate those partial solutions for generating 2,097,152 and
2048 complete solutions respectively in the NUC.

For the higher-order instances, the algorithm needs to con-
catenate a large number of partial solutions to create complete
solutions. In low power devices, the onboard memory is often
not enough to store all the solutions, causing the algorithm to
stop when it runs out of memory. The average time required
to reach a solution is slightly higher in the Tinker Board
compared to the NUC because of the low-speed processor
used in the Tinker Board. The NUC is around 6 to 7 times
faster than the Tinker Board for higher-order problems.

As shown in Table 17, the maximum number of solutions
generated for instances 2, 7, and 10 are 8, 524,288, and
2,097,152. In case of 10 instances, the maximum number of
solutions cannot be handled by the limited memory of the
Tinker Board (2GB), and thus the threshold flag needs to be
used for this case. Due to this threshold flag, the algorithm

VOLUME 12, 2024

Solution Time (s)

0 05 1 1.5 2 25
Number of Solutions (in Millions)

FIGURE 6. Gradual solving time increment with the number of solutions.

checks the total number of future complete solutions after
executing each instance and triggers the ‘generate only one
solution’ flag when the total number of future complete solu-
tions reaches the threshold value, e.g., 500,000. Thus, after
concatenation, the total number of complete solutions will
always remain 2048 in the Tinker Board, for 10 instances in
this study.

To show the scalability of the Q-learning-based approach
on real-world problems, different-sized problems are consid-
ered as the solving time depends on the number of solutions.
In the Broadcast CDO experiment, the number of solutions
varied from only 8 to 2,097,152 solutions using different
instance settings. Fig. 6 shows the gradual solving time
increment with the number of solutions on hardware NUC.
In Fig. 6, only the solution generation time (seconds) is
considered, not the Q-table loading time. The Q-learning-
based approach can easily handle real-world problems as it
generated 2,097,152 complete solutions in 11.2 seconds.

C. ENERGY CALCULATION

A key benefit of this approach is its ability to run on low
power processing systems. To evaluate this, the energy con-
sumed by the algorithm was measured on the NUC and the
Tinker Board using a ‘Watts Up Pro’ power meter. The meter
was configured to collect power consumption every second.
In both devices, the algorithm was executed multiple times
consecutively to collect stable power consumption data. The
idle state power of the system was not deducted from the
actual power consumption. On the NUC, the idle state power
was about 5.3W, while the active power ranged from 20W
to 35W. On the Tinker Board, the idle power was about 3W,
while the active power ranged from 3.3W to 4.5W.

A comparison of energy consumptions for the flag ‘TF’
and ‘FT” on the Tinker Board and NUC are shown in
Fig. 7(a) and 7(b), respectively. The algorithm generates only
one complete solution for the flag ‘TF’ (see Fig 7(a)) and
generates a fixed number of complete solutions based on the
assertions and instances for the flag ‘FT” (see Fig 7(b)). As
the number of solutions increases with the instance numbers,
the required energy to generate these solutions also increases.

With the ‘FF’ flag, the number of solutions generated
depends on the assertions. Figs. 7(c), 7(d), and 7(e) show
the energy consumption for all three instances (2, 7, 10)
due to the flag ‘FF’ while generating all possible solutions,

143

IEEE Access

N. Rahman et al.: Q-Learning Based Cognitive Domain Ontology Representation

Energy consumption for generating

Energy consumption for generating

Energy Consumption of Instance: 2

only one solution for Flag: ;sl;l;u : solutions for Flag: FT B for Flag: FF vans
o y .
E [TinkerBoard 5 64.150
=] 69.258] Q I TinkerBoard 60.2 c N TinkerBoard
.g_ 60 | mEENUC ‘E. g0 -Qc” o % 0:: -
£ 50 £ 50! .
3 ?nn 3 ? E ?ME
2 E g E 40| [0.212
i) 53
a5 0 04 [« I~
™ : a : 2ois
g o E o = 01
c 10] 107 2
= 9220 1368 i & 0.213 0348 1752 2198 wo
2 7) 2(2) 7132) 10(2048) " sars 20r8
Instance Setting Instance Setting(solutions) Number of Solutions generated
(@) (b) (c)
Energy Consumption of Instance: 7 Energy Consumption of Instance: 10
w for Flag: FF for Flag: FF Flag description:
450 . i
S 83.772 (B Tikeroard | | s 421,96 el TF: Generate only one solution.
= L LUl = | I NuC
70 .
E‘ o 0310 E‘ FT: Generate all solutions for
P a asserted instances but only one
c 3 c for unasserted instances.
6 Oyl ©
Q b Q
= 30 .
=] 3 FF: Generate all solutions for
20 - - .
2 ol | 2 unasserted instances by
w . 1820 1648 1570 1443 w randomly selecting one event and

524288 32
Number of Solutlons generated

(d)

20971562
Number of Solutions generated

(e)

2048 generating all solutions for

asserted instances.

FIGURE 7. The instance settings and the number of partial solutions determine the amount of energy the algorithm will consume. Energy
consumption for (a) all three instances with flag ‘TF, (b) all three instances due to flag ‘FT, (c) 2 instances when using flag ‘FF, (d) 7 instances for

flag ‘FF, and (e) 10 instances with the flag ‘FF-.

respectively (except for instance 10 on the Tinker Board due
to memory limitations). As a complete solution is generated
by concatenating partial solutions, the energy consumption
increases when there are more partial solutions.

For 2 instances, the energy consumption is almost the same
for all the flag settings (TF, FT, FF) because the solution
search space is small. For 7 instances, the algorithm consumes
around 61J and 83J on the Tinker Board and NUC, respec-
tively, to generate 524,288 complete solutions. In contrast,
the energy consumption is less than 2J for generating 4096 or
32 complete solutions on both devices for 7 instances. For
10 instances, we use the threshold flag on the Tinker Board to
generate only 2048 complete solutions (instead of 2,097,152
with flag ‘FF’). Thus for 10 instances, the NUC consumes
421] to generate 2,097,152 complete solutions, whereas both
the Tinker Board and the NUC consume around 65]J to gen-
erate 2048 complete solutions.

D. PERFORMANCE COMPARISON

There are only a few CDO solvers available, namely Sher-
lock (based on the Choco 2.15 constraint solver library
[26]), WAKA solver (Java-based solver developed by AFRL),
an exhaustive depth-first search based algorithm [7], and both
serial and parallel versions of the path-based forward check-
ing algorithm [11] [25]. Except for the parallel path-based
forward checking algorithm [11], none of the existing CDO
solving approaches can solve large and complex CDOs
in runtime. This GPU enabled parallel path-based forward
checking algorithm solves large CDOs on high-performance

144

computing systems, which can utilize multi-node systems
by using MPI. The parallel path-based forward checking
algorithm [11] is superior in performance compared to other
existing CDO solvers. Therefore, we compare the Q-learning
based algorithm with the algorithm in [11], as this is the
fastest algorithm, we are aware of for solving CDOs.

The path-based forward checking algorithm generates all
the possible partial solutions that can be generated based
on the assertions and constraints. On the other hand, as the
Q-learning based approach is designed to execute on low
power consuming devices, it does not generate all the possible
partial solutions.

The Q-learning based algorithm generates solutions based
on the flags, assertions, and constraints. To compare the
performance of the solvers, the Q-learning based solver is
modified by incorporating for loops to generate an equal
number of solutions generated by the path-based solver.

In this performance comparison, the Broadcast CDO with
12 instances is considered, as the solution space is huge and
both approaches need to use all their resources. The assertions
shown in Table 18 are used in this case, while using the same
constraints shown in Table 9. A system with an Intel Xeon
E5-1620v2 3.70GHz processor, 64 GB of DRAM, and an
NVIDIA Tesla K80 was used to run the path-based algorithm.
The NVIDIA Tesla K80 has 4992 CUDA cores.

Nine loops are used in the Q-learning based approach
to match the exact number of partial solutions generated
by the path-based search. In this study, only partial solu-
tions are generated instead of complete solutions (which the

VOLUME 12, 2024

N. Rahman et al.: Q-Learning Based Cognitive Domain Ontology Representation

IEEE Access

TABLE 18. Assertions used for performance comparison.

Instances Assertion
12 abc{1}, abc{2}, nbc{4}, nbc{5}, nbc{6}, cbs{8},

cbs{9}, cbs{10}, abc{11}, nbc{12}

path-based search normally does). As both the algorithms
are not generating complete solutions by concatenating the
partial solutions, there is no out of memory scenario for the
Tinker Board running the Q-learning algorithm.

The time complexity of the Q-learning-based CDO solv-
ing approach and GPU enable parallel path-based forward
checking algorithm depends on the number of solutions in
a problem. Both algorithms face quadratic time complex-
ity (O(n2)) with the increase in the instance property for
the Broadcast CDO. The advantage of this Q-learning-based
approach is that this approach can solve large and complex
CDOs in runtime on low power platforms, which none of the
existing CDO solvers can do.

Table 19 shows all the nine sets of generated solution
structures, for the Broadcast CDO with 12 instances. Both
the path-based and Q learning based approach generated the
same amount of partial solutions. In Table 23, each row
represents one of nine generated solution sets, and each solu-
tion set consists of twelve sets of partial solutions. As we
only have three company choice events: ‘abc, ’nbc,” and
‘cbs’, there will be repetition in the partial solution selection
process. In table 19, each event is followed by the number of
partial solutions generated within parenthesis. For example,
the solution set “abc(4096), abc(4096), cbs(1)...” indicates
that the algorithm produced 4096 partial solutions related to
“abc’ for the first and second instances and 1 partial solution
related to ’cbs’ for the third instance. This continues on for
the remaining nine instances. All of these partial solutions
constitute the complete solution for the set.

Table 20 shows the required time and energy to gen-
erate all the partial solutions for both the path-based and
Q-learning based approaches. The path-based search con-
sumes on average 210W for generating all the partial
solutions based on the assertions. On the other hand, the
Q-learning based approach consumes around 29W and 4.7W
for generating the same amount of partial solutions in the
NUC and Tinker Board, respectively. The path-based search
approach consumes around 7.7 and 5.15 times more energy
compared to the Q-learning based approach for generating the
same amount of partial solutions. It is important to note that
the path-based algorithm would not run on the NUC or Tinker
Board due to limited resources and lack of a GPU.

The Q-learning based algorithm can solve any size
CDO quickly without consuming much power. From
Table 19 and 20, it is clear that this Q-learning based
approach can generate the same amount of solutions at run-
time as highly optimized parallel solvers while consuming
less power. Our algorithm’s required time to generate all par-
tial solutions gets higher with higher-order instances. This is

3

VOLUME 12, 2024

TABLE 19. Generated solutions for each nine solutions set.

Structure of each nine solution sets Total complete solutions for
each set (not generated)

3.2451%

labc(4096) , abe(4096) , abe(4096), nbe(4096) ,
nbc(4096) , nbc(4096) , abe(4096) , cbs(1) ,
cbs(1) , cbs(1) , abc(4096) , nbe(4096)
labc(4096) , abe(4096) , abe(4096) , nbe(4096) ,
nbc(4096) , nbc(4096) , nbe(4096) , cbs(1) ,
cbs(1) , cbs(1), abc(4096) , nbc(4096)
abc(4096) , abc(4096) , abe(4096) , nbe(4096) ,
nbc(4096) , nbc(4096) , cbs(1) , cbs(1), cbs(1),
cbs(1) , abc(4096) , nbc(4096)

abc(4096) , abc(4096) , nbe(4096) , nbe(4096) ,
nbc(4096) , nbc(4096) , abe(4096) , cbs(1) ,
cbs(1) , cbs(1), abc(4096) , nbc(4096)
labc(4096) , abc(4096) , nbe(4096) , nbe(4096) ,
nbc(4096) , nbc(4096) , nbc(4096) , cbs(1) ,

cbs(1), cbs(1), abc(4096) , nbe(4096)
abc(4096) , abe(4096) , nbe(4096) , nbe(4096) ,
nbc(4096) , nbc(4096) , cbs(1) , cbs(1), cbs(1) —
cbs(1), abc(4096) , nbc(4096)

abc(4096) , abc(4096) , cbs(1) , nbc(4096) ,
Inbc(4096) , nbe(4096) , abe(4096) , cbs(1),
cbs(1) , cbs(1), abc(4096) , nbc(4096)

abc(4096) , abc(4096) , cbs(1) , nbc(4096) ,
Inbc(4096) , nbe(4096) , nbe(4096) , cbs(1) ,
cbs(1) , cbs(1), abc(4096) , nbc(4096)
abc(4096) , abc(4096) , cbs(1) , nbc(4096) ,
Inbc(4096) , nbe(4096) , cbs(1) , cbs(1), cbs(1) ,
cbs(1) , abc(4096) , nbc(4096)

3.2451%

7.9228%

3.2451%

3.2451%

7.9228%

7.9228%

7.9228%

1.9348%

TABLE 20. Required time and energy to generate for 12 instances.

|Algorithm Path-based Q-learning-based ALG
forward checking
Hardware | GPU enabled NUC Tinker Board
System
Time 8000ms 7471.5ms 69305.5ms
Energy 1680J 217.5) 325.74])

Average required time and energy consumption to generate all partial

solutions for Twelve instances

however still in the acceptable range for autonomous decision
making.

E. DISCUSSION

This Q-learning-based algorithm generates partial solutions
for each instance separately and concatenates them to con-
struct complete solutions. The total number of partial solu-
tions varies from one to one-million based on the assertions,
constraints, and flag settings (FF, FT, TF). The Q-learning
based algorithm can generate millions of partial solutions
for any order of instances in milliseconds (see Table 14).
The rest of the time is spent on concatenating these par-
tial solutions to construct complete solutions. For example,
the algorithm generated 2,097,152 complete solutions in
12782.8ms (see Table 17), where the required time to produce

145

IEEE Access

N. Rahman et al.: Q-Learning Based Cognitive Domain Ontology Representation

partial solutions is 50ms (4.9msx 10). If the requirement of
creating complete solutions are ignored, as the partial solu-
tions contain the information of every instance node, this
approach becomes very efficient.

It is impossible for any of the existing solvers, except for
this Q-learning-based algorithm and the parallel path-based
forward checking algorithm, to generate solutions for
higher-order instances at runtime currently. However, only
our novel Q-learning-based solving approach can run on
low-power consuming platforms and handle large search
spaces in runtime. It was developed to allow a cognitive
agent to mine knowledge in real-time without the need for
a high-performance hybrid computing system. Different flag
settings of the algorithm will allow agents to generate solu-
tions based on the necessity to make optimum decisions.

IX. CONCLUSION

In this study we developed a novel knowledge storing and
mining approach using the Q-learning algorithm to enable a
cognitive agent to operate in real-time. This Q-learning-based
approach stores large and complex CDOs in a Q-table in a
very compact and efficient manner. The use of the Q-learning
algorithm for knowledge representation has not been exam-
ined before.

The solution search space for moderate-sized CDOs with
instance properties can be huge. In this study, we examined
problems where about one nonillion (103%) solutions exist.
This huge solution search space hinders any existing CDO
solvers from performing in runtime without high performance
computing hardware. Only GPU-enabled, highly optimized
parallel solvers can generate solutions very fast with the cost
of alarger size, weight, and power-consuming system (at least
200W, and likely over 50Ib).

Our novel search algorithm can generate solutions from the
Q-table at runtime based on the assertions and constraints
quickly on low power hardware. This algorithm generated
2,097,152 partial solutions based on specific assertions and
constraints in 50ms (4.9ms x 10) in the NUC. The search
algorithm spends much of its time concatenating partial
solutions to construct complete solutions rather than pro-
ducing them. Unlike other CDO solvers, this algorithm can
generate different numbers of solutions based on the user’s
requirement using two flags. This work allows running CDO
solving tasks on low SWAP platforms, such as the Asus
Tinker Board (max power: SW and weight of 1.940z) or the
Intel NUC (power consumption around 30W and a weight of
10.60z). Our approach consumes around 7.7 and 5.15 times
less energy to generate the same amount of solutions than
the GPU-enabled optimized path-based forward checking
CDO solver [11] running on the NUC and Tinker Board
respectively.

As future work, we will introduce objective functions to
our CDO solving approach. An objective function ranks
the generated solutions based on a specific criterion that
describes the decision’s quality. The objective function will
enable cognitive agents to make optimal decisions accurately.

146

REFERENCES

[1] R. Wray, R. Chong, J. Phillips, S. Rogers, and B. Walsh, “A sur-
vey of cognitive and agent architectures,” Dept. Elect. Eng. Com-
put. Sci., Univ. Michigan, MI, USA, Jan. 2007. [Online]. Available:
http://ai.eecs.umich.edu/cogarch0/

[2] H.-Q. Chong, A.-H. Tan, and G.-W. Ng, “Integrated cognitive architec-
tures: A survey,” Artif. Intell. Rev., vol. 28, no. 2, pp. 103-130, Aug. 2007.

[3] J.E. Laird, The Soar Cognitive Architecture. Cambridge, MA, USA: MIT
Press, 2012.

[4] J. R. Anderson, The Architecture of Cognition. Cambridge, MA, USA:
Harvard Univ. Press, 1983.

[5]1 J. R. Anderson, How Can the Human Mind Occur in the Physical Uni-
verse? Oxford, U.K.: Oxford Univ. Press, 2009.

[6] J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass, C. Lebiere, and

Y. Qin, “An integrated theory of the mind,” Psychol. Rev., vol. 111, no. 4,

pp. 1036-1060, 2004.

T. Atahary, T. M. Taha, and S. Douglass, ‘“Hardware accelerated cog-

nitively enhanced complex event processing architecture,” in Proc. 14th

ACIS Int. Conf. Softw. Eng., Artif. Intell., Netw. Parallel/Distrib. Comput.,

Jul. 2013, pp. 283-288.

[8] D. Luckham, “The power of events: An introduction to complex event

processing in distributed enterprise systems,” in Proc. Int. Symp. Rules

Rule Markup Languages Semantic Web, 2008, p. 3.

S. A. Douglass and W. M. Christopher, “Concurrent knowledge activation

calculation in large declarative memories,” in Proc. 10th Int. Conf. Cogn.

Modelling. Philadelphia, PA, USA: Drexel Univ., 2010, pp. 55-60.

[10] EsperTech. Accessed: Feb. 3, 2021. [Online]. Available:
http://www.espertech.com/esper/

[11] T. Atahary, T. M. Taha, and S. Douglass, ‘“Parallelized path-based search
for constraint satisfaction in autonomous cognitive agents,” J. Supercom-
put., vol. 77, pp. 1667-1692, May 2020.

[12] N. Rahman, “Low power based cognitive domain ontology solving
approaches,” Ph.D. dissertation, ECE, Univ. Datyon, Dayton, OH, USA,
2021.

[13] E.S.Low,P. Ong, and K. C. Cheah, “Solving the optimal path planning of
a mobile robot using improved Q-learning,” Robot. Auto. Syst., vol. 115,
pp. 143-161, May 2019.

[14] S.Li, X. Xu, and L. Zuo, “Dynamic path planning of a mobile robot with
improved Q-learning algorithm,” in Proc. IEEE Int. Conf. Inf. Autom.,
Aug. 2015, pp. 409-414.

[15] C.Li,J.Zhang, and Y. Li, “Application of artificial neural network based
on Q-learning for mobile robot path planning,” in Proc. IEEE Int. Conf.
Inf. Acquisition, 2006, pp. 978-982.

[16] M. Bennis and D. Niyato, “A Q-learning based approach to interference
avoidance in self-organized femtocell networks,” in Proc. IEEE GLOBE-
COM Workshops, Dec. 2010, pp. 706-710.

[17] J. Nie and S. Haykin, “A Q-learning-based dynamic channel assignment
technique for mobile communication systems,” IEEE Trans. Veh. Technol.,
vol. 48, no. 5, pp. 1676-1687, 1999.

[18] J.Ni, M.Liu, L.Ren, and S. X. Yang, “A multiagent Q-learning-based opti-
mal allocation approach for urban water resource management system,”
IEEE Trans. Autom. Sci. Eng., vol. 11, no. 1, pp. 204-214, Jan. 2014.

[19] A. Rahimi-Kian, B. Sadeghi, and R. J. Thomas, “Q-learning based
supplier-agents for electricity markets,” in Proc. IEEE Power Eng. Soc.
Gen. Meeting, 2005, pp. 420-427.

[20] R. Budiu, “ACT-R,” ACT-R Research Group, Dept. Psychol., Carnegie
Mellon University, Pittsburgh, PA, USA, Tech. Rep. 2002-2013, 2013.
Accessed: Jun. 6, 2020. [Online]. Available: http://act-r.psy.cmu.edu/
about/

[21] John Laird’s Research Group at the University of Michigan. (2020).
Soar Cognitive Architecture. Accessed: Jun. 6, 2020. [Online]. Available:
https://soar.eecs.umich.edu/

[22] J.E.Laird, K. R. Kinkade, and S. Moha, ‘“Cognitive robotics using the soar
cognitive architecture,” in Proc. Workshops 26th AAAI Conf. Artif. Intell.,
2012, pp. 46-54.

[23] J. M. Siskind, “Screaming Yellow Zonkers,” MIT Artif. Intell. Lab.,
Cambridge, MA, USA, Sep. 1991.

[24] T. Atahary, T. M. Taha, and S. Douglass, ‘“Parallelized mining of domain
knowledge on GPGPU and Xeon Phi clusters,” J. Supercomput., vol. 72,
no. 6, pp. 2132-2156, Jun. 2016.

[25] T. Atahary, T. Taha, F. Webber, and S. Douglass, “Knowledge mining
for cognitive agents through path based forward checking,” in Proc.
IEEE/ACIS 16th Int. Conf. Softw. Eng., Artif. Intell., Netw. Parallel/Distrib.
Comput. (SNPD), Jun. 2015, pp. 1-8.

[7

—

[9

[t

VOLUME 12, 2024

N. Rahman et al.: Q-Learning Based Cognitive Domain Ontology Representation

IEEE Access

[26] N. Jussien, G. Rochart, and X. Lorca, “Choco: An open source Java
constraint programming library,” in Proc. Workshop Open-Source Softw.
Integer Contraint Program. (CPAIOR), 2008, pp. 1-10.

[27] T. Atahary, T. Taha, and S. Douglass, “Parallelizing knowledge mining in a
cognitive agent for autonomous decision making,” in Proc. Comput. Conf.,
Jul. 2017, pp. 1058-1068.

[28] M. Edmonds, T. Atahary, S. Douglass, and T. Taha, ‘““Hardware accelerated
semantic declarative memory systems through CUDA and MapReduce,”
IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 3, pp. 601-614, Mar. 2019.

[29] M. Edmonds, T. Atahary, T. Taha, and S. A. Douglass, “High performance
declarative memory systems through MapReduce,” in Proc. IEEE/ACIS
16th Int. Conf. Softw. Eng., Artif. Intell., Netw. Parallel/Distrib. Comput.
(SNPD), Jun. 2015, pp. 1-8.

[30] N. Rahman, T. Atahary, T. Taha, and S. Douglass, ‘“Cognitive domain
ontologies on the TrueNorth neurosynaptic system,” in Proc. Int. Joint
Conf. Neural Netw. (IJCNN), May 2017, pp. 3543-3550.

[31] N. Rahman, T. Atahary, T. Taha, and S. Douglass, “A pattern matching
approach to map cognitive domain ontologies to the IBM TrueNorth
neurosynaptic system,” in Proc. Cognit. Commun. Aerosp. Appl. Workshop
(CCAA), Jun. 2017, pp. 1-4.

[32] L. Cao, H. Zhang, Y. Zhao, D. Luo, and C. Zhang, “Combined mining:
Discovering informative knowledge in complex data,” IEEE Trans. Syst.,
Man, Cybern. B, Cybern., vol. 41, no. 3, pp. 699-712, Jun. 2011.

[33] D. Fisch, E. Kalkowski, and B. Sick, “Knowledge fusion for probabilistic
generative classifiers with data mining applications,” IEEE Trans. Knowl.
Data Eng., vol. 26, no. 3, pp. 652-666, Jan. 2013.

[34] S. Nirkhi, “Potential use of artificial neural network in data mining,” in
Proc. 2nd Int. Conf. Comput. Autom. Eng. (ICCAE), vol. 2, Feb. 2010,
pp- 339-343.

[35] L. Cao, “Domain-driven data mining: Challenges and prospects,” IEEE
Trans. Knowl. Data Eng., vol. 22, no. 6, pp. 755769, Jun. 2010.

[36] M.Z. Alom, T. M. Taha, C. Yakopcic, S. Westberg, P. Sidike, M. S. Nasrin,
M. Hasan, B. C. Van Essen, A. A. S. Awwal, and V. K. Asari, “A state-
of-the-art survey on deep learning theory and architectures,” Electronics,
vol. 8, no. 3, p. 292, Mar. 2019.

[37]1 A. Ngo. (2018). Intel NUC Kit NUC8i7BEH (i7-8559U) Mini PC
Review. [Online]. Available: https://www.notebookcheck.net/Inte]l-NUC-
Kit-NUC8i7BEH-17-8559U-Mini-PC-Review.360356.0.html

NAYIM RAHMAN (Member, IEEE) received the
B.S. degree in electrical and electronics engineer-
ing from the Rajshahi University of Engineering
and Technology (RUET), Bangladesh, in 2008, the
M.S. degree in electrical and electronics engineer-
ing from Wright State University, Dayton, OH,
USA, in 2012, and the Ph.D. degree in electrical
and computer engineering from the University of
Dayton, OH, in 2021. He is a Research Engineer
with the University of Dayton. His research inter-
ests include low power-based optimal decision-making and spiking-based
neuromorphic programming on non-von Neumann devices.

TANVIR ATAHARY received the B.S. and
M.S. degrees from the University of Dhaka,
Bangladesh, in 2006 and 2008, respectively,
and the Ph.D. degree from the University of
Dayton, in 2016. Before starting his Ph.D. study,
he was a full-time Faculty Member with the
University of Liberal Arts (ULAB), Bangladesh,
from 2008 to 2011. He has been closely working
with Wright Patterson Air Force Base (WPAFB)
from his first year of Ph.D. study and spent consec-
utive five summers with WPAFB. After completing the Ph.D. study, he joined
the University of Dayton, as a Research Engineer and WPAFB, as a full-time
Contractor. His research interests include high performance computing and
cognitive computing architectures. Besides performing research he teaches
undergraduate students with the University of Dayton, as an Adjunct Faculty,
since 2018.

VOLUME 12, 2024

CHRIS YAKOPCIC (Senior Member, IEEE)
received the B.S., M.S., and Ph.D. degrees in
electrical engineering and the master’s degree in
business administration from the University of
Dayton (UD), in 2009, 2011, 2014, and 2022,
respectively. He is currently on the Research
Faculty of UD. He works on developing algorithms
for spiking neural network processors and porting
deep learning to low power embedded systems.
His current research interests include memris-
tor device modeling, analog circuit design with memristor devices, and
implementing neuromorphic algorithms on memristor crossbars. In 2013,
he received the IEEE/INNS International Joint Conference on Neural Net-
works Best Paper Award for a paper on memristor device modeling. In 2019,
he was chosen as the IEEE Dayton Section Computer Society Award winner
for his work on memristor based electronic systems for extreme low-power
computation and cutting edge algorithms for autonomous systems. In 2022,
he received the Best Paper Award at the ACM International Symposium on
Nanoscale Architectures.

TAREK M. TAHA (Senior Member, IEEE)
received the B.S. degree from DePauw University,
Greencastle, IN, USA, in 1996, and the B.S.E.E.,
M.S.EE., and Ph.D. degrees in electrical engi-
neering from the Georgia Institute of Technology,
Atlanta, in 1996, 1998, and 2002, respectively.

He is a Professor with the Electrical and
Computer Engineering Department, University of
Dayton. His research was supported by multiple
agencies and companies, including the National
Science Foundation, the Air Force Research Laboratory, and the National
Aeronautics and Space Administration. His research interests include cogni-
tive computing architectures, high performance computing, and architectural
performance modeling. He is a member of the IEEE Computer Society.
He received the NSF CAREER Award, in 2007.

SCOTT DOUGLASS received the Ph.D. degree from Carnegie Mellon
University. He is currently a Senior Cognitive Scientist with the AFRL
Aerospace Systems Directorate, Control Systems Branch. He leads basic
and applied research efforts in a portfolio developing agile mission plan-
ning and contingency management capabilities for autonomous platforms.
His current research interests include problem solving as SAT/SMT model
checking, multi-criteria decision analysis, information/knowledge extraction
from unstructured language, and approximate SAT solving using neuromor-
phic computing devices.

147

