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ABSTRACT Sustainable development has emerged as a global priority, and industries are increasingly
striving to align their operations with sustainable practices. Parallel machine scheduling (PMS) is a critical
aspect of production planning that directly impacts resource utilization and operational efficiency. In this
paper, we investigate the application of metaheuristic optimization algorithms to address the unrelated
parallel machine scheduling problem (UPMSP) through the lens of sustainable development goals (SDGs).
The primary objective of this study is to explore how metaheuristic optimization algorithms can contribute
to achieving sustainable development goals in the context of UPMSP. We examine a range of metaheuristic
algorithms, including genetic algorithms, particle swarm optimization, ant colony optimization, and more,
and assess their effectiveness in optimizing the scheduling problem at hand. The evaluation of the algorithms
focuses on their ability to improve the optimization of job-to-machine assignments, enabling industries
to efficiently minimize the overall makespan of scheduling tasks. This, in turn, leads to waste reduction
and enhanced energy efficiency. To conduct a comprehensive analysis, we consider UPMSP instances that
incorporate sustainability-related constraints and objectives. We assess the algorithms’ performance in terms
of solution quality, convergence speed, robustness, and scalability, while also examining their implications
for sustainable resource allocation and environmental stewardship. The findings of this study provide
insights into the efficacy of metaheuristic optimization algorithms for addressing UPMSP with a focus on
sustainable development goals. By leveraging these algorithms, industries can optimize scheduling decisions
to minimize waste and enhance energy efficiency. The practical implications of this research are valuable for
decision-makers, production planners, and researchers seeking to achieve sustainable development goals in
the context of unrelated parallel machine scheduling. By embracing metaheuristic optimization algorithms,
businesses can optimize their scheduling processes while aligning with sustainable principles, leading to
improved operational efficiency, cost savings, and a positive contribution to the global sustainability agenda.

INDEX TERMS Sustainable development goals, metaheuristic optimization algorithms, unrelated parallel
machine scheduling, resource utilization, energy consumption, environmental impact.

I. INTRODUCTION
Achieving sustainable development is now an imperative
worldwide undertaking, which has compelled industries
to embrace environmentally conscientious and socially
responsible practices [1], [2]. In this pursuit, optimizing
production processes and resource allocation is of paramount
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importance. Parallel machine scheduling (PMS) plays a
vital role in effectively utilizing available resources and
maximizing operational efficiency [3], [4]. To address the
challenges of resource optimization and promote sustainable
development, this paper focuses on the application of
metaheuristic optimization algorithms to tackle the UPMSP,
a variant of the popular PMS.

The UPMSP involves assigning jobs to multiple parallel
machines, considering the sequencing of jobs on each
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machine [5], [6]. The UPMSP is a challenging problem that is
known to be NP-hard. However, metaheuristic optimization
algorithms can be used to find high-quality solutions to
UPMSP [7]. Moreover, by optimizing UPMSP, industries
can enhance resource utilization, reduce energy consumption,
minimize waste, and ultimately align their operations with
sustainable development goals (SDGs) as highlighted in the
studies presented by Palomares et al. [8] and Sartal et al. [9].
For example, by optimizing the sequencing of jobs on each
machine, industries can reduce the idle time of machines,
which can lead to a reduction in energy consumption [10],
[11], [12]. Additionally, by optimizing the assignment of jobs
to machines, industries can reduce the overall makespan of
the scheduling [6], which can also lead to a reduction in
energy consumption. Metaheuristic optimization algorithms
are a powerful approach for solving UPMSP because they
can search for solutions in a large and complex search space.
Additionally, metaheuristic optimization algorithms can be
adapted to incorporate sustainability considerations [13],
[14]. For example, metaheuristic optimization algorithms
can be modified to consider the energy consumption of
machines when searching for solutions [15]. The use of
metaheuristic optimization algorithms for UPMSP is a
promising approach for improving the sustainability of
industrial operations. By optimizing UPMSP, industries can
reduce their environmental impact while also improving their
economic performance.

Metaheuristic optimization algorithms encompass a range
of intelligent search techniques inspired by natural phe-
nomena or problem-specific characteristics [16]. These
algorithms have demonstrated remarkable capabilities in
exploring large solution spaces and finding near-optimal
solutions for various combinatorial optimization problems.
In the context of unrelated parallel machine scheduling,
metaheuristic algorithms such as Genetic Algorithms (GA)
by Holland [17], Particle Swarm Optimization (PSO)
presented by Kennedy and Eberhart [18], Ant Colony
Optimization (ACO) by Dorigo et al. [19], Artificial Bee
Colony (ABC) proposed by Karaboga and Basturk [20],
Invasive Weed Optimization (IWO) by Mehrabian and
Lucas [21], Differential Evolution (DE) implemented by
Price [22], Teaching-Learning-Based Optimization (TLBO)
proposed by Rao et al. [23] and Firefly Algorithm (FA) that
was presented Yang [24] offer promising solutions to achieve
sustainable development objectives.

The primary objective of this study is to investigate
how metaheuristic optimization algorithms can contribute
to achieving SDGs in the context of unrelated parallel
machine scheduling (by optimizing the assignment of jobs
to machines, so that industries can reduce the overall
makespan of the scheduling tasks). By analyzing the per-
formance and effectiveness of these algorithms, we aim
to provide insights into their applicability and potential
in addressing the scheduling challenges while promoting
sustainable practices. This comprehensive analysis encom-
passes the evaluation of various metaheuristic optimization

algorithms for UPMSPs, considering performance metrics
such as solution quality, convergence speed, robustness, and
scalability. Additionally, we examine the implications of
these algorithms in terms of resource utilization, energy
consumption, environmental impact, and social responsi-
bility. By considering sustainability-related constraints and
objectives within UPMSP instances, we ensure that the
analysis reflects real-world scenarios and the broader context
of sustainable development.

The outcomes of this research have practical impli-
cations for industries seeking to achieve SDGs through
optimized scheduling processes. By leveraging metaheuristic
optimization algorithms, companies can improve resource
allocation, minimize waste, enhance energy efficiency, and
make strides toward environmental stewardship and social
equity. The findings provide decision-makers, production
planners, and researchers with valuable insights to align
their scheduling practices with sustainable development
objectives. Furthermore, this research seeks to bridge the
gap between unrelated parallel machine scheduling and
SDGs through the application of metaheuristic optimization
algorithms. By harnessing the strength and success of
these algorithms, industries can optimize their scheduling
processes, improve resource efficiency, and contribute to
a more sustainable future. Moreover, the findings of this
study provide valuable guidance for decision-makers and
practitioners aiming to achieve SDGs in the context of
production scheduling. The technical contribution of the
study is summarized as follows:
• A thorough investigation into the role of metaheuristic
optimization algorithms in advancing the attainment of
sustainable development goals within the research area
of UPMSPs.

• Identification and analysis of crucial sustainability
indicators pertinent to UPMSPs, showcasing how these
can be effectively addressed through the application of
metaheuristic optimization approaches. For this study,
particular emphasis is placed on efficient job assignment
optimization, chosen as a fundamental indicator, and is
comprehensively investigated and discussed to provide
in-depth insights.

• Showcasing a compelling proof-of-concept study,
underpinned by rigorous experimental validations.
This study concentrates on the optimization of job
assignments to parallel machines, resulting in the min-
imization of the overall makespan in scheduling tasks.
Notably, the study places emphasis on the consequent
reduction in energy consumption, specifically through
the lens of makespan minimization, highlighting the
dual advantages of improved scheduling efficiency and
enhanced environmental sustainability.

The rest of the paper is organized as follows: Section II
provides a literature review of related works on parallel
machine scheduling, metaheuristic optimization algorithms,
and their applications to sustainable development. Section III
presents the problem formulation and mathematical model
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for unrelated parallel machine scheduling. Section IV intro-
duces the metaheuristic optimization algorithms employed
in this study. Section V outlines the experimental setup,
including problem instances, performance metrics, evalua-
tion methodology, presentation, and discussion of the results
of the comprehensive analysis. Finally, Section VI summa-
rizes the findings, highlights the practical implications, and
suggests avenues for future research.

II. RELATED WORK
This section covers the presentation of a review of relevant
literature on SDGs and their integration with optimiza-
tion algorithms, an overview of metaheuristic optimization
algorithms commonly used in unrelated parallel machine
scheduling, a discussion of previous studies and research gaps
in the application of metaheuristic optimization algorithms
for achieving SDGs in UPMSP.

A. SDGS AND THEIR INTEGRATION WITH OPTIMIZATION
ALGORITHMS
The SDGs are a set of 17 goals adopted by the United Nations
in 2015. The goals aim to end poverty, protect the planet, and
ensure prosperity for all by 2030. Optimization algorithms
are a class of mathematical techniques that can be used to
find the best solution to a problem. Optimization algorithms
have been used to solve a wide variety of problems, including
scheduling, routing, and resource allocation. In recent years,
there has been a growing interest in using optimization
algorithms to achieve SDGs [25], [26]. This is because
optimization algorithms can be used to find solutions that
are both efficient and sustainable. There are a number of
ways that optimization algorithms can be used to achieve
SDGs. For example, optimization algorithms can be used
to optimize the use of resources, such as energy and water,
reduce waste, improve efficiency, protect the environment,
and many more. The integration of optimization algorithms
with SDGs is a promising area of research [27]. By using
optimization algorithms, we can find solutions that are both
efficient and sustainable, and that help us to achieve the
SDGs. These papers provide a comprehensive overview of the
use of optimization algorithms to achieve SDGs. They discuss
the different ways that optimization algorithms can be used,
and they provide examples of how optimization algorithms
have been used to solve real-world problems. The integration
of optimization algorithms with SDGs is a rapidly growing
area of research. As optimization algorithms become more
sophisticated, we will be able to find even more efficient and
sustainable solutions to the problems that we face.

Modibbo et al. [28] provide a comprehensive assessment
of the utilization of optimization techniques in the context
of the United Nations SDGs. The authors presented a
review study that critically analyzes the existing literature
and examines the potential contributions and challenges
associated with applying optimization techniques to address
the SDGs. The authors discussed a range of approaches, such
as well-known mathematical programming, metaheuristic

algorithms, multi-objective optimization, and simulation-
based optimization. This comprehensive coverage allows
readers to gain insights into the diverse methodologies
available for tackling the complex and interconnected
challenges posed by the SDGs. More so, Chaerani et al. [26]
presented a comprehensive analysis of the utilization of
robust optimization techniques in addressing SDGs in the
context of the COVID-19 pandemic. Through a systematic
literature review, the authors examine the existing research
landscape, identify key trends, and assess the applicability of
robust optimization in tackling SDG challenges during this
unprecedented global crisis.

Ali et al. [29] explored the important intersection between
environmental waste management, renewable energy, and the
achievement of SDGs. Through a concise review, the authors
delve into the significance of optimizing environmental waste
practices and harnessing renewable energy sources to drive
sustainable development. The article begins by highlighting
the critical importance of addressing environmental waste
issues and transitioning to renewable energy sources to foster
sustainable development. It effectively establishes the rele-
vance of these topics within the broader context of the SDGs,
emphasizing the need for optimization techniques to drive
progress towards achieving these goals. Hannan et al. [25]
provide a concise but informative review of the objectives,
constraints, and modeling approaches involved in optimizing
solid waste collection systems. The article aims to shed
light on the challenges and opportunities in this field,
with a particular focus on how optimization techniques can
contribute to the achievement of SDGs. Similarly, the author’s
work offers a comprehensive overview of the objectives and
constraints commonly encountered in solid waste collection
optimization. It discusses key considerations such as min-
imizing collection costs, maximizing resource utilization,
reducing environmental impacts, optimizing routing and
scheduling, and improving service quality. By presenting
these objectives and constraints, the review provides readers
with a clear understanding of the complex factors that must be
considered when optimizing solid waste collection systems.

B. AN OVERVIEW OF METAHEURISTIC OPTIMIZATION
ALGORITHMS FOR UPMSPS
From the standpoint of computer science and mathematical
optimization, metaheuristic optimization encompasses a
higher-level approach (heuristic) aimed at discovering an
approximate yet satisfactory solution to an optimization
problem [16]. The development of such optimizationmethods
typically occurs through three fundamental approaches:
enhancing existing optimizers, combining two or more
existing optimizers, or creating entirely novel optimizers.
Additionally, various categorizations of this optimization
technique can be found in the literature, including population-
based versus single-solution, nature-inspired versus non-
nature-inspired, and others [7], [30], [31]. In the subsequent
sections, we will provide a critical review of several studies
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that fall under the application of metaheuristic optimization
techniques to UPMSPs. These studies will be presented under
the following subheadings:

1) EVOLUTIONARY-BASED OPTIMIZATION ALGORITHMS
FOR UPMSP
Evolutionary Algorithms (EAs) are among the most estab-
lished and widely used metaheuristic algorithms, drawing
inspiration from the theory of evolution and the concept of
‘‘survival of the fittest.’’ The optimization process begins by
creating an initial population of solutions through random
generation, which is then iteratively evolved in subsequent
generations by eliminating the weakest solutions [32], [33].
Algorithms falling under this category often possess the
advantage of discovering optimal solutions or solutions that
closely approximate optimality. For specific examples of
algorithms within this category, refer to [34].
In a different study, Vallada and Ruiz [35] utilized a

variant of the GA for solving UPMSPs with machine
and job sequence-dependent setup times. Their GA variant
incorporated a fast local search and a local search enhanced
crossover operator. The experimental results showed that
the GA variant outperformed other methods on benchmark
instances of both small and large scales. The authors
suggested exploring multiobjective optimization and more
complex neighborhoods based on variable neighborhood
search approaches as potential avenues for future enhance-
ments of the proposed algorithm.

Furthermore, Eroglu and Ozmutlu [36] tackled a UPMSP
by formulating it as a mixed-integer programming (MIP)
model. The problem considered job sequence and machine-
dependent setup times, as well as the job splitting property.
The authors proposed a hybrid algorithm named GAspLA,
which combined a GA with local search metaheuristic
algorithms. The hybridization allowed for the adaptation of
local search results into the GA by minimizing the relocation
operation of genes’ random key numbers. Experimental
results indicated that the proposed approach outperformed
other techniques in solving the UPMSP. In summary,
Kerkhove and Vanhoucke [37] employed a hybrid SA-
GA algorithm to solve UPMSPs, incorporating changeover
times and sequence-dependent setup times. Vallada and
Ruiz [38] introduced a GA variant with a fast local search
and enhanced crossover operator for UPMSPs with setup
times. Eroglu et al. [39] proposed a hybrid algorithm,
GAspLA, combining GA and local search for UPMSPs
with job splitting and machine-dependent setup times. These
studies demonstrated the effectiveness of their respective
approaches in solving UPMSP-related problems, showcasing
improvements in performance and highlighting possibilities
for further exploration and optimization.

In a different study, Abreu and Prata [40] investigated
the performance of a hybridization approach involving GA,
Simulated Annealing (SA), Variable Neighborhood Descent
(VND), and Path Relinking (PR) to solve problems related to

the UPMSP with sequence-dependent setup times. The study
evaluated the performance of the hybrid algorithm using
metrics such as relative deviation, average, and population
standard deviation. The experimental results demonstrated
that the proposed approach achieved impressive performance
for both small and large problem instances. The authors
suggested that further investigations could be conducted
using multiobjective functions to assess the performance of
the hybrid algorithms in a broader context.

In a related study, Su et al. [41] proposed the use of a GA
and a hybrid approach combining GA with a bin-packing
strategy to solve the UPMSP. The problem was formulated
as an integer programming model to minimize makespan in
a workgroup scheduling context. Each workgroup consisted
of personnel with similar work skills, subject to eligibility
and resource constraints. The problem allowed for multiple
jobs to be processed simultaneously within a workgroup,
as long as the resources were available. The study employed
a GA with a specially designed coding scheme to address
the problem and then utilized the hybrid GA approach to
transform the single workgroup scheduling into a strip-
packing problem. The authors claimed that the hybrid GA
outperformed the standard GA in terms of performance.
More so, Abreu and Prata investigated the performance of
a hybrid algorithm combining GA, SA, VND, and PR for
UPMSPs with sequence-dependent setup times, achieving
impressive results. They recommended further exploration
using multiobjective functions.

Nakhaeinejad [42] formulated the UPMSP as a Mixed-
Integer Programming (MIP)model and implemented a hybrid
algorithm that combined GA and ACO while considering
machine and job sequence-dependent setup times. The
study aimed to speed up the search process and obtain
near-optimal solutions through the hybridization process.
Experimental results using small and large instances, along
with computational and statistical analysis, demonstrated
that the hybrid algorithm approach provided good quality
solutions with outstanding performance.

Similarly, Costa et al. [43] addressed a related problem
using three solution methods: a permutation encoding-based
GA, a multi-encoding GA, and a hybrid GA that transitioned
from permutation encoding to multi-encoding. The goal of
the solution method was to solve related problems with large-
sized test cases in a production system. The hybrid GA
exhibited a more impressive performance than the variant
GAs. Tozzo et al. [44] also investigated the performance of
GA and Variable Neighborhood Search (VNS) on a similar
problem. They discovered that the performance of GA was
inferior to that of VNS. Abreu and Prata [45] undertook a
similar research effort to solve the problem in the context of
the granite industry. They used a hybrid approach involving
GA. In summary, the comparative analysis showed that the
hybrid approaches outperformed the exact solution approach
in terms of performance. Different hybrid algorithms, such as
GA with ACO, GA with local search, and GA with various
encodings, were applied and demonstrated effective solutions
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for UPMSPs. The studies suggested further investigations
considering multiobjective functions, additional constraints,
and priority conditions to enhance the solution methods.

2) SWARM INTELLIGENCE-BASED OPTIMIZATION
ALGORITHMS FOR UPMSP
Jouhari et al. [46] conducted a study focusing on the appli-
cation of a modified Harris Hawks Optimization (MHHO)
algorithm for solving UPMSPs. To enhance the suitability of
the Harris Hawks Optimization (HHO) algorithm for UPM-
SPs, the authors incorporated the Salp Swarm Algorithm
(SSA) as a means of local search to improve HHO’s
performance and reduce computation time. The MHHO
algorithm was then implemented on both small and large
instances of UPMSPs. Experimental results demonstrated
that the MHHO approach exhibited superior performance in
terms of convergence to the optimal solution for both small
and large problem cases, surpassing the performance of both
SSA and HHO. The authors suggested applying the proposed
solution to various optimization problems, including data
clustering, cloud computing scheduling, image processing,
and forecasting applications.

In another study, Jafarzadeh et al. [47] investigated the
performance of an improved discreteMulti-objective Invasive
Weed Optimization (DMOIWO) for solving the no-wait two-
stage flexible flow shop scheduling problem incorporating
UPMSPs and Rework Time. The authors employed the
Taguchi Method to set up parameters and utilized DMOIWO
along with a fuzzy-based dominance approach to address
the scheduling problem. The study considered sequence-
dependent setup times, probable rework in both stations,
different ready times for all jobs, and rework times for
both stations to advance the research in this field. The
objective was to simultaneously minimize the maximum
job completion time and average latency functions using
a multi-objective technique. Comparative analysis against
conventional multi-objective algorithms demonstrated the
superior performance of the proposed approach. The authors
suggested future work to incorporate a heuristic algorithm
for generating initial solutions, thereby reducing running time
and the number of iterations required.

Lin et al. [48] implemented a variant of the ACO algorithm
to address UPSPs to minimize total weighted tardiness. The
choice of this objective function aimed to measure customer
satisfaction. Experimental results demonstrated that ACO
achieved favorable performance, outperforming other similar
metaheuristic approaches like ACO-SV and GA specifically
in terms of total weighted tardiness. Additionally, in another
study by Lin [49], ACOwas applied in conjunction with other
methods to solve UPMSPs characterized by due dates. The
study enhanced the performance of ACO through the inclu-
sion of an initial heuristic solution, machine reselection step,
and local search procedure. By evaluating the metric of total
weighted tardiness, the authors claimed that ACO outper-
formed competing methods. Keskinturk et al. [50] aimed to
address load imbalance in UPMSPswith sequence-dependent

setup times. They focused on minimizing the average
relative percentage of imbalance. Results indicated that
ACO outperformed GA in this context. Moreover, the study
highlighted that heuristics based on cumulative processing
time exhibited better performance than heuristics involving
setup avoidance and hybrid rules in assignment.

Arnaout et al. [51] proposed a two-stage Ant Colony
Optimization (ACO II) algorithm to address a similar
problem. The objective of their study was to enhance the
performance of ACO in solving the problem at hand. Through
extensive experimentation, the study demonstrated that ACO
II outperformed ACO I, MetaRaPS, and SA in terms of
performance. The authors recommended the application of
their solution to other complex optimization problems beyond
machine scheduling. In an earlier work by Arnaout et al. [52],
the same ACO II approach was proposed for the same
problem, but in this case, it was compared with Tabu
Search, Partitioning Heuristic (PH), and Meta-RaPS algo-
rithms. Similarly, Afzalirad and Rezaeian [53] investigated
the performance of NSGA-II and a multi-objective ACO
algorithm called MOACO in solving the same problem. The
study revealed that MOACO outperformed NSGA-II. The
authors suggested that further evaluations should consider
other multi-objective evolutionary algorithms. These studies
collectively contribute to the development and improvement
of ACO algorithms for addressing the specific problem,
showcasing their superiority over alternative approaches such
as Tabu Search, Meta-RaPS, and NSGA-II. The recom-
mendations for future evaluations and applications of the
proposed solutions highlight the ongoing efforts to advance
optimization techniques in complex problem domains.

In a similar vein, Soleimani et al. [33] addressed the
UPMSPs by formulating it as a Mixed Integer Programming
(MIP) problem. Their study aimed to explore the applica-
bility of continuous-based metaheuristic algorithms for this
problem. Specifically, the performance of GA, Cat Swarm
Optimization (CSO), and Interactive ABC (IABC) meta-
heuristic algorithms were investigated. The study introduced
a unique elitism strategy in CSO, referred to as CSO-Elit,
to overcome the challenge of computational time during the
seeking mode. Additionally, the authors combined GA, CSO-
Elit, and IABC, incorporating the necessary constraints for
solving theUPMSPs. By comparing the performances of each
algorithm with the LINGO solver, the study found that CSO-
Elit exhibited outstanding performance for large problem
instances compared to other methods. However, for small
problem instances, all the algorithms, including LINGO,
performed similarly. Based on their findings, the authors
recommended future research to integrate new operational
disruptions, such as machine failure and resource restriction,
into their proposed MIP model. This extension would
enhance the practicality and applicability of the solution
approach. The study contributes to the exploration of various
metaheuristic algorithms for UPMSPs and highlights the
effectiveness of CSO-Elit in handling large instances of the
problem.
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Madani-Isfahani et al. [54] addressed a problem related
to UPMSPs by solving a bi-objective optimization task,
considering the mean completion time of jobs and the
mean squares of deviations from machines’ workload. They
employed the Imperialist Competitive Algorithm (ICA) and
compared it with PSO, GA, and the original ICA. The study
focused on UPMSPs with sequence-dependent setup times.
Results revealed that ICA outperformed all other algorithms,
while the standard ICA combination performed the worst.
GA and PSO exhibited better performance in comparison.

Zheng and Wang [55] addressed the UPMSPs related to
real-world manufacturing systems using a two-stage Adap-
tive Fruit Fly Optimization Algorithm (TAFOA). In their
approach, they leveraged another heuristic algorithm to
generate high-quality initial solutions, which were then
adopted by TAFOA as the initial swarm center for further
evolution. The study conducted a performance investigation
of TAFOA using a two-factor analysis of variance (ANOVA)
and demonstrated that the proposed metaheuristic algorithm
performed well. As a result, the study recommended the
utilization of TAFOA to tackle UPMSPs in the context of the
multimode resource-constrained project scheduling problem.

In their research, Kayvanfar and Teymourian [56] focused
on addressing the challenges of solving the parallel machine
scheduling problem (UPMSPs) in scenarios where jobs
have sequence-dependent set-up times and distinct due
dates. To tackle this problem, they applied an intelligent
water drop (IWD) metaheuristic algorithm. To formulate the
problem and optimize the scheduling process, the researchers
developed a mathematical model that incorporated multiple
objectives. These objectives included minimizing earliness
and tardiness penalties, as well as maximizing the completion
time. The IWD algorithm was employed to efficiently solve
this multi-criteria problem. The results obtained through
the implementation of the IWD algorithm demonstrated
its effectiveness in solving the parallel machine scheduling
problem at hand. The study highlighted the potential for
further advancement of the IWD solution in scenarios
involving flow-shop or job-shop environments.

Caniyilmaz et al. [57] conducted a study to investigate
the performance of two metaheuristic algorithms, namely
ABC and GA, in addressing the UPMSPs. The UPMSPs
considered in their study involved job sequence-dependent
setup times, as well as various machine and due date
constraints. The objective was to allocate different machine
assignments to candidate-job sequences, allowing for job
completion within two shifts without the need for an
additional third shift. The authors conducted a computational
analysis to evaluate the performance of both ABC and GA
algorithms. The results obtained demonstrated that the ABC
algorithm outperformed the GA algorithm when solving
the UPMSPs with the given constraints. This indicates that
ABC exhibited higher efficiency and effectiveness in finding
optimal or near-optimal solutions within the specific problem
domain. The findings of this study provide valuable insights
for researchers and practitioners involved in scheduling

optimization. The superior performance of ABC in this
particular context also suggests its potential applicability
to other scheduling problems, such as flow shop and job
shop. Future research endeavors could explore the application
of ABC and GA algorithms to these scheduling problems,
potentially uncovering further improvements and insights in
addressing complex optimization challenges.

Zheng and Wang [58] introduced a novel problem
known as the resource-constrained unrelated parallel machine
green manufacturing scheduling problem (RCUPMGSP).
To address this problem, they utilized a variant of the fruit
fly optimization (FFO) algorithm, which they named the
collaborative multi-objective fruit fly optimization algorithm
(CMFOA). The objective of the algorithm was to reduce
both the makespan and the total carbon emissions. The study
employed various techniques to tackle the RCUPMGSP.
These included a job-speed pair-based solution representa-
tion, a critical path-based carbon-saving technique, a decod-
ingmethod, a heuristic for population initialization, and a col-
laborative search operator. The collaborative search operators
were particularly effective in handling three sub-problems
during the smell-based search phase. To evaluate the multi-
objective problem, the authors utilized the order preference
by similarity to an ideal solution (TOPSIS) method and the
fast non-dominated sorting approach. Through experimenta-
tion using randomly generated instances, it was demonstrated
that the proposed CMFOA outperformed similar methods
found in the existing literature. The study recommended
further exploration of properties specific to green scheduling
problems in manufacturing shops. Additionally, the authors
encouraged the application of the CMFOA method to solve
more complex related problems, thereby expanding its scope
of application.

Afzalirad and Rezaeian [53] conducted a study focusing
on solving the UPMSPwith sequence-dependent setup times,
different release dates, machine eligibility, and precedence
constraints. The objective of their research was to min-
imize the mean weighted flow time and mean weighted
tardiness. To achieve this, they proposed a new mixed-
integer programming model called MOACO. In their study,
two well-known metaheuristics were employed: the non-
genetic algorithm NSGA-II and a multi-objective ant colony
optimization (MOACO) algorithm. The MOACO algorithm
was a modified and adaptive version of the Bicriterion
Ant algorithm specifically designed to address the defined
problem. To overcome the increased complexity introduced
by the problem’s precedence constraints, the researchers pro-
posed a new corrective algorithm to obtain feasible solutions.
Additionally, the algorithm parameters were calibrated using
the Taguchi method, which ensured the appropriate design of
parameters, as they significantly influenced the performance
of the algorithms. The obtained results showed that the
MOACO algorithm statistically outperformed NSGA-II in
solving the considered problem. This demonstrated the
superiority of MOACO in terms of minimizing the mean
weighted flow time and mean weighted tardiness for the
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UPMSP with sequence-dependent setup times, different
release dates, machine eligibility, and precedence constraints,
as considered in the study by Afzalirad and Rezaeian [53].

Ezugwu and Akutsah [5] conducted a study demonstrating
the effectiveness of the standard FA in solving the UPMSP.
They developed a novel hybrid algorithm that yielded high-
quality solutions, closer to the optimal solutions compared to
other existing methods. They compared the performance of
FA with ACO, GA, and invasive weeds optimization (IWO)
algorithm in addressing the same problem. The hybrid FA
algorithm introduced unique solution representation schemes
for the UPMSP and incorporated a robust local search
mechanism to enhance the performance of the standard FA
algorithm. The algorithm was implemented in two stages.
The first stage generated an initial schedule of jobs for
machines, while the second stage performed global search
updates on the generated job sequence using the improved
FA algorithm. The local search improvement mechanism
introduced diversity in the solution space search, preventing
premature convergence. Through their novel algorithm, the
authors achieved near-optimal solutions to the UPMSP
within a concise CPU time. They suggested that further
research could explore alternative solution representation
and encoding schemes to introduce better diversity into
the solution search space. Additionally, they proposed that
their improved FA algorithm could be applied to solve
other variants of parallel machine scheduling problems
with performance measures related to due dates. The study
also highlighted the potential for evaluating the proposed
method’s performance on the UPMSP or other variants
using other benchmark models for comparison with different
solution algorithms.

In 2022 [7], Ezugwumade a notable improvement effort by
proposing the modification of the FA through the incorpora-
tion of an adaptivemutation-based neighborhood search. This
modification aimed to address the scheduling of unrelated
parallel machines with sequence-dependent setup times. The
presented results of this study indicated that the modified
FA scheduling technique outperformed the previous results
obtained by Ezugwu and Akutsah [5]. The modification
introduced by Ezugwu in 2022 focused on enhancing the
FA algorithm by integrating an adaptive mutation-based
neighborhood search. This adaptation allowed for more
effective exploration of the search space, leading to improved
scheduling outcomes for unrelated parallel machines with
sequence-dependent setup times. The comparative analysis
of the modified FA scheduling technique with the previous
results achieved by Ezugwu and Akutsah in 2018 show-
cased the superiority of the proposed modification. The
presented results revealed enhanced scheduling performance
in terms of various evaluation metrics, such as makespan
reduction, resource utilization, or shorter computational cost
consumed.

This advancement in the FA algorithm demonstrates the
importance of continuous research and improvement efforts
in the field of scheduling unrelated parallel machines.

By incorporating adaptive mutation-based neighborhood
search, Ezugwu’s modification contributes to advancing
state-of-the-art techniques for addressing complex schedul-
ing problems. The results presented by Ezugwu in 2022 serve
as evidence of the efficacy and superiority of the modified FA
scheduling technique compared to previous approaches. This
further emphasizes the potential for ongoing advancements
in metaheuristic optimization algorithms to achieve better
scheduling outcomes and provide practical solutions to real-
world scheduling challenges.

Ezugwu et al. [59] introduced an enhanced Symbiotic
Organisms Search (SOS) algorithm for solving the parallel
machine scheduling problem. They augmented the standard
SOS algorithm by incorporating a new solution representa-
tion and decoding procedure specifically tailored for handling
the UPMSP. Additionally, they integrated an iterated local
search strategy that combined variable numbers of insertion
and swap moves into the standard SOS algorithm to improve
the quality of solutions for the UPMSP. To enhance the
speed and performance of the SOS algorithm, the authors
employed the longest processing time first (LPT) rule
in designing the machine assignment heuristic for job-to-
machine assignments. This heuristic was based on amachine-
dynamic load-balancing mechanism. The LPT heuristic was
incorporated into the standard SOS algorithm to generate
the initial schedule of job-to-machine assignments for a
given number of jobs on multiple machines. Subsequently,
the improved SOS algorithm performed a global search
update on the generated job sequence. Experimental results
demonstrated that the SOS-LPT algorithm outperformed
other existing methods for all tested problem instances of
the UPMSP. The algorithm’s performance was significantly
improved in terms of both solution quality and computational
efficiency.

Ezugwu [6] built upon their previous work [59] and
focused on addressing the minimization of makespan for
the non-preemptive UPMSP. They proposed two enhanced
metaheuristic algorithms: the enhanced SOS algorithm and a
hybridized approach that combined SOS with SA. To further
improve the solution quality, the authors incorporated a
local search component into each algorithm, leveraging the
advantages of the three techniques. By hybridizing SOS
with SA, the SOS algorithm was prevented from getting
trapped in local minima, as SA introduced hill-climbing
moves to search for global solutions. Simultaneously, the
hybrid algorithm increased the level of diversity in the search
for an optimal solution within the problem’s search space.
To ensure that the generated solutions were mapped to good
schedules, the author implemented a suitable encoding and
decoding solution representation method. This method was
designed to ensure the suitability of the three proposed
algorithms in solving the UPMSP effectively. According
to the reported numerical results, the SOS-based methods
achieved high-quality solutions within a reasonable time
frame. The enhanced SOS algorithm and the hybridized SOS
with SA algorithm demonstrated their effectiveness in solving
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the non-preemptive UPMSP, showcasing improvements in
solution quality and computational efficiency.

3) HUMAN-BASED OPTIMIZATION ALGORITHMS FOR
UPMSP
Salimifard et al. [60] tackled the problem of Parallel Machine
Scheduling Problems (PMSPs) by formulating it as a bi-
objective integer linear programming model. The model
aimed to minimize two objectives: total tardiness and the
number of waste. To address these issues, the study proposed
a novel metaheuristic algorithm called Multi-Objective Vol-
leyball Premier League (MOVPL), which evolved from the
crowding distance concept used in NSGA-II. MOVPLwas an
extension of the Volleyball Premier League (VPL) method.
The proposed approach was applied to ten test problems,
and the results showed interesting performance. TheMOVPL
algorithm demonstrated its effectiveness in optimizing the
bi-objective PMSPs by minimizing total tardiness and the
number of waste. As future work, the study suggested
enhancing MOVPL to handle additional constraints such
as preemption, maintenance times, and uncertainty in the
volume of jobs. These enhancements would further improve
the algorithm’s capability to address real-world UPMSP
scenarios.

In their research, Rabiee et al. [61] developed a
biogeography-based optimization (BBO) approach to address
the no-wait hybrid flow shop scheduling problem. This
problem is characterized by realistic assumptions, including
machine eligibility, sequence-dependent set-up times, and
different ready times. The objective function of the study
was focused on minimizing mean tardiness. To evaluate the
impact of parameters on BBO, the researchers employed
response surface methodology (RSM). They used mean
relative percentage deviation (RPD), and the standard devi-
ation of RPD, best RPD, and worst RPD as evaluation
metrics. The study demonstrated that BBO outperformed
other existing solutions, both for small and large problem
instances. The evaluation metrics consistently showed the
superiority of the BBO approach. These findings highlight
the effectiveness of BBO in tackling the no-wait hybrid
flow shop scheduling problem. The study also suggested that
further advancements could be made to the proposed solution
when considering more complex scheduling assumptions.
For instance, exploring the effects of sequence-dependent
set-up times (SDSTs) and deterioration rates in processing
times could enhance the performance of the BBO approach
in handling intricate scheduling scenarios.

4) TRAJECTORY-BASED OPTIMIZATION ALGORITHMS FOR
UPMSP
Haddad et al. [62] applied AIV: a heuristic algorithm based
on iterated local search and variable neighborhood descent
for solving the UPMSP and the HIVP, which includes
Path Relinking (PR) to generate a greedy initial solution
and a partially greedy procedure to construct the initial
solution, respectively. The approach was aimed at solving

UPMSPST-related problems. The study developed both
AIV and HIVP from the Iterated Local Search (ILS) and
Variable Neighborhood Descent (VND). Using benchmark
test problems, statistical analysis revealed that AIV andHIVP
attained an impressive performance compared with other
approaches. Meanwhile, the study also showed that HIPV
outperformed AIV even though they both performed better
than the GA. The authors recommended that the Mixed
Integer Programming (MIP) model be incorporation into the
AIV or HIVP to improve the performance of the method.

Santos and Vilarinho [63] proposed the utilization of SA
to address the challenges posed by UPMSPs. The focus
of their work was on UPMSPs with sequence-dependent
setup, involving constraints such as equipment capacity, task
precedence, lot sizing, and task delivery plan. The approach
involved leveraging SA to manage the task’s size in relation
to available equipment, allocating larger widths to compatible
equipment, and distributing jobs to less utilized equipment.
However, no comparison with other metaheuristic algorithms
was conducted, although the study claimed to outperform
previous mathematical programming approaches used for the
same problem.

Anagnostopoulos and Rabadi [64] present an innovative
solution to the challenging scheduling problem of UPMSP.
The authors effectively introduce the problem of scheduling
jobs on unrelated parallel machines with sequence-dependent
setup times to minimize the makespan. They implement
SA, a well-known metaheuristic algorithm, to minimize
job completion time on unrelated parallel machines. The
article provides a clear explanation of the SA algorithm and
demonstrates its superior performance compared to existing
methods. The inclusion of extensive experiments and statis-
tical analysis enhances the credibility of the findings. While
there is room for improvement in the presentation of results
and discussion of practical implementation considerations,
overall, this article contributes significantly to the field of
parallel machine scheduling.

Silva et al. [65] aimed to minimize the maximum
completion time in the scheduling of UPMSPs with
Sequence-Dependent Setup Times. The study compared
the performance of five metaheuristic algorithms: Variable
Neighborhood Search (VNS), Fix-and-Optimize (FO), GA,
Relax-and-Fix (RF), and an exact solution method. Among
the algorithms tested, VNS and FO exhibitedmore impressive
results compared to GA, RF, and the exact solution method.
VNS was particularly effective in finding better solutions
and escaping local optima. In small problem instances, VNS
and FO outperformed an improved version of GA (GA2).
However, for larger problem instances, GA2 outperformed
VNS. In another study, Tozzo et al. [44] investigated and
compared the performance of GA and VNS in addressing
UPMSPs with sequence machine-dependent setup time. The
objective function of the problem was to minimize the
makespan. The results indicated that VNS outperformed GA
in terms of reducing the makespan. The authors recom-
mended further research using a multiobjective function to
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assess the performance of both metaheuristic algorithms.
Overall, these studies highlight the effectiveness of VNS
and FO in minimizing the maximum completion time for
UPMSPs with sequence-dependent setup times. VNS showed
strong performance in finding optimal solutions and escaping
local optima, while GA demonstrated effectiveness in larger
problem instances. The comparisons provide insights for
selecting appropriate metaheuristic algorithms based on
problem characteristics and objectives.

Nogueira et al. [66] tackled the problem of UPMSPs
using the Greedy Randomized Adaptive Search Procedure
(GRASP) metaheuristic algorithm. They employed a mul-
tiobjective approach that considered total earliness and
tardiness penalties as performance measures. The method
combined GRASP with a procedure based on the Path
Relinking technique and ILS to find near-optimal solutions.
Experimental results, obtained by applying the method
to small, medium, and large instances, indicated that the
hybridization of GRASP with Path Relinking (GRASP+PR)
and GRASP with Iterated Local Search and Path Relinking
(GRASP+ILS+PR) outperformed the standalone GRASP
solution. The authors recommended exploring the use of the
Variable Neighborhood Descent metaheuristic in the local
search phase of ILS for future investigations.

In a similar vein, Gatica et al. [67] conducted a study
comparing the performance of GRASP, ILS, SA, andVariable
Neighborhood Search (VNS) in minimizing the Maximum
Tardiness objective function in UPMSPs. The evaluation
of the four single-solution algorithms revealed that SA
outperformed the other three algorithms. However, the
authors highlighted the need for future research to focus on
hybridizing single-population metaheuristic algorithms with
population-based algorithms such as GA and ACO.

Diana et al. [68] presented a solution method for UPMSPs
by hybridizing the Greedy Randomized Adaptive Search
Procedure (GRASP) and VND. The study incorporated a
population re-selection operator to maintain the quality of the
hybrid solution. GRASP was used for population generation,
while VND was utilized as a somatic hypermutation operator
to accelerate the convergence of GRASP. The authors argued
that their proposed operator performed significantly better
than a hybrid of GRASP and GA.

In a similar work, Báez et al. [69] addressed UPMSPs
with dependent setup times by employing a hybrid of
GRASP and VNS. Their objective was to minimize the
total completion time by assigning jobs to machines and
determining their processing order. The hybrid algorithmwas
applied to construct and improve optimal solutions. The study
demonstrated that the hybrid approach outperformed other
solutions, including exact methods. The authors suggested
that future research should consider stochastic setup and
processing times.

Additionally, Yepes-Borrero et al. [70] adapted the
UPMSPs scheduling problem to include setup times and
additional limited resources in the setups using the GRASP
metaheuristic algorithm. The proposed GRASP approach

involved two strategies: one that disregarded information
about other resources during the construction phase and
another that considered this information. The results showed
that the solution method effectively addressed the problem.
The authors recommended further exploration of the study in
the context of scheduling problems such as the flowshop.

Lee et al. [71] employed a Tabu Search (TS) heuristic
algorithm with various neighborhood generation methods
to address the UPMSP with sequence-dependent setup
times. Their objective was to minimize the total tardiness.
Experimental evaluations were conducted comparing TSwith
SA and Iterated Greedy algorithms. The comparative analysis
demonstrated that TS outperformed the other algorithms
by producing optimal solutions for both large and small
problem instances, with over 50% of the solutions being
optimal. However, the study also revealed that while TS
provided a greater number of optimal solutions quickly,
the quality of its solutions was not as high as those from
greedy search algorithms. The authors suggested that future
advancements could involve using advanced neighborhood
generation methods with TS and applying them to stochastic
problems with non-zero ready times.

In another study, Shahvari and Logendran [72] improved
the TS algorithm to solve the UPMSP with sequence-
and machine-dependent batch scheduling. Their approach
introduced enhancements such as multi-level diversification,
multi-tabu structure, and the use of lemmas to eliminate
ineffective neighborhoods during the search process. The
problem was formulated as a Mixed Integer Linear Pro-
gramming (MILP) model and solved using the improved TS
algorithm. The objective was to minimize a multi-objective
function comprising total weighted completion time and
total weighted tardiness. The results demonstrated that the
improved TS algorithm successfully reduced the objective
function value by 37%, and the incorporation of lemmas
further improved it by up to 40% within computational time
constraints. The study proposed future research directions to
explore the performance of a hybrid TS-based algorithm in
combination with other metaheuristics.

Similarly, Chen [73] investigated the performance of a
hybrid approach combining ILS, TS, and VND to solve the
UPMSP with sequence-dependent setup times and unequal
ready times. The study integrated TS and VND with an
Iterated HybridMetaheuristic (IHM) algorithm, referred to as
ILS, to address the problem. Performance evaluations were
conducted using processing times, ready times, and due-
date tightness as evaluation criteria. The results showed that
the proposed hybrid solution outperformed the individual
metaheuristic algorithms when considering the specified
evaluation criteria.

5) HYBRID BASED OPTIMIZATION ALGORITHMS FOR
UPMSP
Hybrid algorithms leverage the strengths of multiple
optimization algorithms, leading to an enhanced optimization
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capability while minimizing computational complexi-
ties [74]. This category of algorithms has garnered extensive
research attention, resulting in a wide range of articles and
variants. By combining the features of different algorithms,
hybrid approaches offer promising avenues for improving
optimization techniques and addressing complex problems
effectively.

Jouhari et al. [75] proposed a hybrid algorithm combining
SA and the Sine Cosine Algorithm (SCA) to address
UPMSPs and minimize the makespan. The hybrid algorithm,
named SASCA, employed SCA as a local search method to
enhance the performance and convergence of SA in obtaining
efficient solutions. Numerical results indicated that SASCA
demonstrated favorable performance in both small and
large problem instances, outperforming other metaheuristic
algorithms. In another related work, A hybridization of ACO,
SA, and VNS was proposed to tackle UPMSPs with parallel
machines and sequence-dependent setup times, aiming to
reduce makespan. ACO and SA were utilized for solution
evolution, while VNS aimed to improve the population. The
study demonstrated that the hybridized algorithm produced
high-quality solutions even for larger problem instances.
Comparative analysis revealed that ACO, SA, and VNS
outperformed hybrids of ACO and VNS, as well as SA
and VNS. The authors suggested that the proposed hybrid
algorithm should be extended to address UPMSPs with
ready times for each job’s start time as future work [76].
Zabihzadeh and Rezaeian [77] addressed UPMSPs in a robot
job environment using ACO with double pheromone and
GA. The problem was formulated as a mixed-integer linear
programming model, considering two objective functions:
makespan, aiming to minimize the sequence of processing
parts and robots’ movements, and finding the closest number
to the optimal number of robots. The study revealed that
GA performed well in determining near-optimal numbers
of robots compared to the results obtained from ACO.
The authors recommended the inclusion of due dates and
the consideration of objective functions such as maximum
lateness, total tardiness, and the number of tardy jobs in future
models.

Abbaszadeh et al. [78] tackled the Flexible Flow Shop
(FFS) scheduling problem with UPMSPs and a renewable
resource shared among the stages. They employed a combi-
nation of SA and PSO algorithms, referred to as SA-PSO,
to solve the problem. The study began by developing a
MILP model to minimize the maximum completion time
(makespan). Subsequently, PSO and the hybrid SA-PSO
were employed to solve the model. The results demonstrated
that the SA-PSO hybrid performed well, particularly for
large-sized problems, outperforming PSO alone. The authors
recommended further research into the performance of hybrid
metaheuristic algorithms such as GA, VNS, and TS. In a
similar vein, Lin [49] applied PSO to solve a scheduling
problem involving UPMSPs where n jobs were scheduled
on m UPMSPs, considering the presence of release dates.
The objective function aimed to minimize the makespan

and subsequently utilize the proposed method to maximize
the utilization of machines. The results obtained in the
study demonstrated that PSO yielded impressive results
when compared to other metaheuristic algorithms. The
authors suggested that the proposed solution method could
be extended to address multi-objective parallel machine
scheduling problems.

Mir and Rezaeian [79] proposed a hybrid metaheuristic
algorithm combining PSO and GA to solve UPMSPs
with past-sequence-dependent setup times, release dates,
deteriorating jobs, and learning effects. The study further
enhanced the hybrid system by incorporating the Taguchi
method to optimize and select the optimal parameters.
Through experimentation, the hybrid metaheuristic algo-
rithms were compared with and without local search. The
results indicated that the latter algorithms were suitable
for small problem instances, while the hybrid of PSO
and GA outperformed them for large problem instances.
The study also recommended exploring other metaheuristic
algorithms and applying their solutions to multi-objective
models, indicating potential avenues for future research.
In a related work, Torabi et al. [80] proposed the use of
PSO with multi-objective criteria, known as Multi-Objective
Particle Swarm Optimization (MOPSO), to solve a multi-
objective model formulated as a UPMSP. The objective
functions considered were total weighted flow time, total
weighted tardiness, and total machine load variation. The
performance analysis of MOPSO compared to Conventional
Multi-Objective Particle Swarm Optimization (CMOPSO)
using randomly generated test problems demonstrated that
MOPSO outperformed CMOPSO. The study highlighted the
effectiveness of MOPSO in finding a good approximation of
the Pareto frontier.

Kerkhove and Vanhoucke [37] addressed the problem of
the UPMSP in the context of a Belgian producer of knitted
fabrics. The objective was to assign N jobs with release dates
to M machines with due dates while considering changeover
times and sequence-dependent setup times to minimize the
weighted combination of job lateness and tardiness. To tackle
this problem, the authors employed a hybrid metaheuristic
algorithm combining SA and GA. The SA-GA hybrid
algorithm proved effective in solving real-scale scheduling
problems, with instances of up to 750 jobs, 75 machines, and
10 production locations, within a reasonable computational
time. To mitigate the impact of changeover interference,
the algorithm was complemented with heuristic dispatching
rules that prioritized shorter changeover times. The study
demonstrated a performance increase of 23% when up to
12 machines were serviced due to the support provided by
the heuristic rules.

Jolai et al. [81] tackled the problem of a no-wait flexible
flow shop manufacturing system with sequence-dependent
setup times. Their objective was to minimize the maximum
completion time. To address the problem, they improved the
SA and Imperialist Competitive Algorithm (ICA) versions.
Population-Based Simulated Annealing (PBSA) andAdapted
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Imperialist Competitive Algorithm (AICA) were used as
hybrid algorithms. The authors employed the Taguchi method
for parameter optimization. The study demonstrated that the
hybrid algorithm outperformed the individual metaheuristic
algorithms.

In a related study, Garavito-Hernández et al. [82] explored
a hybrid approach combining ICA and GA to solve UPMSPs
in a flow shop (HFS) scheduling context with sequence
and machine-dependent setup times. Their solution was
compared with mixed-integer programming models using
an exact method. The results showed that their hybrid
solution performed equally or better in terms of providing
solutions. The study also recommended enhancing meta-
heuristic algorithms by incorporating local search strategies
for solution improvement.

Rahmanidoust et al. [83] conducted a study to investigate
the performances of Harmony Search (HS), Imperialist
Competitive Algorithm (ICA), and hybridization of PBSA
and ICA (ICA+PBSA) when applied to solve the problem of
no-wait hybrid flow shop scheduling in relation to UPMSPs.
The objective of the study was to minimize the mean
tardiness while addressing four specific challenges: no-wait
operations, separate setup time of each job from its processing
time, coordination with job arrival time, and inconsistent
machine availability. By using the Taguchi approach for
parameter definition and random test problems, the study
demonstrated that HS outperformed the other algorithms in
terms of performance. As future work, the authors suggested
investigating novel meta-heuristics such as the FA and graph
coloring-based algorithms for solving the problem. Addition-
ally, the authors proposed exploring models characterized by
emergency maintenance, learning effect, and deterioration,
as they may yield interesting performance outcomes. Further-
more, Rahmanidoust et al. explored various meta-heuristic
algorithms, including HS, ICA, and ICA+PBSA, to solve the
problem of no-wait hybrid flow shop scheduling in UPMSPs.
The study highlighted the superior performance of HS and
recommended further research into alternative meta-heuristic
approaches and the incorporation of additional problem
characteristics.

In their study, Sadatia et al. [84] tackled an industrial prob-
lem concerning unmanned productionmaintenance processes
(UPMPs) by applying a hybrid multi-objective teaching-
learning-based optimization (HMOTLBO) approach. To
effectively address the problem, they formulated it as
a MILP model. By utilizing the ε-constraint method,
the researchers solved the multi-objective model using
HMOTLBO, specifically focusing on small-sized problems.
To assess the performance of the proposed HMOTLBO
approach, it was compared with a non-dominated sort-
ing genetic algorithm (NSGA-II). The results indicated
that the hybrid method exhibited favorable performance.
However, the study acknowledged the potential for fur-
ther improvements and suggested that future research
endeavors should explore the incorporation of additional
constraints. These constraints could include factors such

as pre-emption, precedence constraints, and machine
failures.

6) MACHINE LEARNING-BASED OPTIMIZATION
ALGORITHMS FOR UPMSP
Cheng et al. [4] addressed the problem of UPMSPs in
the forging industry, specifically focusing on uncertain
machine-dependent and job sequence-dependent setup times
(MDJSDSTs). They proposed a metaheuristic algorithm
based on RandomForest to minimize the makespan. The
aim was to improve the estimation of setup times for large
instances. Experimental results demonstrated a significant
reduction in the error percentage for setup time estimation
using their method. The authors suggested that future studies
could explore the problem’s performance by incorporating
simulation-based optimization approaches and considering
factors such as processing time and waiting time.

In their study, Park et al. [85] propose a novel approach
for scheduling jobs with sequence-dependent setup times on
parallel machines. The authors combine a neural network
with heuristic rules to effectively handle the scheduling
problem. Notably, they utilize a neural network to calculate
the priority index of each job, which plays a crucial role in the
scheduling process. The integration of a neural network in the
scheduling algorithm brings forth the advantages of machine
learning techniques, allowing for more sophisticated and
data-driven decision-making. By training the neural network
on relevant job characteristics and historical data, the authors
were able to derive accurate priority indices that reflect the
importance and urgency of each job. In the comprehensive
review conducted by Ðurasević and Jakobović [86], multiple
investigations into the current cutting-edge research on
scheduling tasks for parallel machines were undertaken
and thoroughly deliberated upon. Henceforth, readers with
an interest in this subject are directed to the previously
mentioned survey paper for further information.

Figures 1, 2, and 3 provide an overview of the utilization
of various optimization algorithms in addressing the problem
discussed in this study over the past two decades. These
figures depict the rate at which these algorithms have been
applied and utilized. Additionally, an illustration showcasing
the hybridization of these metaheuristic algorithms is pre-
sented.

III. PROBLEM FORMULATION AND
MATHEMATICAL MODEL
In this section, we discuss the MIP model, a commonly
used mathematical formulation for representing parallel
machine scheduling problems. The MIP model is effective
in defining the objective function and constraints of the
problem accurately. In this study, we focus on a variant
of the UPMSP that minimizes the total completion time,
taking into consideration the setup times of individual
machines. Moreover, the MIP solvers are advantageous in
finding optimal solutions, but they often require significant
computational time. Therefore, they are more suitable for
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FIGURE 1. A distribution of the choice of metaheuristic algorithms for
applicability to the problem of UPMSPs.

FIGURE 2. A yearly report on how each metaheuristic algorithm is used
to optimize the problem of UPMSPs.

FIGURE 3. Illustration of hybrid metaheuristic algorithms that have been
employed to solve the UPMSPs.

solving small-sized problem instances. In this paper, we adopt
and enhance the MIP formulation presented in previous
studies for minimizing the makespan of the UPMSP [6], [64].
We believe that our MIP model provides a clear theoretical
foundation for the variant of the parallel machine problem
addressed in this research. The variant of the UPMSP
described and formulated here is of the form Pm

∣∣Si,j,k |Cmax .
The mathematical model formulation for the problem at hand
is presented as follows:

Sets and Indices
N : Number of jobs to be processed, N = {1, 2, . . . , n}
M : Number of machines,M = {1, 2, . . . ,m}

i, j : Job indices, where i, j ∈ N
k :Machine indices, where k ∈ M
Parameters
Pj,k : Processing time of job j on machine k
Si,j,k : Sequence-dependent setup time if job j is scheduled

directly after job i on machine k
V : a large positive number
Decision variables
Cmax :Maximum completion time (or makespan)
Cj : Completion time of job j
APi,j,k : Adjusted processing time matrix of job j when it

is processed immediately after job i on machine k
xi,j,k : 1 if job j is scheduled directly after job i on machine

k and 0 otherwise
S0,j,k : Setup time if job j is scheduled to go first on

machine k
x0,j,k : 1 if job j is scheduled first on machine k and

0 otherwise
xi,0,k : 1 if job j is scheduled last on machine k and

0 otherwise
Model formulation

Min Cmax

Subject to
m∑
k=1

n∑
i=0
i̸=j

xi,j,k = 1, ∀j = 1, . . . , n (1)

n∑
j=1

x0,j,k = 1, ∀k = 1, . . . ,m (2)

n∑
i=0
i̸=h

xi,j,h −
n∑
j=0
j̸=h

xh,j,k = 0, ∀h = 1, . . . , n, ∀k

= 1, . . . ,m (3)

Cj −

[
Ci +

m∑
k=1

xi,j,k
(
Si,j,k + Pj,k

)
+V

(
m∑
k=1

xi,j,k − 1

)]
≥ 0, ∀i

= 0, . . . , n, ∀j = 1, . . . , n (4)

C0 = 0 (5)

xi,j,k ∈ {0, 1}, ∀i = 0, . . . , n, ∀j = 0, . . . , n,∀k

(6)

= 1, . . . ,m (7)

A. CONSTRAINTS DESCRIPTIONS
Equation 1 represents the objective function of the problem,
aiming to minimize the makespan. Equation 2 ensures that
each job is scheduled only once and processed by a single
machine. Equation 3 guarantees that only one job can be
scheduled as the first job and not more than once. Equation 4
ensures that each job must have one preceding job and one
succeeding job. Equation 5 calculates the completion times of
the jobs and ensures that no job can both precede and succeed
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the same job. Equation 6 sets the completion time for the
initial dummy job to zero (dummy job in this case indicates
an imaginary job with zero cost or time introduced to make
an unbalanced assignment problem balanced). Equation 7
specifies that the decision variable xi,j,k is binary across all
domains.

IV. APPLICATION OF METAHEURISTICS FOR UPMSPS
In this section, we provide a brief overview of nine well-
known metaheuristic algorithms selected for solving the
specific UPMSP discussed in this paper. The choice of
these nine algorithms was influenced by their individual
strengths and successful application history in tackling
various challenging variants of the UPMSP. Moreover, their
superior performances, as reported in related optimization
literature, also supported their selection [87], [88]. To ensure
consistency and follow of thought, some concepts from
previous related published work were intentionally adapted
in this paper. Specifically, the following concepts were
replicated and represented:
• Adjusted Processing Times Matrix (Section IV-A)
• Solution Representations (Section IV-B)
• Initialization or Initial Solutions (Section IV-C)
• Mutation-based Local Search Improvement Schemes
(Section IV-D)

These concepts were adapted from the work of Ezugwu [6]
and Ezugwu [7], and discussed in more detail in this paper.

The nine representative algorithms chosen for this study
are as follows: FA, ACO, GA, IWO, ABC, BA, DE, PSO,
and TLBO. For each of these algorithms, we adopted the
standard algorithmic design structures as described in the
original literature with minor modifications to adapt them
for solving the specific UPMSP. These modifications include
the implementation of solution representation, initial solution
generation, fitness value evaluation, andmutation-based local
search improvement schemes.

It is important to note that we retained the basic algorithmic
structures of each representative algorithm from the authors’
original works to ensure an unbiased performance compara-
tive analysis. Due to page limitations and to avoid redundant
presentations of existing concepts, interested readers are
referred to explore the original representations of these rep-
resentative algorithms in their respective literature sources.
These sources include Holland [17] for GA, Kennedy and
Eberhart [18] for PSO, Dorigo et al. [19] for ACO and ABC,
Mehrabian and Lucas [21] for IWO, Price [22] for DE, and
Rao et al. [23] for TLBO. FA was developed by Yang [24].
First, we adapted a generalized algorithmic representation

of a typical population-based metaheuristic optimization
algorithm design. This representation was used to denote the
optimization perspectives for all the representative algorithms
selected to handle the UPMSP. The standard algorithmic
design structure is presented in Algorithm Listing 1.

This generalized representation encapsulates the iterative
nature of metaheuristic algorithms, which integrate local
search and global search strategies to effectively explore and

Algorithm 1 Generalized Algorithmic Representation of
Population-Based Metaheuristics
1. Initialize the population of solutions randomly or

using some specific initialization strategy.
2. Evaluate the fitness or objective function value of each

solution in the population.
3. Set the initial temperature or exploration parameter

(if applicable) for the algorithm.
4. Repeat until a termination condition is met (e.g.,

maximum iterations, convergence criteria):
a. Perform local search or exploitation to improve the
solutions in the population.
b. Perform global search or exploration to explore
new areas of the search space.
c. Update the fitness values of the solutions.
d. Determine the best solution found so far and update
if necessary.
e. Adapt or update any algorithm-specific parameters
(e.g., cooling schedule, mutation rate).

5. Return the best solution obtained during the
optimization process.

exploit the search space. However, it is important to note that
the specific implementation of each step may vary depending
on the particular metaheuristic algorithm employed and the
specific problem under consideration.

Similarly, the generalized algorithmic representation pre-
sented in algorithm listing 2 provides a framework for the
population-based metaheuristic optimization used to solve
the UPMSP with some added evolutionary features. Each
representative evolutionary algorithm such as the GA follows
this structure, but with algorithm-specific modifications and
operators tailored to the algorithm’s approach. By employing
this standardized structure, we can compare and analyze
the performance of the different algorithms based on their
ability to find optimal schedule configurations with minimal
makespan.

A. ADJUSTED PROCESSING TIMES MATRIX
The concept of the Adjusted Processing Times Matrix
[AP]k , as described in [64], has been widely employed by
researchers to address various scheduling problems [90],
[91]. The [AP]k matrix for each machine is defined such
that the following constraints hold: ∀k = 1, . . . ,m,∀j =
1, . . . , n : APi,j,k = Si,j,k + Pj,k , ∀i = 1, . . . , n.
By incorporating [AP]k into Equation (5) described earlier,

the equation then can be transformed into:

Cj −

[
Ci +

m∑
k=1

xi,j,kAPi,j,k + V

(
m∑
k=1

xi,j,k − 1

)]
≥ 0, ∀i = 0, . . . , n, ∀j = 1, . . . , n (8)

The adjusted equation (8) fits well for the problem at hand
because the benchmark problem uses a matrix representation
for the processing times and setup times. The processing

3398 VOLUME 12, 2024



A. E.-S. Ezugwu: Metaheuristic Optimization for Sustainable Unrelated PMS

Algorithm 2 Algorithmic Design for Population-Based
Metaheuristic Optimization With Evolutionary Adaptation
Features for UPMSP
Input:
• Problem-specific details (UPMSP formulation, con-
straints, etc.)

• Population size (N)
• Maximum number of iterations (max_iter)
Output:

• Best solution found (optimal schedule configuration)
• Objective function value of the best solution (minimum
makespan)

Procedure:
1. Initialize a population of N candidate solutions

randomly within the problem search space.
2. Evaluate the fitness value of each candidate solution

using the objective function (maximum completion
time).

3. Set the best solution found as the initial solution with
the lowest fitness value.

4. Iterate until reaching the maximum number of
iterations or a stopping criterion is met:

a. Perform selection operation to choose can-
didate solutions for reproduction and further
exploration.

b. Apply crossover and mutation operators to
generate new candidate solutions.

c. Evaluate the fitness value of each new candi-
date solution.

d. Update the best solution found if a new solu-
tion with a lower fitness value is discovered.

5. Return the best solution found and its corresponding
objective function value.

Note: The specific implementation of selection, crossover,
and mutation operators may vary depending on the chosen
metaheuristic algorithm and problem characteristics.

times are given in a matrix [P] of size m × n, and the setup
times are given in a set of m matrices [S]k , each of size
n×n. The makespan, which is the maximum completion time
required to process jobs i and j on machine k , is therefore
given by:

Cmax = max1≤j≤n
{
Cj
}
= max

k=1,...,m
i=1,...,n

n∑
j=1

[
APi,j,k

]
(9)

This equation is derived from the fact that the makespan is
the maximum time required to complete all jobs, and the time
required to complete a job is the sum of its processing time
and setup time. The adjusted equation (8) takes into account
the fact that the setup time for a job may vary depending
on the machine on which it is processed.

The objective function for the UPMSP is to minimize the
maximum completion time, as expressed in equation (10).
This can be written as follows, as discussed in previous

works [6], [7]:

Minimize Cmax = max
k=1,...,m
i=1,...,n

n∑
j=1

[
APi,j,k

]
(10)

B. SOLUTION REPRESENTATION
The nine representative metaheuristic optimization algo-
rithms employed in this study are all population-based
optimization methods. The optimization process begins by
initializing a population of candidate solutions, denoted by
the parameter X , according to Equation 11. The candidate
solutions are randomly generated within the given prob-
lem landscape, bounded by the upper and lower limits.
Throughout the iterative processes of the representative
algorithms, the best-recorded solution is continually updated
and considered as the optimal solution [7].

X =



X1
. . .

Xi
...

XN−1
XN



=



x1,1 . . . x1,j x1,D−1 x1,D
x2,1 . . . x2,j . . . x2,D
. . . . . . xi,j . . . . . .
...

...
...

...
...

xN−1,1 . . . xN−1,j . . . xN−1,D
xN ,1 . . . xN ,j xN ,D−1 xN ,D


(11)

where,

xi,j = rand × (UB− LB)+ LB, i = 1, 2, . . . ,N ,

j = 1, 2, . . . ,D (12)

The set of all possible solutions, denoted by X , is generated
randomly based on the model equation given in equation 12.
The decision variable for the ith candidate solution is
represented by Xi, and it takes values within the search
space X . The parameter N represents the population size of
candidate solutions, and D indicates the dimension of the
problem search space. The parameters LB andUB correspond
to the lower and upper bounds, respectively.

Based on the solution initialization procedure described
above, the individual representative algorithms are designed
to effectively solve the UPMSP within the solution search
space X . This search space consists of all possible schedule
configurations for n jobs that can be scheduled on m
machines. To adapt the selected algorithms for handling the
specific scheduling problem of the form Pm

∣∣Si,j,k |Cmax ,
a local search improvement algorithm is incorporated to
enhance their solution search capabilities. The details of the
local search approach can be found in algorithm listing 2.
Equation 13, as shown at the bottom of the next page.

In the first row of the matrix representation, the zero
after the job x1,n indicates that job x1,n is the last job to
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be processed by machine 1. This convention applies to the
remaining rows as well. Specifically, the zeros after jobs x2,n,
xk,n and xm,n indicate that these jobs are the last ones to be
processed by machines 2, k, and m, respectively.
The solution representation encoding, as described in [7],

is utilized for machine assignment and scheduling sequenc-
ing. In terms of machine assignment, a two-stage solution
representation is employed. The first stage involves assigning
n jobs to m unrelated parallel machines, aiming to minimize
the maximum completion time (Cmax) among all machines.
This assignment is represented as an integer vector, denoted
as x1, with a dimension equal to the number of jobs.

For example, considering 16 jobs (n = 16) and 4 machines
(m = 4), the vector x1 = [4, 1, 4, 4, 4, 1, 3, 3, 3, 3, 2, 2, 2,
2, 1, 1] implies that the first machine, m1, will be assigned
jobs 2, 6, 15, and 16; the secondmachine,m2, will be assigned
jobs 11, 12, 13, and 14; the third machine, m3, will be
assigned jobs 7, 8, 9, and 10; and the fourth machine, m4,
will be assigned jobs 1, 3, 4, and 5.

The second stage involves the job sequencing operation,
represented in matrix form with the same dimensions as the
machine assignment vector. This job sequencing, denoted
as x2, can be represented as an m × n matrix, illustrating
the sequencing operations on each machine. Equation 14,
as shown at the bottom of the page, provides a detailed
illustration of this matrix representation for job sequencing
operations [6].
Building upon the example illustrations discussed in

previous studies [6], the variables x1 and x2 describe the
sequence of operations for each machine. For instance,
in machine m1, the sequence operation consists of job 6, job
15, job 16, and job 2. The same sequence description applies
to machines m2 and m3. The presence of zeros after certain
jobs, such as job 2, job 14, job 7, and job 1, indicates that
these jobs are the last to be processed by their respective
machines (m1 for job 2, m2 for job 14, m3 for job 7, and
m4 for job 1).

It is important to note that the assignment and sequencing
mechanisms are based on individual solutions or population
variations. For instance, in the case of the FA, a notable global

optimization metaheuristic, the variation in the firefly’s
light intensity is taken into account for the assignment and
sequencing mechanisms during the algorithm’s implementa-
tion for the scheduling sequence operation test problem. The
light intensities are adjusted based on the quality of solutions
in each generation.

In the context of the FA, the light intensity, denoted as I ,
representing the solution x, is proportional to the value of the
fitness function, I (x) ∝ f (x). According to Yang [24], the
light intensity, I , varies according to the following equation:

I (r) = I0e−γ r
2

(15)

Here, I0 represents the light intensity of the source, and
γ represents the light absorption coefficient. This equation
describes the variation of light intensity, I , with respect to the
distance parameter, r .

C. INITIAL SOLUTION
In the case of the UPMSP, the initial solution for the
metaheuristic algorithm is typically generated randomly. This
involves ordering the sequence of jobs and assigning them
to machines. The initial population size for the candidate
swarm or organisms is set to be equal to the number of
solutions in the population. It is important to note that the
quality of the initial population has a significant impact on
the performance of representative algorithms as population-
based metaheuristics. A good initial population increases the
algorithm’s chances of discovering promising areas within
the search space and provides diversity to avoid premature
convergence [92].

In this study, a maximum of 200 candidate particle
swarms or organisms were used as the population size to
solve the UPMSP. This population size selection allows
for a sufficient number of solutions to be evaluated and
explored during the optimization process. Furthermore, the
decision to set the population size at 200 was arrived at
following numerous experimental trials. In the majority of
these trials, the optimal solutions were consistently achieved
when various base algorithms were employed to tackle the
UPMSP.

Xi =



X1
. . .

Xi
...

Xm−1
Xm


=



x1,1 . . . x1,j x1,n−1 x1,n 0 0 0 0 0 0 0 0 0 0 0
x2,1 . . . x2,j . . . x2,n 0 0 0 0 0 0 0 0 0 0 0
. . . . . . xi,j . . . . . . 0 0 0 0 0 0 0 0 0 0 0
...

...
...

...
... 0 0 0 0 0 0 0 0 0 0 0

xm−1,1 . . . xm−1,j . . . xm−1,n 0 0 0 0 0 0 0 0 0 0 0
xm,1 . . . xm,j xm,n−1 xm,n 0 0 0 0 0 0 0 0 0 0 0


(13)

x2 =


6 15 16 2 0 0 0 0 0 0 0 0 0 0 0 0
12 11 13 14 0 0 0 0 0 0 0 0 0 0 0 0
8 9 10 7 0 0 0 0 0 0 0 0 0 0 0 0
3 4 5 1 0 0 0 0 0 0 0 0 0 0 0 0

 (14)
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D. MUTATION-BASED LOCAL SEARCH IMPROVEMENT
SCHEMES
To enhance the quality of solutions obtained in parallel
machine scheduling, a mutation-based local search procedure
is incorporated into the representative algorithm. This proce-
dure aims to improve the generated schedule quality by utiliz-
ing three neighborhood structures or mutation operators [7].
The mutation-based local search acts as an improvement
phase, focusing on minimizing the total completion time
(Cmax) of the current schedule. Three neighborhood operators
are utilized in this local search improvement scheme: swap
sequence mutation, insertion sequence mutation, and reverse
sequence mutation operations. The swap operator involves
swapping the schedules of two selected jobs, denoted as i
and j, from two different machines, k and l, to interchange
their positions. It should be noted that the selection of
jobs and machines for swapping is done randomly. The
insertion sequence mutation operation is implemented in
two instances: intra-machine insertion and inter-machine
insertion. In the case of intra-machine insertion, a random job,
i, from schedule X is selected and inserted before a randomly
chosen job, j, within the same schedule [6]. By incorporating
these mutation-based local search procedures and employing
the swap, insertion, and reverse sequence mutation operators,
the representative algorithm aims to enhance the quality
of the obtained schedules in parallel machine scheduling
problems.

In the case of inter-machine insertion, the insertion opera-
tion involves removing a job, denoted as i, from one machine,
k , and inserting it into another machine, l. This operation
facilitates the transfer of a job between machines, potentially
improving the overall schedule. The revert operator is another
component of the local search improvement procedure.
It selects a random job from schedule X and replaces its
sub-schedule with the reversed order of the original sub-
schedule. This reversal of the job’s sub-schedule aims to
explore alternative arrangements and potentially enhance the
schedule quality.

The local search improvement operation is performed
iteratively for a specified number, 0, of times for each of the
three neighborhood operators. This iterative process allows
for multiple iterations of improvement within the local search
phase. For a detailed depiction of the steps involved in each
of the local search improvement processes, refer to Algorithm
Listing 3. This algorithm provides a comprehensive illustra-
tion of the specific steps and procedures employed during the
local search improvement phase.

In Algorithm listing 3, the value of 0, which represents
the number of random moves, is dependent on the available
machines. To fine-tune the performance of each representa-
tive algorithm, the values ofM were chosen from the intervals
[0.5m, 0.9m]. For a similar experimental configuration that
resulted in good-quality solutions, please refer to [5] and [6].

In the algorithm, the parameter π represents the selected
machine (l or m), distinct from the intervened machine
k . The parameter p is determined using the proportionate

Algorithm 3 Pseudocode for the Mutation-Based Local
Search Improvement Scheme [6]
Input: solution consisting of schedules X and two
machines l and m
Output: Improved solution or good-quality schedule X′

for the representative optimization methods
1: P_swap = 0.2;
2: P_revert = 0.5;
3: P_insert = 1 – (P_swap + P_revert);
4: P = [P_swap, P_revert, P_insert];
5: SCHEME = SSPF(P); where SSPF(. ) denotes scheme
selection probability function
6: for each SCHEMEdo
7: 0 = 1
8: Randomly select two machines l and m such that
l ̸= m
9: Randomly select two jobs il and jm
10: while 0 ≤ 3 do
11: if 0 = 1 and k ̸= l then
12: X′ = ApplySwap (X , il,l, ik , k)
12 if 0 = 1 and k ̸= m then
12: X′ = ApplySwap (X , im,m, ik , k)
12 end if
12 end if
13: else if 0 = 2 and k ̸= l then
14: X′ = ApplyInsert (X , il,l, k)
13: if 0 = 2 and k ̸= m then
14: X′ = ApplyInsert (X , im,m, k)
13 end if
12 end if
15: else if 0 == 3 then
16: X′ = ApplyRevert (X , iπ ,
π, ik , k)// π = randomly selected machine (l or m)
17: end if
18: ifX′ is better than X then
19. X←X′

20: else
21: end if
22: 0 = 0 + 1
23: end while
24: end for

fitness selection, also known as roulette wheel selection. This
selection mechanism associates a probability of selection
with each solution or swarm particle in the population based
on their fitness level. If δi represents the fitness of candidate
solution iin the population, its probability of being selected is
expressed according to equation (16).

pi =
δi∑ψ

j=1 δj
, j = 1, 2, . . . , ψ (16)

where pi denotes the probability of selecting the best
candidate solution from the population ψ . δi denotes the
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fitness of candidate solutions i, and it is computed using
equation 1 (MinCmax).

In the optimization process, the population size, denoted
by ψ , plays a crucial role. A metaheuristic algorithm is
deemed advantageous and superior when it achieves a balance
between candidate solution selection and exploration of
new solution regions within the solution landscape. It is
important to note that the selection task in most metaheuristic
algorithms has the potential to transform an exploratory
search process into a hill climber by rejecting all exploratory
search solutions. Achieving this balance is essential for
generating high-quality solutions.

E. WHY FIREFLY ALGORITHM?
The FA is regarded as the superior and favored optimization
approach for the demonstrated proof of concept related to
employing metaheuristics for sustainable scheduling. This
preference stems from the algorithm’s robust capabilities in
effectively addressing challenging and intricate optimization
problems, particularly those characterized by extremeness
and complexity. Furthermore, several notable advantages of
using the FA for solving complex real-world optimization
problems and other related scheduling of unrelated parallel
machines tasks include [93], [94]:
• Global optimization: The FA is capable of exploring
a wide solution space, making it effective in finding
globally optimal or near-optimal solutions for com-
plex scheduling problems involving unrelated parallel
machines.

• Diversity preservation: The algorithm’s exploration
mechanism helps maintain diverse solutions across the
population of fireflies, preventing premature conver-
gence and aiding in escaping local optima.

• Adaptability: FA can be easily adapted to different
scheduling objectives and constraints. This flexibility
allows it to handle a variety of scheduling scenarios,
making it applicable to various real-world industrial
problems.

• Parallelism: The algorithm inherently operates in a
parallel manner, which aligns well with the nature of
scheduling for parallel machines. This can lead to faster
convergence and reduced computation time.

• Heuristic nature: FA is a heuristic optimization tech-
nique, which means it doesn’t require explicit gradient
information and can work well even for non-convex and
nonlinear objective functions, commonly encountered in
scheduling problems.

• Ease of implementation: The algorithm’s simple rules
for firefly movement and attractiveness enable relatively
straightforward implementation and experimentation.

• Exploration-exploitation balance: The FA employs a
balance between exploration and exploitation, allowing
it to explore the search space efficiently while refining
solutions as the algorithm progresses.

• Robustness: The algorithm’s ability to escape local
optima and adapt to various problem instances

contributes to its robustness in handling scheduling
challenges, even in dynamic or uncertain environments.

• Non-derivative-based: The FA doesn’t rely on derivative
information, making it suitable for problems where
gradients are hard to obtain or compute.

• Effective for complex problems: Scheduling unrelated
parallel machines can involve intricate relationships
between tasks, machines, and objectives. The FA’s abil-
ity to handle complex, multi-dimensional optimization
spaces makes it a valuable tool in this context.

It’s worth noting that while the FA offers several advantages,
its performance can still be influenced by parameter tuning,
problem characteristics, and specific implementation details.
Therefore, careful experimentation and analysis are essential
to harness its full potential for scheduling unrelated parallel
machines effectively. Algorithm Listing 4 introduces the FA
optimization representation designed for solving the UPMSP.
It’s worth mentioning that all hybrid versions of the FA
scheduling approach are implemented by making minor
adjustments to the core FA base algorithm, illustrated in
Algorithm 4 [7].

V. EXPERIMENTS
In this section, we present the experimental configurations,
dataset description, and discussion of the experimental
results. Three experiments were conducted, and their results
are discussed individually. Experiment 1 focuses on evaluat-
ing nine state-of-the-art metaheuristic algorithms: FA, ACO,
GA, IWO,ABC, BA, DE, PSO, and TLBO. The results of this
experiment are presented, by comparing the performance of
these algorithms. In Experiment 2, we examine the influence
of population size on the FA algorithm, which demonstrated
the best performance in the previous experiment. The study
takes into account the variations in population sizes and the
number of iterations or function evaluations used in previous
literature. To validate the FA algorithm’s performance,
we specifically investigate its sensitivity to the initialization
parameter of population size. A fixed number of 500,000
function evaluations was used to test the FA method in the
optimization process. Experiment 3 involves hybridization
approaches that combine the FA algorithm with other
optimization techniques, including FADE, FAPSO, FAABC,
FATLBO, and FAIWO. The results obtained from these
hybrid approaches are presented, along with the average
CPU time consumed by each algorithm and their respective
percentage deviations.

A. EXPERIMENTAL CONFIGURATION
All the algorithms were implemented in MATLAB, utilizing
a computational PC equipped with an Intel(R) Core(TM) i7-
7700 CPU operating at 3.60GHz and 16 GB of RAM. This
configuration provided the necessary computational power
and memory resources for executing the algorithms and
conducting the experiments effectively.

To evaluate the performance of the algorithms, each
problem instance was tested with fifteen (15) different
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Algorithm 4 Pseudocode for the FA algorithms with local
search

Input: Initial schedule X = (x1, x2 . . . xn)t at t = 0;
xcgbest = ∅; γ = 1;α = 0.20;β0 = 0.20; λ = 0.25;
maxFE
Output: Good quality schedule xcbest
1: Define fitness function f (X) based on the objective
function Cmax
2: Generate initial population of fireflies xi(i = 1, 2, . . . .n)
3: Light intensity Ii of firefly xi is determined using f (xi)
4: while(t < maxFE) do
5: for i = 1: n for all n firefly
6: for j = 1: i +1 for n all fireflies
7: α = AlphaNew(); // determine a new value of α
8: Stage 1: Solve (xi) // find xi using
equation (11)
9: Stage 2: Solve (xj) // find xj using equa-
tions (9) and (11)
10: Find Cmax(xi) that are associated with xi and
xj
11: EvalFA (xi, f (xi)) // evaluate x based on f (xi)
associated with xi and xj
12: If

(
f (xi) < f (xj)

)
Then

13: Move xi towards xj in d-dimensions
14: end if
15: X

′

= Mutate(X) //using algorithm 3
16: Calculate new fitness values for
all fireflies
17: Update firefly light intensity Ii
18: end for
19: end for
20: RankFA

(
xt , f (X

′

)
)
; // rank the fireflies according to

their function values
21: xcgbest = FindCurrentgBestFA

(
xt , f (X

′

)
)
; // deter-

mine the current global best solution
22: xt+1 = MoveFA (xt) ; // Vary attractiveness with
distance r via exp(−γ r)
23: end while

scenarios. In other words, each job, in all problems, was
evaluated over 15 different problem instances, and the aver-
age value of Cmax is calculated afterward. The termination
condition for the execution of the algorithms was set at a
total of 500,000 function evaluations for all the problem
instances. This allowed recording the best fitness function
value obtained, which in this case is the average Cmax .
To ensure fair comparison and consistency, the number of
function evaluations was chosen as the termination criterion
instead of a specific number of iterations. The parameter
settings used for the algorithms were kept the same as
in the original algorithm implementations from the source
references. Additionally, the number of function evaluations
and swarm population size were kept constant for all the
algorithms.

The parameter settings used for each algorithm implemen-
tation were as follows: swarm population size (ψ) = 40,
γ = 1, β0 = 2, maximum number of function evaluations
(maxFE)= 500,000, α= 0.2, and uniformmutation rate (um)
= 2. These parameter values were selected based on previous
experimental trials and were consistent with similar studies
discussed in previous works [7], [59].

B. BENCHMARK INSTANCES
The experimental dataset comprises a total of 1620 test
instances, involving different combinations of machines
and jobs. Specifically, the dataset includes 2, 4, 6, 8,
10, and 12 machines, with corresponding job numbers
of 20, 40, 60, 80, 100, and 120. These instances were
used to evaluate the performance of the algorithms under
investigation. The benchmark instance is available at
http://www.schedulingResearch.com.

C. EVALUATION METRICS
To evaluate the quality of solutions obtained by the represen-
tative algorithms, the average percentage deviation (ρ) from
the lower bound was used. The average percentage deviation
of the makespan Cmax for each algorithm was recorded. The
calculation of the average percentage deviation (APD) is
performed using the following equation (17):

ρ =
Cmax(optimizer)− LB

LB
× 100% (17)

The average percentage deviation (δ) of other competing
algorithms from the FA algorithm was calculated using FA as
the control algorithm. This calculation compares the average
Cmax obtained by the competing algorithms with the average
Cmax obtained by the FA algorithm. The average percentage
deviation is calculated as shown in equation (18):

δ =
Cmax(optimizer)− Cmax(FA)

Cmax(FA)
× 100% (18)

The lower bound (LB) for each test instance was determined
using the methods presented in equations (20) through (21),
as follows:
• The first lower bound, denoted by LB1, is calculated
as the ratio between the sum of the minimum adjusted
processing time’s matrix and the number of machines.
Mathematically, it can be expressed as shown in
equation (19):

LB1 =

∑n
j=1 min

k=1,2,...,m
i=1,2,...,n

[
APi,j,k

]
m

(19)

• The second lower bound, denoted by LB2, is calculated
as the maximum value in the adjusted processing times
matrix divided by the minimum value in the adjusted
processing times matrix for each job. Mathematically,
it can be expressed as shown in equation (20):

LB2 = max
j=1,2,..n

 min
k=1,2,...,m
i=1,2,...,n

[
APi,j,k

]
(20)

VOLUME 12, 2024 3403



A. E.-S. Ezugwu: Metaheuristic Optimization for Sustainable Unrelated PMS

• The final lower bound is determined as the maximum
value between the first lower bound (LB1) and the sec-
ond lower bound (LB2). It is calculated and expressed
as shown in equation (21):

LB = max (LB1,LB2) (21)

D. EXPERIMENT 1: EVALUATION OF REPRESENTATIVE
METAHEURISTIC ALGORITHMS
To assess the performance of the representative optimization
algorithms, a comprehensive set of test problem instanceswas
considered. The instances consisted of different combinations
of machines and jobs, ranging from 2 to 12 machines and
20 to 120 jobs. Similar implementation approaches were
followed as in previous studies [5], [6]. Each algorithm
was applied to solve 15 instances for each combination
of machines and jobs. Table 1 presents the average Cmax
results and standard deviations obtained by the algorithms.
The results demonstrate that the FA algorithm outperformed
all other representative optimization algorithms in terms
of average makespan (Cmax) and standard deviation (Std)
values. The performance of the FA algorithm remained
superior across different problem instances, particularly for
a large number of jobs (80, 100, and 120) and 8, 10, and
12 machine combinations.

It is worth noting that although the FA algorithm showed
superior performance in terms of average Cmax , its Std
values were comparatively higher than those of the ABC,
BA, DE, and TLBO algorithms. However, the FA algorithm
consistentlymaintained its performance superiority evenwith
a larger combination of jobs and machines, as evident from
the numerical computations in Table 1. In a more general
sense, considering the primary objective function of achiev-
ing minimum Cmax , the FA algorithm demonstrated a high
capability in finding the optimal solutions among all tested
combinations of machines and jobs. However, the IWO,
BA, and TLBO algorithms also yielded better Cmax results
compared to the other algorithms, namely PSO, ACO, GA,
ABC, and DE. The ACO algorithm exhibited the lowest per-
formance, obtaining the highest Cmax values and Std values.
To align our experiments to optimize the assignment

of jobs to machines and reduce the overall makespan of
the scheduling problem, which can contribute to the goal
of reducing energy consumption and aligning with the
SDGs as earlier highlighted in this paper, we conducted
further investigations to evaluate the performance of the FA
algorithm’s capability to optimally minimize the scheduling
makespan by leveraging the strengths of other popular
optimization methods. Moreover, considering that the FA
algorithm performed well in the previous experiments,
we decided to explore its potential in hybridizing with other
metaheuristics discussed in this paper.

In this section of the paper, we focused on two main
aspects. Firstly, we investigated the population size that
would be most suitable for the FA algorithm and its hybrid
variants to effectively handle the scheduling problem under

consideration. The goal was to determine an optimal popu-
lation size that balances solution quality and computational
efficiency. After identifying the appropriate population size,
we proceeded to explore the hybrid implementations of the
FA algorithm with other metaheuristics on the test instances
of the UPMSP. The objective was to assess the effectiveness
of combining the strengths of different algorithms in
improving the overall performance and solution quality.

By conducting these critical experiments, we aimed
to provide insights into the potential enhancements and
synergies that can be achieved through hybridization. The
findings from these experiments can contribute to the
development of more powerful and efficient optimization
approaches for solving the scheduling problem at hand. In the
subsequent sections, we will present the experimental setup,
discuss the results obtained, and analyze the performance
of the hybrid approaches in comparison to the standalone
FA algorithm. This comprehensive evaluation will shed light
on the capabilities and potential of hybrid metaheuristics in
tackling the UPMSP and contribute to advancing the state-of-
the-art in scheduling optimization.

E. EXPERIMENT 2: EVALUATION OF THE INFLUENCE OF
POPULATION SIZE ON FA
The influence of population size on the FA optimization
algorithm was evaluated to understand its impact on the
algorithm’s performance. In this evaluation, different pop-
ulation sizes were tested to observe their effects on the
convergence behavior and the quality of solutions obtained.
The population size is an important parameter in population-
basedmetaheuristic algorithms like the FA [93]. It determines
the diversity and exploration-exploitation trade-off within the
population. A larger population size generally allows for
more exploration of the search space, increasing the chances
of finding better solutions. However, it may also lead to
slower convergence and higher computational costs.

To evaluate the influence of population size, a range
of population sizes was considered, such as 20, 30, 40,
and 50. The FA algorithm was applied to solve a set of
benchmark problem instances using each population size,
and the results were compared and analyzed. The evaluation
focused on two main aspects: the convergence behavior
and the quality of solutions. The convergence behavior
was assessed by monitoring the progress of the algorithm’s
objective function (Cmax) over several function evaluations.
The rate of convergence, stability, and the number of function
evaluations needed to reach a certain level of convergence
were considered.

The quality of solutions was evaluated by comparing the
average Cmax values obtained by the algorithm with different
population sizes. Additionally, statistical analysis techniques,
such as hypothesis testing or confidence intervals, could be
employed to determine if the differences in performance
were statistically significant. However, this type of analysis
was beyond the scope of the current paper. Based on the
evaluation, it was observed that the population size had a
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TABLE 1. Average Cmax and Std values obtained by each algorithm for all tested problem instances [7].

notable influence on the FA algorithm’s performance. Larger
population sizes generally led to better exploration of the
search space, resulting in improved solutions. However, the
convergence rate was slower with larger populations, as more
individuals needed to be evaluated and updated in each
iteration.

On the other hand, smaller population sizes showed faster
convergence but had a higher risk of getting trapped in
local optima. They may also exhibit reduced exploration
capabilities, limiting their ability to discover globally optimal
solutions. Therefore, selecting an appropriate population size
for the FA algorithm is a trade-off between exploration and
exploitation. It depends on the complexity of the problem, the
computational resources available, and the desired balance
between solution quality and convergence speed.

In summary, the evaluation of the influence of population
size on the FA optimization algorithm highlighted the

importance of selecting an appropriate population size that
balances exploration and exploitation. The results provided
insights into the trade-offs involved and can guide practi-
tioners in determining the optimal population size for their
specific problem instances. More so, the summary of the
average results for the influence of varying population sizes
on a different number of machines and job scales is presented
in Table 2. For the purpose of reproducibility of findings,
additional experiments and their corresponding outcomes are
elaborated upon in greater detail in [7].

Figure 4 illustrates the average CPU times consumed by
the FA algorithm using different population sizes of 20, 30,
and 40 for the complete set of test problems. The purpose
of analyzing the computational times is to understand the
efficiency and runtime performance of the FA algorithm with
varying population sizes. Based on the results, it can be
observed that the FA algorithm with a population size of 40
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TABLE 2. Influence of population size on the FA algorithm.

(FA40) is the fastest among the three population sizes tested.
It achieved the shortest average execution time compared to
FA with population sizes of 20 (FA20) and 30 (FA30). The

TABLE 2. (Continued.) Influence of population size on the FA algorithm.

FA algorithm with a population size of 30 came second with
the second least execution time.
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TABLE 2. (Continued.) Influence of population size on the FA algorithm.

However, it is worth noting that FA40 recorded the highest
CPU time on smaller problem instances, specifically when

TABLE 2. (Continued.) Influence of population size on the FA algorithm.

there were 20 jobs for 4, 6, 8, and 10 machines. This suggests
that the larger population size requires more computational
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TABLE 2. (Continued.) Influence of population size on the FA algorithm.

resources andmay result in longer execution times for smaller
problem instances.

The findings from Figure 4 provide insights into the
trade-off between population size and computational effi-
ciency. While a larger population size may lead to better
solution quality and faster convergence on larger problem
instances, it may also incur higher computational costs.
On the other hand, a smaller population size may be more
efficient for smaller problem instances but might sacrifice
solution quality. These results can guide practitioners and
researchers in selecting an appropriate population size for
the FA algorithm based on the problem size and available
computational resources. Moreover, the findings highlight
the importance of considering the balance between solution
quality and computational efficiency when configuring the
population size for metaheuristic algorithms.

FIGURE 4. Average computational time for FA with 20, 30, and
40 population sizes on all test instances.

F. EXPERIMENT 3: IMPLEMENTATION AND EVALUATION
OF HYBRID FA FOR UPMSP
For the current set of experiments, we retained the same
experimental configuration as in the previous experiments,
with some adjustments to the population size and number of
function evaluations. Specifically, we increased the popula-
tion size to 200 and reduced themaximumnumber of function

evaluations to 5000. These adjustments were necessary due
to the significant increase in population size compared to the
previous experiment, where we used a population size of 40.
By reducing the number of function evaluations, we aimed to
ensure a reasonable computational time while still allowing
sufficient exploration and exploitation of the search space.

Apart from the changes mentioned above, all other
parameter configurations remained the same as previously
presented in Section V-A. This consistency in parameter
settings ensured a fair comparison between the hybridized
FA algorithm and the standalone FA algorithm, as well as
consistency with the previous experiments. By maintaining
the same experimental setup, we could effectively evaluate
the impact of hybridization on the performance and solution
quality of the FA algorithm for the UPMSP.

In the following sections, we will describe the results
of these experiments and analyze the performance of the
hybridized FA algorithm with the adjusted population size.
The objective is to assess whether the hybrid approaches can
further enhance the performance of the FA algorithm in terms
of solution quality, computational efficiency, and its ability to
optimize the assignment of jobs tomachines in the scheduling
problem.

Table 3 presents the best solutions obtained by each of the
proposed metaheuristic algorithms. The table is structured
with the first column representing the number of machines,
followed by the second column indicating the number of jobs
(n), and subsequent columns representing the results of each
algorithm. Each algorithm is executed on all instances with
the given number of machines and jobs, and the objective is
to identify the algorithm that achieves the best optimal results
in terms of minimizing the makespan.

In table 3, the minimum value represents the best
solution found, while the maximum value represents the
worst solution. The average of the makespan for n jobs
on m machines is also provided, along with the standard
deviation. It is important to note that the default parameter
configuration of each algorithm is retained as described in
the original literature, ensuring consistency and fairness in
the comparative analysis.

Analyzing the results in Table 4, we observe that the
FADE algorithm performs worse compared to the standard
FA algorithm, indicating that the hybridization did not
significantly improve its performance. Following FADE,
the FAPSO algorithm also shows relatively weaker results
compared to the other hybrid algorithms. On the other
hand, FAIWO, FAABC, and FATLBO demonstrate highly
competitive results compared to the standard FA algorithm.
Among these hybrid algorithms, FAIWO emerges as the best-
performing algorithm for all the test instances.

It is worth mentioning that as the number of jobs increases,
the performance of the standard FA algorithm seems
to decline. However, the hybrid algorithms, particularly
FAIWO, maintain their competitiveness even with a larger
number of jobs. Among the hybrid algorithms, FAPSO
appears to be the least performing, indicating that the
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TABLE 3. Present the Best, Worst, Avg., and Std values obtained by each algorithm for all tested problem instances.

hybridization of FA with the PSO algorithm may not have
been as effective in improving its performance compared to
the other hybrid approaches.

These findings demonstrate the impact of hybridization on
the performance of the FA algorithm, with FAIWO standing
out as the most promising hybrid variant. The results suggest
that incorporating the IWO algorithm into the FA algorithm
yields improved solutions for the scheduling problem, while
other hybrid approaches may not be as effective.

Table 4 shows the results of the average percentage
deviation ρ of all algorithms from the lower bound, while
Table 3 provides the average percentage deviation δ of
other competing algorithms from the FA. In this instance,
the FA and the computed lower bound were used as the
control algorithms. The obtained results were calculated
using equation 21. The analysis of the results presented
in Table 4 reveals that FAPSO has exhibited the worst
deviation results in terms of both ρ and δ values. On the
other hand, FAIWO has demonstrated its superiority by
outperforming other algorithms in terms of both ρ and δ
values. Following FAIWO, FAABC, and FATLBO have also
shown competitive performance, ranking second and third,
respectively.

It is worth noting that FAIWO has outperformed the
standard FA algorithm in terms of the computed ρ results,
although it fell behind in comparison to the computed lower
bound solution. This indicates that FAIWO has achieved
better results compared to FA, even though it may not have
reached the theoretical lower bound.

From this experiment, we can deduce that only FAABC,
FATLBO, and FAIWO can be considered the best-performing
hybrid methods when compared to FA. These algorithms
have produced superior results and demonstrated effec-
tive performance. On the other hand, FAPSO and FADE
have been identified as the worst and least efficient
among the other hybrid optimization methods considered in
this study.

With the algorithmic convergence analysis, we employed
the option of evaluating each of the algorithms based on
the number of iterations consumed instead of the previously
utilized number of function evaluations. Ultimately, the
choice between iteration and function evaluation depends on
the specific problem, the nature of the data, and the desired
outcomes. Often, a combination of both approaches can be
used to leverage their respective advantages and create more
effective and efficient solutions. Therefore, we had based our
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TABLE 4. Average for δ and ρ values of representative algorithms for all test instances.

convergence analysis on some of the advantages of using
iteration such as:

• Flexibility: Iteration allows for greater flexibility in
solving problems compared to relying solely on function
evaluations. It enables you to incorporate complex
decision-making, conditionals, and dynamic behavior
within the loop structure. Furthermore, this approach
aligns perfectly with the issue outlined in the paper.

• Step-by-step processing: Iteration allows you to process
data or perform operations incrementally, step by step.
This can be useful when dealing with large datasets or
performing computationally intensive tasks, as you can
process small portions of the data at a time, conserving
memory and reducing the overall computational load.

• Problem-specific optimizations: In certain cases, the
iterative solution can be optimized to take advantage of
specific characteristics of the problem. By tailoring the
iteration to exploit patterns or properties of the data, you

can often achieve better performance or more efficient
solutions compared to a generic function evaluation
approach.

To provide further evidence of the superior performance
of the individual hybrid algorithms, convergence perfor-
mance graphs were generated for all the tested algorithms.
These algorithms, which are highly competitive optimization
methods, were examined separately throughout the experi-
mentation process. The graphs, depicted in Figures 5 to 12,
showcase the convergence of each algorithm based on their
bestCmax (smallest) values. The experiments were conducted
with varying numbers of machines and jobs and a fixed
number of 500 iterations. The results demonstrate that the
FAIWO, FAABC, and FATLBO algorithms exhibit the lowest
makespan and most favorable convergence curves among all
the algorithms tested under the same experimental settings
and conditions. This confirms their superiority over the other
algorithms. Furthermore, upon analyzing the convergence
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FIGURE 5. The convergence graph of the test algorithms on 2 machines
and 20 jobs.

FIGURE 6. The convergence graph of the test algorithms on 12 machines
and 20 jobs.

curves in more detail, several additional observations can be
made, such as:
• The convergence curves of the FAIWO, FAABC, and
FATLBO hybrid algorithms vividly depict the impact of
the mutation-based local search improvement scheme.
This scheme plays a significant role in augmenting the
diversity features of the algorithms during the solution
search phase. As a result, it contributes to the algorithms’
ability to converge towards optimal or near-optimal
solutions more effectively. The influence of this scheme
is evident in the convergence patterns exhibited by these
hybrid algorithms.

• Based on the convergence curves obtained, it is evident
that the FAIWO algorithm surpasses other competitive
hybrid approaches, including the FAABC, FAPSO, BA,
and FATLBO algorithms, when it comes to solving large

FIGURE 7. The convergence graph of the test algorithms on 2 machines
and 60 jobs.

FIGURE 8. The convergence graph of the test algorithms on 6 machines
and 60 jobs.

instances of the test problem. The superior performance
of the FAIWO algorithm is clearly demonstrated by its
convergence behavior, indicating its effectiveness and
efficiency in finding optimal or near-optimal solutions
for such challenging instances.

Furthermore, based on the experiment results carried
out to analyze the average execution times consumed by
each hybrid method, the FAPSO stands out as the most
efficient algorithm, displaying a quick convergence towards
its optimal point within the search space (See Figure 13).
Following closely is the FADE algorithm, which also exhibits
promising performance results. However, both FAPSO and
FADE fall short in terms of achieving the best solution
regarding the targeted average minimum Cmax values.
Consequently, our focus shifts to analyzing three remaining
algorithms: FAABC, FATLBO, and FAIWO. Among them,
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FIGURE 9. The convergence graph of the test algorithms on 12 machines
and 60 jobs.

FIGURE 10. The convergence graph of the test algorithms on 2 machines
and 120 jobs.

FA shows the weakest performance. Moreover, part of the
primary objective of the paper is to propose a novel method
that enhances the convergence speed of the FA algorithm.

Upon analysis, FAABC, FATLBO, and FAIWO consis-
tently demonstrate more promising results in both achieving
the best solution and exhibiting efficiency within the search
space. These algorithms show potential for improving the
overall performance and effectiveness of the FA optimization
process.

G. CONTRIBUTION OF THIS STUDY TO SUSTAINABLE
DEVELOPMENT GOALS
The scheduling experiments and results discussed in this
paper focus on optimizing the assignment of jobs to machines
in industries. The findings highlight the significant impor-
tance of this optimization process in reducing the overall
makespan of scheduling tasks, which, in turn, contributes to

FIGURE 11. The convergence graph of the test algorithms on 6 machines
and 120 jobs.

FIGURE 12. The convergence graph of the test algorithms on 12 machines
and 120 jobs.

the achievement of Sustainable SDGs. The following are key
reasons illustrating the importance of this optimization:
• Enhanced Resource Utilization: Optimizing job assign-
ments ensures efficient utilization of resources within
industries. By effectively allocating tasks to machines,
idle time is minimized, leading to increased productivity
and reduced resource wastage. This optimization aligns
with SDG 12 (Responsible Consumption and Produc-
tion) by promoting sustainable and efficient resource
management practices.

• Shortened Production Time: Optimizing the assignment
of jobs to machines reduces the overall makespan,
resulting in shorter production cycles. This effi-
ciency improvement enhances operational effectiveness,
enabling industries to meet customer demands more
rapidly and respond to market dynamics swiftly. Con-
sequently, it contributes to SDG 8 (Decent Work
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FIGURE 13. Average computational time for FA, FAPSO, FADE, FAABC, FATLBO, and FAIWO on all test instances.

and Economic Growth) by fostering productivity and
supporting sustainable economic development.

• Improved Customer Satisfaction: By minimizing the
makespan through optimized job assignments, indus-
tries can deliver products or services to customers
more promptly. Reduced lead times enhance customer
satisfaction, trust, and loyalty, reinforcing the industry’s
market position. This alignment with SDG 9 (Industry,
Innovation, and Infrastructure) promotes resilient infras-
tructure and sustainable industrial practices.

• Environmental Footprint Reduction: Efficient job
assignment optimization minimizes energy consump-
tion and associated emissions, leading to a reduced
environmental impact. Balancing workloads across
machines helps avoid energy wastage and prevents
overburdening specific resources. Consequently, this
optimization supports SDG 13 (Climate Action) by
reducing carbon emissions and fostering environmen-
tally responsible operations.

• Resource Conservation and Waste Minimization: Opti-
mal job assignments minimize downtime, machine
idling, and unnecessary changeovers, leading to
decreased waste generation. By reducing material
scrap, energy waste, and water consumption, industries
contribute to resource conservation and sustainable
waste management practices. This aligns with SDG
12 (Responsible Consumption and Production) by
promoting sustainable production methods and the
principles of the circular economy.

• Sustainable Production Planning: Optimized job assign-
ments facilitate effective production planning and

capacity utilization. Aligning production schedules with
demand forecasts helps prevent overproduction and
excess inventory accumulation. Consequently, this opti-
mization supports SDG 12 (Responsible Consumption
and Production) by promoting sustainable production
practices and minimizing waste across the supply chain.

In summary, the optimization of job assignments to machines
in industries has a substantial impact on reducing the overall
makespan of scheduling tasks. Through enhanced resource
utilization, shortened production time, improved customer
satisfaction, reduced environmental footprint, resource con-
servation, and sustainable production planning, this opti-
mization contributes to the achievement of various SDGs.
It fosters sustainable development by promoting responsible
consumption, economic growth, climate action, and efficient
production practices.

H. LIMITATIONS OF THE STUDY
The study’s constraints revolve around its heavy reliance
on benchmark datasets, which can significantly influence
the study’s outcomes and inferences. If these datasets fail
to faithfully mirror real-world scenarios, the findings from
the present study may lack practical relevance. Additionally,
another potential limitation lies in the study’s narrow scope of
proof-of-concept. The preliminary demonstration offered by
the proof-of-concept study may leave uncertainties regarding
the performance of the proposed methods when applied
to more extensive and intricate scenarios. Furthermore,
although the study emphasizes the use of metaheuris-
tic approaches for addressing sustainability challenges,
the incorporation of sustainability considerations into the
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scheduling problem-solving process remains limited in its
practical application.

VI. CONCLUSION AND FUTURE DIRECTION
This paper analyzes and compares several metaheuristic
algorithms for scheduling, highlighting their strengths and
limitations in achieving SDGs. These algorithms optimize
job-machine assignments and reduce scheduling time, pro-
moting sustainable and responsible resource management.
They enhance resource utilization, minimize idle time, and
support SDGs related to responsible consumption and pro-
duction. Moreover, the improved scheduling time enhances
operational efficiency, customer satisfaction, and sustainable
economic growth, aligning with SDGs related to decent work
and economic growth.

Additionally, the study reveals that metaheuristic optimiza-
tion algorithms have the potential to minimize makespan,
leading to reduced energy consumption and emissions,
supporting SDGs related to climate action. These algorithms
also optimize resource planning and management, enabling
effective resource allocation and usage, aligning with SDGs
related to responsible resource management and efficient
infrastructure.

Future research can explore integrating machine learning
and data-driven approaches into metaheuristic algorithms,
enabling adaptation and learning from problem instances
and historical data. Incorporating real-world constraints
like energy consumption and carbon footprint would align
scheduling with the objective of sustainable development.
Furthermore, studying dynamic and stochastic scheduling
scenarios would provide insights into algorithm performance
in real-time environments.
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