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ABSTRACT The Partial Element Equivalent Circuit (PEEC) method has gained significant recognition as
an electromagnetic computational technique known for its ability to represent electromagnetic phenomena
using equivalent circuits. This feature makes it particularly valuable for addressing mixed EM-circuit
problems. However, PEEC models often exhibit large dimensions, necessitating modeling techniques that
can effectively reduce their size while preserving accuracy. Model order reduction (MOR) serves as a
highly effective approach to accomplish this objective. This paper presents two MOR techniques based
on proper orthogonal decomposition (POD) for PEEC models described by neutral delayed differential
equations (NDDEs). The unique characteristics of NDDEs demand specialized MOR approaches, as their
formulation is inherently more complex compared to standard quasi-static PEEC models described by non-
delayed differential equations. In addition to a traditional one-shot singular value decomposition (SVD), this
paper also presents an incrementally computed SVD to evaluate the orthogonal matrix needed to generate the
reduced order matrices. The accuracy and efficiency of the proposed PEEC-MORmethods are demonstrated
through multiple relevant numerical results in both the frequency-domain and time-domain.

INDEX TERMS Partial element equivalent circuit (PEEC)method,model order reduction, proper orthogonal
decomposition, frequency-domain analysis, time-domain analysis.

I. INTRODUCTION
Computational electromagnetic (EM) methods [1], [2], [3]
are used to analyze the electromagnetic behavior of complex
EM systems. The Partial Element Equivalent Circuit (PEEC)
method is an EM method commonly used in electromagnetic
compatibility (EMC) analysis, interconnect, and antenna
design. In such a method, the dielectric and conductive areas
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of the system are discretized, and a set of elements known
as partial elements are used to represent the mesh cells. The
partial elements are linked together to build an equivalent
circuit that represents the whole EM system behavior.

The PEEC models that are quasi-static can be represented
using a series of Ordinary Differential Equations (ODEs) [4].
Nonetheless, for complex electrically long structures where
propagation delays play a significant role, the delayed PEEC
models have proven to be more suitable for accurately
describing their EM behavior. These delayed PEEC models
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are formulated using a series of Neutral Delayed Differential
Equations (NDDEs) [4].

PEEC models often exhibit large dimensions, e.g., a large
number of state variables and corresponding state-space
matrices, which leads to the need for modeling techniques
that can effectively reduce their size while preserving
accuracy. Model order reduction (MOR) techniques [5]
offer a means to decrease the complexity of dynamical
models while maintaining an accurate representation of their
input-output behavior, specifically their transfer function.
In EM analysis, MOR can be employed with PEEC models
to significantly reduce their computational cost, enabling
more efficient resolution of complex EM problems while
still achieving precise results for the analyzed systems.
Although MOR techniques for systems described by (non-
delayed) differential equations [5], [6], [7], [8], [9] are
well-established, the focus on MOR techniques for delayed
differential equations and delayed PEEC models is a
relatively recent research area [10], [11], [12], [13], [14].
In [11], a moment-matching MOR technique was developed
specifically for delayed PEEC models. This method involves
calculating the system’s moments using additional state
variables while expanding the exponential factors e−sτk via
a Taylor series. In [12], a multiorder Arnoldi algorithm was
introduced to reduce delayed PEEC models using moment-
matching MOR. Notably, the multiorder Arnoldi algorithm
in [12] allows for the implicit calculation of the moments
of the original system without the need for introducing extra
state variables. Both [11] and [12] ensure that the reduced
PEEC models remain in the form of NDDEs and therefore
retain the structure of the original delayed PEEC models.

In this paper, we present two MOR techniques for delayed
PEEC models where a one-shot and an incremental SVD
approach are used in a proper orthogonal decomposition
(POD) framework. POD has been commonly used in various
problems from fluid dynamics [15] to inverse problems [16].
POD is a general technique to identify a low-dimensional
representation of the key system behavior, which proves
useful in a variety of ways. Themost common use is to project
the original system equations onto a reduced-order subspace
defined by the POD basis vectors, which generates a POD-
based reduced-order model. Time-domain or frequency-
domain simulations of the original system can be the source
of information needed to extract the POD basis vectors [17],
[18], [19], [20], [21], [22]. No moment matching is required.
The only information needed is to sample the behavior
of the original system (this sampled information is called
snapshots). The incremental SVD instead of a one-shot SVD
allows flexibility at multiple levels, from avoiding the need
to have all snapshots together as in a one-shot SVD to being
able to incrementally add snapshots if needed [23], [24],
[25]. These POD-based MOR approaches for delayed PEEC
models preserve the neutral delayed differential structure in
the reduced order models. These MOR methods can also
have applications in other domains where large-scale delayed
differential equations are present. Frequency-domain and

time-domain simulations can be performed by the generated
reduced-order models. A two-step time-domain integration
method was used to obtain time-domain results and it is
described in this paper. A brief outline limited to a one-shot
SVD POD technique for frequency-domain simulations of
delayed PEECmodels was introduced in [26]. Themain novel
contributions of this paper with respect to [26] are

• the development of the incremental SVD-based POD
MOR algorithm for delayed PEEC models;

• the development of a time-domain solver for delayed
PEEC models and an extensive comparison among
multiple models (original and reduced order models
based on multiple MOR techniques) in the time-domain
in addition to the frequency-domain;

• the implementation of two numerical examples with a
higher number of delays in the delayed PEEC models
with respect to the only example in [26].

Multiple pertinent numerical results validate the MOR
techniques proposed in this paper for both frequency-domain
and time-domain analyses. A detailed comparison among
original PEEC models, POD MOR techniques based on a
one-shot and an incremental SVD, and a multipoint moment
matching MOR technique is provided.

II. PROBLEM BACKGROUND AND PROPOSED MOR
APPROACH
The PEEC method utilizes integral equations (IE) to analyze
electromagnetic (EM) phenomena by representing them in
the form of a circuit. The PEEC variant we present here relies
on the widely recognized Volume Equivalence Principle [27],
enabling the creation of highly precise models for the
crucial EM phenomena found in contemporary electric and
electronic devices.

The fundamental building blocks of a PEEC model
consist of partial inductances, denoted as Lpmn , and potential
coefficients, represented as Pℓ,m.

In the context of a system consisting of two volumes,
denoted as Vn and Vm, through which electric current
densities are assumed to flow, the magnetic interaction
between them is captured by the mutual partial inductance.
This mutual partial inductance can be expressed in the
Laplace domain as [4]:

Lpm,n (s) =
µ0

4π
1

SmSn

∫
Vm

∫
Vn
ûm · ûn

e−sτ

|rm − rn|
dVndVm (1)

where Sn and Sm represent the sections traversed by the
corresponding currents. The local unit vectors normal to these
sections are denoted as ûn and ûm respectively. Additionally,
rn and rm refer to the position vectors that identify internal
points within the two volumes. The term τ =

|rm−rn|
c0

is the
free-space time delay between the points rn, rm.

Likewise, when contemplating a system comprising two
surfaces labeled as Sℓ and Sm, where superficial electric
charge densities are present, the coefficient of potential
governing their electric interaction can be articulated within
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the Laplace domain as follows:

Pℓ,m (s) =
1

4πε0

1
SℓSm

∫
Sℓ

∫
Sm

e−sτ

|rℓ − rm|
dSmdSℓ (2)

The integrals in equations (1) and (2) employ the free space
Green’s function, which incorporates the time delay between
each pair of distant points. This capability is facilitated by the
Volume Equivalence Principle, as outlined in [27].
The computation of equations (1) and (2) can be sig-

nificantly simplified by making certain approximations.
An accurate approximation, known as center to center (CC),
involves approximating the time delay τ with the time
required by the electromagnetic field to traverse the distance
between the spatial supports of two basis functions [4].
This approximation is better suited for simulating electrically
large structures. With the center-to-center approximation, the
partial inductance can be expressed as:

Lpm,n (s) =
µ0

4π
e−sτL

SmSn

∫
Vm

∫
Vn
ûm · ûn

1
|rm − rn|

dVndVm (3)

and the coefficient of potential:

Pℓ,m (s) =
1

4πε0

e−sτP

SℓSm

∫
Sℓ

∫
Sm

1
|rℓ − rm|

dSℓdSm (4)

where τL is computed as the propagation delays between the
centers of the supporting domains Vm and Vn and τP between
the centers of Sℓ and Sm.

III. FULL-WAVE PEEC MODELS
By employing the center-to-center approximation to compute
the partial elements, the MNA form of PEEC models can be
derived in a matrix form and it reads

C (t)
dx(t)
dt

= −G (t) x(t) + Bu(t) (5a)

y(t) = LT x(t) (5b)

where the vector of the unknowns x(t) ∈ ℜ
nu×1 is given as

x(t) =
[
i(t) φsr (t) φi(t) vd (t) qs(t)

]T
, (6)

where i(t) are the branch currents, φsr (t) are the scalar
potentials for surface nodes, φi(t) are the scalar potentials for
internal nodes, vd (t) are the excess capacitance voltages for
dielectric branches, and qs(t) represent the surface charges.
Furthermore, the state space matrices C(t), G(t) and B are:

C(t) =



Lp(t)∗
nb×nb

0
nb×nns

0
nb×nni

0
nb×nbd

0
nb×np

0
nns×nb

0
nns×nns

0
nns×nni

0
nns×nbd

MT
nns×np

0
nni×nb

0
nni×nns

0
nni×nni

0
nni×nbd

0
nni×np

0
nbd×nb

0
nbd×nns

0
nbd×nni

Cd
nbd×nbd

0
nbd×np

0
np×nb

0
np×nns

0
np×nni

0
np×nbd

0
np×np


, (7)

G(t) =



R
nb×nb

As
nb×nns

Ai
nb×nni

0
nb×nbd

0
nb×np

−AT
s

nns×nb
0

nns×nns
0

nns×nni
0

nns×nbd
0

nns×np

−AT
i

nni×nb
0

nni×nns
0

nni×nni
0

nni×nbd
0

nni×np

−0T
nbd×nb

0
nbd×nns

0
nbd×nni

0
nbd×nbd

0
nbd×np

0
np×nb

−M
np×nns

0
np×nni

0
np×nbd

P(t)∗
np×np


, (8)

B =



I
nb×nb

0
nb×nns

0
nns×nb

I
nns×nns

0
nni×nb

0
nni×nns

0
nbd×nb

0
nbd×nns

0
np×nb

0
np×nns


, (9)

where ∗ represents the convolution operator, and nb, nns,
nni, nbd and np represent the cardinality of branches,
surface nodes, internal nodes, dielectric cells and surface
cells, respectively. Moreover, Cd is the excess capacitance
matrix [28], R is the branches resistance matrix, As is the
incidence matrix for the surface nodes, Ai is the incidence
matrix for the internal nodes, 0 is the dielectric region
selection matrix, and M is the surface-to-node reduction
matrix.
The time-dependent partial inductance matrix Lp(t) and

the coefficient of potential matrix P(t) are derived from (3)
and (4) and read

Lp(t) = Lp,0δ(t) +

nτL∑
k=1

Lp,kδ(t − τL,k ), (10a)

P(t) = P0δ(t) +

nτP∑
q=1

Pkδ(t − τP,q), (10b)

where the matrices Lp,0 and P0 account for the delayless
magnetic and electric couplings while Lp,k , k = 1, · · · , nτL ,
and Pk , k = 1, · · · , nτP take the propagation delay into
account;nτL is the number of significant delays between
elementary volumes while nτP is the number of significant
delays between elementary surfaces; τL,i = Rcc,i/c0, i =

1, · · · , nτL and τP,q = Rcc,q/c0, q = 1, · · · , nτP denote
the delays between the centers, identified by Rcc,i and Rcc,q
respectively, of the spatial supports of the basis functions
of currents and charges; c0 is the speed of the light in the
background medium. Finally, the source vector u(t) is given
as

u =

[
vs(t)
is(t)

]
, (11)

where vs(t) and is(t) are the voltage and current sources,
which are applied to branches and nodes, respectively.

Equations (5) form a system of delayed differential
equations of the neutral type (NDDEs), where the delays
exist not only in the state vector x(t) but also in its
time derivative dx(t)/dt . Each delayed component in the
matrices C (τ ) and G (τ ) acts as a delay operator for the
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corresponding component in the vector x(t). Therefore, (5)
can be reformulated in the Laplace domain as:

sC(s)X(s) = −G(s)X(s) + BU(s) (12a)

Y(s) = BTX(s) (12b)

C(s) = C0 +

nτLp∑
k=1

Cke−sτL,k (12c)

G(s) = G0 +

nτP∑
k=1

Gke−sτP,k . (12d)

IV. PROPER ORTHOGONAL DECOMPOSITION MOR
TECHNIQUE
A reduced-order model can be written as

sCr (s)Xr (s) = −Gr (s)Xr (s) + BrU(s) (13a)

Y(s) = BTr Xr (s) (13b)

Cr (s) = Cr,0 +

nτL∑
k=1

Cr,ke−sτL,k (13c)

Gr (s) = Gr,0 +

nτP∑
k=1

Gr,ke−sτP,k (13d)

where the following congruence transformations based on the
orthogonal matrix K ∈ ℜ

nu×nr are employed

Cr,i = KTCiK, i = 0, . . . , nτLp
(14a)

Gr,i = KTGiK, i = 0, . . . , nτP (14b)

Br = KTB (14c)

Lr = KTL (14d)

The same reduced order model in the time domain can be
written as

Cr,0 (t)
dxr (t)
dt

= −Gr,0 (t) xr (t) −

nτL∑
k=1

Cr,k
dxr
dt

(t − τk )

−

nτP∑
k=1

Gr,kxr (t − τk ) + Bru(t) (15a)

y(t) = LTr xr (t) (15b)

where the vector xr (t) represents the reduced state variables.
NDDEs (15) can be rewritten in a more compact form as:

Cr,0
dxr (t)
dt

+ Gr,0xr (t) = T + Bru(t), (16)

where

T = −

nτL∑
k=1

Cr,k
dxr
dt

(t − τk ) −

nτP∑
k=1

Gr,kxr (t − τk ) (17)

.
Concerning time-domain simulations of delayed PEEC

models, assuming a uniform time step, NDDEs (15a) can

be integrated using one or two-step integration methods. The
general form of the solution using two-step methods reads:

α
dx(t)
dt

= µpxp + µp−1xp−1 + µp−2xp−2 − β
dxp−1(t)

dt
,

(18)

where the subscript p identifies the time step and homoge-
neous initial conditions are set for xp−1, xp−2, and

dxp−1(t)
dt .

The coefficients for each of the methods are given in Table 1.

TABLE 1. Time integration methods.

Applying the scheme (18) to (16), we obtain
µp

α
Cr,0xp + Gr,0xp = Bup + Tp

− Cr,0

(
µp−1

α
xp−1 +

µp−2

α
xp−2 −

β

α

dxp−1(t)
dt

)
,

(19)

where Tp is the time discrete counterpart of T in (16). The
same time-domain simulation approach can be used for both
original and reduced order PEECmodels. As it will be shown
in the numerical results, time-domain simulations of the
POD-based reduced order models will be much faster than
the original delayed PEEC models, while a high accuracy is
preserved. A two-step time-domain integration method was
used to obtain time-domain results shown in the numerical
examples.

The construction of the orthogonal basis K plays a crucial
role in obtaining a compact and accurate reduced-ordermodel
across a wide frequency range. Although MOR techniques
for systems described by (non-delayed) differential equa-
tions [5], [6], [7], [8], [9] are well-established, the focus
on MOR techniques for delayed differential equations and
delayed PEECmodels is a relatively recent research area [10],
[11], [12], [13], [14]. In [11] and [12], moment-matching
MOR techniques were proposed for PEEC models described
by NDDEs. The calculation of moments for the MOR step
can lead to a significant computational cost to generate the
orthogonal matrix needed for the computation of the reduced
order matrices. Also, it requires the availability in memory of
the full original matrices that can be very large. POD-based
MOR is a solution to these issues of the moment matching
MOR.

POD-based MOR is commonly used in various problems
ranging from fluid dynamics [15] to inverse problems [16]
and partial differential equations (PDEs) constrained opti-
mization problems [29]. Time-domain or frequency-domain
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simulations of the original system can be the source of
information needed to extract the POD basis vectors [17],
[18], [19], [20], [21], [22], [30]. In this work, we consider
snapshots in the frequency-domain. Considering a set of
q frequencies s ∈ {s1, s2, . . . , sq} (s = jω), then the
corresponding snapshots at this given set of frequencies are
represented as

Xss = [ℜ(H(s1)), ℑ(H(s1)), . . . ,ℜ(H(sq)), ℑ(H(sq))] (20)

where Xss ∈ ℜ
nu×q represents the snapshot matrix and

H(s) = (sC(s) + G(s))−1B (21)

Applying singular value decomposition (SVD) to the snap-
shot matrix

Xss = U6VT , (22)

where U = [u1,u2, . . . ,uq] ∈ ℜ
n×q and V =

[v1, v2, . . . , vq] ∈ ℜ
n×q are orthogonal matrices 6 ∈

ℜ
q×q represents the singular values of Xss at diagonals i.e.

diag(σ1, σ2, . . . , σq). A truncation on the maximum number
of singular values can be used to decide the reduced order nr .
The V matrix is used as the orthogonal matrix K needed

to generate the reduced order matrices by congruence
transformations.

In a traditional POD approach, a one-shot traditional SVD
decomposition is applied to the snapshot matrixXss to extract
an orthogonal matrix needed for the congruence transfor-
mations. In addition to this traditional SVD decomposition,
in this work, we also explore the concept of incrementally
computed singular value decomposition (INCR-SVD) in
which the SVD of the whole matrix is not evaluated but
rather the singular vectors are constructed incrementally [23],
[24], [25]. This can provide computational advantages and
flexibility in adding snapshots incrementally. The main idea
behind this is to use subsequent additive modifications of
the snapshot matrix where new snapshots are incrementally
added. The reader can refer to [23], [24], and [25] for
extensive details on the implementation of the incremental
SVD. We report in what follows the main notions related to
the incremental SVD. It allows flexibility at multiple levels,
from avoiding the need to have all snapshots together as in a
one-shot SVD to being able to incrementally add snapshots
if needed. To formulate the incrementally computed SVD,
we have the following steps:

1) Let us consider the snapshot matrixXss defined in (22),
then we define

A1 = Xss(:, 1 : m), (23)

A2 = Xss(:,m+ 1 : q). (24)

where A1 ∈ Rnu×m, A2 ∈ Rnu×q−m and m is the
number of snapshots that formed the initial snapshot
matrix of which an SVD is performed.

2) We apply a standard SVD to A1 as

A1 = U161VT
1 , (25)

Next, we assume to update the initial SVD of A1 by
considering a block of k columns of A2 inside a loop
till all columns of A2 are considered as better clarified
in what follows.

3) For each block of k columns of A2, we define

M = U⊤

1 A2(:, k ∗ (i− 1) + 1 : k ∗ i)) (26)

P = A2(:, k ∗ (i− 1) + 1 : k ∗ i)) − U1M (27)

4) We evaluate the QR factorization of P

[QPRP] = qr(P) (28)

When k is small, this algorithm is invoked frequently,
and algebraic subspace rotations involved possibly
do not preserve orthogonality. Hence, a numerically
induced loss of orthogonality of the matrix

[
U1 QP

]
may occur. Therefore, we apply the QR decomposition
to it as shown in (29)

[QQ RQ] = qr(
[
U1 QP

]
) (29)

5) We then evaluate the SVD decomposition UP 6P,VP
of D which is defined as

D = RQ

[
61 M
0 RP

]
(30)

We evaluate the incrementally updated SVD as:

6̃P = 6P(1 : t, 1 : t) (31)

ṼP =

[
V 0
0 I

]
VP(1 : t, 1 : t) (32)

ŨP = QQUP(1 : t, 1 : t) (33)

where t can be used as a rank truncation threshold. If no
truncation is performed, then t is sum of number of
columns of U1 and P.

6) Finally, we update

61 = 6̃P,V1 = ṼP,U1 = ŨP (34)

The steps 3-6 are repeated for the different blocks of
columns of A2 till all columns of A2 are considered.

Low rank truncation and parallelization strategies can
be important to enhance the computational efficiency of
the incremental SVD. As an example, the QR factorization
can be implemented in efficient ways by using parallelism
approaches [31]. The incremental SVD can work by adding
a column vector at a time or a matrix with a certain number
of columns at a time to an original SVD decomposition. The
steps of the incremental SVD-based POD MOR technique
we propose for delayed PEEC models are described in
Algorithm 1. It is to be noted that if new snapshot information
needs to be added and a standard one-shot SVD approach
is used, a new one-shot SVD needs to be performed of the
previous snapshot matrix augmented by the new snapshot
vectors.
This algorithm is used to generate the orthonormal basis

K ∈ ℜ
nu×nr required to build the reduced order model in (15)

through subsequent congruence transformations.
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FIGURE 1. Geometry of the L-shaped conductor over a ground plane.

FIGURE 2. Magnitude of S11 for the L-shaped conductor over the ground
plane example.

FIGURE 3. Magnitude of S21 for the L-shaped conductor over the ground
plane example.

In the case of a one-shot SVD, the operation mentioned as
INCR − SVD in Algorithm 1 is replaced by a standard SVD.
The operation INCR − SVD in Algorithm 1 could also be
combined with an adaptive selection of the snapshot samples,

Algorithm 1 INCR-FDPOD for Delayed PEEC Models
Inputs:C,G, B& np = number of ports, k = columns ofA1,
m= columns of Xss
Output: K
Initialization: i = 1;X = []; q = number of singular vectors
to be chosen; nr = order of the reduced order model
Consider s = s1, s2, . . . , sq on the imaginary axis and
construct snapshot matrix asH1,...,np (s)
WHILE i <= np
Get snapshot vectors i.e. Xi = [ℜ(Hi(s)), ℑ(Hi(s))];
i = i+ 1;
END WHILE
Construct A1 and A2; % Eq. (23) and Eq. (24)
Compute U1, 61,V1 by a standard SVD
FOR i=1:⌈((q− m)/k)⌉
DefineM and P; % Eq. (26) and Eq. (27)
Find QP and RP; % Eq. (28)
Find QQ and RQ; % Eq. (29)
Evaluate the updated SVD % Eq. (31) to Eq. (33)
Update 61 = 6̃P,V1 = ṼP,U1 = ŨP
END FOR
Choose K = U1.

FIGURE 4. Reduced order models error comparison for S11 for the
L-shaped conductor over the ground plane example.

but this is beyond the scope of this work and an objective for
future work.

V. NUMERICAL RESULTS
To test our methodology, we consider two different examples
of MOR of delayed PEEC models. We denote the full
original model as FOM, while the model constructed
using Algorithm 1 is denoted by INCR-FDPOD, and the
standard POD with a one-shot SVD is denoted as FD-POD.
FD stands for frequency-domain sincewe use snapshots in the
frequency-domain to build the reduced order models. We also
compare the results with the multipoint expansion moment
matching method [12] denoted as MM-mp.

VOLUME 12, 2024 173



M. A. Khattak et al.: Efficient Frequency and Time-Domain Simulations of Delayed PEEC Models

FIGURE 5. Reduced order models error comparison for S21 for the
L-shaped conductor over the ground plane example.

FIGURE 6. Comparison of the first port voltage for the L-shaped
conductor over the ground plane example.

All the tests were performed with the MATLAB
R2021a [32] on a Windows 10 pro platform having Intel(R)
Xeon(R) CPU X5677 @ 3.47GHz 3.46 GHz (2 processors)
and 176 GB RAM.

A. L-SHAPED CONDUCTOR OVER A GROUND PLANE
The proposedMOR approach has been tested on the L-shaped
conductor over a ground plane sketched in Fig. 1. The
conductors are assumed to be copper. The original model
entails nu = 9707 degrees of freedom with nI = 2 inputs and
nO = 2 outputs. There are nτL = 294 and nτP = 297 delays
for the magnetic and electric field couplings, respectively.
Using Algorithm 1, we obtain a POD-based reduced order
model of size nr = 48 utilizing 12 snapshots uniformly
distributed in the frequency range [1 MHz, 2 GHz]. The
computation of the K matrix of the INCR-FDPOD and FD-
POD methods has been carried out by using the INCR-SVD
and one-shot standard SVDmethods, respectively. In the case
ofMM−mp, we use three expansion points [10 Hz, 1 GHz, 2

FIGURE 7. Comparison of the second port voltage for the L-shaped
conductor over the ground plane example.

FIGURE 8. Two microstrip interconnection.

FIGURE 9. Magnitude of S11 for the two microstrip interconnection
example.

GHz] and we obtain a reduced order model of the same size.
A CPU time comparison related to the construction of the
different reduced order models and the size of each reduced
model are shown in Table 2.

We also analyze the CPU time needed to evaluate the
scattering parameters for a frequency sample by the different
models and we illustrate it in Table 3.
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FIGURE 10. Magnitude of S21 for the two microstrip interconnection
example.

FIGURE 11. Magnitude of S31 for the two microstrip interconnection
example.

TABLE 2. Construction time and size of the reduced order models for the
L-shaped conductor over a ground plane example.

TABLE 3. CPU time comparison for a single frequency sample evaluation
of the scattering parameters for the L-shaped conductor over a ground
plane example.

To assess the accuracy of the reduced order models in
comparison with the FOM, we generate a plot illustrating
the magnitude spectra of the scattering parameters.
Figs. 2-3 show the magnitude spectra of the S11 and S21

FIGURE 12. Magnitude of S41 for the two microstrip interconnection
example.

FIGURE 13. Reduced order models error comparison for S11 for the two
microstrip interconnection example.

parameters, respectively as obtained by the FOM and the
reduced order models.

To assess the accuracy of both reduced order models,
we compare the error of S11 and S21 for all the ROMs shown
in Figs. 4-5 The errors show that INCR-FDPOD and FD-
POD perform better than MM-mp in terms of accuracy. Next,
we analyze some time-domain results by exciting the first
input with a pseudorandom binary sequence (PRBS) voltage
source and comparing the port voltages. The voltage on the
first port is depicted in Fig. 6. Similarly, the voltage of the
second port is shown in Fig. 7.

It required 2755 s to obtain time-domain results with
the FOM, whereas the INCR-FDPOD and FD-POD models
achieved this in just 9 s and 8 s, respectively. Notably, the
reduced-order models generated using the INCR-FDPOD
and FD-POD methods consistently produce accurate and
stable time-domain results, in contrast to the MM-mp
generated model that exhibits instability in the time-domain.

VOLUME 12, 2024 175



M. A. Khattak et al.: Efficient Frequency and Time-Domain Simulations of Delayed PEEC Models

FIGURE 14. Reduced order models error comparison for S21 for the two
microstrip interconnection example.

FIGURE 15. Reduced order models error comparison for S31 for the two
microstrip interconnection example.

FIGURE 16. Reduced order models error comparison for S41 for the two
microstrip interconnection example.

B. TWO COPLANAR MICROSTRIPS
In this example, the original PEEC model has an order n =

20080 with nI = 4 inputs and nO = 4 outputs. There

FIGURE 17. Comparison of the input port voltage of the driven line for
the two microstrip interconnection example.

FIGURE 18. Comparison of the output port voltage of the driven line for
the two microstrip interconnection example.

are nτL = 17 and nτP = 17 delays. The geometry of the
system is shown in Fig. 8 Using Algorithm 1, we get a
POD-based reduced order model of size ru = 120. We use
12 snapshots uniformly distributed in the frequency range
[1MHz, 3 GHz]. TheKmatrix for the INCR-FDPODmethod
was computed using the INCR-SVD technique, while the
FD-POD method utilized the standard one-shot SVD method
for this computation. We choose three expansion points for
MM−mp [10Hz, 1GHz, 3GHz]. As in the previous example,
the CPU time comparison related to the construction of the
different reduced order models and the size of each reduced
model are shown in Table 4.

Also, we analyze the CPU time needed to evaluate the
scattering parameters for a frequency sample by the different
models and we illustrate it in Table 5.

To check the precision of the reduced-order models,
we examine the responses of the scattering parameters. The
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TABLE 4. Construction time and size of the reduced order models for the
two microstrip interconnection example.

TABLE 5. CPU time comparison for a single frequency sample evaluation
of the scattering parameters for the two microstrip interconnection
example.

FIGURE 19. Comparison of the input port voltage of the victim line for the
two microstrip interconnection example.

magnitude of the scattering parameters S11 and S21 of the
reduced-order models is depicted in Figure 9, and this data
is compared to the corresponding parameters of the original
PEEC model.

Next, we analyze the magnitude of scattering parameters
S31 and S41 of the original PEEC model and reduced order
models which are shown in Figs. 11-12, respectively.
To check the accuracy of both reduced order models, the

error analysis for these scattering parameters is plotted in
Figs- 13-16.

INCR-FDPOD and FD-POD outperformMM-mp in terms
of accuracy for the same reduced order. Subsequently,
we examine the results in the time domain by exciting the
first input with a PRBS voltage source. The voltage on the
first port is depicted in Fig. 17. The output port voltage of
the driven line is shown in Fig. 18. The input and output
port voltages of the victim line are shown in Figs. 19-20.
The results indicate that INCR-FDPOD and FD-POD exhibit
better performance in terms of accuracy. While the time-
domain simulations of the FOM require 4092 s, both INCR-
FDPOD and FD-POD complete the simulation in only 0.9 s.

FIGURE 20. Comparison of the output port voltage of the victim line for
the two microstrip interconnection example.

Furthermore, the MM-mp results in the time domain are
unstable.

VI. CONCLUSION
In this paper, two POD MOR techniques for delayed PEEC
models using one-shot and incremental SVD steps have
been proposed. A comparison with a moment-matching
MOR technique has been also performed. The proposed
MOR techniques generate reduced order models with higher
accuracy than in the case of moment matching MOR for
the same reduced order and they are more efficient in the
generation of the reduced order models. Frequency-domain
and time-domain results have been shown for multiple
numerical examples.

REFERENCES
[1] R. F. Harrington, Field Computation by Moment Methods. Piscataway, NJ,

USA: Wiley, 1968.
[2] A. E. Ruehli, ‘‘Equivalent circuit models for three-dimensional multicon-

ductor systems,’’ IEEE Trans. Microw. Theory Techn., vol. MTT-22, no. 3,
pp. 216–221, Mar. 1974.

[3] C. A. Balanis, Advanced Engineering Electromagnetics, 2nd ed. Hoboken,
NJ, USA: Wiley, 2012.

[4] A. E. Ruehli, G. Antonini, and L. Jiang, Circuit Oriented Electromagnetic
Modeling Using the PEEC Techniques. Hoboken, NJ, USA: Wiley, 2017.

[5] W. H. Schilders, H. A. van der Vorst, and J. Rommes, Eds., Model Order
Reduction: Theory, Research Aspects and Applications (The European
Consortium for Mathematics in Industry), Berlin, Germany: Springer,
Aug. 2008.

[6] D. Romano and G. Antonini, ‘‘Partitioned model order reduction of
partial element equivalent circuit models,’’ IEEE Trans. Compon., Packag.,
Manuf. Technol., vol. 4, no. 9, pp. 1503–1514, Sep. 2014.

[7] M. A. Farhan, N. M. Nakhla, M. S. Nakhla, and R. Achar, ‘‘Fast transient
analysis of tightly coupled interconnects via overlapping partitioning and
model-order reduction,’’ IEEE Trans. Compon., Packag., Manuf. Technol.,
vol. 4, no. 10, pp. 1648–1656, Oct. 2014.

[8] T.-S. Nguyen, T. L. Duc, T.-S. Tran, J.-M. Guichon, O. Chadebec, and
G. Meunier, ‘‘Adaptive multipoint model order reduction scheme for
large-scale inductive PEEC circuits,’’ IEEE Trans. Electromagn. Compat.,
vol. 59, no. 4, pp. 1143–1151, Aug. 2017.

[9] Y. Dou and K.-L. Wu, ‘‘A passive PEEC-based micromodeling circuit
for high-speed interconnection problems,’’ IEEE Trans. Microw. Theory
Techn., vol. 66, no. 3, pp. 1201–1214, Mar. 2018.

VOLUME 12, 2024 177



M. A. Khattak et al.: Efficient Frequency and Time-Domain Simulations of Delayed PEEC Models

[10] W. Tseng, C. Chen, E. Gad, M. Nakhla, and R. Achar, ‘‘Passive order
reduction for RLC circuits with delay elements,’’ IEEE Trans. Adv.
Packag., vol. 30, no. 4, pp. 830–840, Nov. 2007.

[11] F. Ferranti, M. S. Nakhla, G. Antonini, T. Dhaene, L. Knockaert, and
A. E. Ruehli, ‘‘Multipoint full-wave model order reduction for delayed
PEEC models with large delays,’’ IEEE Trans. Electromagn. Compat.,
vol. 53, no. 4, pp. 959–967, Nov. 2011.

[12] E. Rasekh and A. Dounavis, ‘‘Multiorder Arnoldi approach for model
order reduction of PEEC models with retardation,’’ IEEE Trans.
Compon., Packag., Manuf. Technol., vol. 2, no. 10, pp. 1629–1636,
Oct. 2012.

[13] S. Naderi Lordejani, B. Besselink, A. Chaillet, and N. van de Wouw,
‘‘Model order reduction for linear time delay systems: A delay-dependent
approach based on energy functionals,’’ Automatica, vol. 112, Feb. 2020,
Art. no. 108701.

[14] S. N. Lordejani, B. Besselink, A. Chaillet, and N. van de Wouw, On
Extended Model Order Reduction for Linear Time Delay Systems. Cham,
Switzerland: Springer, 2021, pp. 191–215.

[15] K. Afanasiev andM. Hinze, ‘‘Adaptive control of a wake flow using proper
orthogonal decomposition,’’ in Shape Optimization and Optimal Design,
vol. 216. New York, NY, USA: Dekker, 2001, pp. 317–332.

[16] H. T. Banks, M. L. Joyner, B. Wincheski, and W. P. Winfree, ‘‘Nonde-
structive evaluation using a reduced-order computational methodology,’’
Inverse Problems, vol. 16, no. 4, pp. 929–945, Aug. 2000.

[17] R. Mancini and S. Volkwein, ‘‘An inverse scattering problem for the time-
dependent Maxwell equations: Nonlinear optimization and model-order
reduction,’’Numer. Linear Algebra With Appl., vol. 20, no. 4, pp. 689–711,
Aug. 2013.

[18] Z. Luo and J. Gao, ‘‘A POD reduced-order finite difference time-domain
extrapolating scheme for the 2D Maxwell equations in a lossy medium,’’
J. Math. Anal. Appl., vol. 444, no. 1, pp. 433–451, Dec. 2016.

[19] T. Kim, ‘‘Frequency-domain Karhunen–Loeve method and its application
to linear dynamic systems,’’ AIAA J., vol. 36, pp. 2117–2123, Jan. 1998.

[20] G. Dergham, D. Sipp, J.-C. Robinet, and A. Barbagallo, ‘‘Model reduction
for fluids using frequential snapshots,’’ Phys. Fluids, vol. 23, no. 6,
Jun. 2011, Art. no. 064101.

[21] W. Wang, G. N. Paraschos, and M. N. Vouvakis, ‘‘Fast frequency sweep
of FEM models via the balanced truncation proper orthogonal decompo-
sition,’’ IEEE Trans. Antennas Propag., vol. 59, no. 11, pp. 4142–4154,
Nov. 2011.

[22] K. T. J. Gladwin and K. J. Vinoy, ‘‘An efficient SSFEM-POD scheme
for wideband stochastic analysis of permittivity variations,’’ IEEE Trans.
Antennas Propag., vol. 71, no. 2, pp. 1654–1661, Feb. 2023.

[23] M. Brand, ‘‘Fast low-rank modifications of the thin singular value
decomposition,’’ Linear Algebra Appl., vol. 415, no. 1, pp. 20–30,
May 2006.

[24] H. Fareed, J. R. Singler, Y. Zhang, and J. Shen, ‘‘Incremental proper
orthogonal decomposition for PDE simulation data,’’ Comput. Math. With
Appl., vol. 75, no. 6, pp. 1942–1960, Mar. 2018.

[25] N. Kühl, H. Fischer, M. Hinze, and T. Rung, ‘‘An incremental singular
value decomposition approach for large-scale spatially parallel & dis-
tributed but temporally serial data—Applied to technical flows,’’ 2023,
arXiv:2302.09149.

[26] M. A. Khattak, D. Romano, G. Antonini, and F. Ferranti, ‘‘Proper
orthogonal decomposition-based model order reduction of delayed PEEC
models,’’ in Proc. Int. Conf. Electromagn. Adv. Appl. (ICEAA), Venice,
Italy, Oct. 2023, pp. 554–558.

[27] R. F. Harrington, Time-Harmonic Electromagnetic Fields. Piscataway, NJ,
USA: IEEE-Press, 2001.

[28] H. Heeb and A. E. Ruehli, ‘‘Three-dimensional interconnect analysis using
partial element equivalent circuits,’’ IEEE Trans. Circuits Syst. I, Fundam.
Theory Appl., vol. 39, no. 11, pp. 974–982, Nov. 1992.

[29] P. Benner, E. Sachs, and S. Volkwein, ‘‘Model order reduction for PDE
constrained optimization,’’ Trends PDE Constrained Optim., vol. 165,
pp. 303–326, Dec. 2014.

[30] P. Benner, S. Gugercin, and K. Willcox, ‘‘A survey of projection-based
model reduction methods for parametric dynamical systems,’’ SIAM Rev.,
vol. 57, no. 4, pp. 483–531, Jan. 2015.

[31] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou, ‘‘Communication-
optimal parallel and sequential QR and LU factorizations,’’ SIAM J. Sci.
Comput., vol. 34, no. 1, pp. A206–A239, Jan. 2012.

[32] MATLAB Version: 9.10.0 (r2021a), Tm Inc., Natick, MA, USA, 2021.
[Online]. Available: https://www.mathworks.com

MUHAMMAD A. KHATTAK received the B.S.
degree in electrical engineering from the National
University of Computer and Emerging Sciences,
Islamabad, Pakistan, in 2017, and the M.S. degree
in computational science and engineering from the
National University of Science and Technology
(NUST), Islamabad, in 2022, with a focus on
the project funded by the Higher Education
Commission, Pakistan. He is currently pursuing
the joint Ph.D. degree with the University of

L’Aquila, Italy, and Vrije Universiteit Brussel, Belgium.
From 2020 to 2021, he was a Research Assistant with the SystemAnalysis

and Control Laboratory, Research Center for Modeling and Simulation,
NUST. His research interests include model order reduction, numerical
analysis, and complex dynamical systems.

DANIELE ROMANO was born in Campobasso,
Italy, in 1984. He received the Laurea degree
in computer science and automation engineering
and the Ph.D. degree in industrial engineering
from the University of L’Aquila, L’Aquila, Italy,
in 2012 and 2018, respectively. Since 2012,
he has been with the UAq EMC Laboratory,
University of L’Aquila, where he is currently
a Researcher, focusing on EMC modeling and
analysis, algorithm engineering, and speed-up

techniques applied to EMC problems.

GIULIO ANTONINI (Senior Member, IEEE)
received the Laurea degree (cum laude) in electri-
cal engineering from the University of L’Aquila,
L’Aquila, Italy, in 1994, and the Ph.D. degree
in electrical engineering from the Sapienza Uni-
versity of Rome, Rome, Italy, in 1998. Since
1998, he has been with the UAq EMC Laboratory,
University of L’Aquila, where he is currently a
Professor. He has authored more than 300 papers
published in international journals and the pro-

ceedings of international conferences. He is the coauthored of the book titled
Circuit Oriented Electromagnetic Modeling Using the PEEC Techniques
(Wiley–IEEE Press, 2017). His research interest includes computational
electromagnetics.

FRANCESCO FERRANTI (Senior Member,
IEEE) received the Ph.D. degree in electrical engi-
neering from Ghent University, Ghent, Belgium,
in 2011. He is currently a Professor with the
Department of Applied Physics and Photonics,
Brussels Photonics, Vrije Universiteit Brussel.
He is also an Adjunct Professor with the Indian
Institute of Technology (IIT) Madras, Chennai,
India, and an Adjunct Professor with Carleton
University, Ottawa, ON, Canada. His research

interests include data science, machine learning, model order reduction,
scientific computing, dynamical systems, electromagnetics, optimization,
uncertainty quantification, metasurfaces, nanophotonics, and microwaves.
He is a member of the Technical Committee on Design Automation (MTT-
2) of the IEEE Microwave Theory and Techniques (MTT) Society. He was a
recipient of the Anile-ECMI Prize for Mathematics in Industry 2012 and
the Electromagnetic Compatibility Society President’s Memorial Award
2012. He is currently an Associate Editor of the IEEE TRANSACTIONS ON

MICROWAVE THEORY AND TECHNIQUES. He serves as a regular reviewer for
several international journals and conferences.

178 VOLUME 12, 2024


