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ABSTRACT Electric vehicle charging stations (EVCSs) are essential for solving the energy consumption
and endurance anxiety problems of car owners. EVCSs also promote sustainable development in urban
economies without relying on fossil fuels. This research proposes a hybrid approach that integrates the
Bayesian network with best-worst method (BN-BWM) and a geographical information system (GIS) to
address the site selection problem for electric vehicles (EVs). BN-BWM is employed to address the indicator
system, which consists of nine criteria from three aspects. BN-BWM calculates the final distribution of the
total preference of all decision-makers. Then, a GIS is utilized for spatial analysis and superposition analysis
to determine appropriate sites for charging stations (CSs). The novelty of this study lies in the development
of a new decision-making method based on the combination of BN-BWMand a GIS. This method is not only
more innovative but also highly operational and convincing regarding the accuracy of the weight results. This
research provides feasible and reliable ideas for the site selection and construction of CSs. It can also help
EV companies and government personnel carry out strategic planning. The study verified the applicability
and effectiveness of the developed hybrid method in sixteen administrative regions in Beijing. According to
the results, 1) an indicator system consisting of nine criteria is established, and roads, charging stations, and
slopes are identified as the most sensitive criteria for site selection; 2) Three alternative stations (ASs) are
identified as the most suitable sites for the establishment of CSs.

INDEX TERMS Electric vehicle charging station, site selection, Bayesian network, best-worst method,
geographic information system, multiple criteria decision-making.

I. INTRODUCTION
The use of fossil fuels and the resulting effects of cli-
mate change are pressing global issues. The International
Energy Agency (IEA) has recently published a report entitled
‘‘Global Energy Review: 2021 Carbon Emissions’’, which
highlights that CO2 emissions from global energy combus-
tion and industrial processes are expected to significantly
increase in 2021. The year-on-year growth is expected to be
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6% greater than that in 2020, with a total of 36.3 billion tons
of CO2 emissions, the highest annual level ever recorded.
Research also shows that CO2 emissions from transportation
vehicles are responsible for approximately 40% of total CO2
emissions in cities [1]. China, with its rapid economic growth
and urbanization, has experienced a significant increase in the
number of motor vehicles on its roads. At the end of 2021,
the number of motor vehicles in China reached 395 million,
including 302 million cars, for an increase of approximately
7% from the previous year’s figure. This increase in the
number of motor vehicles in China has led to serious traffic
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congestion and has contributed to a range of social problems,
such as energy consumption, resource scarcity, and environ-
mental pollution. The automobile industry must take steps
to mitigate these issues by developing cleaner, more energy-
efficient, and environmentally friendly vehicles.

The International Energy Agency’s ‘‘Net Zero By 2050’’
report underscores the key role of the energy sector in achiev-
ing zero emissions by 2050. Many countries are promoting
electric vehicles (EVs) and building charging infrastructure
as a low-carbon solution. EVs use electricity as their pri-
mary energy source and convert it to mechanical energy
through the engine, producing significantly less pollution
than conventional fuel-powered vehicles. As a result, EVs
are considered a viable solution for reducing traffic emis-
sions and oil dependence. In summary, promoting EVs as a
low-carbon solution is a critical step toward achieving zero
emissions by 2050 [2]. The low-carbon economy has become
a central focus of China’s economic development. EVs, as a
critical component of the new energy strategy, have been
identified as a strategic emerging industry. In 2021, China
registered 2.95 million new energy vehicles, accounting for
11.25% of the total number of newly registered vehicles,
an increase of 1.78 million vehicles and 151.61% greater
than the number of vehicles registered in the previous year.
China’s new energy vehicle market is experiencing explosive
growth. However, the development of charging infrastructure
is a major obstacle to the expansion of the new energy vehicle
market [3].

Public charging stations can overcome the limitations of
short-range EVs, and their strategic placement can greatly
support the growth of private EVs. CS sites typically take
into account factors such as population density, traffic stops,
and land slope. Identifying appropriate criteria can help
researchers better determine the optimal sites for CSs, expand
their coverage and reduce construction costs. Therefore,
understanding CS selection and identifying key construc-
tion factors can help researchers discover their relationship
and provide reliable suggestions to local governments. This
approach will promote the growth of the industry and have a
significant impact on sustainable urban development, energy
conservation, and emission reduction.

This paper proposes a BN-BWM-GIS method for identify-
ing suitable sites for EVCSs. The approach involves selecting
the best and worst principles and comparing them with
other principles to create a preference aggregation matrix
for individual decision-makers. The Bayesian model is then
used to determine the weight consistency of the preference
aggregation matrix, resulting in the best weight for group
decision-making. In addition, an indicator system consisting
of three aspects and nine criteria is established to determine
the constraint range and value coefficient of the nine criteria.
A standard data model of the nine criteria is developed in
ArcGIS software, and the weight calculated by the BN-BWM
model is employed for superposition analysis to identify the
most appropriate sites for constructing CSs. The proposed
method provides a comprehensive and effective approach for

urban energy conservation and emission reduction efforts and
has significant potential for improving the work of existing
managers. This study presents a novel GIS-based, BN-BWM
site selection priority survey model as its main contribution.
The model establishes an indicator system, quantifies the
constraint range and value coefficients of the criteria, uses a
GIS for spatial analysis, determines the weight through the
BN-BWM method, and ranks the results using TOPSIS in
the whole evaluation process. The proposed model improves
existing methods and provides a comprehensive and effec-
tive approach for urban energy conservation and emission
reduction managers. The results of this study have signifi-
cant implications for urban energy conservation and emission
reduction work.

The remainder of this paper is organized as follows:
Section II provides a review of previous research on existing
methods for electric vehicle charging station (EVCS) sites.
Section III proposes a hybrid approach that integrates the
BN-BWM and GIS models. Section IV establishes a compre-
hensive index system that consists of three aspects and nine
criteria and discusses the meaning and value coefficient of
each criterion. Section V uses a case study in the Beijing area
to demonstrate the model’s operation. Section VI discusses
the BN-BWM model results. Section VII provides conclu-
sions and recommendations for future research.

II. LITERATURE REVIEW
The site selection problem for CSs can be addressed using
three different methods: (1) multiple criteria decision-making
(MCDM),(2) heuristic algorithms, and (3) computational and
analytical methods in conjunction with GIS technology.

In addressing complex siting decision problems, such as
the siting of CSs, MCDM has been fully applied. There are
several well-established methods, such as the analytic hier-
archy process (AHP), Technique for Order of Preference by
Similarity to Ideal Solution (TOPSIS), the best-worst method
(BWM), and the structural equation model (SEM). For exam-
ple, Liu et al. introduced a fuzzy BWM and distance-based
fuzzy entropy weighting method to derive subjective and
objective criteria weights for the shared CS siting prob-
lem [4]. In addition, Yilmaz and Atan proposed a fuzzy
evaluation based on the distance from the average solu-
tion (EDAS) in their case study of Istanbul [5].Dang et al.
employed the lambda-fuzzymeasuremethod to determine the
weights of the first-class criteria and fuzzy VIKOR for rank-
ing in the location selection of island charging stations [6].
Lin et al. proposed a novel picture fuzzy MCDM model to
solve the site selection problem for car sharing stations [7].
The traditional MCDM method usually regards each candi-
date position as independent, ignoring the spatial correlation
and mutual influence between the positions.

When faced with many feasible schemes, determining the
optimal solution for the site problem can be challenging.
In such situations, heuristic algorithms are applied to help
users identify global or local optimal solutions. Therefore,
heuristic algorithms with strong optimization capabilities are
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FIGURE 1. Framework of the BN-BWM-GIS model for EV site selection.

often applied to the electric vehicle charging station (EVCS)
site problem. The genetic algorithm (GA), particle swarm
optimization (PSO), and integer programming (IP) are some
commonly employed heuristic algorithms. For example, Li et
al.proposed an improved GAmethod using a multipopulation
genetic algorithm (MPGA) to provide a more feasible loca-
tion for public CSs, resulting in a total cost reduction of 7.6%.
Similarly [8], Zaheer et al. used deep neural networks to train
a school dataset and found that the proposed model had an
accuracy that reached 82%, which is helpful for selecting
school locations in urban areas [9]. Lan et al. constructed
a graph convolutional network (GCN) for learning location
problems, providing a new method for solving geographi-
cal and transportation problems [10]. Xu et al. proposed an
improved nonuniform space ant colony algorithm to address
the location of central facilities [11]. In solving the location
problem, the heuristic algorithm also has some problems,
such as difficult to find the optimal solution, difficult to deal
with constraints, difficult to explain and so on

The practicality of EVCSs can be greatly improved by
considering geographic information and transportation acces-
sibility, which can be achieved by the application of a GIS.
GIS were used for this study to delineate the possible site
selection of EVs [12]. Konstantinos et al. proposed a method
that uses the AHP and a GIS to determine the optimal
site for wind farm installation, followed by ranking of the
calculated positions using TOPSIS [13]. This method can

help decision-makers overcome conflicting parameters while
being economically and environmentally friendly. Rahimi et
al. introduced a framework consisting of GIS technology
and the fuzzy MCDM method for landfill site selection [14].
A two-phase framework of MCDM methodologies using the
merits of Data Envelopment Analysis (DEA), Fuzzy FAHP,
and Fuzzy Weighted Aggregated Sum-Product Assessment
(FWASPAS) is proposed for the first time. [15].The proposed
fuzzy MCDM method is more reliable than other methods
in terms of weighting criteria. Adedeji et al. investigated
the application of the hexagonal fuzzy MCDM method in
EVCSs and demonstrated the effectiveness and robustness
of this method by comparative and sensitivity analyses [16].
Karipoglu et al. combined the GIS-MCDM method and
hybrid neuro fuzzy modeling tools for site suitability and
resource variability forecasting [17].Moustafa et al. proposed
a GIS-based method to determine the best hydrogen charging
station locations [18], [19]. In the study of wind farm site
selection. The AHP was used to weigh the criteria, and GIS
is used to apply the weighted criteria and restrictions [20].
Although some existingmethods combining GIS andMCDM
have been widely used, there are still some problems, such as
inaccurate weight processing.

To address these challenges, amethod based onBN-BWM-
GIS has been proposed to determine the optimal sites for
CSs. Compared to traditional MCDM methods, BN-BWM
has great potential in group decision-making and subjective

760 VOLUME 12, 2024



X. Wang et al.: Improved Bayesian Best-Worst Networks With GIS for EVCS Selection

FIGURE 2. TOPSIS ranking.

preference problems and can accurately calculate the group
weight distribution. In addition, a GIS can integrate geo-
graphic data for spatial analysis and provide visual decision
support, enabling decision-makers to make more objective
site selections. The TOPSIS method is selected to rank alter-
native CS sites and assist decision-makers in selecting better
sites from a practical point of view.

III. METHODOLOGY
The site selection of EVCSs involves considering the influ-
ence of many factors. This research proposes a hybrid method
based on BN-BWM-GIS to determine the appropriate sites
of CSs. In this section, we introduce the concept of the basic
method, and then introduce the integrated model BN-BWM-
GIS. FIGURE1 shows the framework of the BN-BWM-GIS
model for EV site selection.

A. BASIC METHODS
1) BWM
The BWM is a multicriteria decision-making (MCDM)
method that can be used to solve problems at different stages.
The BWM is especially useful for evaluating alternatives
based on criteria, particularly when objective criteria are
unavailable for evaluating alternatives. The BWM can also be
employed to determine the importance of criteria applied to
obtain solutions that meet the main objectives of the problem.

In a variety of disciplines, including business and eco-
nomics, health care, IT, engineering, education, and agri-
culture, the BWM has been extensively applied to address
real-world MCDM issues. In essence, this strategy can
be used to rank and choose selections from a group of
alternatives. Either a single decision-maker or a group of
decision-makers can use the BWM.

2) TOPSIS
TOPSIS is a widely utilized comprehensive evaluation
method that effectively utilizes the information from the orig-
inal data, producing results that accurately reflect the gaps
among evaluation schemes. This method is often employed
to solve decision-making problems with multiple criteria.
Its implementation principle involves sorting and selection
options by calculating the relative distance between two alter-
natives and positive and negative ideal solutions. The main
steps involved in TOPSIS are presented as follows:

3) GIS
A GIS, or geographic information system, is a specialized
tool for working with spatial data. A GIS is supported by

computer software and hardware, enabling it to collect, store,
manage, analyze, calculate, display, and describe geographic
data on a map. A GIS allows for mapping and analysis of
specific events and phenomena in a given area.

B. INTEGRATED BN-BWM-GIS MODEL
1) BN-BWM
The BWM is a multicriteria decision-making (MCDM)
method for solving problems at different stages. The BWM is
especially useful for evaluating alternatives based on criteria,
particularly when objective criteria are unavailable for eval-
uating alternatives. The BWM can also be used to determine
the importance of criteria used to obtain solutions that meet
the main objectives of the problem.

Compared with the traditional hierarchical analysis
method, the BWM is more convenient and efficient. When
there are n evaluation indicators, the traditional method needs
to compare all n criteria in pairs, that is, n(n− 1)/2 pairwise
comparisons. However, the BWM only needs 2n−3 pairwise
comparisons.

Although the BWM method is more efficient and con-
venient than the traditional method in solving MCDM
problems, the method can only simultaneously calculate
the weighting results of one expert. When there are sev-
eral experts who need to jointly determine the weights, the
weighting results of each expert are often averaged to obtain
the final weighting results. However, the process of averaging
weights is not good.

A BN is an uncertainty processing model that simulates the
causal relationship in the human reasoning process. A BN is
well suited for obtaining the interrelationship between knowl-
edge and data and is capable of mining the latent knowledge
in the data. Therefore, a BN can well represent the probabilis-
tic relationship between expert decision results and weighted
results in this study. We suggest that inserting a BN into
the traditional BWM model will have an unexpected effect,
helping us solve the group decision problem and providing
the degree of accuracy in weight calculation. The detailed
implementation steps and inference steps of BN-BWM are
listed as follows:

Step 1: The set of criteria for the decision system is deter-
mined.

Decision-makers or experts develop n criteria {c1, c2, . . . cn}
used in decision issues.

Step 2: The best and worst criteria are selected
According to the n criteria developed in Step 1, the best

criteria cB and worst criteria cW (cB, cW ∈ {c1, c2, . . . , cn})
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TABLE 1. Basic scale of paired comparison in BN-BWM.

are selected. The best and worst criteria are the key factors
affecting the analysis results.

Step 3: cB is compared with other indicators cj(j =

1, 2, . . . , n) in the pair comparison, with numbers 1∼9 indi-
cating the importance degree. TABLE 1 shows the details.
The comparison results are expressed as a vector

AB = (aB1, aB2, . . . , aBn) (1)

where aBj(j = 1, 2, . . . , n) indicates the degree of importance
of cB compared to other indicators cj(j = 1, 2, . . . , n)

Step 4: Similar to Step 3, cW is compared with other
indicators cj, and the importance is expressed by numbers
1∼9. The comparison results are expressed as

AW = (a1W , a2W , . . . , anW ) (2)

where ajW (j = 1, 2, . . . , n) indicates the importance degree
of other indicators cj compared to cW .
Step 5: The optimal group weights of the criteria are cal-

culated.
The input values AW and AB of the original BWM are con-

structed as a probability model of multinomial distribution.
Since the contents of both vectors are positive integers, the
probability mass density function of a multinomial distribu-
tion of AW is

P(AW |w) =
(
∑n

j=1 ajW )!∏n
j=1 ajW !

n∏
j=1

w
ajW
j (3)

where w is the probability distribution and ajW is the number
of times an event occurs.

Equation (4) shows that the probability of events in the
multinomial distribution is positively related to the number
of events, that is,

wj ∝
ajW∑n
i=1 aiW

, ∀j = 1, . . . , n (4)

where
∑n

i=1 aiW is the total number of events.
Similarly, because of the opposite probability distribution,

the worst criterion is written as

wW ∝
ajW∑n
i=1 aiW

=
1∑n

i=1 aiW
(5)

Using Equations (4) and (5), we obtain
wj
wW

∝ ajW , ∀j = 1, . . . , n, (6)

As previously stated,AB can bemodeled usingmultinomial
distribution. However, AB is different from AW since the for-
mer indicates the preferences of the best criterion over the
other criteria, while the latter represents the preferences of the
other criteria over the worst criterion. Therefore, AB demands
the inverse of the weight, and AB ∼ multinomial(1/w).

where 1/w is the opposite of w.

Similar to the worst criterion, we write

1
wj

∝
aBj∑n
i=1 aBi

,
1
wB

∝
aBB∑n
i=1 aBi

=
1∑n

i=1 aBi

⇒
wB
wj

∝ aBj, ∀j = 1, . . . , n, (7)

We have established that the input of the BWM can be
converted to a probabilistic form. Consequently, the process
of obtaining the final weight in the ordinary BWM problem
can be transformed into a probability estimation. The final
output results must meet the requirements of nonnegativ-
ity and normalization. To establish the weight model, the
Dirichlet distribution is employed. The parameter α ∈ Rn

(α > 0), where w is defined as the weight of the Dirichlet
distribution, is established. B(α) is the normalization constant
of the Dirichlet distribution.

Dir(w|α) =
1

B(α)

n∏
j=1

w
αj−1
j (8)

Step 6: Construction of joint probability distribution for
group decision-making

In this step, k experts, k = 1, . . . ,K , evaluate the criteria
c1, c2, . . . , cn by providing the vectors AKB and AKW . The
individual optimal weight after each expert is evaluated is
expressed as wk . Then, the group weight after integration is
wagg. A1:KB denotes the vector of all experts’ evaluations of
the best criterion compared to the other criteria. Similarly,
A1:KW denotes the vector of all experts’ evaluations of the other
criteria compared to the worst criterion. These two vectors are
the necessary information to construct the joint probability
distribution. Thus, the following joint probability distribution
is sought.

P(wagg,w1:K
|A1:KB ,A1:KW ) (9)

If the probability in Equation (9) is computed, then the
probability of each individual variable is computed using the
following probability rule:

P(x) =

∑
y

P(x, y) (10)

where xand y are two arbitrary random variables.
Step 7: Bayesian hierarchy model development and calcu-

lation
In a Bayesian network, the variables are represented as

nodes in a graph. As a convention, the observed variables,
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which are the inputs to the original BWM, are represented
as rectangles. The circular nodes represent the variables that
need to be estimated. The arrows between the nodes indicate
the direction of dependence between them, with the node at
the origin being dependent on the node at the destination,
that is, the value of wk is dependent on AKW and AKB , and the
value of wagg is also dependent on wk . All decision-makers
have only one wagg, and each decision-maker will iterate the
corresponding variables. Different variables are conditionally
independent. For example, AKW is independent of wagg given
wk , i.e.,

P(AKW |wagg,wk ) = P(AKW ,wk ) (11)

Because variables are conditionally independent, Bayesian
application in joint probability (7) is expressed as follows:

P(wagg,w1:K
|A1:KB ,A1:KW )

∝ P(|A1:KB ,A1:KW |wagg,w1:K )P(wagg,w1:K )

= P(wagg)
K∏
k=1

P(AKW |wk )P(AKB |wk )P(wk |wagg) (12)

Equation (12) is obtained based on the probability chain
rule, the independence between two variables and the prefer-
ence of each DM.

We now need to specify the distributions of each and every
element in Equation (12). We have already shown that AB
and AW can be perfectly modeled using the multinomial
distribution in the sense that it preserves the underlying idea
of the BWM. There is only one difference between AB and
AW since the former shows the preference of all the criteria
over the worst criterion, while the latter shows the preference
of the best criterion over all the other criteria. Thus, we can
model them as

AKB |wk ∼ multinomial(1/wk ), ∀k = 1, . . . ,K ,

AKW |wk ∼ multinomial(wk ), ∀k = 1, . . . ,K , (13)

Given wagg, one can expect that each and every wk will
be in proximity. We reparameterize the Dirichlet distribution
with respect to its mean and a concentration parameter. The
models of wk given wagg are

wk |wagg ∼ Dir(γ × wagg), ∀k = 1, . . . ,K , (14)

where wagg is the mean of the distribution and γ is the
concentration parameter.

The equation in (14) denotes that the weight vector wk

associated with each DM must be in the proximity of wagg

since it is the mean of the distribution, and their closeness is
governed by the nonnegative parameter γ . Such a technique is
also employed in different Bayesian models. The concentra-
tion parameter also needs to be modeled using a distribution.
A reliable option is the gamma distribution, which satisfies
the nonnegativity constraints, i.e., γ ∼ gamma(a, b)
where a and b are the shape parameters of the gamma
distribution.

We supply the prior distribution overwagg using an uninfor-
mative Dirichlet distribution with the parameter α as wagg ∼

Dir(α).
The BN-BWMmodel proposed in this paper is an upgrade

of the traditional BWM model. While the inputs for both
methods remain the same, the optimization problem is
replaced with a probabilistic model. This proposed model
offers more comprehensive information regarding the con-
fidence of the relation between each pair of criteria. This
additional information is obtained through the development
of a new Bayesian test, which is based on the approximated
distribution from the model.

2) BN-BWM-GIS
As EVCSs are public charging facilities, they need to be
rationally planned on the existing urban layout, and the
convenience, economy and reasonableness of construction
should be considered. Most of the literature does not consider
the spatial perspective to facilitate site selection. To ensure the
validity and usefulness of the BN-BWMmodel, we use a GIS
as the final site selection tool and use the weighting results of
the BN-BWM model to identify alternative sites suitable for
establishing EVCSs.
The construction of EVCSs is influenced by many factors,

such as geographical conditions, economic level, and traffic
accessibility. A GIS is employed in this study to integrate
and analyze relevant geographic data. Appropriate sites for
EVCSs can be obtained using technologies for spatial analy-
sis and overlay analysis. Many relevant data can be obtained
via open source websites and public databases.
Using Beijing as an example, relevant vector files such as

administrative districts and roadways in Beijing can be down-
loaded from http://www.csdn.net. In addition, theGaode open
platform (http://lbs.amap.com) provides access to current
data on the distribution of CSs, parking lot distribution, and
other relevant data. Beijing’s administrative division map is
depicted in FIGURE2.
This study constructs many map layers for each criterion

using ArcGIS software to conduct spatial analysis. After
performing distance analysis and reclassification processes,
the weighted sum from the toolbox was applied to create
the final pixel map. This process enables the selection of
appropriate sites for CSs.
In the BN-BWM-GIS model proposed in this paper, the

Bayesian model is embedded on the traditional BWMmodel,
which transforms the optimization problem into a probability
problem and can well solve the group decision problem and
calculate the index weights. The GIS method, which provides
a better choice for site selection from a spatial perspective and
visual analysis for this paper’s research, is incorporated.

IV. MODEL DEVELOPMENT
A. ESTABLISHED CRITERIA HIERARCHY
This study focuses on measuring preferences in alternative
site selection by the use of nine criteria, which are grouped
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FIGURE 3. Established criteria hierarchy of this study.

into three aspects: accessibility, environment and economy.
Each of these aspects plays a significant role in determin-
ing the suitability of a particular site. Below, we provide
a detailed description of the influential criteria within each
aspect.

B. CRITERIA SYSTEM
1) ACCESSIBILITY ASPECT
a: SHOPPING MALLS
Shopping centers comprise a crucial criterion that influences
CS sites, as they provide car owners with the opportunity to
consume after parking and charging. Proximity to a shopping
center is a significant factor in determining the suitability of
a site for building a CS. To evaluate this criterion, a vector
layer of shopping centers is established within the ArcGIS
software, and the reclassification tool is utilized.

b: ROADS
When considering the placement of a CS, it is essential to take
into account the convenience of the traffic flow for EVs on the
road. Thus, proximity to a main road is a crucial criterion in
determining the suitability of a site for a CS. To evaluate this
criterion, road layer vector data are obtained, and the road
layer is established and accordingly evaluated.

c: TRANSPORTATION STOPS
Transportation stops, such as subway stations and bus stops,
are critical transportation hubs that impact the suitability of
a site for a CS. The proximity to these stops is an essential
criterion, as it determines the convenience of car owners in
transferring to other vehicles after charging. To evaluate this
criterion, the transportation stops layer is established and
evaluated in ArcGIS.

d: PARKING LOTS
Parking is a crucial factor that car owners must consider when
selecting a CS site. To evaluate this criterion, public parking
lot data in Beijing are obtained via the Gaode development
platform, and the parking lot layer is established. Proximity
to a parking lot is a critical criterion, as it determines the
suitability of a site for building a CS.

e: CHARGING STATIONS
In addition to proximity to various facilities, the coverage and
cost of a CS must also be considered when selecting a site for
a CS. The suitability of a site for a new CS is determined by
its distance from an existing CS. To evaluate this criterion,
the distribution of existing CSs in Beijing is obtained from
the Gaode development platform. In general, the farther a site
is from an existing CS, the more suitable it is for building a
new CS.

2) ENVIRONMENTAL ASPECTS
a: POPULATION DENSITY
Population density is another critical factor to consider when
selecting a site for a CS. As a general rule, the higher the
population density is, the greater the potential for EV usage.
To evaluate this criterion, the latest data from the Beijing
Municipal Bureau of Statistics are employed to calculate the
population density of each district. Sites with higher popula-
tion densities are considered more suitable for building a CS.

b: GREEN AREAS
In addition to proximity to various facilities and population
density, green environmental protection factors must also be
considered when selecting a site for a CS. To evaluate this
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TABLE 2. Sub-criteria and references for each criterion.

criterion, the distance from green areas, such as existing parks
in Beijing, is calculated. As a general rule, the farther a site
is from green areas, the more suitable it is for building a CS.
This condition is determined using the natural breaks method,
which assigns a higher value to sites farther from park areas.

3) ECONOMIC ASPECTS
a: SLOPE
Slope is another crucial factor to consider when selecting
a site for a CS. Slope affects both the construction cost
and difficulty of building a CS. Generally, sites with higher
slopes are more expensive to construct and present greater
construction challenges. Thus, lower slopes are considered
more suitable for building a CS. To evaluate this criterion,
the grid layer is established based on the 30 m elevation data
of Beijing, and the slope layer is obtained via slope analysis.

b: AVERAGE INCOME
Average income is another critical factor to consider when
selecting a site for a CS. Generally, regions with higher
average incomes are more likely to have higher rates of EV
ownership. To evaluate this criterion, the average income data
are obtained from the statistical yearbook of Beijing in 2021.
Average income is calculated by dividing the regional GDP
by the regional population. Sites with higher average incomes
are considered more suitable for building a CS.

TABLE 2 presents the subcriteria and references for each
criterion. Note that the limitations of each criterion will be
considered based on global experience and expert studies,
as explicit provisions may not be available. These restrictions
are then applied to ArcGIS software for evaluation purposes.

V. CASE STUDY
This study focuses on Beijing to demonstrate the effective-
ness of the BN-BWM site model based on a GIS. By the end

of 2020, the number of new energy vehicles in Beijing had
reached 400,000, with a goal of reaching a total of 2 million
by 2025 and increasing the car electrification rate from 6%
to 30%. However, the existing CS infrastructure in Beijing
and throughout China often suffers from unreasonable lay-
outs and structures, leading to slow and difficult charging
processes. In response, Beijing has implemented policies to
strengthen the construction of charging infrastructure, as out-
lined in various policy documents.

The steps to solve the problem of strategy selection are
as follows:(1) Invite 6 domestic experts with rich experience
in the field of new energy vehicles to assist in identify-
ing 10 influencing factors according to the BWM method.
The expert teams are from NIO (2 people), China Associ-
ation of Automobile Manufacturers (2 people), and School
of Automotive, Hefei University of Technology (2 people).
Recognition is based on two considerations: industry status
and existence; (2) Invite 6 experts to assist in weight measure-
ment through scoring survey. We collected the suggestions
of experts and selected the 9 influencing factors discussed
above as the criteria for evaluating the location of EVCS (3)
Consider the relationship between factors; (4) BN-BWM-GIS
was used to calculate the global weight of each strategy, and
finally the overall ranking of each strategy was obtained. The
specific steps are as follows:

Step 1 (Calculation of the group decision weight
using BN-BWM):The flow chart for determining the final
BN-BWM method is shown in FIGURE1.BWM model is
more efficient and convenient than traditional methods in
solving MCDM problems, and BN model can deal with
expert knowledge in BWM model well and convert it
into accurate value through probability relation. The lan-
guage scale of the BN-BWM model, which allows the
decision-maker’s preference to be transformed into a com-
putable scale and accurately determines the standard weight,
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TABLE 3. Experts’ preference degrees of the three aspects and the resultant optimal weights.

TABLE 4. Weighting by BN-BWM evaluation criteria for EVCS.

is presented in TABLE 1 [22]. In this experiment, there
were six decision-makers. The expert preferences corre-
sponding to the criteria were input into MATLAB software
to calculate the final aggregation matrix. TABLE 3 shows
the weights of the accessibility, environmental, and eco-
nomic aspects after the BN-BWM model calculation. The
weight values of the nine criteria were determined and
are presented in TABLE 4. The weight values obtained
were consistent with the expected values, which demon-
strated the superiority and reliability of the BN-BWM
methods.

Step 2 (Weighted suitability analysis for EVCSs based
on ArcGIS): In this study, nine criteria suitability map layers
were established in ArcGIS software, and initial data process-
ing was conducted for each criteria map layer. FIGURE4
shows the nine criteria suitability map layers established in
ArcGIS software. Note that the subcriteria of C1, C2, C3,
C4, C5, and C7 refer to the distance between them in meters.
The unit of C6 is person/km2, and its subcriteria refer to the
population density of 16 administrative regions in Beijing.
The unit of C8 is degrees, and the subcriteria describe the
gradient of land in Beijing. The unit of C9 is 10000 RMB
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FIGURE 4. Map layer corresponding to nine criteria in ArcGIS.

Yuan, and the subcriteria refer to the income level of residents
in 16 administrative regions of Beijing.

As shown in FIGURE5, ArcGIS software was used to
classify layers, cover nine criteria adaptive layers, and gen-
erate maps of three aspects (accessibility, environmental, and
economic) using the weighted sum tool.

Step 3 (Generation of alternate EVCSs): TABLE 4 dis-
plays theweight values for the normalized final gathermatrix.
Using the ArcGIS toolbox, the weighted sum of nine criteria
applicability layers is utilized to derive the final suitability
evaluation layer of EVCSs, as illustrated in FIGURE6. The
red areas indicate the most suitable sites for building EVCSs,

while the blue areas are the least suitable sites for building
EVCSs. Following the principle of average distribution and
maximum coverage of the CS area, sixteen alternative sites
are chosen from the final suitability assessment map as poten-
tial sites for EVCSs. TABLE 5 lists the specific coordinates
of the sixteen chosen sites for EVCSs.

Step 4 (Computation of the subordinate and final rank-
ings): In this section, the Technique for Order of Preference
by Similarity to Ideal Solution (TOPSIS) is employed to rank
the candidate sites for EVCSs and identify the most suitable
site. The sixteen candidate sites are evaluated based on the
TOPSIS criteria, with their respective weights presented in
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FIGURE 5. Accessibility map, environmental map, and economic map.

TABLE 5. Sixteen AS sites for EVCSs.

FIGURE 6. Evaluation map of EVCSs.

TABLE 6. The TOPSIS method is then applied to sort the
candidate sites based on pixel value and CS distribution.
In the research area, the pixel value refers to the density
information of the region, while the CS distribution relates to

TABLE 6. TOPSIS criteria and their respective weights.

the distance from the existing CS, specifically, the maximum
distance between the alternative CS and the existing CS.
The precise value is derived from the distance analysis tool
provided by ArcGIS.

Step 5 (Discussion of the results): TABLE 7 presents
the ranking of the alternative sites with equal weight, while
FIGURE7 displays the ranking of the alternative sites based
on accessibility weight.

VI. DISCUSSION OF THE RESULTS
To select an appropriate alternative site, the BN-BWM
results are projected onto a matrix consisting of four quad-
rants. FIGURE8 displays the four quadrants based on the
BN-BWMweighted rating results on the X-axis (with higher
scores on the right) and the coverage area of the optional
construction area on the Y-axis (with a higher range at the
top). The coverage area of the optional construction area is
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FIGURE 7. AS Ranks by TOPSIS.

TABLE 7. Ranking of alternative stations according to equal weights.

determined based on the final suitability assessment map,
as shown in FIGURE6.

A. ATTRACTIVE AREA
The first quadrant represents the candidate sites with large
coverage areas and high scores (AS4, AS5, and AS6). The
optional construction area in this quadrant covers a large
region and has a high score, rendering it more suitable for
establishing the EVCS to complete the local charging net-
work. We refer to this quadrant as the ‘‘attractive area.’’

B. LOW-POTENTIAL AREA
The second quadrant, the ‘‘low-potential area,’’ contains only
one alternative site, AS7, with a low-ranking score but a
large coverage area. Therefore, it is not recommended as the
first choice for CS construction after the charging system is
relatively complete.

C. LESS-PREFERRED AREA
The third quadrant, consisting of nine alternative sites,
namely, AS1, AS2, AS3, AS8, AS13, AS14, AS15, and

AS16, has not only a small optional construction area but also
a low score and is therefore named the ‘‘less-preferred area.’’
We included all 16 potential sites in the profile matrix, and
the resulting rankings were classified into the four quadrants,
as shown in FIGURE8.

D. HIGH-VALUE AREA
The optional construction area in the fourth quadrant has
low coverage but a high score and is thus named the ‘‘high-
value area.’’ Three alternative sites, AS9, AS10, and AS11,
have small coverage areas but high TOPSIS ranking scores.
These sites should be considered in CS construction planning,
as they are ideal construction sites.

According to FIGURE6, the alternative site where the first
quadrant is located has great potential. Dongcheng District
and Xicheng District of Beijing, for example, are prime sites.
First, they have excellent traffic conditions, ensuring that car
owners can easily pass after parking and charging. Second,
while some charging networks already exist in these areas,
there is a need for additional charging stations to cater to
the high population flow and charging demand. Last, the
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FIGURE 8. Evaluation profile of the potential AS site selection.

slope factor is a crucial determinant of the cost of building
a charging station. Due to their flat terrain, these districts are
more suitable for building charging stations.

Although the low-potential area (second quadrant) has
excellent accessibility, it falls short in terms of environmental
and economic factors. While the traffic in this area is rel-
atively developed, the slope and greening criteria are still
at lower average levels. Additionally, the local economic
development lags behind that of other regions, and people
are generally hesitant to purchase relatively expensive electric
vehicles. As a result, it is not recommended to establish a
charging station in this area.

The third quadrant’s less desirable site is remote and lacks
unique qualities, making it unadvisable to establish alterna-
tive sites in this area when compared to more favorable sites.

Ultimately, the fourth quadrant is considered a high-value
area due to its high TOPSIS score. In comparison to eco-
nomically underdeveloped regions, the payment capacity for
electric vehicles is relatively high in these areas. Moreover,
the flat land, convenient transportation, and strong accessibil-
ity of these areas ensure that their charging demand remains
consistently high. Therefore, based on our analysis results,
we recommend the establishment of charging stations in this
area to improve the local charging network and meet the
charging needs of local residents.

VII. CONCLUSION AND FUTURE RESEARCH
CSs are considered an effective solution to the confusion and
difficulties of urban charging systems. However, the existing
CS infrastructure in Beijing falls short of meeting the growing
demand for charging and is far from government planning.
This study is aimed at evaluating appropriate sites for EVCSs
by considering accessibility, environmental, and economic

aspects. The study provides a systematic decision-making
framework, integrating expert opinions to effectively select
and rank CS sites. The study’s main contributions include
providing a systematic evaluation framework for CS sites
using nine qualitative and quantitative criteria based on acces-
sibility, environmental, and economic factors. Additionally,
the study employs BN-BWM to calculate the weight of the
indicator system, while the GIS tool is utilized to deter-
mine an appropriate CS site. The TOPSIS method is applied,
considering the practicability and effectiveness to calculate
the ranking of candidate sites. Overall, this study’s findings
can help policy-makers and urban planners make informed
decisions when selecting sites for CSs. By employing the
evaluation framework, decision-makers can identify the most
suitable sites based on several criteria, resulting in a more
efficient charging infrastructure.

This study has yielded interesting findings from different
perspectives. First, AS4, AS5, and AS6 were identified as the
most suitable alternatives for CS sites. Second, the weight
calculation results revealed that road quality, charging sta-
tion availability, and slope were the most sensitive factors
impacting the construction of CSs. Third, accessibility was
identified as the most crucial aspect affecting the construction
of CSs.

This paper also has some shortcomings: a) Beijing is lim-
ited as a survey area, because its charging facilities have been
relatively well established; b) the selection range of experts
is narrow and the number of experts is small.

For further development of this study, several aspects could
be considered. First, other multicriteria decision-making
(MCDM) methods, such as the AHP and VIKOR, could be
explored to compare and validate the results obtained using
BN-BWM and TOPSIS. Second, the standard system could
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be updated to incorporate policy support, charging time, and
other relevant criteria that were not considered in this study
due to limited information access. Third, other methods, such
as buffer zone analysis, could be employed instead of distance
analysis to address subcriteria requirements in GIS software.
Last, fuzzy methods, such as the fuzzy BWM, could be
employed to enhance the accuracy and effectiveness of CS
site selection. By considering these aspects, future research
could build on the findings of this study to further improve
the efficiency of urban charging systems.
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