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ABSTRACT In the field of multimodal understanding and generation, tackling inherent uncertainties is
essential for mitigating ambiguous interpretations across multiple targets. We introduce the Probability
Distribution Encoder (PDE), a versatile, plug-and-play module that utilizes sequence-level and feature-
level interactions to model these uncertainties as probabilistic distributions. Furthermore, we demonstrate
its adaptability by seamlessly integrating PDE into established frameworks. Compared to previous methods,
our probabilistic approach substantially enriches multimodal semantic understanding. In addition to specific
tasks, the unlabeled data contains rich prior knowledge, especially multimodal uncertainties. However,
current pre-training methods are designed based on point representations, which hinders the effective
functioning of our distribution representations. Therefore, we incorporate this uncertainty modeling into
three new pre-training strategies: Distribution-based Vision-Language Contrastive Learning (D-VLC),
Distribution-based Masked Language Modeling (D-MLM), and Distribution-based Image-Text Matching
(D-ITM). Empirical experiments show that our models achieve State-of-the-Art (SOTA) results in a range
of downstream tasks, including image-text retrieval, visual question answering, visual reasoning, visual
entailment and video captioning. Furthermore, the qualitative results reveal several superior properties
conferred by our methods, such as improved semantic expressiveness over point representations, and the
ability to generate diverse yet accurate predictions.

INDEX TERMS Deep learning, modeling uncertainty, multimodal representation learning, pre-training
models.

I. INTRODUCTION
Human inherently possesses the ability to comprehend
real-word objects with precision, which includes discerning
objects with similar semantics and mapping relationships
across diverse modalities. Our computational models are
engineered to emulate this capability, navigating through
complex multimodal semantic landscapes while being
acutely aware of inherent data uncertainties. However,
the pursuit of such exactitude presents challenges. While

The associate editor coordinating the review of this manuscript and

approving it for publication was Li He .

multimodal data boasts a rich semantic depth, it also brings
about more ambiguity and noise than its single-modality
counterparts.

Building upon the pursuit of exactitude in navigating
multimodal semantic landscapes, multimodal representation
learning techniques serve as a pivotal approach for enhancing
sophisticated interpretation across diverse data types [2].
Nevertheless, these methods are not without their own range
of challenges. Chief among them is the issue of uncertainty,
manifesting both within individual modalities and across
different modalities, corroborated by recent works [3],
[4]. Consider the image labeled as (a.0) in Fig. 1 as an
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FIGURE 1. Exemplifying multimodal uncertainties and exploring a case of
language uncertainty through point and distribution representations with
examples from MSCOCO dataset [1].

example: within a single visual region, one can observe
a variety of objects including a billboard, several zebras,
and mountains. Consequently, it becomes ambiguous as to
which objects are being referred to when discussing this
particular region. In the language example labeled as (b)
in Fig. 1, complexities arise from intricate relationships
among words, contributing to uncertainties like synonymy
and hyponymy. In Fig. 1 (c)&(d), the same object is
often represented differently across modalities like text
and images, exemplifying the challenges of inter-modal
uncertainty. The aforementioned multimodal uncertainties
pervade a range of tasks in multimodal understanding and
generation, such as cross-modal retrieval, visual question-
answering, and video captioning. These uncertainties show
considerable challenges in the effective training of AI models
for these specialized applications. Contrary to addressing
these issues, existing methods [5], [6], [7] often overlook
these uncertainties, which often results in limited capabilities
in comprehending complex concept hierarchies and a lack of
prediction diversity. Therefore, it is imperative to model such
multimodal uncertainties.

In tackling uncertainties inherent to the feature representa-
tion space, the utilization of Gaussian distribution stands as a
leading approach [3], [8], [9], [10]. In these approaches, the
derived uncertainty relies on individual features, neglecting
the interplay of all features, which is crucial for understanding
inherent relationships. To mitigate this, we employ a
specialized component, the Probability Distribution Encoder
(PDE), to capture these uncertainty semantics. Beyond the
interaction with entire objects, we extend the interactions
between word tokens and image patches during the formula-
tion of distribution representations, aiming to learn additional

FIGURE 2. Qualitative examples presenting the effectiveness of our
PDE-based framework (SWINPDE) in generating captions. The produced
captions maintain semantic coherence and offer a variety of expressions
that accurately describe the video content.

information. In Fig. 1 (e), we showcase two types of
representations for language uncertainty, where distribution
representations reveal richer semantic relationships than
point representations. Moreover, the variance within these
distribution representations serves as a metric for text-
related uncertainty. Incidentally, distribution representations
facilitate diverse generations, yielding several plausible
predictions through random sampling. Expanding upon
this, in Sec. V-A, we show the effectiveness of the PDE
across diverse scenarios of multimodal understanding and
generation. Moreover, as illustrated in Fig. 2, we offer
a qualitative example in the context of video captioning
tasks to provide a deep and intuitive understanding of
PDE’s functionality. In contrast to the current methods,
the PDE module not only contributes to a richer array of
possibilities within each video frame but also effectively
captures multimodal uncertainties. Consequently, our plug-
and-play PDEmodule serves to enhance the robustness of the
models.

In addition to the aforementioned tasks with labeled
data, the use of unlabeled multimodal data is flourishing.
Concurrent with this trend, various Vision-Language Pre-
training (VLP) methods have emerged for self-supervised
learning from unlabeled data, offering performance gains in
a range of downstream applications [11], [12], [13], [14],
[15], [16]. However, existing deterministic representations
often lack the ability to grasp uncertainty in pre-training
data, as they merely pinpoint positions in semantic space and
gauge relationships between targets using certainty metrics
like Euclidean distance. What is the effective approach
to modeling multimodal uncertainties within pre-training
datasets?

Therefore, to learn this multimodal uncertainty in a self-
supervised manner, we propose a Multimodal uncertainty-
Aware vision-language Pre-training (MAP) framework.
Specifically, we integrate uncertainty modeling into the mul-
timodal pre-training strategies, yielding the following three
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new tasks: Distribution-based Masked Language Modeling
(D-MLM), Distribution-based Image-Text Matching (D-
ITM) and Vision-Language Contrastive learning (D-VLC)
pre-training strategies. We construct new objectives and
computational processes of these multimodal pre-training
tasks, ensuring they effectively adapt to the distribution-based
representations. Following fine-grained interactions, D-ITM
and D-MLM are deployed for overall-level and token-level
alignment of images and text. Moreover, D-VLC addresses
coarse-grained multimodal alignment by measuring entire
distributions to align representations across modalities.

The contributions of our work are outlined as follows:1

• We delve into the multimodal uncertainties. Moreover,
we introduce a new plug-and-play module, termed
Probability Distribution Encoder (PDE), to model the
uncertainty in distribution representations.

• Our proposed PDE methodology enhances the effec-
tiveness of frameworks in various multimodal under-
standing and generation tasks. Moreover, to the best of
our knowledge, we are the first to integrate uncertainty
learning into video captioning.

• We formulate three uncertainty-aware multimodal pre-
training strategies, namely D-VLC, D-MLM, and D-
ITM, to learn multimodal uncertainties in large-scale
unlabeled datasets. To our knowledge, this effort repre-
sents one of the first attempts to harness the probabilistic
nature of distributions in VLP. Our code is available
at https://github.com/IIGROUP/MAP.

• We seamlessly integrate our proposed pre-training tasks
into a comprehensive end-to-end MAP framework.
Moreover, the empirical evaluations demonstrate that
the MAP model achieves SOTA performance across
multiple downstream tasks. Additionally, our qualitative
analysis showcases the effectiveness of our design in
capturing multimodal uncertainties within cross-modal
tasks, enabling the model to generate diverse and
accurate predictions.

II. RELATED WORK
A. PROBABILITY DISTRIBUTION REPRESENTATIONS
Current representation learning approaches predominantly
utilize point representations, aiming to closely align these
features with the ground truth in high-dimensional space [18],
[19]. However, many tasks present inherent uncertainties,
suggesting the need for multiple suitable point repre-
sentations. To tackle this, several works have introduced
probability distribution representations, enriching inference
and enhancing model robustness to avoid overfitting to a
singular solution. Moreover, the recent studies have been
conducted to address the uncertainty of input objects,
achieving progress in single-modal settings. For instance,
W2GM introduces word distributions formed from Gaussian
mixtures to cater to multiple word meanings, entailment, and

1An early version of this paper was presented at CVPR 2023 [17].

FIGURE 3. Structure of the Probability Distribution Encoder (PDE) module.

abundant uncertainty information, proposing an energy-based
max-margin objective for learning these distributions [20].
Building upon the theme of uncertainty, Smoothed Box
employs Gaussian convolutions to craft embeddings under
the guidance of uncertain annotations [21]. This approach
allows for a nuanced understanding of soft inclusions
among various concepts. To tackle the long-tail issue in
relation prediction, Gaussian distribution is employed to
encapsulate uncertainty in object relationships, aiding scene
graph generation [22]. In the multimodal domain, recent
efforts in constructing distributions have led to progress in
diversifying predictions for cross-modal retrieval tasks [4].
Unlike existing methods that construct distributions at the
feature level for an entire image or sentence, our approach
models each token within them, like patches in an image and
words in a sentence. Consequently, our method is capable of
handling interactions at both the sequence-level and feature-
level, facilitating the realization of multimodal uncertainty
learning.

B. VISION-LANGUAGE PRE-TRAINING (VLP)
Recently, the Vision-Language (VL) pre-training models
have garnered significant attention within the multimodal
research community by adeptly addressing real-world chal-
lenges through the pre-training and fine-tuning paradigm.
In detail, these models initially undergo pre-training tasks
on large-scale datasets to acquire common sense knowl-
edge. Following this, they undergo fine-tuning on specific
VL downstream tasks, thereby achieving SOTA perfor-
mance [23], [24]. A core challenge in VLP lies in devising
suitable pre-training objectives, with mainstream strategies
encompassing Masked Language Modeling (MLM) [15],
[25], [26], [27], [28], Image-Text Matching (ITM) [15],
[25], [27], [28] and Vision-Language Contrastive (VLC)
learning [11], [13], [26], [28]. Specifically, MLM pre-
dicts masked tokens using remaining language and vision
tokens. ITM assesses the match between different modal
inputs, elucidating the alignment between language and
vision contexts. VLC discerns inter-modal similarities,
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FIGURE 4. MAP’s pre-training architecture and objectives: Utilizing PDE to model representations as multivariate Gaussian Distributions (GD). The
term ‘‘NL’’ denotes the cross-modal transformer layer count. And, we provide an illustrated example with a two-dimensional GD. ‘‘Rep.’’ indicates
representations.

aligning point representations across modalities. Nonethe-
less, existing methods operate in the point representation
space, overlooking the nuances of multimodal uncertainty.
To address this, we introduce D-VLC, D-MLM, and D-ITM
for pre-training the models within a distribution representa-
tion space (Details in Sec. III-C).

III. APPROACHES
Firstly, as shown in Fig. 3, we outline the PDE module
in Sec. III-A. Then, we delve into the MAP in Sec. III-B and
the overview of it is in Fig. 4. After that, we delineate the
distribution-based VLP strategies in Sec. III-C. As detailed
in Sec. III-D, following its comprehensive pre-training, the
model is fine-tuned on specific VL downstream tasks.

A. PROBABILITY DISTRIBUTION ENCODER (PDE)
The inputs of PDE are derived from the embedding space
that encompasses various modalities. To learn the complex
multimodal uncertainty, we further model the features using
multivariate Gaussian distributions. In detail, for each feature
input, PDE calculates a mean vector (µ) and a variance
vector (σ 2), where the mean vector represents the central
position of distributions in the probabilistic space, and the
variance vector depicts the extent of distributions along each
dimension. As illustrated in Fig. 3, we present the detailed
architecture of PDE, encompassing both sequence-level and
feature-level interactions. In particular, the Multi-Head (MH)
operation handles sequence-level interactions, whereas the
feed-forward layer tackles feature-level interactions. In the
MH operation, the input representations H ∈ RT×D are
divided into k heads, with T representing the sequence
length and D denoting the hidden size. Within each head,
the representations are segregated and channeled into two
paths (µ, σ 2). In every path, the input representations H (i)

∈

FIGURE 5. The SWINPDE Model integrates PDE module into the
SwinBERT [29] architecture for enhanced video captioning.

RT×D/2k are projected onto Q(i), K (i), V (i) in the i-th head.
For instance, the operation within the µ path is as follows:

[Q(i)
µ ,K (i)

µ ,V (i)
µ ] = H (i)

µ Wqkv ,

Head (i)µ = Act
(
Q(i)

µ K
(i)
µ

⊤
/
√
dk

)
V (i)

µ ,

MHµ = concati∈[k]
[
Head (i)µ

]
WO , (1)

where, dk is designated the value of D/(2k), and the weight
matrix Wqkv ∈ Rdk×3 dk aims to project the features into the
subspace of each head. Likewise, the weight matrix WO ∈

Rkdk×D is utilized to project the concatenated results of k
heads into the output space. Furthermore, the term ‘‘Act’’
encompasses an activation function and a normalization
function, enabling sequence-level interaction. The operations
in the σ 2 path are similar to the µ path. Moreover, given
the correlation between the input point representation and
the mean vector, an ‘‘add’’ operation is utilized to derive
the mean vector. The rationale for these design choices is
elaborated in Sec. V-C2. Post PDE processing, whether visual
or linguistic, each token is depicted as Gaussian distributions
within a high-dimensional probabilistic space.
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Our design shows that PDE serves as a modular, plug-and-
play component, seamlessly integrating with existing point-
based frameworks. For instance, to tackle the challenges of
video captioning, we incorporate PDE into the widely-used
SwinBERT architecture [29], resulting in a modified model
known as SWINPDE, as shown in Fig. 5. In this context,
we employ a video transformer to extract spatial-temporal
video representations from raw video frames. The PDE
module then adeptly converts these representations into
probabilistic distributions, effectively capturing and learning
from the uncertainties. In the final stage, the multimodal
transformer processes the sampled representations from the
PDE, translating them into coherent natural language sen-
tences for captions via a sequence-to-sequence mechanism.
This approach not only enhances the diversity of video
captioning but also ensures the adaptability of our module
in various scenarios. Furthermore, to extend its applicability
to a diverse set of Visual-Language (VL) downstream tasks
and pre-training contexts, we embed PDE into our MAP
framework, as delineated in Sec. III-B.

B. MODEL OVERVIEW OF MAP
1) FEATURE EXTRACTION
We utilize a vision feature encoder and a language feature
encoder. Specifically, the CLIP-ViT [11] serves as the vision
encoder, while RoBERTa-Base [30] is employed for language
encoding. An image is embedded into a patch feature
sequence {v[CLS], v1, . . . , vN }, with v[CLS] representing
the overall vision feature, and similarly, the input text is
transformed into a token sequence {w[CLS],w1, . . . ,wM },
where w[CLS] denotes the overall language feature.

2) CROSS-MODAL TRANSFORMER
In recent studies, multimodal transformers primarily fall
into two categories for fusing diverse modalities: single-
stream [12], [31], [32] and dual-stream [28], [33], [34].
In a common setting, the length of image patch sequences
significantly surpasses that of text sequences, which poses a
challenge for jointly computing attention scores due to the
overwhelming weight of vision features [35]. To handle this
challenge, we opt for a dual-stream architecture, entailing two
separate transformer branches for fusing the input modalities
by multiple attention matrices.

As detailed in Fig. 4, we present the overall structure of
MAP, including NL layers of cross-modal encoders. In detail,
each encoder layer comprises two Self-Attention (SA)
modules and two Cross-Attention (CA) modules. Within
the SA block of each modality, the query, key, and value
vectors are linearly projected from either vision or language
features.

Within the vision-to-language CA module of the i-th
layer, the query vectors, embodying language feature T ′

i
subsequent to the SA module, align with the key or value
vectors indicative of vision feature I ′i . The application of

the Multi-Head Attention (MHA) operation in the CA block
not only enables the integration of visual information across
modalities by the language features but also ensures a similar
cross-modal interaction in the language-to-vision CA block,
mirroring its vision-to-language counterpart. The operations
of the i-th layer encoder unfold as follows:

SAvision : I ′i = MHA(Ii−1, Ii−1, Ii−1),

SAlanguage : T ′
i = MHA(Ti−1,Ti−1,Ti−1),

CAvision : Ii = MHA(I ′i ,T
′
i ,T

′
i ),

CAlanguage : Ti = MHA(T ′
i , I

′
i , I

′
i ). (2)

C. DISTRIBUTION-BASED PRE-TRAINING TASKS
To capture the uncertainty semantic in common sense,
we pre-train the MAP utilizing distribution-based VLP
strategies on large-scale unlabeled data. In the pre-training
phase, we apply PDEs after feature extractors and cross-
modal transformer, respectively. Specifically, the PDE fol-
lowing the feature extractors derives unimodal distribution
representations to execute the coarse-grained multimodal
alignment. Furthermore, situated at the end of MAP, another
PDE is entrusted with fine-grained multimodal alignment.

1) COARSE-GRAINED PRE-TRAINING TASKS
We introduce a method termed D-VLC (Distribution-
based Vision-Language Contrastive Learning) to achieve
coarse-grained multimodal alignment of unimodal repre-
sentations prior to fusion. Specifically, we employ the 2-
Wasserstein distance [36], [37], [38] to measure the distance
between multivariate Gaussian distributions. Considering
two Gaussian distributions as an example, N (µ1, 61) and
N (µ2, 62), the 2-Wasserstein distance (D2W ) between them
is:

D2W = ||µ1 − µ2||
2
2 + Tr(61 + 62 − 2(61/2

1 626
1/2
1 )1/2).

(3)

Furthermore, both61 and62 are diagonal matrices, which
implies that61/2

1 626
1/2
1 = 6162. The formula above can be

rewritten as:

D2W = ||µ1 − µ2||
2
2 + Tr((61/2

1 − 6
1/2
2 )2)

= ||µ1 − µ2||
2
2 + ||σ1 − σ2||

2
2 , (4)

where σ denotes a standard deviation vector. The distribu-
tion representations of the [CLS] tokens from the PDEs
following feature extractors represent the overall unimodal
representations. The similarity between text and an image is
calculated as:

s(I ,T ) = a · D2W (v[CLS],w[CLS]) + b , (5)

where a acts as a negative scale factor due to the inverse
proportionality of similarity to distance, and b serves as a
shift value. Within a batch containing N image-text pairs,
we identify N positive matched samples alongside N (N − 1)
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FIGURE 6. Fine-tuning our MAP on the VL downstream tasks. The ‘‘NL’’ is the layer number of the cross-modal transformer. ‘‘Rep.’’ indicates
representations.

negative samples, employing the InfoNCE loss as follows:

LI2TInfoNCE(i) = − log
exp(s(Ii,Ti)/τ )∑N
n=1 exp(s(Ii,Tn)/τ )

,

LT2IInfoNCE(i) = − log
exp(s(Ti, Ii)/τ )∑N
n=1 exp(s(Ti, In)/τ )

, (6)

where τ represents a learned temperature parameter. The
above expressions are aggregated to form the D-VLC loss
LD-VLC.

2) FINE-GRAINED PRE-TRAINING TASKS
After the cross-modal transformer, fine-grained interaction is
enabled on each token across different modalities. We pro-
pose two methods to handle the fine-grained multimodal
pre-training, which are Distribution-based Masked Language
Modeling (D-MLM) and Distribution-based Image Text
Matching (D-ITM).

D-MLM necessitates the model to predict masked words
by interpreting the text in conjunction with an image.
The conventional Masked Language Modeling task, initially
employed as a pre-training task for BERT [39], aims at
enhancing contextual modeling capabilities. In the VLP
scenario, missing words are reconstructed using information
from other features and modalities. According to the
configurations from several multimodal models [15], [35],
the model masks text tokens at a probability of 15%, with
80% of them replaced by the [MASK] token, 10% substituted
with random words, and the remaining 10% left unchanged.
To predict the masked words, we sample the points from
distribution representations, wherein D-MLM minimizes a
Cross-Entropy (CE) loss across µ vectors and other sample
point vectors:

LD-MLM =
1

K + 1
(CE(φ(µ), y) +

K∑
i=1

CE(φ(z(i)), y)), (7)

where K denotes the sample number and y represents the
label of the masked word. µ is indicative of a mean vector,
whereas z(i) stands for stochastic sample point vectors; these
vectors are subsequently channeled into the classifierφ. In the
inference phase, the final output is derived by averaging the

prediction results of all samples:

P =
1

K + 1
(φ(µ) +

K∑
i=1

φ(z(i))). (8)

D-ITM is a binary classification task that predicts whether
a pair of image-text is matched or not. In detail, we extract
the point vectors from w[CLS] distributions of multimodal
representations, and merge them to generate the results.

LD-ITM =
1

K + 1
(CE(φ(concat[vµ,wµ]), y)

+

K∑
i=1

CE(φ(concat[v(i),w(i)]), y)), (9)

where vµ and wµ represent the mean vectors of vision
and language [CLS] distributions, respectively, while v(i)

and w(i) denote the sampled points. The D-ITM classifier
is denoted by φ. The matched image-text pairs serve as
positive examples. Negative examples are generated through
the random substitution of either images or text descriptions.

3) PRE-TRAINING OBJECTIVES
We observe that random sampling process elevates the
training difficulty. Training the model solely with the afore-
mentioned losses induces a variance collapse. As all sampled
vectors converge to the optimal position, the distribution
eventually degenerates into a point, losing the ability to learn
multimodal uncertainty. Hence, we apply a regularization loss
to prevent the uncertainty level of distributions from being
lower than a specified threshold:

Lreg = max(0, γ − h(N (µ, σ 2))), (10)

where γ serves as a threshold, modulating the uncertainty
levels in the learned distributions. Additionally, the function
h(N (µ, σ 2)) quantifies the entropy of multivariate Gaussian
distributions, as further detailed below:

h(N (µ, 6)) =
1
2
log(det(2πe6)), (11)

where 6 denotes the covariance matrix, characterized as a
diagonal matrix. Furthermore, with the diagonal vector of 6
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TABLE 1. Baseline Model with complexity measured in parameters and data scale in pre-training images.

being σ 2, (11) can be reformulated as follows:

h(N (µ, σ 2)) =
1
2

d∑
i=1

log(2πe · σ 2
i )

=
d
2
(log(2π) + 1) +

d∑
i=1

log σi , (12)

where d indicates the feature dimension.
We observe that the sampling process for N (µ, σ 2)

poses a challenge in inhibiting gradients from propagating
back. To address this, by employing the reparameterization
trick [40], we sample a random variable ϵ from standard
normal distributions, rather than directly sampling from
N (µ, σ 2):

z = µ + σϵ, ϵ ∼ N (0, I ). (13)

Following (13), the output z is distributed according to the
predicted distributions derived from the PDE. Consequently,
we can decouple the calculations of the mean and standard
deviation from the sampling operation. This decoupling
allows these parameters to be trainable.

In summary, during the pre-training phase, the model exe-
cutes forward propagation thrice in a single step, conducting
the tasks D-MLM, D-ITM, and D-VLC in sequence. Thus,
the entire pre-training objective is expressed as follows:

Lpre = LD-MLM + LD-ITM + LD-VLC + αLreg , (14)

where α denotes the weight of Lreg.

D. FINE-TUNING
For applying our MAP model on the VL downstream tasks,
we employ the fine-tuning method as illustrated in Fig. 6

after the pre-training stage. To address various downstream
tasks, we construct a basic MLP layer for comprehension
tasks. Initially, we extract point vectors from the distribu-
tion representations of the [CLS] tokens. Subsequently,
we merge point representations from different modalities as
overall features to perform classification, implementing a
mean pooling operation on all sampled vectors.

IV. EXPERIMENTAL SETTINGS
A. VL UNDERSTANDING AND GENERATION TASKS
We assess the performance of MAP on the widely recognized
Vision-Language (VL) understanding and generation bench-
marks, such as video captioning, image-text retrieval, visual
question answering, visual reasoning and visual entailment.

1) VIDEO CAPTIONING
In the field of video captioning, MSRVTT [47] stands
out with its collection of 10K open-domain video clips,
each accompanied by 20 ground-truth captions. Adopting
the standard split, our dataset encompasses 6.5K training
videos and 2.9K testing videos. We benchmark our method
against earlier research using the same test split. In keeping
with common evaluation methods [29] in video captioning,
we provide detailed comparisons using well-known metrics
such as BLEU4, METEOR, ROUGE-L, and CIDEr.

2) IMAGE-TEXT RETRIEVAL
Image-Text retrieval tasks encompass two sub-tasks: Image
Retrieval (IR) task and Text Retrieval (TR). Both sub-tasks
necessitate the AI system to rank images or text based on
the understanding of image-text similarity. We utilize the
popular MSCOCO [1] and Flickr30K [48] datasets in the
experiments, specifically employing the Karpathy & Fei-Fei
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TABLE 2. Details of pre-training datasets in Table 1.

5K MSCOCO test set and the Flickr30K test set, and report
the top-K retrieval results.

3) VISUAL QUESTION ANSWERING
The objective of the task is to accurately address queries
posed in natural language, based on the visual content within
provided images. In line with prior work [35], we perform
experiments on the VQA2.0 dataset [49], treating the task as
a classification problem. For evaluation, we use accuracy as
the principal metric.

4) VISUAL REASONING
Within the scope of visual reasoning, the NLVR2 [50] task
requires the system to evaluate the consistency between
textual descriptions and their corresponding dual-image sets.
This dataset encompasses a total of 107, 292 instances, each
comprising a human-annotated English sentence paired with
two photographs. We utilize accuracy as the metric for
evaluation.

5) VISUAL ENTAILMENT
Visual Entailment (VE) is a concept that involves pairs of
images and sentences, where the premise is established by
an image, diverging from the traditional textual entailment
tasks that utilize natural language sentences. The SNLI-VE
dataset [51] aims to assess the performance of sophisticated
VE models by gauging their ability to accurately infer the
semantic congruence between the image and the associated
text. Accuracy is employed as the evaluation metric.

B. BASELINES
In our experiments for image-text tasks, our model is
compared with an array of SoTA VLP baselines, including
but not limited to ALBEF [28] and METER [35]. For a fair
comparison environment, we follow the definition of model
size [32] for classification. In detail, considering model
parameter efficiency, the model size of VLP models can be
categorized into at least 2 distinct tiers: Base, and Large. (1)
‘‘Base’’ corresponds to the VLP models with similar size
to BERT-Base [39]. (2) ‘‘Large’’ is the VLP model with
a similar size to BERT-Large. Furthermore, we summarize

TABLE 3. Evaluation on VQA2.0 of models with random initialization.
Best scores are in bold.

TABLE 4. Evaluation on MSRVTT of models with random initialization.
Best results are bolded.

all referenced VLP modes with model size and pre-training
datasets in Table 1.

For video-based tasks, we benchmark our approach against
existing SOTA methods, such as POS+VCT [57], STG-
KD [58], ORG-TRL [59], OpenBook [60], and SWIN-
BERT [29]. In the video-related experiments, we align the
same training procedure as the SOTA methods for a fair
evaluation environment. In detail, the model parameters of
SWINPDE are initialized randomly. Subsequent training
occurs on the training set and evaluation is conducted on the
test split.

C. PRE-TRAINING DATASETS
Our pre-training datasets comprise MSCOCO [1], Visual
Genome (VG) [54], SBU [55] and Conceptual Captions
(CC-3M) [56]. Moreover, Table 2 provides statistics on
the images and text contained in the pre-training datasets
of all referenced models. These datasets are assembled
from various public sources. However, some image URLs
are unavailable, potentially leading to a lower number of
images than initially estimated. During pre-processing phase,
we standardize each image into the size of 288 × 288 pixels.

D. IMPLEMENTATION DETAILS
Following a widely-used setting [35], we set the hidden
feature sizes to 768, the head number to 12 in the MHA
operation, and the layer number (NL) of the cross-modal
transformer to 6. For data processing, each image is resized
and cropped to 384 × 384, with the image patch size set to
16. In the term of text, we set the maximum token length
to 50. In the PDE module, the default activation function
(‘‘Act’’) in (1) is Softmax and the head number k is set to 6.
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TABLE 5. An overall image-text retrieval SoTA comparison with best scores in bold and second best underlined.

In all experiments, the AdamW optimizer is employed, with
the learning rate first warmed up and then linearly decayed.
In the process of extracting point vectors from distribution
representations, we set the sample number K to 5. The
experiments are conducted on 8 NVIDIA A100 GPUs.

In the pre-training phase, our MAP is pre-trained with D-
MLM, D-ITM, and D-VLC. In detail, a is set to −0.005 and
b is set to 6 in (5) of D-VLC task. For the regularization loss
of distributions in (10), we set the threshold γ to 300. In (14)
of the full loss, α is 0.01. The model undergoes 100K pre-
training steps, utilizing a batch size of 4, 096. The learning
rate of feature extractors is set to 1e−5, while the cross-modal
transformer and the PDE are set to 5e− 5.
In the fine-tuning stage, MAP is trained for 10 epochs,

with the learning rates of feature extractors, cross-modal
transformer, and PDE set to 5e − 6, 2.5e − 5, and 2e −

4 respectively. In the video-based tasks, SWINPDE is trained
on the dataset for 15 epochs, using a learning rate of 3e− 4.
Adopting a similar principal architecture to SWINBERT [29],
we utilize VidSwin as the encoder for video data and
incorporate our PDE to learn the uncertainty. After random
sampling from the distribution representations, we engage
the same multimodal transformer to decode the captions. For
each video in the dataset, random cropping is executed on all
frames, consistently targeting the same spatial coordinates to
extract a 224 × 224 region.

V. RESULTS AND ANALYSIS
A. RESULTS ON VL UNDERSTANDING AND GENERATION
TASKS
1) RESULTS FOR RANDOM INITIALIZED MAP IN VQA2.0
To assess the performance of MAP without the influence
of additional data, we compare it with existing methods
in the VQA2.0 task for vision-language understanding.
Additionally, we aim to understand the effectiveness of the
PDE. As revealed in Table 3, MAP performs better than

TABLE 6. A comparative analysis with SoTA models on tasks of visual
question answering, visual reasoning, and visual entailment is presented.
The highest scores are highlighted in bold, while the second highest
scores are underlined.

all other methods that do not utilize extra data, achieving
SOTA results on the VQA2.0 task. These findings suggest
that PDE effectively incorporates multimodal uncertainty
into the models, even in the absence of large-scale pre-
training datasets. Such outcomes lend further support to
the effectiveness and generalizability of our distribution
representation modeling approach.

2) RANDOM INITIALIZED PERFORMANCE FOR VIDEO
CAPTIONING
Table 4 offers a comprehensive comparison of performance
metrics on the MSRVTT datasets, where SWINPDE leads
among competitive models. Specifically, SWINPDE marks
a great improvement (+2.8) in BLEU4 scores over SWIN-
BERT. This outcome shows that our PDE, through the
use of distribution representation for visual information,
successfully incorporates uncertainty factors, leading to the
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FIGURE 7. Visualization of the distribution representations from pre-trained MAP. The images and related captions come from the MSCOCO
dataset. Each 2D Gaussian distribution is represented as an ellipse with 95% confidence. The labels of images and related captions are in the
legend.

FIGURE 8. An additional example with some images and captions of ‘‘chef’’, ‘‘kitchen’’, ‘‘person’’, ‘‘bike’’ and so on. The samples are from the
MSCOCO dataset.

generation of diverse captions. It further validates that our
PDE is capable of grasping uncertainty nuances, and distri-
bution representation effectively models this complexity.

3) EVALUATION ON IMAGE-TEXT RETRIEVAL
As shown in Table 5, our MAP model demonstrates
superior performance on the MSCOCO dataset, consistently
surpassing competingmodels in all evaluationmetrics. On the
Flickr30K dataset, the model consistently ranks in either
the first or second position across various benchmarks.
This is particularly noteworthy, considering that ALBEF,
a model specifically designed for retrieval tasks, falls short in
comparison to ourMAPmodel. Despite ALBEF’s large-scale
pre-training with 14M images, our MAP model surpasses
it across all metrics on the MSCOCO retrieval task. This
performance shows the effectiveness of our approach to

uncertainty modeling. On the Flickr30K dataset, our MAP
achieves the best performance or only about 0.2 point behind
the best score. This slight discrepancy could be attributed
to the relatively smaller sample size of Flickr30K compared
to other datasets, which might render the model more
susceptible to overfitting.

Shifting our focus to a comparison with PCME [4], our
MAP model maintains a good performance. Specifically,
PCME employs probabilistic distribution representations for
retrieval tasks. This superiority is further highlighted on
the MSCOCO dataset, where PCME scores 44.2/31.9 on
TR@1/IR@1, while our MAP model achieves impressive
scores of 79.3/60.9. PCME, which adopts a dual-tower
architecture for retrieval, employs a soft contrastive loss
with sampled points from distributions. In contrast, our
contrastive loss on MAP is based on the 2W distance,
a measure that directly handles the multiple distributions.
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FIGURE 9. Visualization analysis on distribution representations and point representations. The image-text pairs are from the
MSCOCO dataset.

FIGURE 10. Predictions sampled from the distribution representations.
The samples come from the VQA2.0 dataset.

From a quantization view, pre-training on unlabeled data
clearly benefits our MAP model, which outperforms PCME
in a great improvement. This comparative analysis further
proves the robust performance of our MAP model.

4) EVALUATION ON VQA2.0, NVLR2, AND SNLI-VE
As shown in Table 6, our MAP outperforms the previous
SOTA models in Group 1. For example, compared to VLMo-
Base, the MAP improves 0.53 points on the NLVR2 dev
set. Furthermore, our model achieves a performance boost of
+0.35 points on the VQA2.0 test-dev and+0.54 points on the
SNLI-VE validation set over METER. It is noteworthy that
MAP consistently outperforms SimVLM-Base, which was
trained with 1.8 billion pre-training images, across all tasks.
This further underscores the effectiveness of our approach to
uncertainty modeling.

B. QUALITATIVE RESULTS
Upon deriving the distribution representations from the PDE,
we conduct a series of 2D illustrative experiments employing
clustering algorithms in Sec. V-B1 and Sec. V-B2. Firstly,
we employ the pre-trained MAP to encode images and text
into distribution representations. After that, these illustrative
experiments are performed to uncover non-linear relation-
ships within the high-dimensional embeddings. Specifically,
we separately examine the µ and σ 2 representations in
the experiments, with each experiment evaluating over a
thousand image-text pairs.

In Sec. V-B3, we examine the impact of PDE on the results
generated byMAP in the VQA2.0 task. Specifically, we show
the results outputted by the models. For models incorporating
PDE, we perform three samplings from the predicted
distributions and subsequently convert these embedings back
into natural language.
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1) VISUALIZATION ON THE DISTRIBUTION
REPRESENTATIONS
We focus on the visualization of distribution representations
generated by the pre-trained MAP model. Fig. 7 presents the
characteristics of distribution representations, showing that
distributions with similar semantic meanings tend to cluster.
Both the geometry of the images and the textual descriptions
manifest congruent characteristics. The completeness of the
enclosing ellipses signifies a robust semantic coverage across
both visual and textual elements. For example, owing to the
part-whole relationship between images ‘‘4’’ and ‘‘8’’, the
area under ellipse ‘‘8’’ nearly subsumes that of ellipse ‘‘4’’.
The intersection of ellipses for images ‘‘0’’, ‘‘4’’, and ‘‘8’’
and their captions indicate several shared themes (such as
‘‘a young boy’’) in both visual and textual data. Additional
similar behavioral patterns of our MAP model are presented
in Fig. 8. The qualitative findings affirm that the model’s
uncertaintymodeling serves to encapsulate complex semantic
relationships and rich contextual nuances effectively.

2) COMPARATIVE VISUALIZATION OF POINT
REPRESENTATIONS AND DISTRIBUTION REPRESENTATIONS
In our study, we aim to explore the differences between the
representations generated by our proposed method and those
produced by ALBEF [28], a well-known method in the field
of multimodal representation learning. As shown in Fig. 9,
we follow the same method and visualize the features of
the same image-sentence pairs for ALBEF (4M). Compared
to ALBEF, our method takes advantage of capturing rich
semantics and diverse concepts embedded in the image-
sentence pairs. Our method effectively captures intra-modal
and inter-modal uncertainty through distribution, reflected in
the distribution’s characters within the representation space,
such as shapes and positions. This capability is crucial
for many downstream tasks like visual question answering,
requiring a nuanced understanding of both visual and textual
content.

3) CASES FOR DIVERSE PREDICTIONS
As illustrated in Fig. 10, we explore the advantages of
distribution representation, which allows for a diverse range
of prediction results. In the field of multimodal tasks,
semantic uncertainty is a prevalent challenge. In multimodal
understanding tasks such as VQA, a notable benefit of uncer-
tainty modeling is the ability to sample multiple predictions
from distribution representations, thereby yielding diversity.
Take Case 3 in Fig. 10 for instance, where MAP furnishes
multiple plausible answers (field, park, and grass), closely
mirroring real-world scenarios. On the other hand, the point
representations from MAP without PDE invariably generate
a singular answer, overlooking other possible descriptions.
Moreover, the distribution representations extend their utility
to other multimodal tasks like video captioning, enabling the
generation of diverse and fitting descriptions. This benefit
arises from the diversity created by uncertainty modeling.

TABLE 7. The effectiveness of probability distribution representations on
VL downstream tasks. For ‘‘MAP w/o PDE’’, we train a new model without
PDE to conduct the experiments. Pre-trained methods for MAP: D-MLM,
D-ITM. Pre-trained methods for MAP w/o PDE: MLM, ITM.

TABLE 8. Effect of different structures of PDE. We explore the different
designs of ‘‘Act’’ in Equation 1. Normal denotes the normalization
operation.

C. ABLATION STUDIES
1) IMPACT OF PROBABILITY DISTRIBUTION
REPRESENTATIONS ON VL TASKS
As illustrated in Table 7, applying PDE improves per-
formance in various VL downstream tasks. Regardless of
whether the model is initialized with random or pre-trained
weights, distribution representations consistently outperform
point representations in terms of VL understanding. The
superior performance of distribution representations can be
attributed to their ability to capture multimodal uncertainties,
thereby conveying a more nuanced semantic understanding.

2) DESIGN CONSIDERATIONS FOR PDE
As illustrated in Table 8, we investigate the influence of
various designs on the performance of the PDF. Upon
eliminating the sequence-level interaction in PDE, we refer
to it as ‘‘MLP only’’ (MultiLayer Perceptron), a prevalent
approach utilized in previous studies [3], [4], [9]. Our
PDE (Softmax) exceeds the performance of the ‘‘MLP
only’’ approach on VQA2.0, thereby gaining an advantage
from the sequence-level information. To explore the impact
of the structures on the outcomes, we propose several
potential activation functions: ReLU, ReLU2, Sigmoid, and
Softmax. The function ReLU indicates the activation status
of the relationship between tokens, while ReLU2 enhances
ReLU by being differentiable. We note that ‘‘MLP only’’
surpasses ReLU and ReLU2, illustrating the importance
of sequence-level interaction design. The function Sigmoid
maps input data to a range between 0 and 1, smoothly assign-
ing weights among different tokens. Lastly, the function
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TABLE 9. The effect of distribution-based pre-training tasks. We pre-train
the model on the MSCOCO dataset.

TABLE 10. The effect of different layer numbers in the cross-modal
transformer on VQA2.0.

Softmax surpasses the others in VQA2.0, indicating that
Softmax is apt for expressing the correlation between tokens.
As a result, we select Softmax as the primary activation
function.

3) EVALUATING THE ROLE OF DIFFERENT PRE-TRAINING
STRATEGIES
Table 9 shows the influence of different pre-training
tasks on the performance of VL downstream tasks. The
lack of D-MLM pre-training results in the lowest per-
formance among all pre-training strategies, underscoring
the crucial role of D-MLM in pre-training. Additionally,
both D-VLC and D-ITM aid the model in understand-
ing the semantic similarity between different modalities.
Concerning specific tasks, D-VLC yields more substantial
improvements in VQA2.0, while D-ITM proves to be
more efficacious in enhancing performance on SNLI-VE
and NLVR2.

4) ANALYZING THE EFFICACY ACROSS DIFFERENT LAYER
ARCHITECTURES OF THE CROSS-MODAL TRANSFORMER
As shown in Table 10, we explore the influence of layer count
in the VQA2.0 task, considering both random initialization
and pre-training strategies such as D-MLM, D-ITM, and
D-VLC on theMSCOCO dataset. With random initialization,
a model with six layers demonstrates optimal performance,
albeit hitting a performance plateau. Upon employing
pre-training strategies, the eight-layer model surpasses its
six-layer counterpart, indicating that pre-training aids in
overcoming the bottleneck posed by parameter limitations.
This improvement is likely attributed to large-scale data pre-
trainingmitigating the issue of over-fittingwhenmore param-
eters are involved. Additionally, the benefits of pre-training
diminish as the number of layers decreases, owing to the
model’s constrained learning capacity.

VI. CONCLUSION
In this study, we focus on quantifying the multimodal
uncertainties associated with real-world objects via prob-
abilistic modeling. Leveraging both sequence-level and
feature-level interactions, we introduce a Probability Dis-
tribution Encoder (PDE) designed to obtain distributional
representations across various modalities. To facilitate its
application, PDE seamlessly integrates into well-established
vision-language models, such as SWINPDE. Our qualitative
results highlight the advantages of employing distribution
representations over point representations, particularly in
enhancing semantic expressiveness and diverse predictions
upon learning uncertainties. To exploit large-scale unlabeled
data for multimodal uncertainty learning, we formulate
three new pre-training tasks: D-MLM, D-ITM, and D-VLC.
Moreover, we present an end-to-endMultimodal uncertainty-
Aware vision-language Pre-training model (MAP) aimed at
acquiring generic distributional representations. Empirical
evidence suggests that these distribution representations sig-
nificantly contribute to the performance in vision-language
understanding and generation tasks. Our models and methods
set new benchmarks, achieving SOTA results on multiple
datasets and tasks.
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