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ABSTRACT This paper presents novel operational laws for p, q, r−spherical fuzzy sets (p, q, r−SFSs) by
harnessing the Dombi t-norm (DTN) and t-conorm (DTCN). These laws serve as the foundation for a set
of aggregation operators (AOs) designed to consolidate p, q, r−spherical fuzzy (p, q, r−SF) information.
Additionally, amulti-criteria decision-making (MCDM)method is outlined for addressing practical decision-
making (DM) challenges. To demonstrate the application of the proposed approach, a numerical example is
offered. Furthermore, we conducted a comparative study to validate the efficacy of the suggested approach.
Finally, we discuss both the advantages and limitations of this innovative approach.

INDEX TERMS p, q, r−SFSs, aggregation operators, MDCM, decision making, optimization.

I. INTRODUCTION
DM is the cognitive process of evaluating available informa-
tion, considering goals and objectives, weighing alternatives,
and ultimately choosing a course of action while factor-
ing in personal preferences, risks, and trade-offs. It often
involves addressing cognitive biases, ethical considerations,
and, in group settings, dynamics and communication. Var-
ious decision-making models and frameworks offer struc-
tured approaches. The effectiveness of decisions depends
on their implementation and subsequent evaluation, making
decision-making a critical skill for individuals and organi-
zations, shaping outcomes, and facilitating adaptability in
complex and dynamic environments.

Zadeh [1] introduced the concept of fuzzy sets (FSs) as a
mapping from a set to the unit interval along the real number
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line. FSs are employed in DM to create a mathematical
framework that accommodates uncertainty and vagueness in
the data and preferences. This facilitates the development of
decision models capable of handling imprecise information
and navigating complex real-word scenarios with greater
flexibility and nuance. Numerous academics have employed
fuzzy sets theory and its various extensions in their research
and practical applications to address a wide array of complex
problems and scenarios. For instance, Rodrguez et al. [2]
conducted a detailed study of hesitant FSs to elucidate related
concepts and developments. Cagman et al. [3] recognized the
fundamentals of fuzzy soft set theory and its associated char-
acteristics, and introduced fuzzy soft aggregation operators
(AOs) for enhancing DM efficiency.

FSs typically focus solely on assessing an object’s mem-
bership degree (MD), inadvertently overlooking the sig-
nificance of considering the non-MD (NMD) in object
assessment. It is evident that the absence of an object’s
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MD also holds crucial importance in the evaluation process.
To address this conceptual gap, Atanassov [4] introduced
Intuitionistic Fuzzy Sets (IFSs), a framework that encom-
passes both MD and NMD for elements. Szmidt et al. [5]
introduced a correlation coefficient to measure the rela-
tionship strength between IFSs and determine the presence
of positive or negative correlation. Zhang et al. [6] intro-
duced a knowledge measure for IFSs, adhering to extended
Szmidt-Kacprzyk axioms for intuitionistic fuzzy (IF) entropy,
along with a discussion on order property conditions, sup-
ported by numerical examples demonstrating the accuracy
and superiority of this parametric model over classic models.
Zeng et al. [7] familiarized the IF ordered weighted distance
operator in response to the need for handling IF information
in various scenarios. Wang and Liu [8] extended the range of
operators for IFSs by introducing Einstein addition, multipli-
cation, exponentiation, and geometric AOs, enhancing their
applicability in situations involving IF values.

In certain practical situations, the total of MD and NMDs
may surpass the limit of one, rendering traditional IFS inad-
equate. In response to these contexts, Yager [9] introduced
Pythagorean FSs (PFSs) such that the squared sum of DM
and NMD is confined to be less than or equal to 1, offer-
ing a versatile framework to manage situations characterized
by increased complexity and uncertainty. Li and Zeng [10]
a variation of distance metrics for PFSs, aiming to assess
the dissimilarity between two Pythagorean fuzzy numbers
(PFNs). Thao and Smarandache [11] employed a proba-
bilistic framework to develop the concept of fuzzy entropy
for PFSs. Ejegwa [12] addressed the unique properties of
Pythagorean fuzzy sets, creating axiomatic definitions for
distance and similarity metrics with a focus on resolving chal-
lenges in Multiple-Attribute Group DM (MAGDM) using
interval-valued Pythagorean fuzzy (PF) data.

Cuong and Kreinovich [13] proposed picture FSs (PiFSs),
expanding upon traditional FSs and IFSs. Following this,
multiple operations on PiFSs and their corresponding prop-
erties were investigated. He and Wang [14] evaluated
New Energy Vehicles (NEVs) by analyzing online reviews,
employing web scraping to gather reviews, conducting senti-
ment analysis, and introducing an information transformation
mechanism to convert unstructured data into picture fuzzy
numbers. Verma and Rohtagi [15] introduced some sim-
ilarity measures between two PiFSs. Pham et al. [16]
introduced an intellectual scientific decision support sys-
tem based on rule-based methods using picture fuzzy sets.
Zhao et al. [17] used PiFSs to enable more efficient and
accurate assessments, introducing a Failure Mode and Effect
Analysis approach with three essential process enhance-
ments. Kahraman et al. [18] introduced three-dimensional
spherical fuzzy sets (SFS) with arithmetic operations and
aggregation operators. Haseli and Ghoushchi [19] expanded
the application of the Base-Criterion Method (BCM) to
decision problems in intricate and uncertain settings, incorpo-
rating Three-Dimensional SFSs. Akram et al. [20] proposed
a series of AOs for complex spherical fuzzy (SF) data.

Mahmood et al. [21] introduced the notions of SFS and T-SFS
as a comprehensive extension encompassing FS, IFS, PFS,
and PiFSs.

The previously discussed studies are characterized by spe-
cific conditions; for instance, IFSs are defined under the
condition that the sum of MD (ϕ) and NMD (ψ) should
be less than or equal to 1, i.e., ϕ + ψ ⪯ 1. PFSs require
ϕ2 + ψ2

⪯ 1, similarly, PiFSs adhere ϕ + η + ψ⪯1, and
SFSs follow ϕ2 + η2 + ψ2

⪯ 1. Also, T-SFSs are bound
by the condition that the t th power of ϕ, η, and ψ should be
less than or equal to 1 i.e., ϕt + ηt + ψ t

⪯ 1. However, in
T-spherical fuzzy environments, decision-makers are obli-
gated to set the same value of t for all MD, neutral
degree (NED), and NMDs, which can influence the over-
all decision-making process. To address these limitations,
p, q, r− spherical fuzzy sets have been introduced. In the
realm of p, q, r− SF environments, decision-makers have the
flexibility to set different values for MD, NED, and NMD,
tailoring their choices to the specific context.

In fuzzy logic applications such as decision-making, con-
trol systems, pattern recognition, information fusion, and
medical diagnostics, Dombi aggregation operators are used.
They are especially beneficial when the information is vague
or unknown. The operators aid in the combination and pro-
cessing of fuzzy data for more accurate outcomes in a variety
of disciplines.

A. DOMBI AGGREGATION OPERATORS
The Dombi t-norm (DTN) and Dombi t-conorm (DTCN)
offer a way to control the degree of overlap and separation
between fuzzy sets, making them highly versatile tools for
modelling and analyzing uncertain or imprecise data. One
of the distinctive features of Dombi operations is the intro-
duction of a parameter ‘‘λ ’’ which allows for fine-tuning
the behaviour of the aggregation process. By adjusting this
parameter, decision-makers can control the degree of empha-
sis on the most prominent values within the set, thereby
influencing the outcome. Numerous researchers have applied
these operations and established various aggregation opera-
tors. For example, Seikh andMandal [22] devised operational
laws for IF Numbers (IFNs) using DTN and DTCN, initiating
a group of IF Dombi operators and an algorithm for MADM
problems in an IF context. Jana et al. [23] used Dombi
operations and initiated Pythagorean fuzzy (PF) AOs, effec-
tively addressing DM challenges within the PF context. Seikh
and Mandal [24] utilized Dombi operation and proposed a
series of AOs for interval-values Fermatean FSs. These oper-
ators demonstrate proficiency inmanaging extensive data sets
and capturing interrelationships among decision attributes.
Ali and Mahmood [25] introduced a set of complex q-rung
orthopair fuzzy Dombi operators and examined their key
properties, enabling the development of a MADM technique,
which was illustrated with practical examples to evaluate
the operators’ dominance and consistency. Jana et al. [26]
introduced a set of picture fuzzy Dombi operators, includ-
ing weighted average, order weighted average, and weighted
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geometric operators. Ashraf et al. [27] established operational
laws based on DTN and DTCN and introduced a set of SF
Dombi AOs, examining their properties. Gurmani et al. [28]
introduced linguistic T-SFSs, defined Dombi operations for
linguistic T-spherical fuzzy numbers and developed AOs
based on Dombi operations. For further details about Dombi
operators, please refer to studies [29], [30], [31], [32],
[33], and [34].

The preceding conversation underscores the notable
absence of Dombi aggregation operators tailored specifically
for the p, q, r−spherical fuzzy (p, q, r− SF) context. This
indicates an area where further research and development are
needed to expand the applicability of Dombi operators to this
specific framework.

B. MOTIVATIONS
Dombi aggregation operators offer numerous advantages,
including their flexibility to adapt to different decision con-
texts and their adeptness at handling uncertain and imprecise
information. They strike a balance between conservatism
and optimism, accommodating varying preferences and risk
tolerances. Widely applicable, they find use in fields like
multi-criteria decision analysis, data mining, and decision
support systems, providing tailored solutions and robust per-
formance even in the presence of outliers and data variations.
Dombi operators yield interpretable results and can handle
both quantitative and qualitative data, serving as a bridge
between numerical and linguistic information. Their versa-
tility and ability to be customized make them valuable tools
for addressing a broad spectrum of real-world problems,
contributing to more informed and effective decision-making
processes.
p, q−spherical fuzzy sets offer a robust and versatile

approach to representing uncertainty, encompassing both
membership neutral and non-membership degrees, thus pro-
viding a more comprehensive modelling of ambiguity and
imprecision. Their flexibility allows them to handle diverse
data types, making them adaptable for various applications
where uncertainty prevails. The precision in modelling uncer-
tainty makes them particularly well-suited for capturing
and representing ambiguous or vague data accurately. Their
robustness against outliers and data variations enhances their
reliability in practical applications. Additionally, p, q, r−
spherical fuzzy sets promote balanced DM by considering
both MD and NMDs,leading to more nuanced and rational
outcomes. The customizability of parameters p and q allows
for tailored solutions to specific problem characteristics,
thus accommodating different levels of risk tolerance and
uncertainty. Their interpretability, compatibility with quanti-
tative and qualitative data, and effectiveness in multi-criteria
decision-making highlight their value in addressing complex
and uncertain real-world challenges, offering support for
decision-making and data analysis across various domains.

Leveraging the strengths of Dombi operations and harness-
ing the inherent flexibility of p, q, r−spherical fuzzy sets, this

research introduces a novel array of aggregation operators
tailored to the aggregation of p, q, r−spherical fuzzy data.
These operators are designed to capitalize on the advan-
tages of Dombi operations while accommodating the nuanced
modelling capabilities of p, q, r−spherical fuzzy sets, provid-
ing a robust and versatile framework for the aggregation and
synthesis of complex p, q−spherical fuzzy information.

C. CONTRIBUTIONS
The contribution of the proposed study is as follows:
1. This new framework of aggregation operators provides

decision-makers with a powerful tool for synthesizing
complex and uncertain p, q, r−spherical fuzzy infor-
mation. It enhances the decision-making process by
accommodating a broader range of data types, prefer-
ences, and risk tolerances, thus contributing to being
more informed and adaptable.

2. The concepts discussed have applications across a range
of disciplines, including multi-criteria decision analy-
sis, data mining, decision support systems, and more.
This cross-disciplinary relevance makes the contribu-
tions valuable not only for researchers in the field of
aggregation theory but also for practitioners who seek
effective solutions for real-world problems in various
domains.

3. The introduced aggregation operators offer parametric
properties that enhance the flexibility of the decision-
making process. These parameters (p, q, r, and λ ) can
be fine-tuned by decision-makers to align with the spe-
cific requirements and characteristics of the situation,
allowing for a more customized and adaptable approach
to DM.
The article is structured as follows: In section II,
we introduce fundamental definitions and concepts per-
tinent to the proposed work. Section III presents novel
operational laws, AOs, and their respective properties.
Section IV outlines a new MCDM approach built upon
the proposed operators. A numerical example illus-
trating the proposed approach is given in section V.
Finally, in section VI, we offer conclusions for the
proposed work. The layout of the article is depicted in
Figure 1.

FIGURE 1. Paper layout.
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II. PRELIMINARIES
Definition 1 [4]: For any element h ∈ H , we can express

the intuitionistic fuzzy set J as:

J =
{〈
h, ϕJ(h), ψJ(h)

〉
|h ∈ H

}
(1)

where ϕJ(h), representing the MD of h in J, while ψJ(h)
representing the NMD of h in J, under the condition that
ϕJ(h) + ψJ(h) ⪯ 1.
Definition 2 [9]: A PFS P in the universe of discourse h

is defined as follows:

P = {⟨h, ϕP(h), ψP(h)⟩ |h ∈ H } (2)

where, ϕP(h): H −→ [0, 1] represents the level of MD
and ψP(h) : H −→ [0, 1] represents the level NMD of
component h in set H and set P respectively, under the given
condition that (ϕP(h))2 + (ψP(h))2 ⪯ 1.

A. PICTURE FUZZY SETS
Definition 3 [13]: A PiFS B on a universe H can be

described as:

B = {⟨h, ϕB(h), ηB(h), ψB(h)⟩ |h ∈ H } (3)

where ϕB(h), ηB(h), andψB(h) are theMD, NED, and NMD
of an element h inB respectively such that ϕB, ηB, ψB fulfil
the condition ϕB(h) + ηB(h) + ψB(h) ⪯ 1.

B. SPHERICAL FUZZY SETS
Definition 4 [18]:A SPSL over the universe of discourse

H is defined as follows:

L = {⟨h, ϕL(h), ηL(h), ψL(h)⟩ |h ∈ H } (4)

where ϕL(h), ηL(h), andψL(h) are the MD, NED, and NMD
of an element h in L respectively such that ϕL(h), ηL(h), and
ψL(h) fulfil the condition (ϕL(h))2+ (ηL(h))2+ (ψL(h))2 ⪯

1.

C. T-SPHERICAL FUZZY SETS
Definition 5 [21]: A T− SFS over a given universe of

discourse H takes the form of:

T = {⟨h, ϕT(h), ηT(h), ψT(h)⟩ |h ∈ H } (5)

where ϕT(h), ηT(h), and ψT(h) are the MD, NED, and NMD
of an element h in S respectively such that ϕT(h), ηT(h), and
ψT(h) satisfy the condition (ϕT(h))t+(ηT(h))t+(ψT(h))t≤1
for all t≽1.

D. SCORE AND ACCURACY FUNCTIONS
Definition 6 [21]: Consider T = (ϕ, η,ψ) as a T−SFS.

The score value of T is defined as follows:

Sc (T) = ϕt + ηt − ψ t (6)

Furthermore, the accuracy function can be expressed as:

AC (T) = ϕt + ηt + ψ t (7)

The T−SFN with a higher score is regarded as superior.
In instances where the scores of two T−SFNs are identical,
their ranking is determined by their accuracy values, with the
number possessing a greater accuracy value deemed superior.
If the accuracy values of two T−SFNs are still equal, both
numbers are considered equivalent.

E. p, q, r− SPHERICAL FUZZY SETS
Definition 7 [35]: Let H be a finite set. A p, q, r−SFS S

over a component h ∈ H is defined as follows:

S = {⟨h, ϕS(h), ηS(h), ψS(h)⟩ |h ∈ H } (8)

where ϕS(h), ηS(h), and ψS(h) are the MD, NED, and NMD
of an element h in S respectively such that ϕT(h), ηT(h), and
ψT(h) satisfy the condition (ϕS(h))p+(ηS(h))r+(ψS(h))q≤1
for all p, q≽1.
Remark 1: In the condition ϕS(h))p + (ηS(h))r +

(ψS(h))q≤1, where p, q ≻ 0 with the relationship p≺q, p = q
or p ≻ q, and r is the least common multiple of p and q,
represented as: r = LCM (p, q).
Definition 8 [35]: Consider any three p, q, r−SFNs S =

⟨ϕ, η,ψ⟩ , S1 = ⟨ϕ1, η1, ψ1⟩ S2 = ⟨ϕ2, η2, ψ2⟩ and ζ > 0,
then

1.

S1⊕S2 =

(
p
√
(ϕ1)

p
+ (ϕ2)

p
− (ϕ1)

p(ϕ2)
p,

η1η2, ψ1ψ2

)
,

2.

S1⊗S2 =

(
ϕ1ϕ2,

r
√
(η1)

r
+ (η2)

r
− (η1)

r (η2)
r ,

q
√
(ψ1)

q
+ (ψ2)

q
− (ψ1)

q(ψ2)
q

)
,

3.

ζS =

(
p
√
1 − (1 − (ϕ)p)ζ , ηζ , ψζ

)
,

4.

Sζ =

(
ϕζ ,

r
√
1 − (1 − (η)r )ζ ,

q
√
1 − (1 − (ψ)q)ζ

)
.

Definition 9 [35]: Let S = ⟨ϕ, η,ψ ⟩ be a p, q, r−SFNs,
the score and accuracy functions are defined as:

Sc =
1
3

(
2 + ϕp − ηr − ψq) (9)

where Sc ∈ [0, 1]. The accuracy function can be defined as:

Ac = ϕp + ηq (10)

where Ac ∈ [0, 1] .
Definition 10 [35]: Let S1 = ⟨ϕ1, η1, ψ1⟩ and

S2 = ⟨ϕ2, η2, ψ2⟩ represents any pair of p, q, r− SFNs, the
comparison rules are defined as:
1. If Sc (S1) > Sc (S2) , then S1 > S2,
2. If Sc (S1) = Sc (S2), and Ac (S1) > Ac (S2), S1 > S2;
3. If Sc (S1) = Sc (S2), and Ac (S1) = Ac (S2), then

S1 = S2.
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F. DOMBI T-NORM AND T-CONORM
Definition 11 [36]: Assuming that (m, n) belongs to the

real number interval (0, 1)× (0, 1) with γ≥1, then DTN and
DTCN are defined as:

T (m, n) =
1

1 +

{(
1−m
m

)γ
+

(
1−n
n

)} 1
γ

(11)

T∗ (m, n) =
1

1 +

{(
m

1−m

)γ
+

(
n

1−n

)} 1
γ

(12)

III. PROPOSED AGGREGATION OPERATORS
A. p, q, r− SFDWA OPERATOR
Definition 12: Let Sk = ⟨ϕk , ηk , ψk ⟩ (k = 1, 2, . . . , l)

be a group of p, q, r−SFNs, then the p, q, r−SF Dombi
weighted averaging (p, q, r − SFDWA) operator is defined
as:

p, q, r − SFDWA (S1, S2, . . . , Sl) =

∏l

k=1
ξkSk (13)

where ξ = (ξ1, ξ2, . . . , ξl)
T is weight vector with ξk ∈ [0, 1]

and
∑l

k=1 ξk = 1.
Theorem 1: Let Sk = ⟨ϕk , ηk , ψk ⟩ be a group of p, q, r−

SFNs, the p, q, r−SFWA operator’s structure is explained
using Dombi operations with γ > 0.

p, q, r − SFDWA (S1, S2, . . . , Sl)

=



p

√√√√√1 −
1

1 +

{∏l
k=1 ξk

(
1 −

1
(ϕk )

p

)pγ } 1
γ

,

1

r

√
1 +

{∏l
k=1 ξk

(
1 −

1
(ηk )

r

)rγ } 1
γ

,

1

q

√
1 +

{∏l
k=1 ξk

(
1 −

1
(ψk )

q

)qγ } 1
γ


(14)

Proof: We employed mathematical induction to establish
the validity of Theorem 1.
Step 1: For l = 2, we have

p, q, r − SFDWA (S1, S2)

=



p

√√√√√1 −
1

1 +

{
ξ1

(
1 −

1
(ϕ1)

p

)pγ
× ξ2

(
1 −

1
(ϕ2)

p

)pγ } 1
γ

,

1

r

√
1 +

{
ξ1

(
1 −

1
(η1)

r

)rγ
× ξ2

(
1 −

1
(η2)

r

)rγ } 1
γ

,

1

q

√
1 +

{
ξ1

(
1 −

1
(ψ1)

q

)qγ
× ξ2

(
1 −

1
(ψ2)

q

)qγ } 1
γ



=



p

√√√√√1 −
1

1 +

{∏2
k=1 ξk

(
1 −

1
(ϕk )

p

)pγ } 1
γ

,

1

r

√
1 +

{∏2
k=2 ξk

(
1 −

1
(ηk )

r

)rγ } 1
γ

,

1

q

√
1 +

{∏2
k=1 ξk

(
1 −

1
(ψk )

q

)qγ } 1
γ


Hence, Equation (14) is valid for l = 2.
Step 2. Suppose that Equation (14) is valid for l = n, i.e.,

p, q, r − SFDWA (S1, S2, . . . , Sl)

=



P

√
1 −

1

1+
{∏n

k=1 ξk

(
1− 1

(ϕk )
p

)pγ } 1
γ

,

1

r

√
1 +

{∏n
k=1 ξk

(
1 −

1
(ηk )

r

)rγ } 1
γ

,

1

q

√
1 +

{∏n
k=1 ξk

(
1 −

1
(ψk )

q

)qγ } 1
γ


(15)

When l = n+ 1, we have

p

√√√√√1 −
1

1 +

{∏n
k=1 ξk

(
1 −

1
(ϕk )

p

)pγ } 1
γ

,

1

r

√
1 +

{∏n
k=1 ξk

(
1 −

1
(ηk )

r

)rγ } 1
γ

,

1

q

√
1 +

{∏n
k=1 ξk

(
1 −

1
(ψk )

q

)qγ } 1
γ



⊕



p

√√√√√1 −
1

1 +

{
ξk+1

(
1 −

1
(ϕk+1)

p

)pγ } 1
γ

,

1

r

√
1 +

{
ξk+1

(
1 −

1
(ηk+1)

r

)rγ } 1
γ

.

1

q

√
1 +

{
ξk+1

(
1 −

1
(ψk+1)

q

)qγ } 1
γ



=



p

√√√√√1 −
1

1 +

{∏n+1
k=1 ξk

(
1 −

1
(ϕk )

p

)pγ } 1
γ

,

1

r

√
1 +

{∏n+1
k=1 ξk

(
1 −

1
(ηk )

r

)rγ } 1
γ

,

1

q

√
1 +

{∏n+1
k=1 ξk

(
1 −

1
(ψk )

q

)qγ } 1
γ


Thus, Equation (14) is true for l = n+ 1.
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Example 1: Let S1 = ⟨0.10, 0.60, 0.40⟩, S2 =

⟨0.20, 0.50, 0.40⟩, S3 = ⟨0.40, 0.50, 0.50⟩ , S4 =

⟨0.30, 0.50, 0.60⟩ be any four p, q, r−SFNs and ξ = (0.20,
0.30, 0.10, 0.40)T be theweight vector of these p, q, r−SFNs.
For γ = 2 and p = q = r = 1, the aggregated values can be
calculated as:

p

√√√√√1 −
1

1 +

{∏l
k=1 ξk

(
1 −

1
(ϕk )

p

)pγ } 1
γ

=

1

√√√√√√√√√
1 −

1

1 +

 (0.2)
(
1−

1
(0.1)1

)2
×(0.3)

(
1−

1
(0.2)1

)2
×(0.1)

(
1−

1
(0.4)1

)2
×(0.4)

(
1−

1
(0.3)1

)2


1
2

= 1

√
1−

1

{1+(0.2)(81)×(0.3)(16)×(0.1)(2.25)×(0.4)(5.4442)}
1
2

= 1

√
1−

1

1+{38.1006}
1
2

=
1

√
1−

1
7.1725

= 0.8606.

1

r

√
1 + +

{∏l
k=1 ξk

(
1 −

1
(ϕk )

r

)rγ } 1
γ

=
1

1

√√√√√√1 +

 (0.2)
(
1 −

1
(0.6)1

)2
× (0.3)

(
1 −

1
(0.5)1

)2
×(0.1)

(
1 −

1
(0.5)1

)2
× (0.4)

(
1 −

1
(0.5)1

)2


1
2

=
1

3

√
1 +

{
(0.2)(0.4443) × (0.3)(1)

×(0.1)(1) × (0.4)(1)

} 1
2

=
1

1
√
1 + {0.0888 × 0.3 × 0.1 × 0.4}

1
2

=
1

1
√
1.0326

= 0.9684.

1

q

√
1 + +

{∏l
k=1 ξk

(
1 −

1
(ϕk )

q

)qγ } 1
γ

=
1

1

√√√√√√1 +

 (0.2)
(
1 −

1
(0.4)1

)2
× (0.3)

(
1 −

1
(0.4)1

)2
×(0.1)

(
1 −

1
(0.5)1

)2
× (0.4)

(
1 −

1
(0.6)1

)2


1
2

1
1
√
1+{(0.2)(2.25)×(0.3)(2.25)×(0.1)(1)×(0.4)(0.4443)}

1
2

=
1

1
√
1 + {0.0053}

1
2

=0.9321.

p, q, r−SFDWA (S1, S2, S3, S4)= (0.8606, 0.9604, 0.9321).

B. p, q, r− SFDOWA OPERATOR
Definition 13: Let Sk = ⟨ϕk , ηk , ψk ⟩ be a group of

p, q, r−SFNs, then the p, q, r−SF Dombi ordered weighted
averaging (p, q, r − SFDOWA) operator is defined as:

p, q, r − SFDWA (S1, S2, . . . , Sl) =

∏l

k=1
ξkSδ(k)

(16)

where ξ = (ξ1, ξ2, . . . , ξl)
T is weight vector with ξk ∈

[0, 1] and
∑l

k=1 ξk = 1. The highest weight among them
is assigned to the k th element represented by δ(k). This con-
figuration establishes a complete order relationship, in which
δ(1) holds greater precedence over δ(2), and so on, ultimately
leading to δ(n).
Theorem 2: Assume that Sk = ⟨ϕk , ηk , ψk ⟩ be a group of

p, q, r− SFNs. For γ > 0 , the aggregated value obtained by
p, q, r−SFDOWA is also a p, q, r− SFNs, and can be defined
as:

p, q, r − SFDOWA (S1, S2, . . . , Sl)

=



p

√√√√√√√√
1 −

1

1 +

{∏l
k=1 ξk

(
1 −

1(
ϕδ(k)

)p
)pγ} 1

γ

,

1

r

√√√√√√1 +

{∏l
k=1 ξk

(
1 −

1(
ηδ(k)

)r
)rγ} 1

γ

,

1

q

√√√√√√1 +

{∏l
k=1 ξk

(
1 −

1(
ψδ(k)

)q
)qγ} 1

γ


(17)

Example 2: Let S1 = ⟨0.10, 0.60, 0.40⟩, S2 = ⟨0.20, 0.50,
0.40⟩, S3 = ⟨0.40, 0.50, 0.50⟩ , S4 = ⟨0.30, 0.50, 0.60⟩
be any four p, q, r−SFNs and ξ = (0.15, 0.20, 0.40, 0.25)T

be the weight vector of these p, q, r−SFNs. For γ = 2 and
p = q = r = 1, then the aggregated value can calculate as
follows:

In the initial phase, we will compute the score values for
these using the equation (9) in the following manner:

Sc (S1) =
1
3

(
2 + (0.10)1 − (0.60)1 − (0.40)1

)
= 0.3666,

Sc (S2) =
1
3

(
2 + (0.20)1 − (0.50)1 − (0.40)1

)
= 0.4333,

Sc (S3) =
1
3

(
2 + (0.40)1 − (0.50)1 − (0.50)1

)
= 0.4666,

Sc (S4) =
1
3

(
2 + (0.30)1 − (0.50)1 − (0.60)1

)
= 0.4000.

Order these p, q, r−spherical fuzzy numbers based on their
respective score values in the following manner:

VOLUME 12, 2024 10371



M. Akhtar et al.: Dombi Aggregation Operators for p, q, r−Spherical Fuzzy Sets

Sc (S3) > Sc (S2) > Sc (S4) > Sc (S1). Thus, the
order of the p, q, r−spherical fuzzy numbers according is
Sδ(1) = (0.40, 0.50, 0.50), Sδ(2) = (0.20, 0.50, 0.40),
Sδ(3) = (0.30, 0.50, 0.60), and Sδ(4) = (0.10, 0.60,
0.40).

p, q, r − SFDOWA (S1, S2, . . . , Sl)

=



p

√√√√√1 −
1

1 +

{∏l
k=1 ξk

(
1 −

1
(ϕδ(k))

p

)pγ } 1
γ

,

1

r

√
1 +

{∑l
k=1 ξk

(
1 −

1
(ηδ(k))

r

)rγ } 1
γ

,

1

q

√
1 +

{∑l
k=1 ξk

(
1 −

1
(ψδ(k))

q

)qγ } 1
γ



p

√√√√√1 −
1

1 +

{∏l
k=1 ξk

(
1 −

1
(ϕδ(k))

p

)pγ } 1
γ

=

1

√√√√√√√√√
1 −

1

1 +


(0.15)

(
1−

1
(0.4)1

)2
×(0.2)

(
1−

1
(0.2)1

)2
×(0.4)

(
1−

1
(0.3)1

)2
×(0.25)

(
1−

1
(0.1)1

)2


1
2

= 1

√
1 −

1

1 + {0.3375 × 3.2 × 2.17768 × 20.25}
1
2

= 2

√
1 −

1

1 + {47.6258}
1
2

=
1

√
1 −

1
1 + 6.9011

=
2

√
1 −

1
7.9011

= 0.8735.

1

r

√
1 +

{∑l
k=1 ξk

(
1 −

1
(ηδ(k))

r

)rγ } 1
γ

=
1

1

√√√√√√1 +


0.15

(
1 −

1
(0.5)1

)2
× 0.2

(
1 −

1
(0.5)1

)2
×0.4

(
1 −

1
(0.5)1

)2
× 0.25

(
1 −

1
(0.6)1

)2


1
2

=
1

1
√
1 + {0.15 × 0.2 × 0.4 × 0.1110}

1
2

=
1

1
√
1 + 0.01

= 0.9900.

1

q

√
1 +

{∑l
k=1 ξk

(
1 −

1
(ηδ(k))

q

)qγ } 1
γ

=
1

1

√√√√√√1 +


0.15

(
1 −

1
(0.5)1

)2
× 0.2

(
1 −

1
(0.4)1

)2
×0.4

(
1 −

1
(0.6)1

)2
× 0.2

(
1 −

1
(0.4)1

)2


1
2

=
1

1
√
1 + {0.15 × 0.45 × 0.1777 × 0.45}

1
2

=
1

1
√
1 + {0.0053}

1
2

=
1

1
√
1 + 0.0728

= 0.9321.

p, q, r−SFDOWA (S1, S2, S3, S4)

= (0.8735, 0.9900, 0.9321).

C. p, q, r− SFDWG OPERATOR
Definition 14: Let Sk = ⟨ϕk , ηk , ψk ⟩ (k = 1, 2, . . . , l) be

a collection of p, q, r−SFNs, then the p, q, r− SF Dombi
weighted geometric(p, q, r − SFDWG) operator is defined
as:

p, q, r − SFDWG (S1, S2, . . . , Sl) =

∏l

k=1
(Sl)

ξl

(18)

where (ξ1, ξ2, . . . , ξl)T is weight vector with ξk ∈ [0, 1] and∑l
k=1 ξk = 1.
Theorem 3: Let Sk = ⟨ϕk , ηk , ψk ⟩ (k = 1, 2, . . . , l) be a

collection of p, q, r−SFNs, then the p, q, r− SFWG operator
structure is explained using Dombi operation with γ > 0.

p, q, r − SFDWG (S1, S2, . . . , Sl)

=



1

p

√√√√√1 +

{∏l
k=1 ξk

(
1 −

1
(ϕk)

p

)pγ} 1
γ

,

r

√√√√√√√1 −
1

1 +

{∏l
k=1 ξk

(
1 −

1
(ηk)

r

)rγ} 1
γ

,

q

√√√√√√1 −
1

1+

{∏l
k=1 ξk

(
1−

1
(ψk)

p

)qγ} 1
γ



(19)

Proof: Mathematical induction was employed to estab-
lish the proof of Theorem 3.
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Step 1: For l = 2, we have

p, q, r − SFDWG (S1, S2)

=



1

p

√
1 +

{
ξ1

(
1 −

1
(ϕ1)

r

)pγ
× ξ2

(
1 −

1
(ϕ2)

r

)pγ } 1
γ

,

r

√√√√√1 −
1

1 +

{
ξ1

(
1 −

1
(η1)

r

)rγ
× ξ2

(
1 −

1
( η2)

r

)rγ } 1
γ

,

q

√√√√√1 −
1

1 +

{
ξ1

(
1 −

1
(ψ1)

r

)qγ
× ξ2

(
1 −

1
( ψ2)

r

)qγ } 1
γ



=



1

p

√
1 +

{∏2
k=1 ξk

(
1 −

1
(ϕk )

p

)pγ } 1
γ

,

r

√√√√√1 −
1

1 +

{∏2
k=1 ξk

(
1 −

1
(ηk )

r

)rγ } 1
γ

,

q

√√√√√1 −
1

1 +

{∏2
k=1 ξk

(
1 −

1
(ψk )

q

)qγ } 1
γ


Hence, Equation (19) holds true when l equals 2.
Step 3. Suppose that Equation (19) holds true for l = n,

i.e.,

p, q, r − SFDWG (S1, S2, . . . , Sn)

=



1

p

√
1 +

{∏n
k=1 ξk

(
1 −

1
(ϕk )

p

)pγ } 1
γ

,

r

√√√√√1 −
1

1 +

{∏n
k=1 ξk

(
1 −

1
(ηk )

r

)rγ } 1
γ

,

q

√√√√√1 −
1

1 +

{∏n
k=1 ξk

(
1 −

1
(ψk )

q

)qγ } 1
γ


Step 3:When l = n+ 1, we have

p, q, r − SFDWG (S1, S2, . . . , Sn)⊗(Sn+1)
ξn+1

=



1

p

√
1 +

{∏n
k=1 ξk

(
1 −

1
(ϕk )

p

)pγ } 1
γ

,

r

√√√√√1 −
1

1 +

{∏n
k=1 ξk

(
1 −

1
(ηk )

r

)rγ } 1
γ

,

q

√√√√√1 −
1

1 +

{∏n
k=1 ξk

(
1 −

1
(ψk )

q

)qγ } 1
γ



⊗



1

p

√
1 +

{
ξk+1

(
1 −

1
(ϕk+1)

p

)pγ } 1
γ

,

r

√√√√√1 −
1

1 +

{
ξk+1

(
1 −

1
(ηk+1)

r

)rγ } 1
γ

,

q

√√√√√1 −
1

1 +

{
ξk+1

(
1 −

1
(ψk+1)

q

)qγ } 1
γ



=



1

p

√
1+
{∏n

k=1 ξk

(
1− 1

(ϕk )
p

)pγ } 1
γ

,

r

√
1 −

1

1+
{∏n

k=1 ξk

(
1− 1

(ηk )
r

)rγ } 1
γ

,

q

√
1 −

1

1+
{∏n

k=1 ξk

(
1− 1

(ψk )
q

)qγ } 1
γ


.

Thus, Equation (19) is valid for l = n + 1. Therefore,
Equation (19) for all positive integers.
Example 3: Let S1 = ⟨0.80, 0.10, 0.10⟩, S2 = ⟨0.70, 0.20,

0.30⟩, S3 = ⟨0.90, 0.20, 0.20⟩ , S4 = ⟨0.50, 0.30, 0.40⟩ be
any four p, q, r−SFNs and ξ = (0.25, 0.5, 0.10, 0.15)T be
the weight vector of these p, q, r−SFNs.We have γ = 2. p =

q = r = 1. The aggregated value by using p, q, r−SFDWG
operator can be calculated as follows:

1

p

√
1 + +

{∏l
k=1 ξk

(
1 −

1
(ϕk )

p

)pγ } 1
γ

=
1

1

√√√√√√1 +

 (0.25)
(
1 −

1
(0.8)1

)2
× (0.5)

(
1 −

1
(0.7)1

)2
×(0.10)

(
1 −

1
(0.9)1

)2
× (0.15)

(
1 −

1
(0.5)1

)2


1
2

=
1

1
√
1 + {(0.0156) × (0.0918) × (0.00123) × (0.15)}

1
2

=
1

1
√
1 + {(0.0000002)}

1
2

=
1

1
√
1 + 0.0004

= 0.9996.

r

√√√√√1 −
1

1 +

{∏l
k=1 ξk

(
1 −

1
(ϕk )

r

)rγ } 1
γ

=

1

√√√√√√√√√
1−

1

1+

 (0.25)
(
1−

1
(0.1)1

)2
×(0.5)

(
1−

1
(0.2)1

)2
×(0.10)

(
1−

1
(0.2)1

)2
×(0.15)

(
1−

1
(0.3)1

)2


1
2

= 1

√
1 −

1

1 + {20.25 × 8 × 1.6 × 0.8166}
1
2

=
1

√
1 −

1
1 + 211.6627
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=
1

√
1 −

1
212.6627

= 0.9953.

q

√√√√√1 −
1

1 +

{∏l
k=1 ξk

(
1 −

1
(ϕk )

q

)qγ } 1
γ

=

1

√√√√√√√√√
1 −

1

1 +

 (0.25)
(
1−

1
(0.1)1

)2
×(0.5)

(
1−

1
(0.3)1

)2
×(0.10)

(
1−

1
(0.2)1

)2
×(0.15)

(
1−

1
(0.4)1

)2


1
2

= 1

√
1 −

1

1 + {20.25 × 2.7221 × 1.6 × 0.3375}
1
2

= 1

√
1 −

1

1 + {29.7661}
1
2

1

√
1 −

1
1 + 5.4558

= 0.8452.

Thus, p, q, r−SFDWG(S1, S2, S3, S4)

= (0.9996, 0.9953, 0.8452).

D. p, q, r− SFDOWG OPERATOR
Definition 15: For any set p, q, r−SFNs represented as

Sk = ⟨ϕk , ηk , ψk ⟩ and a weighted vector ξ =

(ξ1, ξ2, . . . , ξl)
T with each element ξk ∈ [0, 1] such that the

sum of all ξk for k from 1 to n, an p, q− SFDOWG operator
can be define or this collection of p, q−SFNs. This operator
is a mapping denotes as p, q−SFDOWG is expressed as
follows:

p, q, r − SFDOWG (S1, S2, . . . , Sl) =

∏l

k=1

(
Sδ(l)

)ξl
(20)

The highest weight among them is assigned to the l th element
represented by δ(l). This configuration establishes a complete
order relationship, in which δ(1) holds greater precedence
over δ(2), and so on, ultimately leading to δ(n).
Theorem 4: Let Sk = ⟨ϕk , ηk , ψk ⟩ (k = 1, 2, . . . , l) be

a collection of p, q, r−SFNs and γ > 0, then the aggre-
gated value obtained by p, q, r−SFOWG operator is also
p, q, r−SFN and can written as follows:

p, q, r − SFDOWG
(
Sδ(1), Sδ(2), . . . , Sδ(l)

)

=



1

p

√
1 +

{∏l
k=1 ξk

(
1 −

1
(ϕδ(k))

p

)pγ } 1
γ

,

r

√√√√√1 −
1

1 +

{∏l
k=1 ξk

(
1 −

1
(ηδ(k))

r

)rγ } 1
γ

,

q

√√√√√√1 −
1

1 +

{∏l
k=1 ξk

(
1 −

1
(ψδ(k))

q

)ψγ} 1
γ


(21)

Example 4: Let S1 = ⟨0.40, 0.50, 0.50⟩, S2 = ⟨0.20, 0.60,
0.30⟩, S3 = ⟨0.40, 0.30, 0.30⟩ , S4 = ⟨0.60, 0.20, 0.30⟩ be
any four p, q, r−SFNs and ξ = (0.25, 0.15, 0.30, 0.30)T be
the weight vector of these p, q, r−SFNs. We have γ = 2.
p = q = r = 2, then the aggregated value can calculate as
follows:

In the initial phase, we will compute the score values for
these using the equation (9) in the following manner:

Sc (S1) =
1
3

(
2 + (0.40)2 − (0.50)2 − (0.50)2

)
= 0.6333,

Sc (S2) =
1
3

(
2 + (0.20)2 − (0.60)2 − (0.30)2

)
= 0.5833,

Sc (S3) =
1
3

(
2 + (0.40)2 − (0.30)2 − (0.30)2

)
= 0.7400,

Sc (S4) =
1
3

(
2 + (0.60)2 − (0.20)2 − (0.30)2

)
= 0.8233.

Order these p, q, r−spherical fuzzy numbers based on their
respective score values in the following manner:
Sc (S4) > Sc (S3) > Sc (S1) > Sc (S2). Thus, the

order of the p, q, r−spherical fuzzy numbers according is
S1 = (0.60, 0.20, 0.30), S2 = (0.40, 0.30, 0.30), S3 =

(0.40, 0.50, 0.50), and S4 = (0.20, 0.60, 0.30).

p, q, r − SFDOWG (S1, S2, . . . , Sl)

=



1

p

√
1 +

{∏l
k=1 ξk

(
1 −

1
(ϕδ(k))

p

)pγ } 1
γ

,

1

r

√
1 +

{∏l
k=1 ξk

(
1 −

1
(ϕδ(k))

r

)rγ } 1
γ

,

q

√√√√√1 −
1

1 +

{∏l
k=1 ξk

(
1 −

1
(ψδ(k))

q

)qγ } 1
γ


1

p

√
1 +

{∏l
k=1 ξk

(
1 −

1
(ϕδ(k))

p

)pγ } 1
γ

=
1

1

√√√√√√1 +

0.25
(
1 −

1
(0.6)1

)2
× 0.15

(
1 −

1
(0.4)1

)2
×0.3

(
1 −

1
(0.4)1

)2
× 0.3

(
1 −

1
(0.2)1

)2


1
2

=
1

1
√
1 + {0.25(0.4443)×0.15(2.25)×0.3(2.25)×0.3(16)}

1
2

=
1

1
√
1 + {0.1110 × 0.3375 × 0.6750 × 4.8}

1
2

=
1

1
√
1 + {0.1213}

1
2

=
1

1
√
1 + 0.3482

0.7417.
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r

√√√√√1 −
1

1 +

{∏l
k=1 ξk

(
1 −

1
(ηδ(k))

r

)rγ } 1
γ

=

2

√√√√√√√√√
1 −

1

1 +

0.25
(
1 −

1
(0.2)2

)4
× 0.15

(
1 −

1
(0.3)2

)4
×0.3

(
1 −

1
(0.5)2

)4
× 0.3

(
1 −

1
(0.6)2

)4


1
2

=
2

√√√√√√1 −
1

1 +

{
0.25(331776) × 0.15(10451.86)

×0.3(81) × 0.3(9.9869)

} 1
2

= 2

√
1 −

1

1 + {82944 × 1567.779 × 24.3 × 2.9960}
1
2

= 2

√
1 −

1

1 + {9467120414.18}
1
2

=
2

√
1 −

1
1 + 97299.1285

= 0.9999.

q

√√√√√1 −
1

1 +

{∏l
k=1 ξk

(
1 −

1
(ηδ(k))

q

)qγ } 1
γ

=

2

√√√√√√√√√
1 −

1

1 +

0.25
(
1 −

1
(0.3)2

)4
× 0.15

(
1 −

1
(0.3)2

)4
×0.3

(
1 −

1
(0.5)2

)4
× 0.3

(
1 −

1
(0.3)2

)4


1
2

=
2

√√√√√√1 −
1

1 +

{
0.25(10451.86) × 0.15(10451.86)

×0.3(81) × 0.3(10451.86)

} 1
2

= 2

√
1 −

1

1 + {2612.965 × 1567.779 × 24.3 × 3135.558}
1
2

= 2

√
1 −

1

1 + {312132900116.04}
1
2

=
2

√
1 −

1
1 + 558688.5537

=
2

√
1 −

1
558689.5537

0.9999.

Thus,

p, q, r − SFDOWG (S1, S2, S3, S4)

= (0.7417, 0.9998, 0.9999).

E. SOME PROPERTIES OF THE PROPOSED
AGGREGATION OPERATORS
Property 1: If Sk = ⟨ϕk , ηk , ψk ⟩ (k = 1, 2, 3, . . . , l) are
equal, that is Sk= S for all k , then

1.

p, q, r − SFDWA (S1, S2, . . . , Sl)= S,

2.

p, q, r − SFDOWA (S1, S2, . . . , Sl)= S,

3.

p, q, r − SFDWG (S1, S2, . . . , Sl)= S,

4.

p, q, r − SFDOWG (S1, S2, . . . , Sl)= S.

Property 2: If Sk = ⟨ϕh, ηh, ψh⟩ (k = 1, 2, 3, . . . , l) be
a set of p, q, r−SFNs, and let S−

=
minSk
k ,S+

=
maxSk
k

then
1.

S−
≤p, q, r − SFDWA (S1, S2, . . . , Sl)≤S+,

2.

S−
≤p, q, r − SFDOWA (S1, S2, . . . , Sl)≤S+,

3.

S−
≤p, q, r − SFDWG (S1, S2, . . . , Sl)≤S+,

4.

S−
≤p, q, r − SFDOWG (S1, S2, . . . , Sl)≤S+.

Property 3: Let Sk = ⟨ϕk , ηk , ψk ⟩ (k = 1.2, . . . , l) and
Sk

∗
=
〈
ϕ∗

k , η
∗
k , ψ

∗
k
〉
(k = 1, 2, . . . , l) be the two sets

of p, q, r − SFNs, if Sk≤Sk
∗ for all k , then

1.

p, q, r − SFDWA (S1, S2, . . . , Sl)

≤ p, q, r − SFDWA
(
S∗

1, S
∗
2, . . . , S

∗
l
)
,

2.

p, q, r − SFDOWA (S1, S2, . . . , Sl)

≤ p, q, r − SFDOWA
(
S∗

1, S
∗
2, . . . , S

∗
l
)
,

3.

p, q, r − SFDWG (S1, S2, . . . , Sl)

≤ p, q, r − SFDWG
(
S∗

1, S
∗
2, . . . , S

∗
l
)
,

4.

p, q, r − SFDOWG (S1, S2, . . . , Sl)

≤ p, q, r − SFDOWG
(
S∗

1, S
∗
2, . . . , S

∗
l
)
.

Definition 16: Suppose S1 = ⟨ϕ1, η1, ψ1⟩ and S2 =

⟨ϕ2, η2, ψ2⟩ be any pair of SFNs, then the Euclidean dis-
tance between S1 and S2 defined as:

D (S1, S2) =

(
r

√
1
2

(
(ϕ1 − ϕ2)

p
+ (η1 − η2)

r

+(ψ1 − ψ2)
q

))
(22)
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IV. MODEL FOR MAGDM WITH SPHERICAL
FUZZY INFORMATION
In this section, we aim to tackle the challenges associ-
ated with MCDM in the context of p, q, r− SFSs. We will
employ p, q, r−SF aggregation operators that have been
introduced for this purpose. To facilitate the discussion,
we establish a set of assumptions and notations that will
be utilized to define and evaluate MCDM problems when
dealing with p, q, r−SFSs. Through the application of this
method, our objective is to enhance the DM process and
provide a comprehensive assessment framework within this
sitting.

Suppose we denote the set alternatives as X =

{X1,X2, . . . ,Xm} and the set of attributes (criteria) be
denoted as = {C1,C2, . . . ,Cn} . Let the importance degree
of the attributes be represented as ξ = (ξ1, ξ2, . . . , ξn)

T Such
that ξj ∈ [0, 1] and

∑n
j=1 ξj = 1.0 there is a group of t experts

denoted by Ex = {Ex1,Ex2, . . . ,Ext } , who are investigate
to give the evaluation information, and importance degree
of experts is denoted as w = (w1,w2, . . . ,wt)T such that
we ∈ [0, 1],(e = (1, 2, . . . , t)

∑t
e=1 wt = 1. The experts

Ext assesses each attribute Cj of each alternative Xi by the
form Sij =

〈
ϕij, ηij, ψij

〉
.

Step 1: Gather the evaluation scores corresponding to each
criterion and amalgamate them into a decision matrix as
follows:

Y =

 C11 · · · C1n
...

. . .
...

Cm1 · · · Cmn

 (23)

Step 1. Transform the cost-type attributes (C) into
benefit-type attributes (B) using the following formula.

rij =


Sij =

〈
ϕij, ηij, ψij

〉
for B(

Sij
)C

=
〈
ϕij, ηij, ψij

〉
for C

where i = 1, 2, . . . ,m, j = 1, 2, . . . n

Step 2. Calculate the weights of each attribute by the follow-
ing formula:

ξj =
1 + D(rij)∑m
i=1

(
1 + (rij)

) (24)

where

D
(
rij
)

=

(
r

√
1
2

((
ϕij − ϕij

)p
+
(
ηij − ηij

)r
+
(
ij− ψij

)q ))
.

Step 4. Utilize the p, q, r−SFDWA or p, q, r−SFDWGA
operator to integrate the rating values of alternatives.

Step 5. Calculate the score value of each alternative using
equation (9) The graphical layout is presented in figure 2.

V. NUMERICAL EXAMPLE
More people are embracing cryptocurrencies as a way to
independently facilitate international money transfers, free

FIGURE 2. Layout of the proposed MCGDM approach.

TABLE 1. The rating values of alternatives concerning criterion C1.

from conventional financial institutions or government over-
sight. Cryptocurrencies have many benefits because of their
decentralized architecture, such as lower costs and faster
transaction processing when single points of vulnerability are
eliminated. However, it’s critical to recognize the negative
aspects of cryptocurrencies. Particularly, price volatility is a
problem because the values of cryptocurrencies can change
dramatically over time.

Moreover, the substantial energy consumption associated
with bitcoin mining operations has raised concerns about
their energy-intensive nature. This dual nature of cryptocur-
rencies exemplifies both positive characteristics and potential
drawbacks that users and other participants in the cryp-
tocurrency ecosystem should consider. In this context, our
objectives are to scrutinize the price stability of the top five
cryptocurrencies, X1, X2, X3, X4 and X5.
Consider a DM system that incorporates five factors (cri-

teria), empowering qualified experts to evaluate stability and
select the most stable coin. The evaluation criteria are deter-
mined by the weight vector ξ = (0.25, 0.21, 0.3, 0.34). the
considered factors for evaluation are listed below:

1. C1: Security,
2. C2: Price limits,
3. C3: Demand and supply,
4. C4: Decentralization.

The rating values of alternatives with respect to each criterion
is presented in Tables 1 to 4.
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TABLE 2. The rating values of alternatives concerning criterion C2.

TABLE 3. The rating values of alternatives concerning criterion C1.

TABLE 4. The rating values of alternatives concerning criterion C1.

TABLE 5. Aggregated values by using p, q, r − SFDWA operator.

TABLE 6. Aggregated values by using p, q, r − SFDOWA operator.

The more stable coin is chosen from the list of considered
alternatives using the proposed methodology. Tables 5, 6, 7,
and 8 present the cumulative values obtained using the pro-
posed aggregation operators for the situation of γ = 1.

Figure 3 provides a systematic layout of the proposed.
Table 9 presents a summary of score values and corre-

sponding rankings for alternatives.
Table 8 provides us with valuable insights into the relative

ranking of alternatives when employing various aggregation

TABLE 7. Aggregated values by using p, q, r − SFDWG operator.

TABLE 8. Aggregated values by using p, q, r − SFDOWG operator.

FIGURE 3. Model for the numerical example.

TABLE 9. The score values of alternatives derived from the proposed AOs.

methods, namely, p, q, r − SFDWA and p, q, r − SFDOWA,
p, q, r − SFDWG, and p, q, r − SFDOWG. We observe that,
under p, q, r − SFDWA and p, q, r − SFDOWG, the ranking
order of alternatives is X5 ≻ X1 ≻ X4 ≻ X2 ≻ X3.
In contrast, when applying p, q, r − SFDOWA and p, q, r −

SFDWG, the ranking order shifts slightly to X5 ≻ X1 ≻

X2 ≻ X4 ≻ X3. The examination indicates a remarkable
consistency in the ranking order of alternatives concerning
the proposed AOs. Consequently, we can confidently choose
any of the proposed operators for the aggregation process
with similar outcomes. The graphical view of the score values
of alternatives is presented in Figure 4.

A. SENSITIVITY ANALYSIS
Within this section, we have delved into the examination of
the influence of the Dombi parameter γ as well as the param-
eters embeddedwithin the proposed aggregation operators (p,
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FIGURE 4. Score values of alternatives obtained by proposed aggregation
operators.

TABLE 10. The score values of alternatives under varying values of
parameter γ .

r , and q ). We have thoroughly explored the effects of these
variables and their interactions on the outcomes.

B. THE IMPACT OF DOMBI PARAMETER η

OVER RANKING ORDER
To assess how the Dombi parameter γ affects the score values
and ranking order, we employed the p, q, r − SFDWA oper-
ator and explored a range of γ values spanning from 1 to 10.
The findings from this analysis are succinctly summarized in
Table 10.

From the data presented in Table 10, it is evident that as
we increment the Dombi parameter γ , the score values also
increase. In simpler terms, there exists a positive correlation
between the parameter γ and the corresponding score values.
This indicates that a higher γ value results in higher score
values, which may imply a stronger or more pronounced
impact of the Dombi parameter on the given context. Figure 5
provides a visual representation of the score values across
various γ values. This graphical depiction offers a clear and

FIGURE 5. The trend in score values across various values of parameter γ .

TABLE 11. The impact of parameter p over score values for γ = 1, q = 2.

intuitive way to observe how score values change in response
of different γ values.

C. THE IMPACT OF PARAMETER p, q, AND r
OVER SCORE VALUES
To evaluate the impact of the parameter on both score values
and ranking order, we utilized the p, q, r − SFDWA and
investigated a range of p, q, and r values from 1 to 10.
The outcomes of this examination are concisely outlined in
Tables 11 and 12.

From the data presented in Table 11, it becomes evident
that as we keep the parameters γ and q fixed and progres-
sively increase the value of p from 1 to 10, the score values
of the alternatives show a consistent increase. Notably, the
ranking order remains unaltered during this process. This
attribute of the proposed operators holds significant impor-
tance in practical decision-making scenarios.

To elaborate, consider a scenario where we see that
as we raise parameter p, the score values for the alter-
natives increase. This observation provides an optimistic
perspective for decision-makers. In other words, it suggests
that decision-makers can be more optimistic by assigning
higher values to the parameter p during the aggregation pro-
cess. Conversely, if decision-makers lean towards a more
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FIGURE 6. The score values of alternatives corresponding to different
values of the parameter p.

TABLE 12. The influence of p, q, and r .

pessimistic stance, they can opt for lower values of the param-
eter p, resulting in deceasing score values for the overall
evaluation. In essence, this flexibility in parameter selection
allows decision-makers to tailor the aggregation process to
their specific outlook, accommodating both optimistic and
pessimistic viewpoints in the decision-making process. The
influence of parameter p over score values of alternatives is
presented in Figure 6.

The impact of q over score values is presented in Table 12.
By examining Table 12, it becomes apparent that when we

elevate the value of the parameter q the corresponding score
values exhibit a decrease. This insight is crucial in under-
standing how adjustments in the parameter q can influence the
overall evaluation of alternatives, providing valuable infor-
mation for decision makers. Figure 7 illustrates the influence
of parameter q on score values.

D. COMPARTIVE ANALYSIS
Our objective is to highlight the effectiveness of our proposed
operators in comparison to existing methods in a Pythagorean
fuzzy environment [37], [38], [39], [40]. We consider neu-
tral judgments of p, q, r− spherical fuzzy set as zero and
employ a weight vector of (0.20, 0.15, 0.10, 0.25, 0.30). The

FIGURE 7. The behavior of alternatives for different values of q.

TABLE 13. The obtained score values of alternatives using various
existing approaches.

TABLE 14. Comparative study with some existing approaches.

summarized results, including optimal scores and ordering of
choices, are presented in Table 13.

The table distinctly illustrates that the top-ranked option
aligns with the conclusions derived from the proposed
approach, underscoring the reliability of our approach when
juxtaposed with the latest advancements in the field. This
comparison serves to showcase the superiority of our pro-
posed operators in decision-making scenarios within the
Pythagorean fuzzy framework.

Additionally, we conducted a comparison between the pro-
posed approach and certain approaches developed within a
T-spherical fuzzy environment. The outcomes of this com-
parison are detailed in Table 14.

Table 14 illustrates that the ranking order of alternatives
aligns with the proposed order, signifying the sustainability
of our approach as a viable alternative. The key strength
of our method lies in its ability to enhance a flexible
decision-making environment by incorporating four param-
eters: γ , p, q, and r , which play integral roles throughout the
evaluation of alternatives.
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FIGURE 8. The score values obtained by existing approaches.

In contrast, existing methods within the spherical fuzzy
and T-spherical fuzzy contexts face limitations. Our proposed
approach effectively circumvents these constrains, presenting
a more adaptable and unconstrained structure. This flexibility
empowers decision-makers to navigate the complexities of
decision-making processes more realistically. By leveraging
the factors γ , p, q, and r , our approach offers a versatile
and comprehensive solution, addressing the shortcoming of
the existing methods and providing a nuanced perspective on
overcoming their limitations. The score values of alternatives
obtained by different existing approaches is presented in
Figure 8.

E. ADVANTAGES
1. The proposed methodology appears to greater versa-

tility compared to the existing methods. Its extensive
applicability makes it suitable for various situations or
issue domains. The suggested strategy surpasses the
constraints of conventional approaches and, by incor-
porating more comprehensive and flexible systems,
provides a more adaptive solution for DM tasks. The
broad application of this framework gives it a more
general and adaptable structure that can address diverse
DM scenarios, yielding precise and consistent results.

2. The flexibility of the proposed DM approach is
heightened, emphasizing the limitations inherent in
conventional methods by leveraging the parameters
γ , p, q, and r . These parameters contribute to the
enhanced flexibility of the proposed approach, allowing
decision-makers to personalize and adjust the DM pro-
cess to meet their requirements and preferences. As a
results, the proposed approach establishes a more tai-
lored and adaptable foundation.

F. LIMITATIONS
While the proposed work exhibits several strengths, it is
important to acknowledge some restrictions.
1. The performance of the proposed approach may be sen-

sitive to the chosen values of parameters such as γ , p, q,

and r . The robustness of the method across a wide range
of parameter values needs to be thoroughly investigated.

2. The introduction of parameters such as γ , p, q, and r
may introduce a level of subjectivity in DM process.
Different decision-makers might assign different val-
ues to these parameters, potentially leading to varying
outcomes.

3. The incorporation of additional parameters and oper-
ational laws may introduce complexity to the DM
process.

VI. CONCLUSION AND FUTURE WORK
Aggregation operators are critical to the DM process. This
paper offers innovative operational laws, aggregation oper-
ators, and their accompanying attributes by leveraging the
capabilities of Dombi operations and the flexibility inher-
ent in p, q, r−SFSs. These operators form the basis of
the MCDM method, which handles actual DM challenges.
A real-life scenario involving the selection of a stable cryp-
tocurrency demonstrates the proposed technique’s efficacy.
A comparative study is conducted to validate the suggested
approach. Furthermore, the benefits and drawbacks of the
suggested strategy are extensively evaluated. In the future, the
proposed framework has the potential to be applied to real-life
scenarios [44], [45], [46] for the evaluate its effectiveness and
applicability in practical DM contexts.
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