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ABSTRACT Many studies have focused on obtaining high accuracy in the design of Intrusion Detection
Systems (IDS) for in-vehicle networks, neglecting the significance of different intensive packet injection
techniques. Because of their reliance on scenario-specific training datasets, these IDSs are vulnerable to
failing to detect real-world attacks. This study implemented deep learning (DL)–based classification for
intrusion detection using a Gated Recurrent Unit (GRU) while considering various intrusion frequencies.
Different intrusion frequencies are comprehensively addressed with frequency-agnostic intrusion and
resolved by generalizing features for DL input through time series segmentation and frequency domain
conversion using Gabor filtering. For training purposes, five types of vehicle data are used, encompassing
DoS, fuzzing, and replay attack scenarios. The accuracy range for mechanical version vehicles is typically
between 95% and 100%. For electronic vehicles, it is around 90%. Considering the nature of this IDS
system, it has been named a Comprehensive Frequency-Agnostic Intrusion Detection System (CF-AIDS).
Although this IDS can perform better in all aspects, achieving more efficient results requires a larger amount
of situational data.

INDEX TERMS In-vehicle network, CAN, IDS, Gabor transform, frequency-agnostic.

I. INTRODUCTION
In-vehicle networks miss the implementation of encryption
and authentication mechanisms and often transmit data to
all Electronic Control Units (ECUs) [1]. By utilizing these
characteristics, intruders can gain unauthorized access to
in-vehicle networks, potentially compromising the security
of vehicle operations [2]. Moreover, by incorporating con-
nected vehicle concepts such as Vehicle-to-Everything (V2X)
[3], vehicles can engage in continuous data sharing with
other vehicles and various infrastructures through Roadside
Units (RSUs) and On-Board Units (OBUs), compounding
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challenges associated with ensuring security and integrity in
modern automotive systems [4]. This extended connectivity
highlights the importance of Intrusion Detection Systems
(IDSs).

IDSs are not always successful, as attackers continually
employ various techniques to deceive and evade them. A vul-
nerability in the security mechanism that can be exploited
arises from the attacker’s ability to manipulate the injection
frequency and employ various data injection patterns [5]. The
key aspect of concern here is that this data injection capability
is frequency-agnostic, meaning that it can vary with different
frequencies as it is not tied to a specific frequency [6]. This
characteristic makes the in-vehicle network more susceptible
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to intrusion and compromise. In simpler terms, attackers
can easily bypass security measures by adjusting how often
they inject malicious data and by using different patterns of
data injection. This poses a significant risk to the security
of the system with complexity, especially when an IDS
is developed without considering all of these challenges.
To address this challenge effectively, the implementation of
a generalized IDS within in-vehicle CAN networks might
play a pivotal role. IDS functions are paramount in the
detection and mitigation of unauthorized access, abnormal
activities, and potential cybersecurity risks [5]. Consequently,
they serve as a protective shield, upholding vehicle safety and
maintaining data integrity within the continually evolving and
interconnected automotive ecosystem.

In-vehicle networks can transmit and receive data through
the Controller Area Network (CAN), a specification
described previously [7]. Some surveys [8] have prioritized
IDS as a means to enhance security within automotive
networks. Based on data features used for IDS, IDSs
employed in the transportation sector can be categorized
into three main types: Flow IDS, Payload IDS, and Hybrid
IDS. Flow-based IDS monitors a vehicle’s internal network,
like the CAN bus, to detect intrusions and unusual activities
by analyzing message features such as CAN ID frequency
and intervals without inspecting message content. This type
of IDS is lightweight with reasonable accuracy. However,
it heavily relies on patterns. In contrast, Payload-based IDS
examines message content to identify intrusions within the
vehicle network. Although it offers superior weight and
accuracy in countering DoS and fuzz attacks, its performance
tends to decrease when dealing with replay-based attacks.
Hybrid IDS combines elements of both flow-based and
payload-based techniques, enhancing intrusion detection
with high performance. However, these IDS types are heavier.
They also consume more computational power.

According to this categorization, this research was focused
on flow-based IDS. However, from another perspective,
recent observations highlight a distinction in IDS techniques,
categorizing them into two groups: rule-based and anomaly-
based detection [9]. Rule-based IDSs rely on predefined rules
for detecting known attacks with high accuracy but lack
adaptability to emerging threats and evolving techniques,
potentially leaving vulnerabilities to novel or zero-day
attacks not covered by established rules [10], [11]. Under
anomaly-based detection, in recent studies, IDS has been
further categorized into sub-types including those based on
fingerprints, parameter monitoring, information theory, and
Artificial Intelligence (AI) [12]. Machine Learning (ML) or
Deep learning (DL)-based IDSs are also capable of detecting
unknown attacks on in-vehicle networks [13], [14], [15].
The effectiveness of AI-based IDS significantly relies on
feature extraction and data preprocessing [16]. However,
challenges persist in feature extraction and data input for
deep learning models. Most studies directly feed raw data
into these models [17], [18], potentially limiting their scopes.

This approach, where data are sequentially inputted one
by one, can overwhelm deep-learning IDSs in complex
scenarios, especially given the extensive data generated in
in-vehicle networks. Additionally, data can vary based on
driving situations [19], [20], posing a significant challenge for
practical IDS effectiveness. To address this complexity, data
generalization is the best solution for ML and DL models

IDSs using ML and DL offer several benefits. They
excel in recognizing complex and evolving threats, reducing
the number of false alarms, and providing adaptability to
changing attack tactics [21]. These models can also automate
threat detection, scale up to analyze large network traffic
volumes, and offer real-time protection. However, they have
drawbacks. For example, they demand a substantial amount
of high-quality labeled data for effective training [22], which
may not always be available. Additionally, building and
maintaining ML/DL models can be complex. There is a
risk of overfitting, where models work well on training data
but struggle [23]. They can be resource-intensive and less
interpretable. Sometimes they generate false alarms if not
properly tuned. Balancing their advantages and challenges is
key to their effective use in network security.

The recognition that attackers in real-world scenarios
often employ inventive strategies when injecting packets
into the in-vehicle network inspired the present experiment.
To enhance security in in-vehicle networks, an advanced
IDS system was developed in this study. It combines
high-resolution feature extraction and time-series input to
create a deep-learning model. Its focus is on detailed
feature extraction, utilizing Gabor filters to capture key data
patterns. The main goal is to improve IDS effectiveness
by reducing complexity and making it more effective,
including its ability to detect Frequency-Agnostic types of
attacks. This approach aids in detecting evolving attack
patterns by analyzing how network traffic changes over time,
providing a better view of network behavior crucial for in-
vehicle networks. A lightweight Recurrent Neural Network
(RNN) Gated Recurrent Unit (GRU) was employed with two
features [24]. When incorporating a GRU into the model,
the concern regarding computational power consumption
becomes negligible [25], particularly given the utilization of
only two features as input. Experiments with different attack
data confirmed that the approach was robust and versatile.

In the following sections of the paper, a structured
overview of the study is provided. Section II reviews prior
research on in-vehicle networks, highlighting the limitations
of existing IDS approaches. Section III describes data
collection methods and scenarios investigated by conducting
three types of attacks (Denial-of-Service, Fuzzing, and
Replay attacks) on CAN data. Two distinct sets of labo-
ratory data were used and attack frequencies were varied.
Section VI describes the practical application of the Gabor
transform for feature extraction, offering a comprehensive
explanation of the algorithm, feature extraction process,
and data preprocessing techniques. Section V presents the
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deep learning model’s results, including hyperparameters
and the architecture employed. The model’s performance
was evaluated under different scenarios, such as high data
injection, low data injection, low data injection with synthetic
data, and a model trained with high injection data and tested
on low injection data. Section VI discusses the advantages
and limitations of the approach, providing a comprehensive
understanding of its contributions to in-vehicle network
security and analysis.

II. RELATED WORK
In this paragraph, the recurring issue in prior research
is investigated, which often involves overlooking critical
factors. This issue was introduced in the earlier section
concerning recent IDSs. Additionally, the discussion covers
how the frequency domain, particularly the Gabor transform,
has effectively enhanced performance in various fields and its
fit within a deep learning model.

A. RELATED WORKS IN IN-VEHICLE NETWORK
INTRUSION DETECTION
In this section, according to the categorization, factors will
be delved into individually, starting with a hybrid analysis,
followed by a payload analysis, and finally, a flow-based
analysis.

In the field of hybrid IDS for in-vehicle CAN security,
notable innovations have emerged. Zhang et al. [26] have
introduced a two-stage hybrid IDS that combines rule-based
and Deep Neural Network (DNN)-based components for
real-time attack detection. This IDS could swiftly identify
disruptions of CAN traffic patterns in its initial rule-
based stage. A DNN-based system proficient in capturing
attacks was then used. Similarly, Zhang et al. [17] have
introduced two DL model-based IDS for CAN, utilizing two
representations of CAN data:) raw data, and converted raw
data in the form of images. These representations incorporate
deep learning techniques, including LSTM and ConvLSTM,
alongwith extensive CAN features. However, this type of IDS
has a high computational cost and high response time. One
study [27] has introduced a Binary Neural Network (BNN)-
based IDS, which achieves three times faster detection
speeds than another model, albeit with an accuracy trade-off
depending on the attack type. During training, labeled input
frames containing ten consecutive CAN messages are used
to teach the IDS to recognize attack patterns. Once trained,
the BNN model can rapidly analyze real-time CAN traffic
and trigger alarms upon detecting malicious activity. In a
hybrid IDS, the overall performance is approximately over
90%. The incorporation of various features can increase its
computational complexity. If two models collaborate with
different feature extraction methods, the system can become
even more computationally intensive. While some studies
have achieved high accuracy with this approach, it is worth
noting that significant accuracy can also be attained using
only Payload or CAN ID sequences. Additionally, it is

possible to make the system lighter. However, doing so would
lead to a trade-off in its performance.

In the area of payload-based IDS for CAN security,
Markovitz and Wool [28] have developed a novel system
to detect unusual communication patterns between ECUs
in vehicles via the CAN bus network. They designed a
classifier to categorize messages into different field types
(Constant, Multi-value, or Counter/Sensor) without prior
knowledge of their format. The system can create models
for each ECU based on message characteristics. It uses
Ternary Content-Addressable Memory (TCAM) to match
incoming messages with expected patterns. Messages not
matching these patterns are considered anomalies. This type
of IDS highly depends on predefined rules. H-IDFS has been
introduced based on the histogram structure for intrusion
detection and filtering [29]. In the training phase, CAN data
are divided into windows, with each window containing eight
consecutive data bytes (Payload) from sequential packets.
These windows are processed into histograms for multi-class
IDS classification by K-Nearest Neighbors (KNN). Fine-
grained features are then extracted for filtering. H-IDFS
operates effectively with larger window sizes. A larger
window size means a larger response time. A small window
can compromise the performance. Hierarchical Temporal
Memory (HTM) algorithms, as presented in [30], are used for
processing packet-level data in CAN traffic. This approach
involves training specialized anomaly detectors for each
unique CAN ID’s payload, using HTM networks as the
foundational model. Afterward, postprocessing steps com-
bine bit-level anomaly scores within defined time windows,
which are then compared against predefined thresholds to
trigger alerts when anomalies are detected. In a payload-
based IDS, a significant challenge arises when dealing with
replay attacks. Replay attacks have unique characteristics that
can make them difficult to detect effectively. Additionally,
the payload typically consists of eight bytes, with each
byte frequently changing over time based on the specific
situation of the vehicle. To enhance the performance of
the IDS, it is essential to incorporate a wide range of
vehicle scenarios, including normal driving, transitioning
from driving to parking, and from parking to driving, among
others.

One study [31] has primarily focused on enhancing
in-vehicle network security through a Flow-based IDS.
Specifically, it aimed to improve the detection of mes-
sage injection attacks by adopting a statistical approach.
This paper addresses limitations associated with traditional
interval-based IDS, particularly the issue of false positives
due to message timing variations during different driving
modes. To overcome these limitations, the present research
introduced a novel frequency-based IDS methodology,
incorporating the Fast Fourier Transform (FFT) for fre-
quency domain analysis. The effectiveness of this approach
was demonstrated through improved detection capabilities,
notably in identifyingmessage injection anomalies. However,
it is important to note that this study solely concentrates
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on spoofing attacks within a simulated attack environment,
excluding the assessment of other attack types in real
driving scenarios for a more comprehensive performance
evaluation.

CANet [32] is an unsupervised LSTM-based anomaly
detection method designed for CAN data in the context
of flow-based IDS for vehicle communication networks.
It employs separate LSTM models for different data sources
(IDs) within the vehicle network to capture temporal data
dynamics. Outputs of these LSTMmodels are integrated into
a fully connected subnetwork designed like an autoencoder,
enabling CANet to consider data interdependencies. During
training, CANet learns to reconstruct input data and measures
the disparity between real data and its reconstruction.
Anomalies are identified based on this disparity exceeding a
predefined threshold, prompting the model to flag potential
intrusions. The false positive rate is generally higher in
unsupervised learning than in supervised learning. A semi-
supervised approach implemented in a previous study [33]
can enhance vehicle CAN bus security by analyzing CAN
ID sequences for anomalies and recognizing disruptions in
their patterns indicative of potential attacks. It employs 29-
bit CAN ID representations organized into frames for input
into the Convolutional Adversarial Autoencoder (CAAE)
model. The CAAE operates in a semi-supervised way. It has
discriminators to ensure specific distributions. During post-
training, only the encoder’s weights are used. Although unsu-
pervised IDS systems can achieve an overall performance
of approximately over 90%, a major challenge arises from
the lack of a well-defined ground truth due to the dynamic
and evolving nature of network threats, which hinders
objective evaluation of model performance. Additionally,
unsupervised approaches encounter difficulties in outlier
detection primarily because there is no clear delineation
between normal and abnormal network behaviors during
training. Few studies have been conducted using a supervised
deep-learning approach.

Desta et al. [19] have introduced a method for detecting
in-vehicle network attacks. They used convolutional neural
networks and generated images using recurrent graphs. Their
model assigns binary labels to classify these attacks. When
compared to the Inception-ResNet model, their approach
demonstrated greater efficiency. For creating images, they
used the CAN ID sequence along with timestamp as features.
Extracting features from raw data and converting them
into images while using long neural networks resulted in
high computational costs and response time. GIDCS [34]
is a sophisticated system designed for safeguarding CAN
traffic. It comprises two main components: a Classifier
Configuration Module and a Classification Module. While
training, the Configuration Module organizes CAN bus
messages into groups based on their CAN IDs and creates
graphs. These features set the threshold for the binary
classifier. The threshold relies on feature values from normal
messages. However, a common issue encountered with most
models is their inability to generalize and adjust to diverse

situations. In one study [35], researchers utilized Federated
Learning (FL) to develop an IDS capable of addressing
challenges posed by various automobile manufacturers (Data
Diversity). Multiple car models, each with its own dataset
of CAN data, were used to find common patterns while
maintaining data privacy. The Federated Averaging (FedAvg)
algorithm was employed for collaborative model training
without sharing data. In the supervised technique, all IDS
systems performed well with an accuracy of 95%. For
supervised learning, a simple neural network architecture also
plays a significant role with CAN ID sequence input. Big
models such as Inception and ResNet are known to increase
computational costs. While FL models have significance
in generalizing IDS, they introduce dependencies on third
parties and make the IDS more complex.

B. RELATED WORKS IN FREQUENCY DOMAIN ANALYSIS
Gabor transform or spectrogram is a vital tool in signal
analysis [36], [37], [38]. It excels at identifying signal
components, making it valuable for sound differentiation,
like in Shazam’s music classification [39]. In medicine,
spectrograms are used in electromyography [40] and image
analysis [41]. Additionally, spectrograms are applied in
anomaly detection, such as for identifyingmachine anomalies
via vibration spectrograms [42] and for network attack
detection [43].

In this study, two primary types of data were examined:
time domain and frequency domain data. Time domain
analysis involves mathematical functions or signals analysis
with respect to time, while frequency domain analysis
involves mathematical functions or signals analysis with
respect to frequency. Specific time values represent time
domain data, while frequency domain data are presented
by specific frequency values [44]. The internal data of a
car are typically in the form of time series data. In this
research, there was a necessity to transform time-domain
data into the frequency domain to achieve generalization.
This transformation is essential for enabling the IDS to
possess frequency-agnostic capabilities both in the context
of in-vehicle network data generation, which occurs situa-
tionally and from the attacker’s perspective, allowing them
to inject messages with frequency-agnostic characteristics.

In signal processing, the Fourier transform is widely used
for frequency domain analysis. However, it has a trade-off
between frequency and time resolution [45]. This trade-off
can be limiting for non-stationary signals such as those in
CAN data. To address this, the wavelet transform offers
efficient solutions, providing high-frequency resolution at
low frequencies and high-time resolution at high frequen-
cies [46]. However, challenges arise regarding coefficient
length variation based on wavelet labels and processing
multi-dimensional data simultaneously, especially in deep
learning approaches.

Gabor transform is another transform in the wavelet family.
It is also known as a spectrogram, which employs a Gaussian
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function [47]. The primary difference between the Gabor
transform and wavelet transform is that the Gabor transform
has fixed bandwidths with fixed-length coefficients, while
the wavelet transform has bandwidths that continuously
change from arbitrarily small to large [48]. The mathematical
definition of the Gabor transform is shown as follows:

g(x, y) = e
−

x′2

2σ2x
−

y′2

2σ2y cos
(
2π

x ′

λ
+ ψ

)
(1)

where x ′ = x cos θ + y sin θ and y′ = −x sin θ + y cos θ .

The equation represents a 2D Gabor function. It combines
a Gaussian envelope that controls size and orientation with
a cosine modulation introducing oscillations along an orien-
tation defined by the angle θ . Coordinate transformations x ′

and y′ perform a rotation of coordinates x and y by an angle
θ , allowing the Gabor function to be oriented in different
directions. Adjusting parameters such as σx , σy, λ, and ψ can
customize the function’s size, orientation, spatial frequency,
and phase.

In recent times, several IDS have been proposed. However,
frequency-agnostic ability, a crucial aspect, has often been
overlooked by researchers. This ability is about making the
IDS less dependent on a specific data injection frequency,
which means that it can function effectively regardless of
how often an attacker tries to manipulate their data injec-
tion pattern. Comprehensive Frequency-Agnostic Intrusion
Detection System (CF-AIDS) is a concept in technology and
systems design that essentially means being versatile and
flexible across different frequencies or rates of occurrence.
In an in-vehicle network security system, CF-AIDS can
effectively detect and respond to various events ranging
from routine data transmissions during regular driving to
rare and potentially malicious activities that could signal
a cyberattack. This system does not specialize in just
one type of event. Instead, it is capable of handling a
wide range of scenarios without being biased toward any
particular frequency. This frequency-agnostic capability is
vital for IDS performance because it ensures that security
measures can remain robust and effective even when
attackers attempt to change their tactics. By being able
to detect intrusions without relying on a fixed frequency,
IDS becomes more resilient with better protection against
evolving attack strategies. This flexibility is crucial for main-
taining the security of systems in dynamic and unpredictable
environments.

Most studies have endeavored to address challenges
such as a high false positive rate, extended response time,
which demands substantial computational resources, and a
limitation known as the ‘rule coverage gap.’ Remarkably,
one vital aspect that has been consistently neglected in
previous investigations is the Frequency-Agnostic ability.
Thus, the present study aimed to address both conven-
tional challenges and this noteworthy, yet often neglected,
problem.

III. UNVEILING ATTACK SCENARIOS: ANALYZING DATA
FOR INSIGHTS
In this study, two methods were applied to analyze attacks
targeting embedded car systems. The first method uses a
focused attack on specific functions, which requires detailed
knowledge about the car manufacturer’s secure network
protocols from CAN (Data Base Container) DBC [13]. This
method is challenging due to its need for specialized knowl-
edge. The second method involves random and extensive
injection of data, which can easily disrupt car operations
without specific knowledge.

In the initial part of the discussion, the definition of attacks
is presented. This study introduced three attack methods:
DoS, Fuzzing, and Replay attacks. DoS attacks, which stand
for ‘‘Denial of Service’’ attacks, have the goal of disrupting
normal operations of the CAN by inundating it with an
excessive number of messages or incorrect parameters, often
by high-priority ID messages. These attacks can lead to
failures in the vehicle’s systems, necessitating the use of
protective tools to identify and counteract them [49]. Fuzzing
attacks aim to uncover system vulnerabilities by sending
varied and incorrect data, including both high-priority and
low-priority ID messages, to the controller network [50].
Replay attacks involve capturing and re-sending legitimate
messages within controller networks [51]. Systems may
mistakenly view these repeated messages as authentic,
leading to unintended parameter changes or actions.

In the context of these methods, data are introduced
into the car’s network using a frequency-agnostic data
injection technique. However, it is important to note that
this external device places restrictions on how long data
can be injected. For instance, when using the PEAK-CAN
system, there is a specific time limit of 3 to 5 seconds
for injecting data. In this study, three distinct categories of
attack patterns have been incorporated, all of which employ
the frequency-agnostic data injection technique. To carry
out this study, an IDS was implemented using the Hacking
and Countermeasure Research Lab (HCRL) dataset [52].
A proprietary data generation technique has also been
developed.

According to HCRL, data were introduced into the
network at a controlled pace, with short pauses of 0.0003 to
0.0005 seconds between each injection. This approach
allowed for extended attacks involving DoS, fuzzing, and
replay techniques using data from Kia Soul and Hyundai
Sonata vehicles. The benefit of this method is that it closely
mimics the regular data transmission rhythm, potentially
bypassing default restrictions set by devices. However, it is
important to note that without access to a specific CAN DBC
file, these injected packets might not significantly impact
the vehicle’s normal operations all the time. Therefore,
experimental results generally showed a minimal response
from the vehicle to these intrusions. In a DoS scenario, a high-
priority CAN ID labeled ‘0 × 00’ was used, while fuzzing
involves IDs ranging from 0× 000 to 0× 7FF.
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According to the data generation technique, data were
collected from an internal gateway where a central gateway
handled all the traffic, as shown in [35]. Introducing data
could rapidly disrupt the behavior of the target vehicle.
Specifically, the DoS attack utilizes specific ID priorities
by injecting a substantial number of ‘0 × 00’ values,
causing other IDs to temporarily halt. This primarily impacts
functions associated with the top-priority ID, including
malfunction warnings. The Fuzzing attack introduces random
IDs and data values across the vehicle’s priority range, poten-
tially activating preset functions within ECUs. However, this
influx of data also leads to processing delays as ECUsmanage
a high volume of incoming IDs. Additionally, the Replay
attack injects normal driving data during vehicle operation
to collect attack data. This attack lasted approximately
7 minutes. It was applied multiple times. The DoS method
involved three iterations with injections of 5,000 and 10,000
values, each lasting 3 seconds. Fuzzing was conducted
100 and 500 times, while the Replay attack reintroduced
7 minutes of past normal driving data and replayed multiple
times in 3-second intervals. It is crucial to note that prolonged
data injection can result in timing discrepancies within
ECUs, potentially leading to data errors in real-time vehicle
feedback.

In this study, the evaluation of IDS responses in critical
scenarios, such as various attack frequencies, relied on
synthetic data generated through an in-depth analysis of
internal vehicle system data. For instance, in Kia vehicles,
it was discovered that the most minimal CAN ID that was
assigned the highest priority was ‘‘0 × 18.’’ Subsequently,
a DoS attack was conducted, targeting not only the ‘‘0× 00’’
CAN ID but also a range of CAN IDs from ‘‘0 × 00’’
to ‘‘0 × 17’’. This attack adhered to the HCRL standard
injection pattern, with data inserted at precise time intervals
of 0.0003 to 0.0005 seconds. In the fuzzing attack, a CAN ID
spectrum ranging from ‘0 × 00’ to ‘0 × 1F4’ encompassing
both the highest and lowest priority IDs was selected. The
timing structure of the replay attack followed a similar pattern
to other attacks, allowing for a comprehensive assessment of
IDS performance. Moreover, injecting attack data while the
vehicle is in motion poses a significant risk of malfunctions
and accidents. Therefore, multiple injections of attack data
were performed, taking into consideration critical factors of
safety and stability.

IV. OPTIMIZING DEEP LEARNING: FEATURE EXTRACTION
AND DATA PREPROCESSING TECHNIQUES
A. HIGH-RESOLUTION FEATURE EXTRACTION IN DEPTH
In the context of in-vehicle IDS from CAN data, the initial
step involves feature selection based on CAN ID and a time
gap with a sequence length of 100. These selected features
are then fed into the Gabor filter for high-resolution feature
extraction, a crucial step that can significantly enhance the
ability to detect and mitigate potential security threats within
the in-vehicle network. After applying FFT, the combination

of a Gabor filter offers several signal processing benefits.
It helps identify dominant frequencies across different time
intervals, thus reducing the dimensionality of complex data
for a more concise representation. Additionally, it enhances
pattern recognition in applications such as image processing
and feature extraction

F(u, v) =
N−1∑
x=0

M−1∑
y=0

f (x, y)e−j2π (
ux
N +

vy
M ) (2)

In the equation, F(u, v) is the 2D Discrete Fourier
Transform (DFT) of the input matrix f (x, y) with dimensions
N andM , and variables u and v are frequencies ranging from
0 to N − 1 and from 0 toM − 1, respectively. The double
summation accounts for all possible combinations of x and y.
The complex exponential function, exp(−j2(ux/N + vy/M )),
encodes frequency and phase information, allowing us to shift
frequency components to the spectrum center. This simplifies
visualization and analysis of the spectrum.

In Algorithm 1, convolve2d is a function used
for performing a two-dimensional convolution operation.
Convolution is a mathematical operation that combines two
functions to produce a third function. In the spectrogram
frequency domain, convolution is commonly used for various
tasks, such as edge detection and filtering [53]. The
convolve2d function takes three arguments: the input data,
the Gabor filter gb, and the mode parameter. The input
data are the data on which the convolution operation will
be applied. The Gabor filter is a kernel or filter used for the
convolution operation. The mode parameter determines how
the boundaries of input data are handled during convolution.
The fftpack.fft2 stands for FFT operation.

Algorithm 1 Extract Feature by FFT From Gabor
1. Gabor Transform Function:
data, θ = 0, σ = 1, Frequency = 1
2. Construct the Gabor filter
gb← Gabor(σ, θ, 1

Frequency , 0, 1)
3. Apply the filter to the data
filtered ← convolve2d(data, gb,mode = ’same’)
4. Compute the Fourier transform of the filtered data
fft ← fftpack.fft2(filtered)
5. Initialize parameters
data← load_data()
θ ← set theta
σ ← set sigma frequency← set frequency
6. Apply Gabor filter to the data
result ← (data, θ, σ, frequency)

B. DATA PREPOSSESSING
The deep learning GRU model processes input data in a time
series format. Initially, 100 data sequences containing CAN
ID and time gap were selected. BMW, Kia, and Tesla Lab.
of Information System Security Assurance (LISA) generated
around 870, 2090, and 3030 data sequences, respectively,
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representing one-second intervals for each vehicle. A label
encoder converted CAN ID categories into decimal numbers.
Both CAN ID and time gap data underwent min-max scaling.
Finally, data were filtered through a Gabor filter in the
frequency domain. This preprocessing ensured standardized
input for the GRU model, enabling accurate analysis
and prediction. To comprehend the graph, this paragraph
provides an explanation. In the analysis, evaluation involved
examining various input features such as CAN ID, time
gap, and two specific injection patterns. Two different data
collection methods were employed. To aid in distinguishing
between scenarios with no attacks and potential attack
situations, graphs were generated. These graphs offer a visual
representation for differentiation between the attack-free
scenario and instances where attacks are present. The x-axis
represents the sample index and the y-axis represents the
amplitude. Blue and green lines correspond to attack-free
scenarios while red and yellow lines represent scenarios with
attacks. These lines pertain to the CAN ID sequence and time
gap.

Fig. 1 shows high-frequency data injection. In Fig. 1
(a), the DoS attack showed a clear pattern with recurring
red and yellow data frame injections at regular intervals.
However, during non-attack periods, the network experi-
enced irregularities in both CAN ID sequences and time
intervals between data frame transmissions. Understanding
and monitoring these patterns is crucial for effective attack
detection and mitigation. In Fig. 1 (b), the Fuzzing attack
exhibited noticeable peaks in both features, with higher peaks
in the CAN ID sequence during attacks. In Fig. 1 (c), the
Replay attack showed lower amplitude peaks than the attack-
free scenario. In each case, distinct features served as clear
indicators.

Fig. 2 depicts lower-rate injection data for HCRL.
In Fig. 2 (a), the CAN ID sequence showed lower
amplitude than that in non-attack scenarios, although there
were non-periodic amplitude peaks in the time gap. For
fuzzing and replay attacks (Fig. 2 b, c), higher amplitude
characteristics were observed, although the density was
lower than that in DoS attacks. Notably, the CAN ID
sequence exhibited higher peaks than in attack-free scenarios.
These patterns provided valuable insights for effective attack
identification.

In Fig. 3, a synthetic attack scenario is simulated, showing
similar characteristics for all attack types. Distinguishing
between these attacks was challenging. However, slight
differences were noticeable in the CAN ID sequence, while
the time gap displayed more pronounced distinctions with
lower frequency amplitudes compared to the attack-free
scenario.

In summary, Gabor features are valuable for classi-
fying attack-free scenarios and attacks in deep learn-
ing. Challenges emerged when classifying attack types
with lower-rate injection. The results section will offer a
brief overview of deep learning performance using Gabor
features.

V. MASTERING DEEP LEARNING ARCHITECTURES:
STRATEGIES FOR EFFECTIVE RESULT EVALUATION
A. DEEP LEARNING ARCHITECTURE AND
HYPERPARAMETER CONFIGURATION
GRU is a type of RNN architecture that handles sequential
data by retaining and selectively updating information over
time. It addresses the problem of vanishing gradients in
traditional RNNs by incorporating gating mechanisms. GRU
uses two gates, an update gate, and a reset gate, to control
the flow of information. The update gate determines how
much past information should be retained, while the reset gate
decides howmuch of the new input should be considered [54].
This allows GRU to capture long-term dependencies and
effectively process sequential data. Fig. 4 presents an
overview of the layout for the intrusion detection system. Pre-
processed features were inputted into the Gabor filter, which
produced high-resolution features. The FFT filter was then
applied to extract the main features from the Gabor filter,
facilitating the classification of attacks using a deep-learning
GRU model. Table 1 explains hyperparameter specification.
TheGRUmodel operates on a sequence time series input with
a length of 100 and generates the classification result. This
approach enhances the effectiveness of attack detection and
classification within the intrusion detection system.

TABLE 1. Deep learning hyperparameters.

B. RESULT EVALUATION: HIGH-FREQUENCY PACKET
INJECTION
In this section, a confusion matrix is provided to illustrate
research results. Numbers within the matrix represent quan-
tities of sequences in that category, and percentages indicate
the proportion of sequences within each category.

In the case of high-frequency data injection, vehicles
exhibit immediate responses, which can introduce a signif-
icant risk for safe driving. However, the accuracy matrix
of the IDS demonstrated the model’s effectiveness for both
mechanical and electronic vehicles. The attack detection
performance for each vehicle exceeded 100%, with BMW
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FIGURE 1. Gabor coefficient amplitude distribution in high volume data injection.

and Kia achieving impressive detection rates of over 99%
and Tesla reaching 99%. In Fig. 5 and Table 2, a detailed
classification report is provided for BMW, Kia, and Tesla
where false positive and false negative less than 1%
approximately. This report revealed that the error rate was
less than 1% for each of these vehicles. This outcome served
as compelling evidence of the exceptional effectiveness of
Gabor’s high-resolution feature extraction when dealing with
high packet injection into in-vehicle networks.

In this context, results are initially presented using a
multi-class classification approach. However, a subsequent
switch to binary-class classification was made. This adjust-
ment aligned with the primary objective, which was to detect

attacks within multi-dimensional data injection frequencies,
a scenario referred to as ‘frequency-agnostic injection.’ The
focus was on detecting attacks rather than categorizing them
into specific attack types.

C. RESULT EVALUATION: LOW-FREQUENCY PACKET
INJECTION (HCRL)
In the context of low-frequency data injection, the accuracy
of the IDS was notably affected, especially in the context
of multi-class classification. Nevertheless, the system’s
response to low-frequency injection data was not as pro-
nounced. To assess the system’s performance, we con-
ducted experiments using data from the HCRL, specifically
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FIGURE 2. Gabor coefficient amplitude distribution in low volume data injection.

TABLE 2. Performance metrics for Kia and Tesla for multi-class classification.

employing data from mechanical vehicles Kia Soul and
Hyundai Sonata for both classifications. However, a notable

observation from this matrix was that while it struggled
to classify the specific types of attacks, it effectively

VOLUME 12, 2024 13979



M. R. Islam et al.: CF-AIDS on In-Vehicle Network

FIGURE 3. Gabor coefficient amplitude distribution in low volume data injection.

FIGURE 4. Attack detection model layout.

distinguished between attack-free scenarios and attacks.
To address this, binary class classification was applied,
resulting in success rates of approximately 97% and 92%
and false positive and false negative rates of approximately

6% and 10%, respectively, for the two vehicles. It was
worth noting that there was a decline in detection accuracy,
ranging from 3% to 8% when compared to results from
high-frequency injection data. The decrease in accuracy
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FIGURE 5. Confusion matrix on high-frequency anomaly detection.

was expected primarily due to the lower rate of packet
injection, which occurred periodically. The system behaved
as if this were a normal situation. The relatively lower
volume of available training data further contributed to
the reduction in accuracy. This information is presented in
Table 3 and Fig 6. The incorporation of the Gabor transform
for high-resolution feature extraction in the IDS demonstrated
promising outcomes. Despite a marginal influence on accu-
racy when dealing with low-frequency data injections, the
system effectively responded to these instances

D. RESULT EVALUATION: LOW-FREQUENCY PACKET
INJECTION (LISA)
In the realm of attack classification, we conducted experi-
ments using synthetic data. The rationale behind this choice
was the versatility and scalability of simulation, enabling a
wide range of experiments, particularly concerning packet
injection. Simulation proved valuable in validating the
model’s performance in scenarios involving extraordinary
packet injection patterns and data injection patterns, as men-
tioned earlier. While time intervals for packet injection were
similar to those in the HCRL data, the manner of packet
injection exhibited more variation. Results shown in Fig. 7
and Table 4 indicated that the overall accuracy was nearly
100% with false positive and false negative rates of under 1%
for Kia (Mechanical) and Tesla (Electronic) in the context
of binary-class classification. This demonstrated that the
volume of collected data was sufficient for training the model
effectively. In this case, Gabor’s high-resolution feature
extraction performed well for binary-class classification.

E. RESULT EVALUATION: TRAINING THE MODEL WITH
HIGH-FREQUENCY DATA INJECTION AND TESTING THE
MODEL WITH UNKNOWN LOW-FREQUENCY DATA
INJECTION
In this experiment, a novel approach was applied by training
the model with higher-rate packet injection and subsequently
evaluating the model using low-rate packet injection data.

The motivation behind this experiment was rooted in
the recognition that real-world attackers often employed
inventive strategies when injecting packets into the in-vehicle
network. They might improvise IDs for various types of
attacks using a comprehensive, frequency-agnostic approach.
Furthermore, the generation of packets within the network
can vary depending on the specific situation. The aim was
to assess how the model responded to completely unknown
scenarios, a capability not achievable with rule-based IDS
systems. We previously explored unsupervised learning for
detecting unknown attacks. Here, we applied a supervised
learning approach.

Results are illustrated in Fig. 8 and summarized in Table 5,
highlighting the effective performance of the Gabor filter.
However, in some cases, attack-free data were incorrectly
classified as replay attacks. In contrast, in binary-class
classification, the model achieved a remarkable overall
accuracy of 100% for Kia (Mechanical) and 88% for
Tesla (Electronic) and false positive rates under 1% for
Kia and 24% for Tesla, but false negative is 0%. This
outcome significantly enhanced in-vehicle network security
and reinforced the robustness of this IDS.

VI. DISCUSSION
In the field of in-vehicle network security, this research
provides valuable insights by utilizing Gabor high-resolution
feature extraction and GRU-based classification for intrusion
detection. The study covers a wide range of scenarios,
including both high and low-frequency data injection, and
encompasses real-world and synthetic environments. This
approach aims to develop an IDS capable of effectively
detecting intrusions generated by attackers in the in-vehicle
network, while considering data variations and frequency-
agnostic capabilities, across various driving scenarios.

The research underscores the IDS’s ability to handle
high-frequency data injection, achieving detection rates
exceeding 99% for BMW, Kia, and Tesla. Particularly
noteworthy is the exceptional performance of the Gabor
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FIGURE 6. Confusion matrix on binary class classification low-frequency anomaly detection (HCRL).

TABLE 3. Performance metrics for Kia and Tesla for binary-class classification with low injection rate.

TABLE 4. Performance metrics for Kia and Tesla for binary-class classification with low injection rate.

high-resolution feature extraction method, with error rates
of less than 1% for each vehicle. However, in cases of
low-frequency data injection, especially within the con-
text of multi-class classification, the intrusion detection
system experiences a reduction in accuracy for specific
classifications. While it may face challenges in classifying
specific attack types, it excels at distinguishing between
attack-free scenarios and attacks. Binary-class classification

is an effective solution for detecting attacks on vehicles. This
method has shown success rates ranging from approximately
100% to 92% for four selected vehicle types. However,
the accuracy decreases when there is a higher frequency of
data injections, especially for electric vehicles. The study
faced a notable limitation due to the availability of diverse
vehicle datasets. In the future, incorporating hybrid and
electric vehicles will help improve attack detection accuracy
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TABLE 5. Performance metrics for Kia and Tesla in the context of binary-class classification with low injection rate, high injection train, and low injection
test.

FIGURE 7. Confusion matrix on binary class classification low-frequency anomaly detection (LISA).

FIGURE 8. Confusion matrix on binary class classification low-frequency anomaly detection with low injection rate, low injection train,
and high injection test.

and data generalizability. Despite resource constraints, the
Gabor filter has been used to generalize data effectively while
maintaining acceptable overall accuracy levels. It is worth
noting that the biggest challenge in this type of research is the

need for a substantial volume of data from various vehicles.
The study used the most commonly available publicly
accessible datasets. In comparison to other studies, the IDS’s
performance aligns with established standards. Furthermore,
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the research explores the model’s capabilities through a novel
experiment. It involves training the model with high-rate
packet injection data and subsequently testing it with low-rate
packet injection scenarios. This experimentation is crucial
because real-life attackers may inject packets in creative
and unpredictable ways, and in-vehicle networks generate
data situationally, making it challenging to cover all possible
scenarios during training. The results demonstrate that the
Gabor filter effectively enhances the model’s performance
from this perspective. Notably, in binary-class classification,
Kia and Tesla achieve remarkable accuracies of 100% and
88%, respectively.

In summary, this research highlights the effective-
ness of Gabor high-resolution feature extraction and
GRU-based classification models in enhancing in-vehicle
network security. The system’s capability to accommodate
diverse injection patterns and its promising performance
in high-frequency data scenarios emphasize its practical
significance. These findings have a substantial impact on the
advancement of intrusion detection systems for in-vehicle
networks, ultimately enhancing their security and robustness.

VII. CONCLUSION
This in-vehicle network security research utilizes Gabor
high-resolution feature extraction and GRU-based classifica-
tion for intrusion detection across high- and low-frequency
data injection scenarios in real-world and synthetic environ-
ments. The IDS detects high-frequency intrusions effectively,
with exceptional performance in Gabor high-resolution
feature extraction. However, accuracy improvement is needed
for specific low-frequency data injection and multi-class
classification scenarios. Binary-class classification mitigates
this, yielding success rates ranging from moderate to high.
Despite accuracy variations, the IDS’s versatility aligns with
established standards. The research demonstrates the model’s
flexibility by training with high-rate packet injection data and
testing with low-rate scenarios, highlighting the effectiveness
of the Gabor filter. Notably, Kia and Tesla achieve remarkable
accuracies in binary-class classification.
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