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ABSTRACT Erasure codes are widely used in large-scale distributed storage systems due to their high
efficiency and reliability, but they also face extremely high repair penalties when data corruption occurs.
At present, machine learning methods can accurately predict the next failure time and type of machine nodes.
Based on this, in order to solve the problem of unnecessary repair traffic caused by temporary failures, as well
as the more degraded reads of high-frequency accessed data due to longer failure time of such data in existing
repair methods, we propose an Adaptive Classification Predictive Repair method (ACPR) for different fault
scenarios. By categorizing the failed blocks into high-risk and low-risk based on the failure type of the
soon-to-fail (STF) node and the access heat of STF blocks, ACPR can perform adaptive predictive repair.
By quickly repair high-risk blocks to ensure data availability while delaying the repair of low-risk blocks,
a large amount of unnecessary repair traffic caused by temporary node failures in the cluster is avoided.
Alibaba Cloud Elastic Compute Service (ECS) experiments results show that compared with FastPR and
ECPipe, ACPR can shorten the repair time per data block by up to 15.2% and 33.5%, respectively. Moreover,
ACPR can reduce repair traffic by up to 74.1% and 84.4%, respectively.

INDEX TERMS Distributed storage system, data recovery, erasure coding.

I. INTRODUCTION
With the explosive growth of data, the availability and reli-
ability of distributed storage system have always been the
focus of research. The distributed storage system uses data
redundancy technologies such as replication and erasure
codes to provide fault tolerance so as to ensure the reliability
and availability of the cluster [1]. Replication is a simple data
redundancy storage method, but it will bring massive storage
redundancy [2], [3]. Erasure codes generate limited redundant
data through calculation, which provides lower redundancy at
the same fault tolerance level compared with replication [4],
[5]. Reed Solomon (RS) code is the most widely used erasure
code. In RS (k,m), k data blocks are encoded into m parity
blocks by calculation, and k +m blocks are placed on differ-
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ent machine nodes, which is called horizontal stripe. Other
blocks can be reconstructed from any k available blocks on
the stripe [6], so as to tolerate the loss of m blocks.

Although erasure codes achieve efficient storage, they face
high repair penalties. Repairing a single block requires read-
ing k available blocks, it means that the bandwidth and I/O
costs of such repair have been magnified by k times. In order
to alleviate the high repair cost of erasure code, the existing
related research can be divided into passive repair and pre-
dictive repair according to whether the fault actually occurred
during data repair. Passive repair is to quickly repair damaged
data blocks by optimizing repair technology [7], [8], [9], [10],
after discovering data block damage. If the damaged data is
accessed, degraded data reading may occur, resulting in the
increased response time. The predictive repair is to process
the possible damaged or lost data blocks in advance before
the actual failure based on the prediction of the soon-to-fail
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(STF) node through machine learning or other methods [11],
[12], [13], [14], [15], so as to shorten the unavailable time of
data blocks and improve data reliability [16], [17], [18], [19],
[20], [21].

However, the above researches focus on how to optimize
the repair process and ignore whether it is necessary to imme-
diately repair faults. In storage systems, temporary failures
of machines are more common than permanent failures [22],
and the nodes that have temporarily failed will automatically
return to the cluster after repair. Therefore, storage systems
usually wait for a period of time, e.g. 15 minutes [9] or
30 minutes [23], before starting repair to avoid unnecessary
repair from temporary failures. However, there are still some
temporary failures that exceed the fixed waiting time, repair-
ing such failures will result in a large amount of unnecessary
repair traffic. There are also studies [24] that enhance the
reliability of remaining available nodes while delaying the
repair of all data blocks to avoid unnecessary repair caused
by temporary failures. However, they ignore the problem that
delaying the repair of frequently accessed hot data will reduce
the availability of data in the storage systems [25]. Recent
research has shown that in distributed clusters with prediction
mechanisms, the next failure of machine nodes and the type
of failure can be accurately predicted, including Immediate-
Reboot (IR), Slow-Reboot (SR), and Forcible-Decommission
(FD) [26]. In order to solve the problem of unnecessary
repair traffic caused by temporary failures, as well as the
more degraded reads of high-frequency accessed data due
to longer failure time of such data in existing repair meth-
ods.We propose an Adaptive Classification Predictive Repair
method (ACPR) for different fault scenarios. By categorizing
the failed blocks into high-risk and low-risk based on the
failure type of the STF node and the access heat of STF
blocks, ACPR can perform adaptive predictive repair. The
main goal is to reduce unnecessary repair traffic and shorten
repair time.

The main contributions of this paper are as follows:

• An adaptive classification predictive repair method
ACPR for different fault scenarios is proposed. Accord-
ing to the failure type of STF node and the access heat
of STF block, ACPR can perform adaptive classification
predictive repair.

• In ACPR, in order to solve the problem of the more
degraded reads of high-frequency accessed data due to
longer failure time of such data, a repair method by
coupling repair pipelining reconstruction and migration
is proposed to minimize the data repair time.

• In ACPR, in order to solve the problem of a large amount
of unnecessary repair traffic caused by temporary node
failures, it is proposed to quickly repair high-risk blocks
by dividing the predicted STF blocks in STF nodes
according to the type of failure and access heat, while
delaying the repair of low-risk blocks. Such method can
ensure data availability as well as avoid the generation
of a large amount of unnecessary repair traffic.

• In order to evaluate ACPR, we deployed it on Hadoop
Distributed File System (HDFS) and conducted several
groups of experiments on 9 instances on Alibaba Cloud
ECS. The experimental results show that compared with
Fast Proactive Repair (FastPR) and Repair Pipelining
for Erasure-coded Storage (ECPipe), ACPR can shorten
the repair time per data block by up to 15.2% and
33.5%, respectively. Moreover, ACPR can shorten the
total repair time compared to FastPR and ECPipe by
up to 83% and 86.2%, respectively, and can reduce
repair traffic by up to 74.1% and 84.4%, respectively.
In the event of node failure during the repair process,
ACPR can shorten the data repair time by up to 41.9%
compared to FastPR. After the completion of predictive
repair for high-risk blocks, ACPR reduces the average
unavailable time of data blocks by up to 89.1% com-
pared to ECPipe.

• We also conducted theoretical analysis on ACPR in
larger scale environments to demonstrate its effective-
ness. By analyzing and calculating the results in larger
scale environments, ACPR can shorten data block repair
time by up to 69.8% and 25%, respectively, compared to
FastPR and ECPipe, and can reduce repair traffic by up
to 78.4% and 84.2%, respectively.

The rest of this paper is arranged as follows. Section II
introduces the related work. Section III introduces the
research methods of ACPR are elaborated in detail.
Section IV analyzes the advantages and disadvantages of
ACPR through experiments and theoretical analysis. Finally,
Section V concludes the paper.

II. RELATED WORK
Data repair in distributed storage systems can be divided into
passive repair and predictive repair methods based onwhether
a fault actually occurred during the data repair operation;
According to the delay of data repair initiation after identi-
fying faults, it can be divided into two types of methods, i.e.,
immediate repair and delayed repair.

The passive repair method is reactive, that is, the repair
operation is only triggered after detecting a node failure, and
its repair operation needs to be performed through degraded
reads. In order to improve the speed of degraded reads,
Partial-Parallel-Repair (PPR) [8] improves the utilization of
network bandwidth by splitting the repair process of a single
block into multiple sub processes that can be executed in par-
allel. Repair Pipelining for Erasure-coded Storage (ECPipe)
[7] uses repair pipelining reconstruction to further improve
parallelism and reduce the repair time of a single failed block.
Ultimately, the repair time of each block can be reduced to
a time similar to the normal reading of a block. Although
ECPipe can significantly reduce the repair time of each block,
it cannot reduce the high repair penalties caused by erasure
codes, that is, repairing each block still requires transferring
k times the size of the block, which consumes a large amount
of network resources. Research [26] improves the reliability
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of storage systems by accelerating the identification of data
blocks with high risk of loss and prioritizing the repair of
high-risk data with different fault monitoring times. If the
number of data blocks lost exceeds the fault tolerance of
system, passive data repair methods can cause permanent data
loss.

The predictive repair method performs predictive repair
before actual faults occur, so it can further improve the reli-
ability of data compared to passive repair methods. Some
studies [16] and [19] predict the storage of data in STF
disks in multiple copies, improving system reliability and
availability by increasing replica redundancy. However, the
redundancy of multiple copies can significantly increase
storage overhead. Other studies predict repair or transfer
in advance before a node fails [28]. Fast Proactive Repair
(FastPR) [17] carefully couples the migration and reconstruc-
tion of STF node blocks, scheduling in a parallel manner,
and making more full use of available bandwidth resources
in the cluster. Although FastPR predictive repair STF nodes
by coupling migration and reconstruction methods, signifi-
cantly reducing the high repair penalties of erasure codes, its
reconstruction method does not fully utilize the bandwidth
resources between nodes, and there is still room for improve-
ment in repair time.

Most of the existing methods for passive and predictive
repair also belong to the immediate repair method. When a
fault or STF node is detected, the lost or about to be lost
data can be quickly repaired to ensure the availability and
reliability of the system. However, temporary faults in the
storage system account for the majority. Even though the
storage system usually sets a data repair start delay [22], there
are still some temporary faults that exceed the set waiting
range, causing a large amount of unnecessary repair traffic.

The method of delayed repair is more concerned with
whether immediate repair is needed than how to optimize
repair. Therefore, the method of delayed repair generally
delays the repair of failed data by enhancing the reliability of
some stripes. For example, Risk-Aware Failure Identification
(RAFI) [29] and Lazy Repair with Temporary Redundancy
(LRTR) [24], where RAFI enhances reliability by accelerat-
ing the repair of stripes with more failed blocks and delaying
the repair of stripes with fewer failed blocks, reducing unnec-
essary repair traffic. LRTR performs low-cost temporary
redundancy operations on the surviving blocks of the affected
stripes and delays the repair of all failed data, reducing
unnecessary repair traffic. However, neither RAFI nor LRTR
considers the issue of data access heat. If the repair of fre-
quently accessed data is delayed, it will reduce the reliability
of the storage system. There are also studies that combine
predictive repair technologywith delayed repair, such as Lazy
Fast Predictive Repair (LFPR) [18]. By delaying the repair
of parity blocks, the parity blocks are repaired together with
data blocks in the same stripe, reducing the repair time of
each block. However, it still cannot avoid a large amount of
unnecessary repair traffic issues.

Algorithm 1 The Main Strategy of ACPR
Input: List of nodes, list;
1 begin
2 while true do
3 predict the failure and failure type on the nodes of list
4 STF nodes → STFlist //Insert STF nodes into STFlist
5 for each node ∈ STFlist do
6 //Immediate-Reboot, Slow-Reboot, Forcible-Decommission are sets of

failure types
7 if STF node ∈ Immediate-Reboot then
8 riskIdentification() // Insert block into corresponding risk list
9 end if
10 if STF node ∈ Slow-Reboot then
11 riskIdentification() // Insert block into corresponding risk list
12 end if
13 if STF node ∈ Forcible-Decommission then
14 each block → HighRiskList // Insert each block into HighRiskList
15 end if
16 end for
17 for each block ∈ HighRiskList do
18 highRiskBlockRepair() // Execute ACPR repair method
19 end for
20 for each block ∈ LowRiskList do
21 lowRiskBlockDynamicDetect() // Lazy repair low risk block
22 end for
23 end while

24 end

In order to quickly repair blocks to ensure data availability
while reducing a large amount of unnecessary repair traffic
caused by temporary node failures. Our idea is to take advan-
tage of both predictive repair and lazy repair to categorize
the failed blocks, maximizing the performance of repair-
ing important data while minimizing unnecessary repair
traffic.

III. ACPR DESIGN
Based on the above analysis, we designed the ACPR method
to address the problem of unnecessary repair traffic caused
by temporary failures, as well as the more degraded reads
of high-frequency accessed data due to longer failure time
of such data in existing repair methods. The main idea of
ACPR is to categorize the failed blocks into high-risk and
low-risk based on the failure type of the STF node and
the access heat of STF blocks, ACPR can perform adaptive
predictive repair. For high-risk blocks, in order to fully utilize
the bandwidth resources between nodes and minimize the
repair time, ACPR couples the migration and repair pipeline
reconstruction to achieve rapid predictive repair. For low-risk
blocks, in order to further avoid a large amount of unneces-
sary repair traffic, ACPR dynamically detects the number of
failed blocks in the affected stripe, while delaying the repair
of low-risk blocks until the number of failed blocks reaches
the upper limit of stripe fault tolerance. The specific steps
are given in Algorithm 1. We will provide a more detailed
description in the three aspects, i.e., risk identification, high-
risk block repair, and low-risk block dynamic detection as
follows.
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TABLE 1. Risk levels of STF blocks in three scenarios.

A. RISK IDENTIFICATION
When the STF node is detected, the blocks in the STF node
are classified for risk identification. And the access heat of
the data blocks stored on the STF node can affect the risk of
whether to degrade reads after the data block fails. Therefore,
data blocks with different heat levels may adopt different
repair strategies. To address this, ACPR proposes risk clas-
sification methods for hot data blocks, hot data parity blocks,
and cold blocks under three fault scenarios, i.e., Immediate-
Reboot (IR), Slow-Reboot (SR), and Forcible-Decommission
(FD). This is explained in detail as follows and summarized
in Table 1.

1) HOT DATA BLOCK
As to the frequently accessed hot data block, the normal
access to such data block is very important, so once the hot
data block fails, the risk of degraded read in the three failure
scenarios illustrated above is very high, and it needs to be
repaired as soon as possible.

2) HOT PARITY BLOCK
The failure of the hot parity block will not affect the normal
reading of other data, and in the IR and SR scenarios, the
failed node will automatically return to the cluster for normal
operation within a period of time, so the risk of degraded
read of the failed hot data parity block is low in these two
scenarios. In order to reduce unnecessary repair traffic, the
strategy of delayed repair is adopted. However, in the FD
scenario, the hot data parity block will permanently fail, so in
this scenario, the risk of irreparable blocks is high and fast
repair is necessary.

3) COLD STF BLOCK
Due to the low access frequency of cold data block, in the IR
and SR scenarios, the failed node will automatically return to
the cluster for normal operation within a period of time, so the
risk of degraded read of the failed cold data block is low in
these two scenarios, and the strategy of delayed repair is also
adopted. However, in the FD scenario, cold data blocks will
permanently fail, so in this scenario, the risk of irreparable
blocks is high and fast repair is necessary.

B. HIGH-RISK BLOCK REPAIR
For high-risk blocks, ACPR needs to repair them efficiently
as soon as possible. Therefore, ACPR aims to minimize the
repair time for each round, such that it minimizes the overall
repair time. When blocks retrieved from healthy nodes in

each round are distributed across different nodes, the recon-
struction can be executed in parallel. However, conventional
reconstruction methods fail to fully utilize the bandwidth
resources between nodes. To further shorten repair time,
ACPR adopts a pipeline approach for reconstruction. Addi-
tionally, as data migration operations from STF nodes can be
executed in parallel with the repair pipelining reconstruction
to further reduce the repair time, ACPR adopts a parallel
approach of data migration and pipeline reconstruction for
data repair, which requires determining which data blocks
need to be repaired through data migration or repair pipelin-
ing reconstruction. Therefore, ACPR needs to divide all data
blocks to be repaired into two sets, namely, reconstruction set
and migration set, and performs repair pipelining reconstruc-
tion and migration respectively. As long as the reconstructed
set is determined, the remaining data blocks belong to the
corresponding migration set, thus the primary goal is to deter-
mine the reconstructed set.

The idea of constructing the reconstruction set is to first
construct the initial reconstruction set, then optimize and
adjust it, and move some stripes from the reconstruction set
to the migration set to determine the final reconstruction set.

1) CONSTRUCTING THE INITIAL RECONSTRUCTION SET
First, the initial reconstruction set is constructed, and each
one of all high-risk blocks in the STF node is added to one
subset of the reconstruction set according to the following
subset division principle. ACPR divides G or less than G
stripes into a subset in the reconstruction set. As to each
stripe in the same subset, all k health blocks scattered across
k different nodes. And all blocks in each subset can retrieve k
blocks from k surviving nodes for reconstruction and repair
at the same time. WhereG is the maximum number of stripes
that can be reconstructed in parallel, and G ≤ (N − X )/k .
That is, each node can concurrently retrieve at most one block
fromN−X surviving nodes, whereN is the number of cluster
nodes and X is the number of STF nodes. In this way, at most
G ≤ (N − X )/k stripes can be reconstructed in parallel each
time, so each subset of the reconstruction set can have at most
G stripes. If the parallelism of the current subset is less than
G (the number of stripes reconstructed in parallel is less than
G), it means that the current maximum subset has not been
reached. It is necessary to optimize the current subset through
the replacement strategy to make its parallelism as close as
possible to G until all high-risk blocks in the STF node are
divided into the reconstruction set.

Figure 1 shows an example of repairing high-risk blocks to
build a reconstruction set. The storage system uses RS (3,2)
coding. After the N1 node temporarily fails, only the blocks
in the stripes S1, S2, S3 and S4 on the nodeN1 are determined
to be high-risk blocks, so it is only necessary to build a
reconstruction set on the S1 to S4 stripes. Since the stripes
with k health blocks scattered across k different nodes are first
divided into a subset of the reconstruction set, S1 and S2 are
first divided into a subset R = {S1, S2} in this example.
However, at this time, the subset is smaller than the maximum
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parallelism G =3, so the subset needs to be optimized, but
S3 and S4 cannot join the subset at this time. Therefore, the
reconstructed set R = {{S1, S2} , {S3} , {S4}}, and it requires
three rounds of repair. However, try to replace S2 with S3.
After replacement, S4 can also join the subset. At this time,
R = {S1, S3, S4} is equal to the maximum parallelismG, and
the remaining S2 is divided into another subset. Therefore,
the final reconstruction set is R = {{S1, S3, S4}, {S2}}, and
it only requires two rounds of repair.

FIGURE 1. Example of constructing and optimizing reconstruction sets.

2) ADJUSTING THE RECONSTRUCTION SET
The goal of ACPR is repairing more blocks in each round,
thus minimizing the total number of repair rounds and con-
sequently reducing repair time. We conduct migration repair
in parallel with each round of repair pipelining reconstruc-
tion. This entails converting a portion of the blocks slated
for repair from using reconstruction to migration repair.
Hence, we need tomake adjustments to the reconstruction set,
removing stripes from certain subsets of the reconstruction set
and adding them to the migration set, to determine the final
reconstruction set and migration set. The idea for adjusting
the reconstruction set is as follows. ACPR sorts the subsets
in descending order based on the number of data blocks to be
repaired contained in each subset of the initial reconstruction
set. It allows larger subsets to undergo parallel repair pipelin-
ing reconstruction, and moving stripes from smaller subsets
to the migration set for repair through migration to reduce
repair time.

How many stripes from the smaller subsets should be
moved to the migration set? In order to answer this question,
firstly, we need to calculate the time Trecon required for
each round of high-risk blocks repaired through pipelining
reconstruction and the time Tmigra to repair a high-risk block
throughmigration to determine the number of blocks repaired
through migration during each round of repair. The calcula-
tion methods for Trecon and Tmigra are shown in (1) and (2),
respectively. Where s refers to the number of small data
packets that the entire block is divided into for transmission,
c refers to the block size, bn refers to network bandwidth,
and bd refers to disk bandwidth. Due to the fact that in
practice, computation operations can be executed in parallel

with disk I/O and network transmission, and require less time,
we ignore the overhead generated by computation here. Due
to the fact that the number of packets s is generally much
greater than k − 1, the calculation of Trecon and Tmigra shows
that during each round of repair pipelining reconstruction,
one high-risk block can be migrated and repaired in parallel.
Therefore, each round of repair will select one subset from
the subset arranged in descending order of the reconstruction
set for repair pipelining reconstruction. At the same time,
one stripe will be selected from the subset at the end of
the reconstruction set and moved to the migration set for
migration repair.

Trecon =
c
bd

+

(
1 +

k − 1
s

)
∗
c
bn

+
c
bd

(1)

Tmigra =
c
bd

+
c
bn

+
c
bd

(2)

Figure 2 shows an example of adjusting of the reconstruc-
tion set, which is R = {{S1, S2, S3}, {S4, S5}, S6}}. And
suppose that in this example, the time of transmitting a block
t =

c
b ,

k−1
s = 0.1t . Since the reconstruction set is arranged

in descending order, the first subset {S1, S2, S3} in R is
reconstructed by repair pipelining, which takes 1.1t . At the
same time, we extract stripes from the end terminal set of R
and add them to migration set M , that is, S6 is added to M ,
and the migration repair time is 1t(< 1.1t). Since 0.1 t is not
enough to migrate and repair a whole block, the first round
of migration set M only has S6. The first round of repair is
completed, and the reconstruction set {R} = {{S4, S5}}. Since
there is only one subset left in the reconstruction set at this
time, the second round only needs to use repair pipelining
reconstruction subsets {S4, S5}.

FIGURE 2. Example of adjusting the reconstruction sets.

Because there may be errors in the state prediction of
nodes, it is inevitable to suddenly break down in the pro-
cess of predictively repairing high-risk blocks. The migration
method fails due to node failure, but the repair pipelin-
ing reconstruction method can still be used normally.
At this time, the unrepaired high-risk blocks can only
be repaired by repair pipelining reconstruction. Therefore,
in this scenario, the ACPR repair method will degenerate
into ECPipe.
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C. LOW-RISK BLOCK DYNAMIC DETECTION
As to the low-risk blocks, their likelihood of being accessed
is low, the risk of data irreparable is relatively low, and their
hosted nodesmay only temporarily fail andwill automatically
return to the cluster to work after a period of time. Thus,
ACPR adopts a delayed repair strategy for such low-risk
blocks to minimize the unnecessary repair traffic caused by
temporary failures. When a node fails, ACPR will detect the
fault tolerance of all low-risk block related stripes on that
node. If the number of failed blocks in all related stripes has
not yet reached themaximumnumber of failed blocksm in the
stripe, ACPRwill not handle it. If the number of failed blocks
on any related stripe reaches m, ACPR will repair all failed
blocks on that stripe, including hot data parity blocks and cold
data blocks. Due to the fact that single node failure is the most
common failure in distributed storage systems, accounting for
98% of the total [22], and the failure of low-risk blocks is
temporary, the probability of repairing low-risk blocks is very
low.

IV. PERFORMANCE EVALUATION
We create 9 cloud servers on Alibaba Cloud Elastic Compute
Service (ECS), set up Hadoop clusters, and evaluate the
performance of ACPR for RS codes on Hadoop Distributed
File System (HDFS) (Section IV-A). Due to the limitations in
experimental conditions, we also conduct theoretical analysis
on ACPR in larger scale environments to demonstrate its
effectiveness (Section IV-B). To evaluate the repair perfor-
mance of ACPR, we compared it with FastPR and ECPipe in
experimental and theoretical analysis.

A. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we evaluate ACPR for RS codes on Alibaba
Cloud Hadoop clusters. First, we introduce the experimental
design. Then, we analyze the performance of ACPR by four
sets of experiments.

1) OVERVIEW OF EXPERIMENTAL DESIGN
We create 9 cloud server ECSs on Alibaba Cloud, built a
Hadoop 3.1.1 cluster, and evaluate ACPR based on the RS
code on HDFS. The instance is located in North China 2
(Beijing), and each instance has two 2.5GHz Intel Xeon
Platinum vCPUs, 16GB of RAM, and 100GB of ESSD cloud
disk storage, running CentOS 7.9. The disk bandwidth and
network bandwidth of each instance are 128MB/s and 1 Gb/s,
respectively. The ACPR master node and HDFS NameNode
are deployed in one instance, while the ACPR slave nodes and
HDFS DataNodes run in the remaining 8 instances as storage
nodes.

We generate a 90GB file, which was is RS (3,2) encoded
and written to HDFS, with randomly distributed stripes in
the storage system. For consistent testing, we use the fol-
lowing default configuration: the erasure code parameter is
RS (3,2), the data block size is 64MB, and the data packet
size is 32KB. In each experiment, repair 60 blocks from STF

nodes. To avoid randomness of the results, each group of
experiments was repeated 10 times, and the average of the
10 results was taken as the final result.

To evaluate the performance of ACPR in different block
numbers, block sizes, and node failures during predictive
repair processes, and to evaluate the impact of the strategy
of ACPR delaying low-risk block repair on data availability.
In the above Alibaba Cloud ECS environment, we conduct
four sets of experiments to analyze the impact of the number
of repaired data blocks on repair time, the impact of block size
on repair time and repair traffic, the impact of node failures on
repair time during predictive repair process, and the impact of
ACPR delayed repair of low-risk blocks on data availability.

2) EXPERIMENT 1: ANALYSIS OF THE IMPACT OF THE
NUMBER OF REPAIRED DATA BLOCKS ON REPAIR TIME
In order to explore the impact of the number of repaired data
blocks on repair time in our experiments, we first evaluate
the average repair time of each block under different block
numbers using ACPR, FastPR and ECPipe. As depicted in
Figure 3, it can be seen that the repair time of each data block
using the same method did not change significantly with the
number of repaired data blocks. Therefore, for the conve-
nience of subsequent evaluation, we use 60 as the default
number of repaired data blocks.

FIGURE 3. Experiment 1: Analysis of the impact of the number of
repaired data blocks on repair time.

3) EXPERIMENT 2: ANALYSIS OF THE IMPACT OF BLOCK
SIZE ON REPAIR TIME AND REPAIR TRAFFIC
We evaluate the impact of different block sizes on average
repair time and average repair traffic per node, considering
that ACPR only needs to repair high-risk blocks within STF
nodes, while FastPR and ECPipe need to repair all blocks
within nodes. Therefore, for better evaluation, we add the
experiment of ‘‘ACPR-Repair all’’ (ACPR which repairs all
blocks within nodes) to compare with FastPR, ECPipe and
ACPR.

As shown in Figure 4, the repair time of each data block
increases with the increase of data block size, but ‘‘ACPR-
Repair all’’ still reduces the repair time of each block
compared to FastPR and ECPipe by 13.3% - 14.1% and
29.6% - 33.5%, respectively. And ACPR also reduces the
repair time of each block compared to FastPR and ECPipe
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FIGURE 4. Experiment 2: Analysis of the impact of block size on per block
repair time.

FIGURE 5. Experiment 2: Analysis of the impact of block size on total
repair time.

by 0.6% - 15.2% and 23.7% - 30.8%, respectively, in all
evaluated data block sizes. Additionally, as shown in Figure 5,
ACPR reduces the total repair time compared to FastPR and
ECPipe by 80.1% - 83% and 83.9% - 86.2%, respectively.
And ‘‘ACPR-Repair all’’ also reduces the total repair time
compared to FastPR and ECPipe by 13.3% - 14.1% and
28.2% - 33.5%, respectively, in all evaluated data block sizes.
SinceACPRonly needs to repair high-risk blocks, the number
of blocks that ACPR needs to repair is much less than FastPR
and ECPipe, so ACPR demonstrates a greater advantage in
overall repair time. Therefore, it can be concluded that ACPR
outperforms FastPR and ECPipe in terms of repair time per
block and total repair time, whether repairing all blocks or
only high-risk blocks.

Figure 6 shows that due to ACPR using the pipeline
reconstruction method to repair data blocks, compared to
FastPR,more data blockswill be repaired through reconstruc-
tion. Therefore, when all data blocks within the repair node
are repaired, ‘‘ACPR-Repair all’’ generates 22.9% additional
repair traffic, but still reduces 22.2% repair traffic compared
to ECPipe. However, ACPR only needs to repair high-risk
blocks within the node to ensure data availability, so in this
case, ACPR will reduce repair traffic by 74.1% and 84.4%
compared to FastPR and ECPipe, respectively.

4) EXPERIMENT 3: ANALYSIS OF THE IMPACT OF NODE
FAILURES ON REPAIR TIME DURING PREDICTIVE REPAIR
PROCESS
In real business scenarios, there may be STF node failures
during the predictive repair process, resulting in incomplete
data repair and degradation of repair methods. Such situation

FIGURE 6. Experiment 2: Analysis of the impact of block size on repair
traffic.

may lead to poor repair performance. Therefore, in order to
evaluate ACPR in the situation of the node failure during the
predictive repair, we compare ACPR with FastPR in such
situation. As ECPipe belongs to passive repair, no compar-
ison need to be made in this experiment. When an STF
node fails, the method of migrating data blocks fails, and
the ACPR method of repairing data blocks will degenerate
into ECPipe, which only repairs the rest data blocks through
pipeline reconstruction. FastPR does not consider this situa-
tion, so it degenerates into a normal reconstruction method.
We compare ACPRwith FastPR in the situations that the STF
node fails when the repair completed 25%, 50%, and 75%,
respectively. In this experiment, the size of each data block is
64MB and the number of repaired data blocks is 60. As shown
in Figure 7, despite the failure of the migration repair method,
ACPR still reduced the repair time by 31.8% - 41.9% com-
pared to FastPR in all test cases. Moreover, the earlier the
STF node failed during the predictive repair process, themore
obvious the advantage of ACPR. Because in the event of a
failed predictive repair by ACPR, the remaining data blocks
can still be repaired through pipeline reconstruction, while
FastPR can only repair the remaining data blocks through
ordinary reconstruction.

FIGURE 7. Experiment 3: Analysis of the impact of node failures on repair
time during predictive repair process.

5) EXPERIMENT 4: ANALYSIS OF THE IMPACT OF ACPR
DELAYED REPAIR OF LOW-RISK BLOCKS ON DATA
AVAILABILITY
To evaluate the impact of delay low-risk block repair strat-
egy adopted by ACPR on the availability of all data block,
firstly, we completed the predictive repair of high-risk blocks
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with ACPR. We assume that the STF node failed after the
predictive repair. Then we test the average unavailable time
of accessing all data blocks within the STF node. When
the low-risk blocks are accessed, pipeline reconstruction is
required to repair such data blocks, so the unavailable time
of low-risk blocks is the average repair time of such data
blocks in this scenario. Considering that FastPR predictively
repairs all data blocks of STF nodes, we assume that the
unavailable time of the data blocks after FastPR predictive
repair is 0. ECPipe belongs to the passive repair method,
so the unavailable time of the data blocks is the repair time of
the data blocks. From Figure 8, it can be seen that the average
unavailable time of data blocks increases with the increase of
data block size. However, due to ACPR predictively repairing
frequently accessed hot data blocks, the average unavailable
time of all data blocks using ACPR is controlled within
0.09 seconds and reduced by 88.7% -89.1% compared to
using ECPipe. Therefore, even if ACPR delays the repair of
low-risk blocks, it does not have a significant impact on the
data availability.

FIGURE 8. Experiment 4: Analysis of the impact of ACPR delayed repair of
low-risk blocks on data availability.

B. THEORETICAL ANALYSIS OF ACPR
Due to the limitations in experimental conditions, we can-
not evaluate ACPR in larger cluster sizes. Therefore, in this
section, we use theoretical analysis to evaluate ACPR in
larger scale environments to demonstrate its effectiveness.

1) OVERVIEW OF THEORETICAL ANALYSIS DESIGN
We use the following default settings, the total number of
nodes N = 100, the number of blocks in the STF node
U = 1000, the data block size c = 64MB, the network
transmission bandwidth bn = 128MB/s, disk transmission
bandwidth bd = 1Gb/s, the number of packets s = 2048,
and use RS (6,3) as the default code, that is, k = 6, m = 3.
The proportion of IR, SR, and FD nodes is configured to be
the same as Google Trace, accounting for 67%, 32%, and 1%
respectively. According to Zipf’s law [30], the ratio of cold
data block to hot data block (including hot data parity block)
is set to 80% and 20%.

To evaluate the repair performance of ACPR under differ-
ent RS encoding and different number of nodes in the cluster.
We conduct theoretical analyses for ACPR in two aspects, i.e.,
the impact of different RS codes and the number of nodes
in the cluster on repair time and the impact of different RS
codes and the number of nodes in the cluster on repair traffic.
And we verify the correctness of theoretical analysis methods
through experiments on Alibaba Cloud.

2) ANALYSIS OF THE REPAIR TIME
Since ACPR only repairs high-risk blocks immediately,
in order to better analyze the time spent on repair, all blocks
in the STF node are set as high-risk blocks in this scenario.
We assume that x blocks in the STF node are repaired by
migration, and the number of blocks reconstructed by repair
pipelining is U − x, so the total time spent on migration is
x∗Tmigra, and the total time spent on repair pipelining recon-
struction is U−x

G ∗Trecon. Because the operations of repair
pipelining reconstruction and migration are parallel, the total
repair time t predicted for repair is as follows.

T = max(x ∗ Tmigra,
U − x
G

∗ Trecon) (3)

If the total repair time T is minimized, it is necessary to
make x∗Tmigra =

U−x
G ∗Trecon, that is, x =

U∗Trecon
G∗Tmigra+Trecon

,
so the minimum predicted repair time Tmin is as follows.

Tmin =
U ∗ Trecon ∗ Tmigra
G ∗ Tmigra + Trecon

(4)

We can calculate the ideal average repair time of data
blocks for ACPR in the predictive repair process without node
failures, as indicated by (4). To verify the feasibility of the
theoretical analysis method, we first evaluated the average
repair time of data blocks under the same parameters as the
practical experiment. As shown in Figure 9, under different
data block sizes, ACPR shortened the repair time by 27.2%
and 33.3% compared to FastPR and ECPipe, respectively.
This result is also close to practical EXPERIMENT 2 in
Section IV-A, therefore the performance of ACPR can still
be evaluated by the theoretical analysis.

FIGURE 9. Theoretical analysis method validation.

Figure 10 and Figure 11 respectively show the repair times
of ACPR, FastPR, and ECPipe under different RS encoding
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parameters and different number of nodes. ACPR reduces the
average repair time per block by 46.9% - 69.8% compared to
FastPR and by 5.8% - 25% compared to ECPipe, respectively.
This improvement is attributed to ACPR adopting a pipeline
approach for the reconstruction method, which effectively
optimizes bandwidth resources between nodes compared to
reconstruction method of FastPR. Additionally, ACPR, can
concurrently conduct migration repair while using repair
pipelining reconstruction, leading to more efficient repair,
compared to ECPipe.

FIGURE 10. The impact of RS(k, m) on repair time.

FIGURE 11. The impact of the number of nodes on repair time.

3) ANALYSIS OF THE REPAIR TRAFFIC
ACPR only generates cross node repair traffic when repairing
high-risk blocks in STF nodes. Therefore, we assume that U ′

is the number of high-risk blocks identified as to be repaired
in IR and SR scenarios, and the expression is as follows.

U ′
= U ∗

k
k + m

∗ 20% (5)

When a high-risk block is repaired using the repair
pipelining reconstruction method, k data blocks need to be
transferred, while only one data block needs to be transferred
when using the migration method. According to the propor-
tion of U , U ′ and the proportion of IR, SR and FD nodes, the
average repair traffic of each node can be obtained by calcu-
lating the repair traffic of repair pipelining reconstruction and
migration.

Figure 12 and Figure 13 show the average repair traf-
fic of each node using ACPR, FastPR, and ECPipe under

different RS encoding parameters and different numbers of
nodes. Under various parameter conditions, ACPR reduces
the average repair traffic per node by up to 72.9% - 78.4% and
81% - 84.2% compared to FastPR and ECPipe, respectively.
This reduction is attributed to the strategy of ACPR delaying
low-risk block repair. Consequently, all repair traffic is solely
based on high-risk blocks repair, leading to an overall reduc-
tion of approximately 80% in repair traffic.

FIGURE 12. The impact of RS(k, m) on repair traffic.

FIGURE 13. The impact of the number of nodes on repair traffic.

From the above theoretical analysis, it can be seen that
even in larger cluster environments, the repair performance
of ACPR is still superior to FastPR and ECPipe. Compared
to FastPR and ECPipe, ACPR can shorten data block repair
time by up to 69.8% and 25%, respectively, and reduce repair
traffic by up to 78.4% and 84.2%, under different RS encod-
ing parameters and different numbers of nodes in the cluster.

V. CONCLUSION
In this paper, we propose an Adaptive Classification Pre-
dictive Repair method ACPR for different fault scenarios.
By categorizing the failed blocks into high-risk and low-risk
based on the failure type of the STF node and the access heat
of STF blocks, ACPR can perform adaptive predictive repair.
The main idea is through coupling migration and pipeline
reconstruction, high-risk blocks can be quickly repaired to
ensure data availability, while delaying the repair of low-risk
blocks can avoid unnecessary repair traffic. According to
Alibaba Cloud ECS experimental evaluation, compared to
FastPR and ECPipe, ACPR can shorten the repair time per
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data block by up to 15.2% and 33.5%, respectively.Moreover,
ACPR can shorten the total repair time compared to FastPR
and ECPipe by 80.1% - 83% and 83.9% - 86.2%, respec-
tively. Since ACPR couples the migration and repair pipeline
reconstruction to achieve a reduction in repair time per block.
And ACPR only needs to repair high-risk blocks within the
node to ensure data availability, so ACPR demonstrates a
greater advantage in overall repair time. And ACPR can
reduce repair traffic compared to FastPR and ECPipe by up
to 74.1% and 84.4%, respectively. Since ACPR only repairs
high-risk blocks within the node, avoiding a large amount
of unnecessary repair traffic. Therefore, ACPR outperforms
FastPR and ECPipe in terms of repair traffic. In the event
of node failure during the predictive repair process, ACPR
can shorten the data repair time by up to 41.9% compared
to FastPR. After the predictive repair is completed, ACPR
reduces the average unavailable time of data blocks by up to
89.1% compared to ECPipe. We also conducted theoretical
analysis of ACPR in larger scale environments to demonstrate
its effectiveness. By analyzing and calculating the results
in larger scale environments, ACPR can shorten data block
repair time by up to 69.8% and 25%, respectively, and can
reduce repair traffic by up to 78.4% and 84.2%, respectively,
compared to FastPR and ECPipe. In future work, we will
apply ACPR to larger scale real systems to further validate
the performance of ACPR. We will also consider replacing
RS encoding with other erasure codes with less repair traffic
to further optimize ACPR.
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