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ABSTRACT This paper addresses the joint design of a beamformer and user-centric clustering for scalable
cell-free massive multiple-input multiple-output (CF-mMIMO) under severe quantization noise generated
in backhaul links for central processing units (CPUs) cooperation. The system model comes up with a plan
in which multiple CPUs exchange physical layer data under limited bandwidth to enhance performance
while introducing clustering across multiple CPUs. We derive the joint optimization of the minimum mean-
square error (MMSE) beamformer and user-centric clustering under quantization noise, and propose its low-
complexity design. The superiority of our proposed design method is clarified by comparing its performance
with cellular distributed MIMO systems. Throughout the paper, we first answer the problem of how much
gain CF-mMIMO systems with multiple CPUs cooperation can obtain.

INDEX TERMS 6G, backhaul capacity limitation, cell-free massive MIMO, distributed MIMO, multiple
CPUs, user-centric clustering.

I. INTRODUCTION
Technical investigations on the sixth generation (6G) sys-
tems, or Beyond the fifth generation (5G), which will be
commercialized by approximately 2030, are conducting key
performance indicators (KPIs) analysis [1], [2], [3], [4],
[5]. According to published papers, 6G systems will have
new indicators that do not appear in 5G systems and will
improve each KPI of 5G systems. In 6G systems, the demand
growth of data rates per user equipment (UE) will exceed
that of system peak data rates [6], [7], [8]. Although the
number of antennas will increase to enhance data rate per
cell as massivemultiple-input multiple-output (mMIMO), the
performance will remain limited due to spatial correlation.
In addition, from the fourth generation (4G) wireless
communication systems to 5G systems, cells are deployed
more densely to handle the increasing required network
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capacity. However, with densely deployed cells, cell-edge
UEs experience larger intercell interference, which results
in worse performance compared to the cell-center UEs,
which makes UE performance unfair. In multi-cell mMIMO
systems, a sub-optimal pilot power allocation scheme is
investigated to improve the channel estimation performance
using appropriate user groupings [9]. The performance of a
simple least squares scheme can approach that of the MMSE
scheme with small inter-/intra-cell interference and sufficient
pilot power.

To solve these problems, CF-mMIMO systems appeared
in 2015 [10], [11], [12], [13]. CF-mMIMO systems eliminate
the concept of cells, and a massive number of access
points (APs) are distributed in a network coverage area.
In [12], a CF-mMIMO system with a single CPU is
introduced, as depicted in Fig. 1, in which all APs cooperate
to communicate with all UEs to reduce interference and
make UE performance fairer. Additionally, in CF-mMIMO
systems, spatial correlation decreases, interference can be
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FIGURE 1. Model of a single-CPU CF-mMIMO system. APs are distributed
in the area and connect to the CPU via wired fronthaul links.

suppressed by spatial filtering based on large-system limit,
and performance is determined from a large-scale perspec-
tive. Furthermore, every AP connects to the sole CPU, which
process all the signals, via wired fronthaul links. In addi-
tion, CF-mMIMO systems are investigated from various
perspectives. For example, transmit power control methods
are proposed for CF-mMIMO systems, such as maximizing
the minimum spectral efficiency (SE), maximizing the sum-
SE, and maximizing the total energy efficiency (EE) [10],
[14], [15], [16]. For example, [14] proposes an optimization
algorithm to maximize the minimum signal-to-interference-
plus-noise ratio (SINR). Ref. [15] considers the system that
there is quantization noise at fronthaul links between APs
and the sole CPU. It maximizes the minimum data rate by
optimizing receiver filter coefficients and power allocation.
In addition, the performance of uplink CF-mMIMO systems
with a single CPU, taking into account the quantization
caused by capacity-limited fronthaul between APs and the
CPU, is investigated [17]. An analysis of three distinct signal
processing schemes clarified that limited-fronthaul systems
with a few quantization bits can achieve almost the same
performance as ideal-fronthaul systems. Ref. [18] proposes
an algorithm to jointly perform UE-APs association and
decoding to reduce fronthaul load. The proposed method
in [18] achieves almost the same bit error rate performance as
the conventional CF-mMIMO system where all APs serve all
UEs while reducing fronthaul signaling. Moreover, a beam-
forming scheme and several power allocation strategies for
CF-mMIMO systems where both APs and UEs are equipped
with multiple antennas have been reported [19].

However, it is impractical for only one CPU to process
all UE signals located in a wide area, e.g., a state or
a country. Specifically, in such a situation, the length of
optical fibers connecting the APs and the CPU can exceed
the limit to guarantee fibers’ communication quality, and
a longer distance between the APs and the CPU causes
signal processing delays and degrades throughput. Therefore,
even though CF-mMIMO systems with a single CPU realize
theoretically optimal networks, they also confront scalability
problems in terms of the increasing numbers of UEs and
APs [20], [21], [22], [23].

The first approach to realize scalability in CF-mMIMO
systems is user-centric clustering [19], [24], [25], [26], [27].
With this approach, the system makes clusters of APs that are
tailored for each UE’s channel condition, hence named ‘‘user-
centric.’’ There are several methods for making clusters: one
common approach is to use the power difference of the
estimated large-scale coefficients, which include path loss
and shadowing [25]. In general, only the UE’s surrounding
APs will join in the UE’s cluster while each AP may belong
to multiple clusters. This method also introduces a limitation
on the number of UEs by allocating different pilot resources
to each UE. It is beneficial for making systems scalable
because network operators can determine the number of pilot
resources at the time of system design. Another method is
to use the Hungarian algorithm, which makes clusters based
on network connectivity and is described in [28]. However,
the signal processing delay mentioned above remains as long
as there exists one CPU only. Radio stripes have emerged
as another approach for scalability in CF-mMIMO, where
APs are connected sequentially and only one AP connects to
the CPU directly [29], [30]. APs process the signals locally
and the reduced amount of information is sent to the CPU.
Nevertheless, due to its structure of radio stripes, forwarding
the data from APs to the CPU takes longer than the general
CF-mMIMO networks [29]. We can say that the application
range of current radio stripes is still limited especially in
terms of latency caused by the increasing data rate in Beyond
5G. In addition, radio stripes can be deployed to specific
environments, e.g., stadiums and train stations.

Therefore, the other approach is multi-CPU CF-mMIMO
systems depicted in Fig. 2, where the area is virtually divided
into smaller subareas and each CPU takes charge of each
subarea [20], [25], [27], [28], [31] in combination with
user-centric clustering. This approach enables the system to
reduce the computational complexity on every CPU and to
reduce the required pilot resources, which generally must be
orthogonal with each other to prevent pilot contamination.
Each CPU manages a subset of APs, which are directly
connected to the CPU via fronthaul links. In multi-CPU
CF-mMIMO systems, the CPUs must exchange channel
state information (CSI) and signals via backhaul links to
process the signals of UEs, whose clusters consist of APs
belonging to different CPUs. Distributed signal processing
is not distinctive to CF-mMIMO systems; similar concepts
have been investigated in cellular systems. One example
is cellular distributed antenna systems (DAS), which is
illustrated in Fig. 3 [32], [33]. However, cellular DAS still
has cell boundaries, and intercell interference remains. On the
other hand, multi-CPU CF-mMIMO systems can process
signals not statistically but conclusively thanks to backhaul
connections among CPUs.

However, although only higher-layer information is for-
warded via backhaul links in current systems such as 5G,
forwarding received I/Q data and estimated channel via
backhaul links is required to realize multi-CPU CF-mMIMO
systems. Signals of various layers, i.e., the physical layer
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FIGURE 2. Model of a multi-CPU CF-mMIMO system. Each AP and CPU
are connected via fronthaul link, and received uplink signals are
forwarded to the CPUs.

FIGURE 3. Model of DAS for cellular networks. Antennas are distributed
in the cells, each of which is controlled by one CPU. There is no
interaction among CPUs.

and higher layers, are forwarded to handle a wide range of
communication requirements [34], [35], [36], [37], [38].With
this approach, we can forward received I/Q data and estimated
channel via backhaul links, but we must also quantize the
signals because insufficient capacity is sometimes available
with high demand from connected UEs. For example, the
performance of cloud radio access networks with limited
backhaul links among cloud processors [39], [40], [41] has
been investigated. In those works, limited backhaul links
are modeled as quantization noise caused by low-bit analog-
to-digital converters. However, those papers introduce such
systems in cellular networks, i.e., cell-edge problems remain,
and there is no user-centric clustering. Hence, a natural
question that may arise is how much network cooperation
gain can be obtained among CPUs connected by backhaul
linkswith the bandwidth limitation. The answer to this natural
question will reveal the practicability and the design of
scalable CF-mMIMO systems with multiple CPUs.

In this paper, we propose a method of user-centric
clustering and beamforming for multi-CPU CF-mMIMO

systems considering quantization noise with the assumption
that a certain capacity is guaranteed to exchange I/Q
data among CPUs via the wired backhaul links explained
above. Moreover, we analyze the performance of multi-
CPU CF-mMIMO systems, where signals are processed
at the CPUs, with the effect of backhaul quantization
noise on signals. In particular, we clarify the superiority
of our new proposed method compared to single-CPU
CF-mMIMO systems and cellular DAS by means of Monte
Carlo simulations. Here, as we mentioned in the fourth
paragraph of this section, we focus on not radio stripes but
a common topology of CF-mMIMO for general performance
investigation. Our contributions in this paper are summarized
as follows:
• We present backhaul quantization noise using a mathe-
matical model in multi-CPU CF-mMIMO systems.

• We newly formulate an optimization problem to derive
optimal solutions as an upper bound of multi-CPU
CF-mMIMO systems with quantization noise.

• We design a new method of user-centric clustering and
beamforming based on dynamic cooperation clustering
(DCC) and MMSE for the presented model.

• We discuss the computational complexity of the systems
to show the benefit of using our proposed method with
multi-CPU CF-mMIMO systems.

• We present an answer to the unsolved problem of how
much network cooperation gain can be obtained among
CPUs connected by noisy backhaul links by comparing
its performance with cellular DAS.

The remainder of this paper is organized as follows: The
system model, including the channel model and backhaul
quantization noise, is described in Section II. In Section III,
the joint optimization problem of user-centric clustering
and beamforming to derive an upper bound of performance
is derived, and the realistic design method of user-centric
clustering and beamforming for multi-CPU CF-mMIMO
systems is introduced. The computational complexity of these
methods is also discussed in this section. Numerical results
of multi-CPU CF-mMIMO systems are investigated with
single-CPU CF-mMIMO systems, as well as cellular DAS,
in Section IV. Finally, we conclude this paper in Section V.
Notation:Upper and lower boldface letters X and x denote

a matrix and a column vector, respectively. In particular,
IL denotes an identity matrix size of L × L. ◦ denotes an
elementwise product, or an Hadamard product, of vectors or
matrices. ∥·∥F, (·)†, (·)H, and (·)∗ denote the Frobenius norm,
pseudoinverse, Hermitian transpose, and complex conjugate,
respectively. diag(x) denotes a transformation of a vector into
a diagonal matrix, and diag(X) denotes a transformation of a
diagonal matrix into a column vector. Finally, E[·] denotes an
expectation.

II. SYSTEM MODEL
In this section, we introduce the systemmodel for user-centric
multi-CPU CF-mMIMO systems, where we focus on uplink
transmission. There are L APs and K UEs distributed over
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a certain coverage area, and each AP and UE is equipped
with a single antenna. Every AP connects to one of C CPUs
located in the area via wired fronthaul link. Furthermore, all
CPUs are connected with each other via wired backhaul links
with capacity limitations. Note that the assumption of single-
antenna UEs is common in CF-mMIMO papers thanks to
the degree of freedom at multi-antenna APs [42], [43], [44].
In addition, to guarantee scalability, the system adopts user-
centric clustering, as illustrated in Fig 2.

Although there are multiple CPUs in the area, the signals
of the kth UE are processed at its sole host CPU. In this
paper, a host CPU is a CPU directly connected to the AP
that has the largest channel gain of a certain UE among all
APs. Therefore, the beamformer for the kth UE is designed
at the host CPU to extract its signals. At this time, the received
signals at the APs, which connect to the other CPUs, and the
estimated channels at the other CPUs are gathered at the host
CPU via fronthaul links and capacity-limited backhaul links.
As discussed in Section I, signals of various layers, i.e., the
physical layer and higher layers, are forwarded to address a
wide range of communication requirements [34], [35], [36],
[37], [38]. With this approach, we can forward received I/Q
data and estimated channel via backhaul links, but we must
also quantize signals because sometimes insufficient capacity
is available with high demand from connected UEs.

A. MODELING OF CHANNEL INFORMATION SHARING
In general, CF-mMIMO systems must estimate CSI using
uplink pilot signals [12], [27], [45], and the channel model
takes the impact of channel estimation into account.

For simplicity, in this paper, we define the estimated
channel between the kth UE and all APs as follows:

ĥk ≜ hk + ek , (1)

where hk ∼ CN (0,Rk ) ∈ CL×1 is the channel realization
vector following a complex Gaussian distribution with mean
0 and covariance Rk . We assume that MMSE is used for
channel estimation and ek ∼ CN (0, σ 2

e IL) ∈ CL×1 is
the channel estimation error vector. Furthermore, in this
paper, we assume that reference signals are sent from APs
in coherence intervals to prevent channel aging effects.

The estimated channel is affected by backhaul quantization
noise due to capacity limitations when forwarding the CSI
among CPUs. This means that even though the CSI is of the
same UE, each CSI gathered at the host CPU from nonhost
CPUs of the UE can be different. Therefore, the estimated
channel of the k ′th UE gathered at the host CPU of the kth
UE is expressed as

h̃k,k ′ = ĥk ′ + pk ◦ w
′

k ′ . (2)

pk ∈ {0, 1}
L×1 denotes the direct connectivity between the

host CPU of the kth UE and all APs and is given by

pk =

{
0, connected
1, disconnected.

(3)

Accordingly, quantization noise is added to the estimated
channel from the nonhost CPUs. w′k ′ ∼ CN (0, σ 2

wp,k ′IL) ∈
CL×1 is the backhaul quantization noise vector whose
variance is defined as follows:

σ 2
wp,k ′ ≜

∥∥∥ĥk ′ ◦ pk∥∥∥2
F

2Cb − 1
, (4)

where Cb (bit/s/Hz) is the backhaul link capacity.

B. CLUSTERING MATRIX
In this subsection, we introduce a model of user-centric
clustering, where all APs are grouped into a subset of APs
based on the channel condition between the UEs and APs.
Note that each AP can join multiple clusters, while every UE
has only one cluster. The binary diagonal matrix denoting the
clustering status of the kth UE is expressed by

Dk =


dck,1 0 · · · 0

0 dck,2
. . . 0

...
. . .

. . . 0
0 · · · 0 dck,L

, (5)

where dck,ℓ is an indicator of the clustering defined as

dck,ℓ =

{
1, in the cluster
0, otherwise.

(6)

In other words, the (ℓ, ℓ)-th element is 1 if the ℓth AP joins in
the kth UE’s cluster and 0 otherwise. Notably, in contrast to
pk , 1 denotes the connected status inDk . The detailed process
of user-centric clustering is explained in Section III.

C. SIGNAL MODEL
In this paper, we assume flat fading channels, and
one possible enabler to apply the proposed method to
frequency-selective fading channels is orthogonal frequency-
division multiplexing (OFDM). In such scenarios, the related
signal processing can be executed for each subcarrier.

The received signals at all APs sent from all UEs are
formulated as follows:

y =
K∑
k=1

hksk + n, (7)

where sk ∈ C1×1 is the data symbol transmitted by the kth
UE, and n ∼ CN (0, σ 2

n IL) ∈ CL×1 is the additive white
Gaussian noise (AWGN) vector at APs.
Similar to the channel model, the gathered received signals

at the host CPU from other CPUs are affected by backhaul
quantization noise. Therefore, the gathered signals at the host
CPU of the kth UE are expressed as

ỹk = y+ pk ◦ wk

=

K∑
k ′=1

hk ′sk ′ + n+ pk ◦ wk︸ ︷︷ ︸
Equivalent Noise

. (8)
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wk ∼ CN (0, σ 2
w,kIL) ∈ CL×1 is the quantization noise vector

for the received signals, whose variance is given by

σ 2
w,k ≜

∥∥∥∥∥
(

K∑
k ′=1

hk ′ + n

)
◦ pk

∥∥∥∥∥
2

F

2Cb − 1
. (9)

The data symbol sent from the kth UE is estimated by the
host CPU using an arbitrary beamformer uk , as follows:

ŝk = uHk Dk ỹk

=

K∑
k ′=1

uHk Dkhk ′sk ′ + u
H
k Dk

(
pk ◦ wk

)
+ uHk Dkn. (10)

Finally, we define the network throughput of the kth UE as

rk ≜ W log2(1+ Γk), (11)

whereW is the system bandwidth, and Γk is the SINR of the
kth UE expressed as (12), shown at the bottom of the next
page [46]. Note that for a single-CPU CF-mMIMO system,
h̃k is equivalent to ĥk because there is only one CPU and no
backhaul quantization noise exists.

III. PROPOSED METHODS
In this section, we propose a new design method for
user-centric clustering and beamforming taking into account
backhaul quantization noise for multi-CPU CF-mMIMO
systems. As indicated by (2) and (8), due to backhaul
quantization noise, the selection of the host CPU is important
to improve UE performance. Therefore, we select a host
CPU that directly connects to the AP that has the largest
channel gain of a certain UE, as mentioned in Section II.
Furthermore, it is beneficial to take quantization noise into
account when designing beamformers. This section is divided
into two subsections.

First, we derive the joint design of user-centric clustering
and beamforming with a total throughput maximization
problem. In this paper, we pursue the achievable throughput
of our proposed algorithms. This is why we solve the
max-total problem instead of max-min problems which
appear in [14] because it degrades performance of UEs in
good condition for the sake of the UEs in bad condition.
Since it is a nonconvex optimization problem including a
logarithmic fractional function of throughput and combina-
tional constraints, the problem is reformulated by fractional
programming (FP) [47], [48] and convex-concave procedure
(CCP) [49], and the combinational constraints are relaxed as
an entropy penalty method [50].

Second, to reduce the computational complexity of solving
the above problem, a simplified designmethod of user-centric
clustering and beamforming is proposed. In this method,
clusters are based on the DCC method presented in [25], and
quantization noise is considered. Moreover, beamforming is
derived as a closed form of MMSE that takes the effect of
quantization noise into account.

A. JOINT DESIGN OF CLUSTERING AND BEAMFORMING
FOR TOTAL THROUGHPUT MAXIMIZATION
The joint optimized design method for AP access configu-
ration and beamformers has already been discussed in [51],
which seeks the access configuration of CF-mMIMO systems
with dynamic time division duplex. The joint optimization
methods in literature [51] assume perfect knowledge of
CSI. However, this paper considers the channel estimation
error and the quantization noise. Therefore, to optimize
considering noise, a design that is robust to imperfect
knowledge of CSI is required. Therefore, the solution to
the optimized design problem must search for the worst-
case SINR based on CSI held by CPU. The robust design
algorithm based on [51] must search for the worst-case
SINR in the outer loop, so this application is not realistic
from the viewpoint of computational complexity. In this
paper, we implement a design assuming that the CSI,
including the noise from the channel estimation and the
backhaul communication, is the true CSI. Based on the above
considerations, we derive the total throughput maximization
problem as follows:

maximize
dck,ℓ,ūk ,∀ℓ,k

K∑
k=1

log2
(
1+ Γ̄k

)
(13a)

subject to dck,ℓ ∈ {0, 1}, (13b)

|[ūk ]ℓ|
2
≤ dck,ℓ,∀ℓ, k, (13c)

L∑
ℓ=1

dck,ℓ ≤ L
c
k ,∀k, (13d)

where [·]ℓ denotes the ℓth element of a vector. The constraints
of (13b) and (13c) are applied to AP selection for user-centric
clustering to exploit the power of the beamformer. Specif-
ically, when the equality holds, the power of the combiner
is also 0, which means the ℓth AP does not serve the
kth UE. In addition, the maximum power is normalized
to 1 because the range of the penalty function is given as
[0, 1]. The constraint (13d) is a bound on the number of
APs in each cluster. In the objective function (13a), Γ̄k is
an achievable SINR using a beamformer ūk , an optimization
variable of (13), and is given as (14), shown at the bottom of
the next page.

Moreover, to circumvent the combinational constraints on
dck,ℓ, Problem (13) can be relaxed by replacing (13b) with its
convex hull dck,ℓ and by introducing a penalizing term into the
objective based on a negative entropy function, as described
in [50]. In particular, let P(dck,ℓ) be the negative entropy
function and let λ be a given weight. Therefore, Problem (13)
can be rewritten, i.e., relaxed, as

maximize
dck,ℓ,ūk ,∀ℓ,k

K∑
k=1

log2
(
1+ Γ̄k

)
+

K∑
k=1

L∑
ℓ=1

λP
(
dck,ℓ

)
(15a)

subject to 0 ≤ dck,ℓ ≤ 1, (15b)

(13c) and (13d),
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where P(dck,ℓ) ≜ dck,ℓ log d
c
k,ℓ+ (1− dck,ℓ) log(1− d

c
k,ℓ) is the

penalty function, and λ ≥ 0 is a hyperparameter for adjusting
the strength of the penalty.

Although Problem (15a) has removed the combinational
constraints on dck,ℓ, it is still intractable because the objective
function has nonconvexity on the other optimization variable
ūk . To resolve this challenge, we make Problem (15a) convex
by FP. The quadratic transform (QT) for the first step of FP
is applied to Problem (15a) as follows:

maximize
dck,ℓ,ūk ,∀ℓ,k

K∑
k=1

fk(ūk)+
K∑
k=1

L∑
ℓ=1

λP
(
dck,ℓ

)
(16)

subject to (13c), (13d), and (15b),

where fk (ūk ) is the approximated throughput of the first step
of FP and can be expressed as

fk(ūk) ≜ αk + (1+ γk)Γ̄ ldt
k , (17)

where Γ̄ ldt
k is given by (18), as shown at the bottom of the next

page, γk = Γ̄k , γ ≜ [γ1, . . . , γK ], and αk ≜ log2(1+γk )−γk .
In the next step of FP, we apply QT to (17). At this

point, the objective function in (16) after applying QT
becomes the difference between two concave functions,
which motivates us to utilize the difference of concave
programming technique. Therefore, we adopt CCP to find a
solution of the problem, and Problem (16) is further modified
as [49]

maximize
dck,ℓ,ūk ,∀ℓ,k

K∑
k=1

f fink (ūk , γ, s)+
K∑
k=1

L∑
ℓ=1

λdck,ℓ∇P
(
dc,t−1k,ℓ

)
(19)

subject to (13c), (13d), and (15b),

where (·)t−1 denotes the solution obtained in the (t − 1)-th
iteration, s ≜ [s1, . . . , sK ], and sk =

√
1+ γk Γ̄

qt,1
k /Γ̄

qt,2
k .

In addition,

f fink (ūk , γ, s) ≜ αk + βkℜ
{
s∗k Γ̄

qt,1
k

}
− ∥sk∥22Γ̄

qt,2
k , (20)

where βk ≜ 2
√
1+ γk , and the SINR Γ̄

qt,1
k and Γ̄ qt,2

k are
defined as

Γ̄
qt,1
k ≜ ūHk h̃k , (21a)

Algorithm 1 Joint Design of Clustering and Beamforming
for CF-mMIMO Using Total Throughput Maximization
Initialize: beamforming vectors ūk , penalty parameters λ,

λ+, and the maximum number of iterations tmax

1: t ← 0
2: repeat

// update the auxiliary variables
3: Dt−1k ← Dk
4: γk ← Γ̄k ,∀k
5: sk ←

√
1+ γk Γ̄

qt,1
k /Γ̄

qt,2
k ,∀k

// optimize the clusters and beamformers
6: update Dk and ūk by solving (19)

// update the hyperparameter
7: λ← λ+ λ+ // increase penalty
8: t ← t + 1 // increase counter
9: until converge or t = tmax

10: quantize Dt−1k
// subsequent loop is optional

11: t ← 0
12: repeat

// update the auxiliary variables
13: γk ← Γ̄k ,∀k
14: sk ←

√
1+ γk Γ̄

qt,1
k /Γ̄

qt,2
k ,∀k

// optimize the beamformers
15: update ūk by solving (19)
16: t ← t + 1 // increase counter
17: until converge or t = tmax

18: return Dt−1k and ūk

Γ̄
qt,2
k ≜

K∑
k ′=1

∣∣∣ūHk h̃k ′ ∣∣∣2 + σ 2
w,k

∥∥∥ūHk ◦ pk∥∥∥2 + σ 2
n ∥ūk∥

2
2. (21b)

After optimizing (19) by solving a beamformer design
with quantized dck,ℓ, the effect of rounding errors can
be reduced. Finally, (19) is solved by numerical convex
optimization solvers such as SeDumi and SDPT3 [52], [53].
For convenience, we summarize the step-by-step recipe of the
proposed joint design of clustering and beamforming with the
style of pseudocode in Algorithm 1.

Γk =

∣∣uHk Dkhk ∣∣2
K∑

k ′ ̸=k

∣∣uHk Dkhk ′ ∣∣2 + ∣∣uHk Dk(pk ◦ wk)∣∣2 + σ 2
n

∥∥uHk Dk∥∥2 . (12)

Γ̄k =

∣∣∣ūHk h̃k ∣∣∣2
K∑

k ′ ̸=k

∣∣∣ūHk h̃k ′ ∣∣∣2 + K∑
k ′=1

∣∣∣ūHk ek ′ ∣∣∣2 + σ 2
w,k

∥∥uk ◦ pk∥∥22 + σ 2
n ∥ūk∥

2
2

. (14)
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B. LOW-COMPLEXITY DESIGN METHOD OF CLUSTERING
AND BEAMFORMING
1) CLUSTERING METHOD FOR MULTI-CPU CF-MMIMO
SYSTEMS
The proposed clustering method in this subsection uses DCC,
which has been investigated in CF-mMIMO systems, as well
as cellular DAS [54], [55]. DCC is a method of user-centric
clustering initially proposed for MIMO networks. It operates
as if there exists a single CPU that controls multiple
base stations (BSs). Since multiple CPUs and backhaul
quantization noise exist, the DCC method must be modified.
The proposed clustering method is given as follows:
1) We assume that the CPUs experimentally determine the

quantization noise depending on the number of bits.
2) Based on the large-scale coefficients obtained during

the channel estimation phase, the AP that has the largest
received signal strength (RSS) or the statistical value of
the estimated channel is selected as the main AP for a
certain UE. In addition, the CPU that connects to the
main AP directly becomes the host CPU for the UE.

3) The host CPU calculates signal-to-noise ratio (SNR)
considering the quantization noise power of all APs
taking into account the quantization noise on backhaul
links.

4) The APs whose power differences of SNR with
quantization noise from the main AP are below the
threshold, or a certain number of APs join in the cluster
of the UE.

5) Steps 2–4 are executed for all UEs.
By means of the above steps, clusters are formed using the

CSI with penalty of backhaul quantization noise. As a result,
the proposed clustering method can effectively suppress the
quantization noise with a feasible process.

2) MMSE-BASED BEAMFORMING DESIGN
The original concept of CF-mMIMO systems uses maximal-
ratio combining (MRC) [12]. However, in regard to practical
deployment, MMSE is widely used as a beamformer to
suppress CSI estimation error, inter-UE interference, and
AWGN [56], [57].

In this paper, we propose a design method for a beam-
former based on MMSE to suppress quantization noise. The
estimated transmitted data symbol ŝk from the kth UE is
expressed as follows using an arbitrary beamformer:

ŝk = uHk Dk ỹk . (22)

Furthermore, the MMSE beamformer is defined as

uk = arg min
uk

E
[∣∣sk − ŝk ∣∣2]. (23)

Since (23) is a convex minimization problem, the proposed
MMSE beamformer can find the global optimal solution by
point zero of the Wirtinger derivative for the expectation.
Therefore, by substituting (10) for (23), the Lagrange
multiplier is given as

L = E

∣∣∣∣∣sk − uHk Dk
{

K∑
k ′=1

ψk ′sk ′ + n+ pk ◦ wk

}∣∣∣∣∣
2,

(24)

where ψk ′ is the replacement of the actual CSI hk ′ with the
estimated CSI in (2) and is written as

ψk ′ = h̃k,k ′ − ek ′ − pk ◦ w
′

k ′ . (25)

Finally, the stationary point of (23) is obtained by solving
the equation ∂L/∂u∗k = 0, and the proposed MMSE
beamformer is represented by (26), as shown at the bottom
of the next page.

IV. NUMERICAL ANALYSES
In this section, we first discuss the computational complexity
of the proposed methods followed by the introduction of
the conventional MMSE beamformer to investigate the
performance. Finally, we evaluate the throughput of the
proposed methods.

Although sufficient size reference signals are still required
since there is a larger number of APs in CF-mMIMO systems
compared to conventional cellular systems, it is important to
control the network size by clustering appropriately to reduce
the pilot sequence length. This is why user-centric clustering
is investigated in CF-mMIMO papers.

A. COMPLEXITY ANALYSIS
Before proceeding to the numerical performance evaluation
of the proposed methods compared with the conventional and
benchmark methods, we discuss their computational com-
plexity. In particular, the proposed low-complexity methods
in Section III-B have superior computational complexity to
the joint optimization method in Section III-A.

Current OFDM systems also divide channels into multiple
subcarriers [58], where the major signal processing tech-
niques often possess the same complexity order as that of the
proposed method. As for the related complexity reduction,
various techniques have been proposed in the literature, such
as [59], some of which are also applicable to our proposed
scheme without loss of generality.

1) DESIGN METHOD OF CONVEX OPTIMIZATION USING FP
The most complicated operation associated with solving (19)
is the computation of the corresponding quadratically

Γ̄ ldt
k ≜

∣∣∣ūHk h̃k ∣∣∣2
 K∑
k ′ ̸=k

∣∣∣ūHk h̃k ′ ∣∣∣2 + σ 2
w,k

∥∥∥ūHk ◦ pk∥∥∥2 + ∣∣∣ūHk n∣∣∣2
−1. (18)
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constrained programs (QCPs) ε-solution, whose canonical
arithmetic complexity C can be upper-bounded by [60] and
[61]

C ≤ Ñ

Ñ 2
+ M̃ +

M̃∑
m=1

Q2
m

√1+ M̃ digit(ε), (27)

where M̃ , Ñ , and Qm denote the number of constraints in the
problem, the size, i.e., vector dimension, of the real-valued
multidimensional variable, and the size of the mth constraint
space, respectively. The constraint quantity digit(ε) is the
order of precision of the ε-solution in terms of its distance
to the optimum [61].

After (19) is transformed into the QCP canonical form
described by (44a) in Appendix A, we obtain

M̃ = 2K + 2L + K , (28a)

Ñ = 2K + L + 2KL, (28b)

M̃∑
m=1

Q2
m = 8K 2L2 + 5KL + KL2. (28c)

The total complexity of Algorithm 1 can be estimated
using (27) and (28a):

C1 ≤ X digit(ε) = O
(
K 3L3

√
K + L

)
, (29)

where only the higher order term is left in the last equivalency.

2) PROPOSED LOW-COMPLEXITY METHOD
The computational complexity of the MMSE beamformer
with clustering has already been discussed in [25]. The
complexity can be represented as

C =
|Mk |

2
+ |Mk |

2
K + |Mk |

2
+
|Mk |

3
− |Mk |

3
,

(30)

whereMk is the set of APs that join in the cluster of the kth
UE; |Mk | denotes its cardinality. Note that we use single-
antenna APs.

Although the actual number of APs varies for each UE/AP
allocation, unless we apply a fixed number of APs per cluster,
the maximum is L. With the assumption thatK ≪ L, the total
complexity of the proposed low-complexity method can be
estimated as follows:

C2 ≤ O
(
L3
)
. (31)

By comparing (29) and (31), it is clear that the latter
method is superior to the optimized method in terms of
computational complexity. Note that (29) is the complexity
to solve the maximization problem (19), which appears

at Lines 6 and 15 of Algorithm 1. As written at Lines
9 and 17, solving (19) can be repeated up to tmax times.
Therefore, the total complexity of Algorithm 1 is given as
O(tmaxK 3L3

√
K + L), and the gap between (29) and (31)

becomes wider when Algorithm 1 repeats more.

B. CONVENTIONAL METHODS AND IDEAL NETWORKS
In this subsection, we introduce the conventional clustering
method and beamforming designs for performance compari-
son with the proposed methods.

First, we discuss beamforming design methods without
considering backhaul quantization noise. These methods are
not tolerant to quantization noise and thus will be a lower
bound of the performance of the proposed methods.

Next, designmethods of clustering and beamforming using
an ideal CF-mMIMO system model are introduced. These
provide an upper bound of throughput performance with the
assumption that the model has infinite-capacity backhaul
links.

1) CONVENTIONAL BEAMFORMER DESIGNS
First, an MMSE-based beamformer, which we call the
benchmark MMSE, is given by excluding the quantization
noise term of the proposed MMSE beamformer (26).
Therefore, the benchmark MMSE is provided by (32), as
shown at the bottom of the next page. This method represents
the lower bound of throughput performance in this paper.

2) SINGLE-CPU CF-MMIMO SYSTEMS
Since the performance limitation of multi-CPU CF-mMIMO
systems is caused by quantization noise, an ideal multi-CPU
CF-mMIMO system with infinite-capacity backhaul links
gives an upper bound of throughput performance.

First, the received signals without quantization noise are
expressed as

ŝIDk =
K∑

k ′=1

uHk Dkhk ′sk ′ + u
H
k Dkn, (33)

and we define the network throughput for the kth UE as
follows:

r IDk ≜ W log2
(
1+ Γ ID

k

)
, (34)

where

Γ ID
k =

∣∣uHk Dkhk ∣∣2
K∑

k ′ ̸=k

∣∣uHk Dkhk ′ ∣∣2 + σ 2
n

∥∥uHk Dk∥∥2 . (35)

As seen from (33), the ideal multi-CPU CF-mMIMO
system is equivalent to the conventional single-CPU
CF-mMIMO system with user-centric clustering. To fairly

uk =

[
Dk

{
K∑

k ′=1

(
h̃k ′,k h̃

H
k ′,k + σ

2
e IL + diag

(
σ 2
wp,k ′pk

))
+ σ 2

n IL + diag
(
σ 2
w,kpk

)}
DH
k

]†
Dk h̃k,k . (26)
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TABLE 1. Parameter specification.

compare its performance with the proposed methods, the
user-centric clustering scheme for the ideal CF-mMIMO
system uses an original DCC framework [25], which is
summarized as

1) The AP with the strongest RSS becomes the main AP
of the UE based on the large-scale coefficients obtained
during the channel estimation phase.

2) The CPU calculates the RSS of all APs.
3) The APs whose power differences of RSS from the

main AP are below the threshold, or a certain number
of APs join in the cluster of the UE.

4) Steps 1–3 are executed for all UEs.
Finally, the MMSE beamformer for the ideal CF-mMIMO

system is provided by (36), as shown at the bottom of page 11.

C. SIMULATION RESULTS
Based on the discussion above, we evaluate the performance
of multi-CPU CF-mMIMO systems using Monte Carlo
simulations. The parameter specification is shown in Table 1.
The APs are allocated in grid shapes, where the distances
between adjacent APs are equal in the row and column
directions. The CPUs are allocated in the same way as the
APs, and all APs connect to the geographically nearest CPU
via fronthaul links. The large-scale coefficients are given as
−35.3− 37.6 log10(d)+ z, where d denotes the distance and
z represents shadowing with a standard deviation of 10 dB.
Other parameters are specified according to [25], and the
channels are assumed to be uncorrelated because all APs are
equipped with a single antenna.

Finally, we discuss some optimization details. The initial
values for the beamformer are given by MRC, and the initial
values for clustering are set as dck,ℓ = 1,∀ℓ, k . The optional
loop in Algorithm 1 is executed. The initial value of the
penalty hyperparameter is λ = 0, and the increase in each
iteration is assumed to be λ+ = 1, except in the first five
iterations, where λ+ = 0. The maximum number of APs in
clusters (13d) is Lck = 50.

1) IMPACT OF BACKHAUL CAPACITY LIMITATION
First, we investigate the impact of backhaul capacity
limitation. Fig. 4 compares the cumulative distribution

functions (CDFs) of the throughput for the benchmark
MMSE beamformer of four values of capacity. ‘‘Single-
CPU’’ in the figures is the throughput of the single-CPU
CF-mMIMO system as the upper bound of performance,
i.e., without backhaul quantization noise. As the backhaul
capacity changes, the throughput performance draws an
exponential and linear gradient for C = 4 and C = 25,
respectively. This is because when the number of CPUs
is smaller, a greater number of APs belong to a specific
CPU, and the probability of transmission via backhaul links
decreases.WhenCb = 16, the performance of the benchmark
MMSE beamformer with C = 4 is asymptotic to that of the
single-CPU system.

2) PERFORMANCE SUPERIORITY OF THE PROPOSED
METHODS
Here, we investigate the performance of the proposed
methods taking quantization noise into account. Note that
the backhaul capacity is set as Cb = 4 to analyze
the performance characteristics when the noise effect is
significant. To make the received signal power fair among
simulations, we allocate a fixed number of APs to each
cluster. In particular, the number of allocated APs is the
average of the number of allocated APs over all channel
realizations.

Fig. 5 compares the throughput performance of our
proposed methods and the conventional methods. ‘‘MRC’’
and ‘‘BM’’ use the proposed low-complexity clustering
method, and the conventional MRC/MMSE beamformer.
‘‘MM’’ uses the proposed low-complexity design method
of clustering and beamforming. ‘‘OPT’’ uses the proposed
joint optimization method of clustering and beamforming.
In addition, ‘‘OPT_h’’ uses the proposed joint optimization
of clustering and beamforming without quantization noise of
the estimated CSI.

Fig. 5a shows the CDF of throughput when C = 4. The
proposed methods suppress the effect of backhaul quantiza-
tion noise, which results in the performance of ‘‘OPT_h’’
asymptotically approaching that of the ideal system. How-
ever, ‘‘OPT_h’’ uses ideal channel state information, which
is not a realistic assumption. Therefore, ‘‘OPT’’ shows the
quasi-upper-bound with estimated channel state information.
When the number of CPUs is small, ‘‘MM’’ asymptotically
approaches ‘‘OPT,’’ indicating that suboptimal results can
be obtained with lower computational complexity. The
result of ‘‘BM’’ also shows that the performance improves
with the proposed clustering method only. Furthermore,
‘‘MRC’’ performs slightly better than ‘‘DCC-BM’’ due to
the proposed clustering method. Although the complexity is
decreased by applying MRC, the performance is degraded

uBMk ≜

[
Dk

{
K∑

k ′=1

(
h̃k,k ′ h̃

H
k,k ′ + σ

2
e,k ′IL

)
+ σ 2

n IL

}
DH
k

]†
Dk h̃k,k . (32)

390 VOLUME 12, 2024



M. Ito et al.: Clustering and Beamforming for User-Centric Cell-Free Massive MIMO

FIGURE 4. Comparison of throughput performance for the benchmark MMSE beamformer with four values of backhaul capacity.

FIGURE 5. Performance comparison of the proposed methods and conventional methods.

compared to MMSE. In addition, MMSE is commonly used
in CF-mMIMO papers.

Fig. 5b shows the CDF of the throughput when C = 25.
The performance degradation of ‘‘BM’’ is significant because
the effect of quantization noise is added on more signals
via backhaul links. On the other hand, the performance
degradation of ‘‘MM’’ is small due to the noise suppression
of the proposed beamforming. In particular, ‘‘OPT_h’’
asymptotically approaches the ideal system regardless of the
number of CPUs. However, ‘‘OPT_h’’ does not consider the
backhaul quantization noise of the channel estimation in (14)
for simplicity of transformation. This is why ‘‘OPT’’ has
degraded performance in more realistic setups. These results
indicate that the proposed methods effectively suppress
the effect of quantization noise. In particular, ‘‘MM’’ can
suppress the noise effect even though the computational
complexity is kept to a practical level.

3) PERFORMANCE COMPARISON WITH CELLULAR DAS
Fig. 6 shows the average throughput versus the number
of APs per cluster. Similar to Fig. 5, ‘‘MM’’ uses the
proposed clustering and beamforming methods, and ‘‘single-
CPU’’ denotes the ideal CF-mMIMO system with the
MMSE beamformer (36). Note that ‘‘DAS’’ shows constant
throughput regardless of the number of APs per cluster
because the systems do not use clustering. As seen from
Fig. 6, the average throughput of the proposed methods
approaches that of the ideal CF-mMIMO system as the
backhaul capacity increases. Furthermore, the performance
improves as the number of APs increases because the
proposed methods can mitigate the backhaul quantization
noise.

In Fig. 6a, the average throughput of CF-mMIMO systems
is smaller than that of DAS when the number of APs in
the cluster is less than 20. CF-mMIMO is disadvantageous
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FIGURE 6. Comparison of average throughput with various numbers of APs per cluster using the proposed methods.

regarding received power because the number of APs
connected to each CPU is fixed at 25. Since CF-mMIMO can
utilize the number of APs connected to nonhost CPUs, it can
achieve higher throughput than DASwhen the number of APs
in a cluster is 25.

On the other hand, Fig. 6b shows the advantage of
CF-mMIMO systems over DAS regarding the average
throughput with 10 or more APs per cluster. Under this
setting, DAS cannot fully utilize the spatial degrees of
freedom due to the reduced number of APs per cell.
In contrast, multi-CPU CF-mMIMO can use a large number
of APs to increase the degrees of freedom and receive power.
In addition, these results indicate that the proposed methods
are effective in increasing the effect of backhaul quantization
noise caused by the increase in the number of CPUs.

V. CONCLUSION
In this paper, we analyzed the effect of quantization noise
caused by capacity-limited backhaul links for CF-mMIMO
systems with multiple CPUs. First, we revealed the impact
of quantization noise on performance with a conventional
MMSE beamformer. Second, to obtain better UE perfor-
mance under such conditions, we proposed a new MMSE
beamformer and clustering methods using an optimization
problem and a low-complexity approach. Finally, we com-
pared the performance of our proposed methods with cellular
DAS.

The proposed methods outperform the conventional
MMSE beamformer in all simulation cases. Multi-CPU
CF-mMIMO systems also outperform conventional cellular

DAS, which shows the merits of transforming current mobile
networks into CF-mMIMO systems.

APPENDIX A
CANONICAL FORM OF QCP FORMULATION
In this section, we describe how Problem (19) is transformed
into the QCP canonical form to calculate its computational
complexity. To that end, first, we consider the canonical form
of a real-valued conic QCP, which is expressed as [61]

maximize
x

cTx (37a)

subject to ∥c∥2 ≤ d0, (37b)

∥Amx+ bm∥2 ≤ cTmx+ dm,∀m ∈ {1, . . . ,M},
(37c)

x ∈ RÑ , bm ∈ RQm . (37d)

Next, we consider the following minimization problem
equivalent to the maximization problem of (19):

minimize
o,ūk ,dck,ℓ,∀ℓ,k

−

K∑
k=1

ok −
K∑
k=1

L∑
ℓ=1

λdck,ℓ∇P
(
dc,t−1k,ℓ

)
(38a)

subject to f fin,−k (ūk , γ, s) ≤ ok ,∀k, (38b)

(13c), (13d), and (15b),

where o = [o1, . . . , oK ]T are auxiliary variables and

f fin,−k (ūk , γ, s) ≜ ∥sk∥22Γ̄
qt,2
k − βkℜ

{
s∗k Γ̄

qt,1
k

}
− αk . (39)

To put (38b) into the form of (37c), each term in (39) must
be expressed with real variables. In particular, the quadratic

uIDk ≜

[
Dk

{
K∑

k ′=1

(
ĥk,k ′ ĥ

H
k,k ′ + σ

2
e,k ′IL

)
+ σ 2

n IL

}
DH
k

]†
Dk ĥk,k . (36)
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term in (39) can be rewritten as

Γ̄
qt,2
k = ūrk

TΨ TΨ ūrk , (40)

where

ūrk ≜
[
ℜ(ūk)T ℑ(ūk)T

]T
, (41a)

Ψ ≜

[
ℜ{SIN} −ℑ{SIN}
ℑ{SIN} ℜ{SIN}

] 1
2

, (41b)

SIN ≜
K∑

k ′−1

hk ′hHk ′ +
(
pk ◦ wk

)(
pk ◦ wk

)H
+ σ 2

n IL . (41c)

The second term in (39) can be written as

βkℜ
{
s∗k Γ̄

qt,1
k

}
= qTūrk , (42)

where

qT ≜ βk
[
ℜ(s) ℑ(s)

][ℜ(hk) −ℑ(hk)
ℑ(hk) ℜ(hk)

]
. (43)

Finally, (38a) can be inserted into the following QCP
canonical form:

minimize
o,ūk ,dck,ℓ,∀ℓ,k

cTx (44a)

subject to

∥∥∥∥∥∥s∥2Ψ ūrkokqTūrk−αk
2

∥∥∥∥∥
2

≤
ok + qTūrk + αk

2
,∀k, (44b)

(13c), (13d), and (15b),

where c and x are auxiliary vectors defined as

c ≜ −
[
1TK , λ∇P

(
dc,t−11,1

)
, . . . , λ∇P

(
dc,t−1K ,L

)
, 0TKL

]T
,

(45a)

x ≜
[
oT, dc1,1, . . . , d

c
K ,L , ū

r
1
T, . . . , ūrK

T
]T
. (45b)
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