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ABSTRACT Empirical life tests are used for reliability demonstration and determination of the actual
reliability of the product. Therefore, engineers are faced with the challenge of selecting the most suitable
test strategy out of the possible many and also the optimal parameter setting, e.g. sample size, in order to
realize reliability demonstrationwith limited costs, time andwith their available testing resources. It becomes
even more challenging due to the stochastic nature of failure times and necessary cost and time being
dependent on those. The considerations and guidelines in this paper are intended to simplify this process.
Even simple products can fail due to several causes and mechanisms and usually have several components
and subsystems. Therefore, this paper provides test planning options for single critical failure mechanisms
as well as for systems with multiple failure mechanisms. For this purpose, the Probability of Test Success
(Statistical Power of a life test) is used as a central, objective assessment metric. It is capable of indicating
the probability of a successful reliability demonstration of a test and thus allows, for example, to answer the
question of the required sample size for failure-based tests. The main planning resource is prior knowledge,
which is mandatory due to the stochastic lifetime, in order to provide estimates for the Probability of Test
Success at all. Therefore, it is also shown how to deal with uncertain prior knowledge and how the underlying
information can additionally be used to increase the Probability of Test Success using Bayes’ theorem.
The guidelines show how the most efficient test can be identified in the individual case and for individual
boundary conditions.

INDEX TERMS Bayes’ theorem, prior knowledge, reliability demonstration, system reliability, test plan-
ning, uncertainty.

I. INTRODUCTION
Today’s products are usually characterized by multiple func-
tions. Particularly in the digital age, complex products are
often necessary in order to survive successfully on themarket.
However, such complex products are reflected in an equally
large variety of possible causes of failure, which intensify the
challenges in product validation. But even conventional and
simpler products often have more than one cause of failure
that needs to be dealt with. In combination with the constantly
increasing market pressure and rising customer requirements,
these challenges must be conquered with scientific methods.
The reliability is determined with appropriate tests. In the
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selection and design of such tests, the conflicting goals of
accuracy, cost and timemust be addressed, which complicates
the test planning. An objective assessment of the various tests
with respect to the demonstration of the system reliability
is necessary to avoid expensive development loops and tests
with little chance of success. Current test planning methods
are not able to consider complex systemswithmultiple failure
modes.

Physical testing of products prior to market entry is essen-
tial for determining actual reliability and comparison with
requirements. In order to gain the most accurate information
possible, testing must be carried out with a sample as large
as possible. However, this statistical requirement contrasts
with the possibilities of a company. Resources are always
limited and testing should be completed in a short time.
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In addition, there is a large number of different tests available
that can be used for testing and reliability demonstration. The
concept of Probability of Test Success was first introduced
by Dazer et al. [1], [2], [3] and allows to plan the necessary
tests in a way that they have a maximum probability of
success and at the same time can be implemented with the
available resources. Accordingly, it is an objective evaluation
of the tests, which significantly supports the planning pro-
cess. However, Dazer’s previous work only provides the basic
concept for test planning. It is not possible to evaluate tests of
complex systems with more than one failure mode. Further-
more, no prior knowledge can be additionally included in the
demonstration test and the uncertainty, inevitably present in
the prior knowledge, remains unconsidered.

The objectives of this work can be derived from the prob-
lem described. The main focus is on extending the use of the
Probability of Test Success for the objective assessment of
tests for the demonstration of reliability in realistic, complex
scenarios. For this purpose, solutions for the two main chal-
lenges in realistic use cases must be developed:

Consideration of. . .

• several competing failure modes (Chapter V)
• uncertainty in prior knowledge (Chapter VI)
• prior knowledge using Bayes’ theorem (Chapter IV)

Due to the fact that prior knowledge is needed for test plan-
ning anyway, it is obvious to use the prior information also
to improve the result with Bayes’ theorem. Therefore, the
third main challenge is the consideration of prior knowledge
information for Pts calculation using Bayes’ theorem.
In order to make the planning of real systems with several

failure modes possible, the concept has to be extended to
consider the uncertainty of the prior knowledge. Ultimately,
the combination of the extensions in a holistic procedure for
the evaluation and identification of the most efficient test for
the demonstration of the reliability of systems is necessary.

This paper is organized as follows:
Chapter II outlines the state of research and illustrates the

necessity of the developed method. The central metric of the
method is the Probability of Test Success. In Chapter III,
it is explained how it can be calculated for products with
a single failure mode, as well as the statistical context of
hypothesis testing. In order to additionally consider prior
knowledge using Bayes’ theorem, Chapter IV is concerned
with the calculation of the Probability of Test Success while
using Bayes’ theorem. Since real products have several fail-
uremodes, Chapter V describes the developedmethodswhich
are required to use the metric on systems with multiple failure
modes. Due to the inevitably present uncertainty in the used
prior knowledge, Chapter VI deals with the necessary meth-
ods to consider this uncertainty in the planning of reliability
tests. In Chapter VII, the influences of the consideration of
Bayes’ theorem, uncertainty in prior knowledge as well as
multiple failure modes on the Probability of Test Success are
studied and general findings for the failure based and failure
free tests are derived. The interactions of those influences

are additionally analyzed in Chapter VIII and conclusions
for reliability test planning are drawn. Finally, Chapter IX
summarizes the findings.

The aspects of the proposed procedure are shown in Fig. 1.

FIGURE 1. Considered aspects of the proposed method.

II. STATE OF RESEARCH
The Probability of Test Success, first introduced by
Dazer et al. [1], is defined as the relative frequency of a
successful reliability demonstration. Early calculation proce-
dures made use of the law of large numbers and by simulating
the tests while incorporating prior knowledge about the fail-
ure distribution, the probability could be calculated. In order
to establish a broader statistical context, Grundler et al. [4]
defined the Probability of Test Success as the statistical
power of a reliability demonstration test, since all reliability
demonstration tests can be approached as hypothesis tests.
By making use of this statistical context, new calculation
procedures could be developed [8], [21], [22], [23], [24]
e. g. using the asymptotic variance of the maximum likeli-
hood estimation in [4]. Although several studies have been
conducted in order to enable the application of the Prob-
ability of Test Success for systems with multiple failure
modes [8], [21], [24], a proper procedure facilitating a holistic
view is still necessary for an efficient planning procedure
of reliability demonstration tests. In addition to the studies
regarding the consideration of uncertainty [22] as well as
the combined approaches for using Bayes’ theorem [19],
[20], [23], [25] and the concept of the Probability of Test
Success [4], the combination of all three aspects in a single
holistic procedure has not been tackled yet. Other approaches
for reliability demonstration test planning solely consider
the statistical error of type I (confidence) in order to derive
required sample sizes of EoL tests [28]. Since the confi-
dence bounds vary from test to test, this approach is lacking
the consideration of the error of type II (statistical power),
which is incorporated in the Probability of Test Success itself.
Hamada et al. [26], Tsai et al. [30] as well as Wilson and
Farrow [31] are using a similar concepts. However, they
are establishing the equations and credibility intervals solely
based on a Bayesian view, which is therefore decoupled from
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the frequentist reliability requirement using a confidence.
Systems with multiple failure modes are not considered.

Maisch [27] and Yadav et al. [32] are investigating relia-
bility demonstration tests on different system levels and the
additional consideration of prior knowledge usingBayes’ the-
orem. However, they’re only considering failure free tests and
no statistical error of type II. In addition, the interaction of the
confidence intervals of the different tests of the components
are not considered and the requirements are assigned to the
components separately.

III. CALCULATION OF THE PROBABILITY OF TEST
SUCCESS
In principle, life tests can be divided into failure-free and
failure-based test strategies. For both representative’s own
calculation rules for the planning of reliability demonstration
tests can be derived. In order to be able to explain the exten-
sions to cover the realistic use cases a basic understanding of
the previous calculation of the planning procedure is neces-
sary. For more details, refer to [4].

A. END OF LIFE TESTS
Product development - with all the calculations and service
life estimates as well as the design of the product itself -
should ensure not only the main and secondary functions
but also the specified reliability requirement for the corre-
sponding conditions of use [5], [6]. However, without having
actually observed the fulfillment of these requirements, they
cannot be assumed to be met. For this reason, a hypothesis
about the reliability target can be formulated. This hypoth-
esis must be either rejected or confirmed by appropriately
performed reliability tests. Accordingly, a reliability demon-
stration test can be considered as a hypothesis test. The
lifetime quantile tR obtained by the test at required relia-
bility Rreq must be greater than or equal to the required
lifetime treq. Since a test can only provide information that
rejects the hypothesis about the absence of a phenomenon
under investigation [7], the null hypothesis H0 represents the
non-fulfillment of the given reliability target. The goal of the
test is to gather information so that the null hypothesis can
be rejected. Since the statistical power of a test corresponds
to the discovery of the alternative, the alternative hypothesis
H1 represents the fulfillment of the reliability target. Accord-
ingly, the hypotheses to be used in a reliability demonstration
test are the following [4], [8]:

H0 : tR < treq (1)

H1 : tR ≥ treq (2)

The significance level at which H0 should be rejected is
given by the maximum accepted error α (type I error). This
corresponds to the probability of rejecting the null hypothesis
although it is actually true. The required confidence Creq
of a reliability demonstration test is the complement of the
required significance level, since it describes the probability
that the null hypothesis is correctly accepted as true, i.e. that

the product does actually not achieve the reliability target.
The type II error, on the other hand, describes the probability
β that the null hypothesis was wrongly accepted. It depends
on the type of test, sample size, actual value of the lifetime
quantile, failure distribution, sample variance and required
confidence level. The complement of the type II error is the
statistical power and describes the probability of correctly
rejecting the null hypothesis for a certain value of effect
size [9]. Thus, in the context of reliability demonstration tests,
the statistical power describes the probability of the test to
demonstrate the reliability requirement. Since the hypothe-
ses defined according to Eq. 1 and 2 are always identical
for a reliability demonstration test, the Probability of Test
Success Pts can be understood as the statistical power. A sole
consideration of the required confidence for the planning of
reliability tests is therefore insufficient, since the investiga-
tion regarding the suitability of the test to the current scenario
is neglected [1], [2], [3], Since the statistical power - and
thus the Pts - can only ever be specified for a certain effect
size [7], i.e. a certain value of the actual lifetime quantile
of the product, and since the detection probability of the
alternative hypothesis changes with the effect size, a suitable
quantity must be developed which can indicate the effect size
in reliability demonstration tests. For this purpose, the prod-
uct design safety distance is used, which was introduced by
Dazer et al. [1]. It describes the proportional distance between
the required treq and the actual service life of the product
tR corresponding to the prior knowledge tp. Both lifetime
quantiles have to be obtained for the required reliability. It is
defined as:

s = 1 −
treq
tR

with tR := tp (3)

The product safety distance is equal to zero if prior knowledge
states that the required service life is equal to the actual
service life. If this quantity is used the effect size τ can be
formulated as follows:

τ ≡ tp − treq = s · tp (4)

Fig. 2 shows all the necessary relationships.

FIGURE 2. Relationships of fH0
& fH1

and the resulting integrals of C
and Pts [4].
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The hypotheses used for reliability demonstration can then
be reformulated using the test statistic:

H0 : τ < 0 (5)

H1 : τ ≥ 0 (6)

To calculate thePts, the distributions of the null hypothesis fH0

and those of the alternative hypothesis fH1 must be calculated.
The Pts can then be determined using the integral:

Pts = 1 − β =

∫
∞

τcrit

fH1 (τ ) dτ (7)

Whereas the value τcrit corresponds to the confidence via the
following integral:

C = 1 − α =

∫ τcrit

0
fH0 (τ ) dτ (8)

The calculation of these distributions can be done in a numer-
ical way or in an analytical-approximative way. In this paper
only the analytical approach will be presented. For the numer-
ical solution we refer to [4].

To be able to determine the distributions of τH0 and τH1

without bootstrap or MCS, the central limit theorem is used.
Accordingly, for finite sample sizes, the normal distribution
can be used as an approximation to the distribution of the test
statistic. According to the central limit theorem, the distribu-
tion of the sample quantile of a known distribution F(t), i.e.
the empirically formed quantile, is normally distributed with
the parameters [18], DasGupta 2008:

µ = F−1(q) (9)

σ =

√
q · (1 − q)

n · f
(
F−1 (q)

)2 (10)

where the q-quantile of the distribution F(t) is formed from
its inverse function F−1 (q). f (t) is the density function of
F(t) and n is the sample size. Using the same test statistic 0f
Eq. 4 again and the asymptotic behavior from Eq. 9 & 10, the
approximate distributions of τH0 and τH1 can be determined
as normal distributions as follows:

τH0 ∼ N

0,

√√√√Rreq ·
(
1 − Rreq

)
n · fH0

(
treq
)2

 (11)

τH1 ∼ N

tp − treq,

√√√√Rreq ·
(
1 − Rreq

)
n · fH1

(
treq
)2

 (12)

In this notationN (µ, σ ) is the normal distribution with mean
µ and standard deviation σ .
fH0 is the transformed distribution from prior knowledge

fH1 according to H0 [4]. If prior knowledge is formulated
using a Weibull distribution with characteristic life TH1

one can calculate the transformed characteristic life TH0 as
follows:

TH0 = (1 − s) · TH1 =
treq
tp

· TH1 (13)

The Pts can then be determined very easily via the approxi-
mated normal distribution:

Pts = 1 − 8

8−1

Creq; 0,

√√√√Rreq ·
(
1 − Rreq

)
n · fH0

(
treq
)2

 ; tp

−ts,

√√√√Rreq ·
(
1 − Rreq

)
n · fH1

(
treq
)2

 (14)

In this notation 8 is the cdf of the normal distribution.
Here, the lifetime quantile is determined as an empirical

sample quantile.
Due to the multiplicative relation between the failure times

of H1 and H0, this relationship is also valid for the corre-
sponding life quantiles and therefore also for the relationship
between the alternative distribution and null distribution. For
this reason, according to Eq. 3, there is the following rela-
tionship of the standard deviations of the alternative and null
distribution:

σH0 = (1 − s) · σH1 =
treq
TH1

·
(
− ln

(
Rreq

))−1/b
· σH1 (15)

Here, it is assumed that no estimation of the failure distribu-
tion takes place, for example, via an MLE. This also means
that censoring can only be considered to a very limited extent.
To overcome this drawback, the scale and variance of the
lifetime quantile can also be calculated using the asymptotic
properties of the MLE and the variance-covariance matrix.
For a detailed derivation of the equations involved, see [4].

The scale and variance of the distribution of the life-
time quantile under validity of the alternative hypothesis is
obtained using the Weibull distribution as:

tR,H1 ∼ N
(
TH1

(
−ln

(
Rreq

))1/b , σH1

)
(16)

with:

σH1 =

((
− ln

(
Rreq

))1/b
· Var

(
TH1

)
+
T 2
H1

b4
· ln

(
− ln

(
Rreq

))2
·
(
− ln

(
Rreq

))2/b
· Var (b)

−
2T 2

H1

b2
· ln

(
− ln

(
Rreq

))
·
(
− ln

(
Rreq

))2/b
· Cov

(
TH1 , b

))1/2
(17)

TH1 and b are the Weibull scale and shape parameter stem-
ming from prior knowledge considering the assumed failure
behavior of the H1 hypothesis. Since the failure mode stays
the same, the shape parameter b is valid for both hypotheses.

The transformation using s can also be used here to calcu-
late the statistics under validity of the null hypothesis. The Pts
then results in:

Pts = 1 − 8

(
8−1

(
Creq; 0,

TH1

treq

(
− ln

(
Rreq

))1/ b σH1

)
;

TH1

(
− ln

(
Rreq

))1/ b
− treq, σH1

)
(18)
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B. SUCCESS RUN TEST
The Success Run (SR) Test is based on a binary classification
in which all specimens are tested up to a predefined lifetime.
Each specimen is simply assigned as ‘‘failed’’ or ‘‘success’’
for the result. Due to the simple binary classification, the
binomial distribution can be used as a planning approach:

C = 1 −

k∑
i=0

(
n
i

)
·
(
Rreq

)n−i
·
(
1 − Rreq

)i (19)

The binomial approach assumes that the parameter of the
success probability of the binomial distribution p is equal to
the complement of the required reliability Rreq. Therefore:

p = 1 − Rreq (20)

This corresponds to the null hypothesis for the limiting case
of s = 0. In analogy to Eq. 12, the Pts of a Success Run Test
can be calculated analytically and exactly using the following
binomial distribution:

Pts =

k∑
i=0

(
n
i

)
·
(
Rp
)n−i

·
(
1 − Rp

)i (21)

Instead of the required reliability, the reliability at the
required lifetime treq corresponding to the prior knowledge
Rp
(
treq
)

= 1 − F(treq) is used here as the complement of
the success probability parameter p of the binomial distri-
bution [4]. If the reliability according to prior knowledge is
greater than or equal to the required Rp

(
treq
)

≥ Rreq
(
treq
)
,

this corresponds to the alternative hypothesis. Due to the
relationship between the binomial and beta distributions [16],
Eq. 19 & 21 can also be written as beta distributions:

C =

∫ 1

Rreq

Rn−k−1
· (1 − R)k

β (n− k, k + 1)
dR (22)

Pts =

∫ Rp

0

Rn−k−1
· (1 − R)k

β (n− k, k + 1)
dR (23)

It is the same beta distribution B (n− k, k + 1) in both cases,
because the resulting reliability distribution is defined solely
by the number of survivors and the failed specimens.

Since Confidence and Pts are calculated from same distri-
bution they only differ in the integral limits. It is obvious that
the Pts becomes the complement of the required Confidence
i.e., Pts → Creq when the required reliability approaches
the actual reliability, i.e. for Rp → Rreq and s → 0,
respectively. The relationship of Pts and Confidence and the
relevant parameters are shown in Fig. 3.

IV. CONSIDERATION OF PRIOR KNOWLEDGE USING
BAYES’ THEOREM AND Pts
Prior knowledge is essential for efficient reliability demon-
stration. For example, the widely used SR test cannot be
evaluated without valid prior knowledge if test times deviate
from the required service life. The planning of EoL tests also
necessarily requires prior knowledge of the predicted failure
behavior of the product. Since prior knowledge must be

FIGURE 3. Beta distribution of the SR test and the corresponding
integrals for C and Pts [4].

TABLE 1. Two types of prior knowledge and their relationships with the
test types.

available anyway in order to calculate a Pts at all on the basis
of the stochastic service life, it is obvious to include the prior
knowledge also as additional information about reliability
in the demonstration test. Bayes’ theorem is used for this
purpose. The essential feature is that in this case information
from prior knowledge is treated as equivalent to information
from the test, whereas when using prior knowledge by means
of the Pts, prior knowledge is only used to assess the tests
and a subsequent evaluation of the performed test is not
influenced by the prior knowledge. However, in order to use
prior knowledge in these two cases, it must first be available
in a suitable form, see Table 1.

A. CALCULATION OF Pts FOR EOL TESTS
In an EoL test, a distinction must be made between the two
types of prior knowledge. Prior knowledge in the form of an
SR test only contains information about the reliability of the
product for a certain service life. The EoL test, on the other
hand, provides information about the overall failure behavior.
For the calculation of the Pts, it must be estimated where the
failures may probably occur. For this reason, prior knowledge
of the failure behavior is mandatory for the calculation of the
Pts for an EoL test. Prior knowledge from an SR test is not
sufficient.

If prior knowledge of the failure distribution is available,
a distinction must still be made between two cases. The
first case is the knowledge of the entire sample with fail-
ure times and in the other case the information about the
failure distribution like for example a Weibull distribution
with the information about the original sample size n0 is
available. If the sample is known, its likelihood function L0
can be used as the distribution of prior knowledge regarding
the parameters of the failure distribution together with the
likelihood function from the current EoL test L1 in a MAP
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estimation [10], resulting in the following expression for the
resulting likelihood function, which represents the combined
information:

Lpost ∝L1 · L0

=

n1−z1∏
i=1

f (ti)
z1∏
j=1

R
(
tj
)
·

n0−z0∏
l=1

f (tl)
z0∏
m=1

R (tm)

(24)

In this MAP n0 and z0 are the sample size and the number of
right-censored run times of prior knowledge and analogously
n1 and z1 those of the current EoL test (test to be planned).

The MAP represents the application of Bayes’ theorem
by updating the likelihood function by prior knowledge as
a priori distribution over the parameters of the failure dis-
tribution with the likelihood function from the current EoL
test. Accordingly, the combination of the information takes
place via a multiplication of the two likelihood functions. The
normalization constant, as it occurs in the theorem of Bayes
is not needed here, because the unknown parameters are
determined by the maximum of Lpost and this maximum does
not change by a multiplicative factor. This is the reason why
Eq. 24 is formulated as a proportional expression. By simply
multiplying the two likelihood functions, the application of
MAP here is identical to an MLE estimate of the parameters
if the sample from prior knowledge were evaluated together
with the sample from the current EoL test. This simplifies the
application since no further implementation effort is required.

However, if the prior knowledge is available as a failure
distribution with underlying sample size n0, then this com-
bination of samples cannot be easily made. Nevertheless,
to obtain a sample for this combination, an approximate
approach can serve as an estimate of the expected failure
times. The values of the failure times t∗i of the synthetic
sample generated here, are calculated according to the dis-
tribution of the order statistics. The distribution of the failure
probabilities of the order statistics is used, as in the method
for computing the beta-binomial confidence intervals. For the
known sample size n0 and the known failure distributionF0(t)
of prior knowledge, the synthetic failure times t∗i can thus be
calculated as:

t∗i = F−1
0 (B (0, 5; i, n0 − 1 + 1)) ≈ F−1

0

(
i− 0.3
n0 + 0.4

)
(25)

Here, the approximation to the median of the beta distribution
according to Benard was used [11].

However, the sample combined here includes the propor-
tion from prior knowledge, which is fixed and does not vary.
For this reason, it does not generate any sample scatter. Only
the still uncertain failure times of the not yet performed
test provide scatter in the combined sample. This fact is
considered by calculating the variance of the quantile of the
combined sample Varcomb from two estimates. Firstly, there
is the variance of the quantile of a sample of size n + n0 of

the combined sample Varn+n0, which is the variance of the
quantile from the test. To reduce this by the correct propor-
tion of the non-scattering fixed sample of prior knowledge,
we first calculate the variance of the quantile of a sample
of size n0 of prior knowledge Varn0, which represents the
second variance. To combine these two variances and thus
effectively reduce the variance Varn+n0, the two distributions
of the quantiles describing these variances are combined by
Bayes’ theorem. This represents a multiplication of the two
distributions (corresponding to n+ n0 and n0), which can also
be understood as the weighting of the two distributions, see
equation. The variance of the resulting quantile distributions
Varcomb is then calculated via.

Varcomb =
Varn+n0 · Varn0
Varn+n0 + Varn0

(26)

The equation is obtained by applying Bayes’ theorem to
two normal distributions where the resulting distribution is
again a normal distribution, whose variance has the above
relationship to the initial distributions [12].

Eq. 26 can also be adapted to calculate the standard devia-
tion which is necessary to calculate the Pts :

σcomb =

√√√√ (
σn+n0

)2
·
(
σn0
)2(

σn+n0
)2

+
(
σn0
)2 (27)

The calculation of the standard deviation is still the same
using the corresponding sample sizes of n + n0 and n0.
In analogy to Eq. 18 the Pts is then calculated as:

Pts = 1 − 8

(
8−1

(
Creq; 0,

TH1

treq

(
− ln

(
Rreq

))1/b
· σcomb

)
;

TH1

(
− ln

(
Rreq

))1/b
− treq, σcomb

)
(28)

B. CALCULATION OF Pts FOR SUCCESS RUN TESTS
For an SR test, the calculation of the Pts does not change
because the calculation reflects the probability of survival of
a certain sample size given a known probability of survival of
the test items. However, taking prior knowledge into account
only leads to a reduction of the necessary sample size while
the reliability target remains unchanged, see also Chapter III.
This means that the calculation of the Pts can be performed
unchanged according to Eq. 21 and 23, respectively. Only the
sample size changes. A reduction of the required sample size
is only possible if the prior knowledge attests a minimum
reliability equal to the required, or a greater one.

V. CONSIDERATION OF THE SYSTEM STRUCTURE
Even relatively simple products usually have several compo-
nents that could potentially fail. A consideration of the system
structure and thus a holistic view of the system already in
the planning phase of the reliability tests is therefore indis-
pensable for a successful demonstration and verification of
the system reliability.
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To demonstrate the reliability of a system, it must be
clearly defined which elements belong to the system. System
elements are subsystems, components or parts. The physi-
cal components of a system usually each have at least one
failure mechanisms, which is why the system must be ana-
lyzed in this respect. Knowledge of all potential failures
as well as their combined effect on the system behav-
ior can be obtained, for example, by means of a failure
mode and effects analysis (FMEA) or fault tree analysis
(see [5]). The failure mechanisms relevant to the system
must be documented in a reliability block diagram so that
the joint effect on the system is clear and the logical rela-
tionship between the failure mechanisms is defined. In this
work, only systems that have independent failure modes are
considered.

Unlike products or components with a single failure mode,
systems with multiple subsystems, assemblies, components,
and parts may use more than one test to demonstrate sys-
tem reliability. Since the Pts is intended to represent the
demonstration of system reliability, it must be determined
jointly for all tests. For the calculation, a distinction must
be made between the two test types EoL test and SR test
as well as their combination. In addition, it is important
that prior knowledge of the system structure and all crit-
ical failure modes is available. For sole SR tests, prior
knowledge in the form of the SR test is sufficient. For
failure-based tests, knowledge of the failure distribution is
necessary.

A. CALCULATION OF Pts FOR EOL TESTS CONSIDERING
THE SYSTEM STRUCTURE
The approach presented in Chapter III for the analytical cal-
culation of Pts can be transferred to tests for demonstrating
system reliability. In this context, a system comprises several
failure modes. However, some adjustments are necessary for
this purpose. According to the system structure, the failure
distribution of the system is composed of the respective fail-
ure distributions of the failure modes. For this reason, the
variance-covariance matrix is of higher dimension, it corre-
sponds to the sum of the parameters of all failure distributions
of the failure modes. If the K failure distributions of the
failure modes are all described by a two-parameter Weibull
distribution each, then the variance-covariance matrix V has
dimension 2K , i.e. V ∈ R2K . If the failure modes are inde-
pendent, the covariances of the parameters of two different
failure modes are zero. As a consequence, the entries of the
variance-covariance matrix can be computed analogously as
for one failure mode. This also corresponds to the test eval-
uation procedure: the failure times are assigned to the failure
modes and then the parameters of the failure distributions of
these failure modes are determined separately. Then, the dis-
tributions of the failure modes are multiplicatively combined
to form the failure distribution of the system according to the
system structure. The variance-covariance matrix V is then
composed of the respective variance-covariance matrices V l

of the K failure modes as follows:

V =



V1 0 0 0

V2 0 0

. . . 0

sym VK


(29)

This matrix is valid for operations with the parameter vector
P, which contains all parameters of the failure distributions
in the corresponding order. If we are dealing exclusively
with two-parameter Weibull distributions, this vector is, for
example:

P = [T1, b1, . . .Tl, bl, . . .TK , bK ] (30)

The general form for calculating the variance of the quantile
function tq analogous to Eq. 17 is:

Var
(
tq
)

=

[
∂tq
∂P

]′

V
[
∂tq
∂P

]
(31)

If this equation is solved considering the two-parameter
Weibull distributions the following expression is obtained:

Var
(
tq
)

=

∑K

l=1

((
∂tq
∂Tl

)2

· Var (Tl) + 2
∂tq
∂Tl

·
∂tq
∂bl

Cov (Tl, bl) +

(
∂tq
∂bl

)2

Var (bl)

)
(32)

The terms of the variances Var(Tl), Var(bl) and covariances
Cov(Tl, bl) can be calculated with the corresponding values
of the parameters of the failure distribution of the failure
modes, which are given by prior knowledge. This is equally
true for the terms of the partial derivatives. Since the quantile
function cannot be expressed as an explicit equation, the
derivatives in P must be calculated by implicit differentia-
tion. For this purpose, it is recommended to use the system
equation of reliability in logarithmic form. For a strictly serial
system with Weibull distributions the following equation can
be used:

ln (1 − q) = −

K∑
l=1

(
tq
Tl

)bl
(33)

If all failure distributions are described by two-parameter
Weibull distributions, then the partial derivatives for the series
system are as follows

∂tq
∂T l

=

bl tq ·

(
tq
Tl

)bl
Tl ·

∑K
p=1 bp ·

(
tq
Tp

)bp (34)

∂tq
∂bl

=

tq · ln
(
tq
Tl

) (
tq
Tl

)bl
∑K

p=1 bp ·

(
tq
Tp

)bp (35)
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Together with Eq. 32, we obtain the following expression for
a series system

Var
(
tq
)

=

∑K

l=1

 tq ·

(
tq
Tl

)bl
∑K

p=1 bp ·

(
tq
Tp

)bp


2

·

((
bl
Tl

)2

Var (Tl)

−2
bl
Tl

ln
(
tq
Tl

)
Cov (Tl, bl) +

(
ln
(
tq
Tl

))2

Var (bl)

)
(36)

The asymptotic normal distribution of the lifetime quan-
tile of the system tq can be determined in the same way
as in the case of a single dominant failure mode and is
as follows:

tq ∼ N
(
tq;
√
Var

(
tq
))

(37)

However, tq must be determined from the system structure.
Since this cannot be solved explicitly for tq, it can be solved,
for example, by numerically approximation methods. How-
ever, a simple Newton-Raphson algorithm [29] is sufficient
to solve the following expression if a strictly serial system is
present:

1 − q− e
∑K

l=1

(
tq
Tl

)bl
= 0 (38)

The distribution of the lifetime quantile with the validity of
the alternative hypothesis is thus

tR,H1 ∼ N
(
tp; σH1

)
(39)

with

σH1 =

∑K

l=1

 tp ·

(
tp
Tl

)bl
∑K

p=1 bp ·

(
tp
Tp

)bp


2 ((
bl
Tl

)2

Var (Tl)

−2
bl
Tl

ln
(
tp
Tl

)
Cov (Tl, bl)+

(
ln
(
tp
Tl

))2

Var (bl)

))1/ 2

(40)

tp, for example, is determined by Eq. 33 and q = 1 - Rreq
and the necessary failure times of the respective failure modes
are determined by Eq. 25. Thus, tp is the lifetime quantile
from the prior knowledge which corresponds to the required
reliability. If the entire system is tested, these failure times
must be censored for the respective failure modes according
to the system structure [21], [24]. Since the failure modes are
multiplicatively related to each other to form the system and
the null and alternative distributions are also multiplicatively
related, the asymptotic distribution of the lifetime quantiles
can be described as follows for validity of the null hypothesis:

tR,H0 ∼ N
(
treq; (1 − s)σH1

)
= N

(
treq;

treq
tp

σH1

)
(41)

By analogy with Eq. 18, this allows to calculate the Pts for
system reliability demonstration as follows:

Pts = 1 − 8

(
8−1

(
Creq; 0,

treq
tp

σH1

)
; tp − treq, σH1

)
(42)

If the system is a strictly parallel structure (redundant struc-
ture) the calculation procedure is very similar. Due to the
changes in the system structure the calculation for system
reliability has to be changed as well. The logarithmic quantile
of the strictly parallel structure can be calculated as follows:

ln (q) = −

K∑
l=1

ln

(
1 − e

−

(
tq
Tl

)bl)
(43)

From this, the partial derivatives of the quantile function tq
can be calculated:

∂tq
∂T l

=

bl ·
(
tq
Tl

)bl
Tl ·

(
e

(
tq
Tl

)bl
− 1

)∑K
l=1

bl ·
(
tq
Tl

)bl
tq

e
(
tq
Tl

)bl
−1


(44)

∂tq
∂bl

=

ln
(
tq
Tl

) (
tq
Tl

)bl
(
1 − e

(
tq
Tl

)bl)∑K
l=1

bl ·
(
tq
Tl

)bl
tq

e
(
tq
Tl

)bl
−1


(45)

Using those two equations Var(tq) and σH1 can be calculated
accordingly for the parallel system. Pts is also calculated
using Eq. 42. The only other difference is that the life quan-
tile has to be calculated with respect to the parallel system
structure as root of the following equation:

q− 1 =

K∏
l=1

(
1 − e

−

(
tq
Tl

)bl)
(46)

For systems which are composed of both series and parallel
substructures, the system equation is to be set up according to
the system structure in analogy to Eq. 31 and corresponding
partial derivatives are to be formed. Thus, only the terms in P
(of Eq. 30) are to be replaced by the valid ones, because the
parameters of the failure modes are also determined indepen-
dently.

B. CALCULATION OF Pts FOR SUCCESS RUN TESTS
CONSIDERING THE SYSTEM STRUCTURE
If the SR tests are performed with the entire system, the
equations for calculation are identical to those used with only
one prevailing failure mode. Thus, Eq. 19 to 23 can be used
for the calculation. Only the value of reliability from prior
knowledge Rp must be calculated according to the system
structure from prior knowledge of the failure distributions of
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the failure modes. For a strictly serial system with Weibull
distributed failure modes Rp is calculated via:

Rp = e
∑K

l=1

(
treq
Tl

)bl
(47)

However, if subsystems or components are tested in sepa-
rate SR tests, the calculation of the Pts must be adapted.
The system structure, which determines the logic connection
of the respective failure modes of the tested subsystems or
components to the overall system, is irrelevant for the calcu-
lation of the Pts, because reliability demonstration at system
level can only be provided if all SR tests are successful.
If the number of allowed failures is already exceeded in one
of the SR tests, system reliability demonstration cannot be
provided. According to the product law of probabilities, this
relationship corresponds to a multiplication of all survival
probabilities of the individual SR tests. Since thePts describes
exactly these probabilities in SR tests, Eq. 19 to 23 can be
used to calculate the probabilities Pts,1, . . . , Pts,l , . . . , Pts,K of
the K SR tests, i.e.

Pts =

K∏
l=1

Pts,l (48)

However, the system structure is required for determining
the necessary sample sizes of the individual SR tests. These
must be determined in such a way that the resulting reliability
distribution at system level can meet the reliability target.
For this purpose, the beta distributions of the individual SR
tests according to the sample size can be linked, for exam-
ple, by the method of moments for the system reliability
distribution and the fulfillment of the reliability target can
be checked [21], [22], [23]. It is not necessary to divide
the reliability target of the system among the subsystems or
components of the system (reliability partitioning), because
only the fulfillment of the reliability target of the system is
relevant, a fixed partitioning of the reliability requirement for
demonstration purposes only limits the solution space of test
configurations, see also Chapter VII.

VI. CONSIDERING UNCERTAINTY IN PRIOR KNOWLEDGE
FOR Pts CALCULATION
The information about failure times is usually coming from
one or more observations. Due to the fact, that the amount of
observations is always limited, the information is subject to
epistemic uncertainty. Thus, the prior knowledge about the
reliability and the failure distribution in particular are also
subject to uncertainty. In order to be able to consider these in
the considerations of the reliability demonstration planning
the following methods and procedures are presented and a
corresponding calculation of the Pts is introduced.

A. EFFECT OF UNCERTAINTY IN PRIOR KNOWLEDGE
The reliability is the aleatoric uncertainty of the products
lifetime. The lifetime is varying from product to product and
is therefore described by a probability. The estimation of the
actual underlying probability of the lifetime can only bemade

inadequately, i.e., not exactly due to the sampling error. This
inadequacy of observation is called epistemic uncertainty.

Prior knowledge in the context of reliability corresponds to
information about the reliability itself (type SR test: reliabil-
ity distribution) or information about the failure distribution
(type EoL test: failure distribution or entire sample). Thus,
it is the aleatory uncertainty - the uncertainty about the fail-
ure times, or reliability. The uncertainty about the correct
determination of reliability (epistemic uncertainty) must be
additionally considered in the test planning process, because
prior knowledge is always subject to epistemic uncertainty.

The two types of prior knowledge in certain (fixes values)
and uncertain form are shown in Fig. 4. Thus, the epis-
temic uncertainty in prior knowledge can be determined by
specifying the reliability distribution, for example, by a beta
distribution for a SR Test. The uncertainty in prior knowledge
within an EoL test can be determined, e.g., by the original
sample size of the failure distribution [21], [22].

FIGURE 4. Types of prior knowledge in its certain (fixed values) and
uncertain form for type SR test (left) and type EoL test (right).

B. CALCULATION OF Pts WITH UNCERTAINTY FOR EOL
TESTS
Prerequisite for the calculation of Pts in EoL Tests is a prior
knowledge of the type EoL Test. That is a failure distribution
with specification of the original sample size or the spec-
ification of the original sample in the form of failure and
suspension times itself. The procedure is formulated for the
two-parameter Weibull distribution. However, the procedure
can also be applied to other distributions, as long as the appro-
priate likelihood function, the variance-covariancematrix, the
quantile function and the respective partial derivatives for
calculating the asymptotic variance of the quantile exist, see
Chapter III. Because those variances are also required here.

The main idea in the analytical-approximative approach is
to use the asymptotic distribution of the lifetime quantile in
order to calculate the Pts in an analytical way [24]. Here, the
asymptotic standard deviations σH0 and σH1 are determined
under the validity of the two hypotheses using the Central
Limit Theorem and a Taylor series approximation. The dis-
tributions of the lifetime quantiles are then obtained as normal
distributions.
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The scale parameters µH0 and µH1 of these distributions
are predetermined via prior knowledge, because they are
specified by the defined hypotheses and are independent of
the Central Limit Theorem considerations and the sample
size. However, because of the uncertainty in prior knowledge,
it is not possible to further specify a single value for the
parameters of the failure distribution, which means that the
scale of the lifetime quantile is also subjected to variance.
However, with the same approach, the variance can also be
determined as a normal distribution via the Central Limit
Theorem and Taylor series approximation. For this purpose,
only the sample size n0 on which the prior knowledge was
based, has to be used. Thus, the normal distribution of the
scale of the lifetime quantile under validity of the alternative
hypothesis µH1 results as:

µH1 ∼ N
(
TH1

(
− ln

(
Rreq

))1/b , σH1,n0

)
(49)

However, it is important to note that the variance in this
equation is determined by means of the synthetic failure
times corresponding to n0, instead of n. The relationships
between the likelihood, its derivatives and the variances and
covariances are still valid, see [24].

The scale parameter of the asymptotic distribution of the
scale of the lifetime quantile is identical with the scale of the
lifetime quantile in case no uncertainty would be considered.
Using the transformation of Eq. 15, the normal distribution of
the scale of the lifetime quantile for the validity of H0 results
in:

µH0 ∼ N
(
treq, (1 − s) · σH1,n0

)
=N

(
treq,

treq
TH1

(
− ln

(
Rreq

))−1/b
· σH1,n0

)
(50)

with:

σH0,n0 = (1 − s) · σH1,n0

=
treq
TH1

(
− ln

(
Rreq

))−1/b
· σH1,n0 (51)

In such a case, when the scale parameter of a normal dis-
tribution is again normally distributed, it is also called a
mixture distribution and the resulting distribution is a normal
distribution again [33]. The scale parameter of the resulting
distribution corresponds to that of the distribution which
describes the scattering scale parameter. The variances are
summed up, which means that the resulting standard devia-
tion σ6 is the geometric sum of the standard deviations of the
two distributions. Thus, the asymptotic normal distribution of
the lifetime quantile under the validity of H1 with considera-
tion of the uncertainty of the prior knowledge is determined
as follows:

tR,H1 ∼N
(
tp, σ6,H1

)
= N

(
TH1

(
− ln

(
Rreq

))1/ b ,

√
σ 2
H1,n0

+ σ 2
H1

)
(52)

Accordingly, the following distribution applies analogously
to the validity of the null hypothesis:

tR,H0 ∼ N
(
treq, σ6,H0

)
(53)

with:

σ6,H0 =

√
σ 2
H0,n0

+ σ 2
H0

=
treq
TH1

(
− ln

(
Rreq

))−1/b
·

√
σ 2
H1,n0

+ σ 2
H1

= (1 − s) · σ6,H1 (54)

Finally, Pts resulting in:

Pts = 1 − 8

(
8−1

(
Creq; 0,

treq
TH1

(
− ln

(
Rreq

))−1/b , σ6,H1

)
;

TH1

(
− ln

(
Rreq

))1/b
− treq, σ6,H1

)
(55)

Based on the equations presented, it can be seen that the
Pts of EoL tests while considering the uncertainty in prior
knowledge can reach at most the value that the sample size
of the prior knowledge is reaching in a calculation without
uncertainty. This is due to the summation of the variances.
The variance of the lifetime quantile can therefore never be
smaller than the variance that results from the sample size of
the prior knowledge alone. For practical purposes, this means,
that the values of Pts will always be smaller if the uncertainty
in the prior knowledge is considered. Furthermore, a sample
size larger than that of the prior knowledge n > n0 would not
lead to an increase in the Pts beyond the corresponding value
of n0.

C. CALCULATION OF Pts WITH UNCERTAINTY FOR
SUCCESS RUN TESTS
If the uncertainty in the prior knowledge is to be considered
for SR Tests, the prior knowledge must first be translated
into a suitable form if necessary. If the prior knowledge is
available in the form of a beta distribution, it can be used
directly.

The approach to calculate the Pts of Eq. 21 using the
binomial distribution cannot be further used here, because the
parameter of the success probability, which in this context
is the probability of failure, is not further a single, fixed
value, but scatters according to the beta distribution of prior
knowledge. However, this corresponds exactly to the infor-
mation given by the beta-binomial distribution. Accordingly,
the Pts with prior knowledge can be calculated using a beta
distribution as follows to account for the uncertainty in the
prior knowledge:

Pts =

∑k

i=0

(
n
i

)
·
β (B+ i,A+ n− i)

β (B,A)
(56)

The beta distribution with the parameters A and B is describ-
ing the reliability distribution for the required service life.
In the planned SR Test with sample size n a maximum of k
failures are allowed.
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VII. STUDY OF THE INFLUENCES ON THE Pts
With the calculation methods developed, the influences on
the Pts can now be studied. Initially, only the individual main
effects will be discussed.

A. INFLUENCE OF CONSIDERING PRIOR KNOWLEDGE
WITH BAYES’ THEOREM
Fig. 5 shows the results for a system with one failure mode
as weibull distributed with the parameters T = 1 and b = 3
(W (1; 3)) and the reliability target Rreq = 92 %, Creq = 90 %
with treq = 0.28, the change in Pts when varying the sample
sizes of prior knowledge n0 and of an uncensored EoL test
n. A symmetry with respect to the n and n0 axis can be
seen, which implies that the two sample sizes have the same
effect on the Pts. That is, the increase in Pts by increasing
the sample size of test n, will likewise be achieved by an
equally increased sample size n0 of prior knowledge. Thus,
the sample of prior knowledge is equal to the sample of the
test. This confirms what was stated in Chapter IV and the
findings from Eq. 27 and 28 of the applied MAP.

In Fig. 6, the lifetime requirement treq wasmodulated using
the safety distance s. Two cases of the sample size of prior
knowledge and the test were calculated and, in addition, the
Pts is shown without taking prior knowledge into account.
It can be seen that the additional consideration results in a
higher Pts here.

FIGURE 5. Pts of an uncensored EoL test with additional consideration of
prior knowledge W (1; 3) with Bayes’ theorem.

For an SR test, the additional consideration of prior knowl-
edge directly reduces the required sample size and the Pts
is only dependent on the failure distribution and the sample
size, see Eq. 21. The reliability requirement is involved by
the sample size required by this, but the actual dependence
is with respect to the sample size itself. Fig. 7 shows the
possible prior knowledge for an example with the reliability
target Rreq = 92 %, Creq = 90 % with treq = 0.28. The prior
knowledge here is a beta distribution B (A0;B0). According
to the basic idea, it can be seen that Pts increases sharply
as A0 of the prior knowledge beta distribution increases.
Similarly, the Pts decreases as B0 increases. This is mainly
due to the associated change in the required sample size,

FIGURE 6. Pts of an uncensored EoL test as a function of the product
safety distance s with additional consideration of prior knowledge
W (1; 3) using Bayes’ theorem.

because by increasing the ‘‘good parts’’ of prior knowledge
with the parameter A0, fewer specimens need to survive the
test time, thus increasing the probability of passing the test –
Pts increases. The opposite happens when the parameter B0
of prior knowledge increases, because the ‘‘failures’’ of prior
knowledge have to be compensated by additional survivors
in the test, the probability that all these additional specimens
actually survive is decreasing – Pts decreases. It has to be
noted here, that prior knowledge was considered in the form
ofW (1; 3) for calculation of Pts. The additional consideration
of prior knowledge in the form of the beta distribution with
parameters A0 and B0 using Bayes’ theorem, does alter the
required sample size and thus the Pts changes.

FIGURE 7. Pts of a Success Run test as a function of the prior knowledge
A0 and B0 with additional consideration of prior knowledge W (1; 3) with
Bayes’ theorem.

B. INFLUENCE OF THE SYSTEM STRUCTURE
The system structure must be considered in the system reli-
ability demonstration anyway - except in the case of a sole
SR test of the whole system level. This is because the relia-
bility information obtained for the system must be evaluated
separately according to failure modes.

In the following, the influences on the system reliability
demonstration are examined.

The test configuration has the greatest influence on the
Pts when considering a fixed reliability target, fixed system
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structure, and failure distributions of the failure modes.
Unlike the usual practice of dividing the system requirements
among individual components [12], [13], by examining the
Pts, it is possible to choose sample sizes for subsystems,
components, or parts that maximize the probability of suc-
cessfully demonstrating the system reliability. In this case,
a partitioning of the requirement is not necessary as the focus
solely lies on the reliability target of the overall system.
Since theoretically infinite system structures are possible, the
effects of the apportionment of specimen on the Pts of the two
basic forms, namely the series system and the parallel system,
will be presented below.

In a strictly serial system, the system failure is pre-
dominantly influenced by the failure mode with the lowest
reliability at treq due to the multiplicative combination of
the reliability of the failure modes. In contrast, in strictly
parallel systems, the system failure is mainly influenced
by the failure mode with the highest reliability due to the
multiplicative combination of the failure probabilities of the
failure modes, as the system only fails when the last failure
occurs.

To identify the allocation of sample sizes to different tests
for maximum Pts, the Pts can be calculated as a function of
the sample sizes. The maximum can be found using a suitable
optimization algorithm, for example, by setting the maximum
possible number of test specimens overall or the resulting
total costs as an upper limit. Alternatively, for simple systems,
the Pts can be plotted against the allocation of test specimens.
This is exemplified in Fig. 8 for a series system and a parallel
system for EoL tests at the component level with a total
sample size ntot of 50. In this example, both systems consist
of only two failure modes, which are directly addressed in the
component tests. The sample sizes of these failure modes are
n1 and n2, and the failure modes in both systems are deter-
mined by the Weibull distributions W1(0.6; 3) and W2(1; 3).
The reliability target is Rreq = 92 % with Creq = 90 %, and
the life cycle requirements are chosen as treq,Series = 0.175 for
the series system and treq,Parallel = 0.45 for the parallel system
to achieve similar values of maximum Pts in this example.
The considerations regarding the influence on system failure
in series and parallel systems are reflected as follows: To
achieve maximum Pts, in the series system, the failure mode
with lower reliability – and thus more critical for the system
– needs to be tested more, i.e., n1 > n2, and for the optimum,
n1 = 38 and n2 = 12. Similarly, in the parallel system,
the more critical failure mode in the system, namely failure
mode 2, needs to be tested more. The optimum is achieved
with n2 > n1, specifically with sample sizes of n1 = 15
and n2 = 35. Therefore, when conducting EoL tests at the
component level, a configuration that guarantees maximum
Pts will also provide a better estimation for the more critical
failure mode in the system.

Since the Pts is calculated using Eq. 23 for both series and
parallel systems in SR tests, the qualitative behavior of the Pts
with respect to the apportionment of sample sizes is identical.
This is exemplified in Fig. 9.

FIGURE 8. Pts of EoL tests of components from a series and parallel
system with two failure modes each and a total sample size of 50.

The sample sizes were chosen such that the system reli-
ability target can be met through the SR tests. The systems
considered are the same as those in the EoL scenario with
the same reliability requirements. Due to the significant dif-
ferences in the logical relationships between the series and
parallel systems, the SR tests for the series system require
significantly larger sample sizes, namely ntot = 94, compared
to the parallel system with ntot = 10. This is primarily due
to the fact that the sample sizes for the SR tests are solely
determined by the required reliability and the desired level of
confidence when no lifetime ratio is used.

FIGURE 9. Pts of Success Run tests of components from a series and
parallel system with two failure modes each.

In SR tests, only very small deviations from the equal
apportionment of specimen are possible, while still satisfying
the system reliability requirement. For the parallel system,
the variation in the sample sizes in the component tests is
limited to only 4 to 6 whereas for the series system, it can
vary between 44 and 50 test objects per component test, while
maintaining the same total sample size ntot.
Unlike EoL component tests, which yield maximum Pts

when the most critical failure mode incurs the highest test
effort (sample size), SR component tests yield maximum Pts
when the failure mode with the lowest reliability incurs the
highest test effort. This may not be desirable in the case
of parallel systems, as it does not allow for simultaneously
achieving maximum Pts and accurate identification of the
most critical failure mode. This is always possible in EoL
testing however.
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In addition to testing individual components, the entire
system can also be tested. Fig. 10 and 11 show the values
of Pts for EoL component-level tests and system-level tests
plotted against the total sample size ntot , for two additional
example systems.

FIGURE 10. Pts comparison as a function of the sample size for EoL test
of the series system.

These systems consist of a strictly serial system and
a strictly parallel system, both including the same failure
modes: W (1.5; 1.2), W (2; 2), and W (1; 3). The reliability
requirement is Rreq = 92 % and Creq = 90 %, with the
required lifetimes of treq = 0.05 for the series system and
treq = 0.9 for the parallel system. Both the equal appor-
tionment of specimen among the three components and
the optimal apportionment are shown alongside the Pts for
system-level tests.

FIGURE 11. Pts comparison as a function of the sample size for EoL tests
of the parallel system.

It can be observed that the optimal apportionment can sig-
nificantly increase the Pts. The advantage of the system-level
test is that a single specimen can be used to evaluate all failure
modes, whereas component-level tests can only assess the
dominant failure modes in the tested component. In contrast,
the specimens used in the system-level test to evaluate the
failure modes are censored according to the system structure.
In component-level tests, the number of failures for evaluat-
ing a specific failure mode can be precisely controlled, which
can result in the Pts of a series system’s component-level tests
exceeding those of the system-level test, despite the fact that
the test objects in the system-level test can be essentially used
three times, as shown in Fig. 10. For the parallel system,

the system-level test consistently yields significantly higher
Pts values. This is because system failure occurs only when
all components have failed. Therefore, a test object from
the system-level test always provides information about the
failure times of all failure modes (in this example of the
strictly parallel system). This effect is higher the more failure
modes are in the system.

Since the sample sizes in the SR test are determined by the
reliability requirement and in this example, no lifetime ratios
or failures are allowed, the values of Pts cannot be plotted
against the sample size. Instead, the values are presented as a
bar chart for the three cases: overall system test, component
test with equal specimen allocation, and optimal allocation,
as shown in Fig. 12 for the strictly serial system and strictly
parallel system.

FIGURE 12. Pts of the SR tests.

The three cases require significantly different sample sizes.
The sample size required for the parallel system does not
allow for any apportionment other than the equal one, as only
three specimens per component are necessary to achieve the
requirement. Changing to two specimens in a component
test would yield such poor results that no matter how many
specimens are tested in another component, it would not com-
pensate for in the resulting system reliability. Both systems
generally show small values of Pts, with the component tests
yielding even lower values than the system tests. This is due
to the significantly higher sample sizes, with each specimen
needing to survive for a successful demonstration. How-
ever, none of the SR tests can be recommended for system
demonstration in these example systems, as all of them yield
maximum Pts values < 50%. Additionally, the component
tests of the series system require a total of ntot = 192 spec-
imens, whereas the component tests of the parallel system
only require ntot = 7 specimens in total. Since no equal
apportionment is possible with this sample size, only the
optimal is calculated, which allocates 3 specimen to second
component and 2 each for the first and third component. The
system SR test does require nSys = 28 specimen.

C. INFLUENCE OF UNCERTAINTY IN PRIOR KNOWLEDGE
The calculation of Pts taking into account the uncertainty
in prior knowledge holds potential, as it indirectly assesses
the quality of prior knowledge. Generally, Pts decreases
when uncertainty is considered in EoL tests, as the lifetime
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quantiles exhibit larger variations. This is illustrated using a
simple systemwith a failure mode ofW (1; 3) and n0 = 12 and
n0 = 35 in Fig. 13. A significant reduction occurs compared to
the calculation without considering uncertainty. The values of
Pts, taking into account uncertainty in prior knowledge, tend
to approach a maximum.

This maximum can be observed in Fig. 13, where it pre-
cisely matches the Pts value calculated without considering
prior knowledge for a sample size of n = 12 and n = 35,
respectively. The sample size of the prior knowledge limits
the maximum achievable Pts. This is quite evident for simple
systems with only a single failure mode, but becomes less
apparent for more complex systems. In practical terms, this
means that uncertainty should be taken into account. How-
ever, this calculation should always be accompanied by a
calculation without considering uncertainty, as it represents
the expected Pts.
In contrast to the EoL tests, the SR test does not exhibit a

consistent trend of decreasing or increasing Pts when consid-
ering uncertainty in prior knowledge. Fig. 14 demonstrates
that for high Pts values, there is a decrease, while for low
Pts values, there is an increase. This phenomenon can be
attributed to the increased variability of reliability, which
follows a beta distribution in the context of prior knowledge.

FIGURE 13. Pts as a function of the sample size for an EoL test
considering uncertainty in prior knowledge.

FIGURE 14. Pts as a function of the prior knowledge sample size for a
Success Run test considering uncertainty in prior knowledge.

When the reliabilities are already large values, the
increased variance leads to a higher occurrence of smaller
reliabilities compared to larger ones, relative to the refer-
ence value used to calculate Pts without uncertainty. This is

because when reliability values approach the maximum value
of 1, the probability of encountering even larger values dimin-
ishes significantly. Conversely, when uncertainty is taken into
account, small Pts values exhibit an upward trend. This can
be attributed to the decreased probability of obtaining even
smaller reliability values as they approach theminimumvalue
of 0. The distinctive behavior of Pts when considering uncer-
tainty in prior knowledge between the EoL test and the SR test
arises from the inherent domain constraint of reliability itself.
Reliability is confined to the interval R ∈ [0, 1], while the test
statistic τ , which is relevant in the calculation of Pts for EoL
tests, has no such restriction. The only restriction in this case
is the requirement of strictly positive lifetimes. However, this
does not significantly limit the behavior of Pts.

VIII. INFLUENCE OF IMPORTANT INTERACTIONS
In the second stage of the analysis, critical interactions when
using more than one of the presented approaches will be
presented.

A. INFLUENCE OF THE SYSTEM STRUCTURE WHEN
CONSIDERING PRIOR KNOWLEDGE USING BAYES’
THEOREM
The additional consideration of prior knowledge usingBayes’
theorem also leads to higher Pts values in both EoL and Suc-
cess Run tests, as well as in system and component tests. The
apportionment of specimen during component testing, as dis-
cussed in Chapter VII, is dependent on the incorporation of
prior knowledge through Bayes’ theorem. This corresponds
to the idea that the samples of prior knowledge and those
of the test are of equal importance. Therefore, when prior
knowledge is taken into account, it replaces a portion of
the sample sizes required for optimization. As a result, the
required sample sizes for maximizingPts change accordingly.

This effect also implies that the optimal apportionment
is no longer independent of the sample size of the test
when prior knowledge is considered. The proportion of prior
knowledge samples replacing the test samples changes with
the sample size of the test. To illustrate this fact, Fig. 15
depicts the optimal apportionment of specimen for a series
system with two failure modes of identical distribution,
W (1; 3), based on the total sample size of the uncensored EoL
test. It can be observed that for failure mode 1, a larger sample
size must initially be assigned due to the smaller sample size
of the prior knowledge in order to achieve the maximum Pts.
Since both failure modes are identical, the optimal apportion-
ment without additional consideration using Bayes’ theorem
would be an equal apportionment. This can also be observed
for very small and very large total sample sizes.

B. INFLUENCE OF UNCERTAINTY WITH ADDITIONAL
CONSIDERATION OF PRIOR KNOWLEDGE USING BAYES’
THEOREM
As discussed in Chapter IV, the additional consideration of
prior knowledge using Bayes’ theorem results in the ability
to replace test units if the prior knowledge is positive enough.
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FIGURE 15. Change of the optimal sample allocation of an EoL
component test of a series system with two failure modes W (1; 3).

Thus, the additionally considered prior knowledge is equiv-
alent to the information obtained from the test, as illustrated
in Chapter VII. Furthermore, it was shown that incorporat-
ing the uncertainty in prior knowledge in EoL tests leads
to a decrease in Pts, which is bounded by the sample size
n0. Therefore, the maximum achievable Pts is the one that
would theoretically result without considering uncertainty
at n = n0.
The combined consideration of uncertainty in prior knowl-

edge and prior knowledge using Bayes’ theorem has the
consequence that the maximum Pts is determined by n0
(the effect of uncertainty) and that this maximum is always
achieved because n and n0 are equivalent (the effect of Bayes’
theorem). This implies that the sample size of prior knowl-
edge n0, solely determines the value of Pts. For n > n0, the
effect of uncertainty limitsPts to themaximum corresponding
to n0. On the other hand, for n < n0, the effect of additional
consideration using Bayes’ theorem ensures that the maxi-
mum Pts is still achieved because n and n0 are equivalent.
In this case, the effective sample size is always large enough
to reach the maximum value, at least n0. Therefore, Pts is
practically not further dependent on the sample size of the
test n.

To illustrate this, Fig. 16 exemplarily calculates the Pts
of the uncensored EoL test as a function of n and n0, con-
sidering the prior knowledge with W (1; 3) using Bayes’
theorem for the demonstration, as well as the uncertainty
in prior knowledge. It is clearly observed that Pts does not
change with n.

When prior knowledge is used in the reliability assessment
through Bayes’ theorem, it means that a higher reliabil-
ity, longer lifetime, or a higher level of confidence can
be demonstrated compared to not considering prior knowl-
edge. Thus, there is always a gain in any case. However,
the uncertainty in prior knowledge becomes irrelevant once
the test has been conducted and the evidence has been
provided.

For practical application in test planning with Pts, it is
important to consider the uncertainty but also calculate Pts
without considering uncertainty. When additionally consid-
ering prior knowledge using Bayes’ theorem, the value of

FIGURE 16. Pts as a function of n and n0 considering uncertainty and
prior knowledge with Bayes’ Theorem in an EoL test.

Pts obtained without considering uncertainty should be used,
while the one with uncertainty can be considered as a lower
bound or worst-case scenario for Pts.
In the case of SR tests, the relationships are somewhat

simpler. The test configuration is already determined by
the reliability requirement. Therefore, the calculation of
Pts is initially independent of the reliability demonstration.
As discussed in Chapter VII, considering uncertainty can
result in both a decrease and an increase in Pts, while
incorporating prior knowledge using the Bayes’ theorem
leads to a smaller required sample size, resulting in an
increase in Pts.

The increases and decreases in Pts are still present but are
overshadowed by the effects of Bayes’ theorem. To illustrate
this, the same example from Fig. 14, with the additional
consideration of prior knowledge using the Bayes theorem
for treq = 0.35 (s = 5.8 %), is depicted in Fig. 17. It can be
observed that when uncertainty and the Bayes’ theorem are
taken into account, Pts approaches the values obtained when
considering uncertainty alone, which in turn approximate
the case without consideration of uncertainty or the Bayes’
theorem.

FIGURE 17. Pts as a function of n0 considering uncertainty and prior
knowledge with Bayes’ Theorem in a Success Run test.

However, incorporating prior knowledge using Bayes’ the-
orem allows for a significant reduction in the required sample
size, leading to an additional increase in Pts. Starting from
a sample size of prior knowledge n0 = 70, Pts further
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increases because a large portion of the demonstration is
already achieved through the additional consideration of prior
knowledge. Theoretically, with n0 = 200, no SR test is neces-
sary as the demonstration is already fully accomplished based
on prior knowledge alone. However, this is irrelevant for
practical applications since a demonstration should never rely
solely on prior knowledge. For this reason, a required sample
size approaching zero is not allowed for here. This is why the
Pts is not reaching 100 %, even for very large sample sizes.

IX. SUMMARY AND CONCLUSION
The development of technical products must ensure that their
functionality is guaranteed over the desired service life. This
means that the reliability requirement imposed on them must
be fulfilled. Reliability demonstration tests are conducted to
verify the stated requirements. The challenges involved are
diverse: on the one hand, the demonstration must ensure that
it has the necessary statistical power to even provide the
evidence, i.e., it must be capable of achieving the desired
result, and on the other hand, it must be feasible with the
available resources.

The Probability of Test Success is capable of evaluating
the suitability of different test configurations and types in
terms of their probability of achieving a successful reliability
demonstration. This enables the selection of the most suitable
test. The present work utilizes the Probability of Test Success
and develops methods to evaluate tests of real systems with
multiple subsystems, components, parts, and failure modes.
Additionally, the uncertainty of the required prior knowledge
is taken into account, as well as the additional consider-
ation of prior knowledge using the Bayes theorem. The
analytical calculation method allows leveraging the asymp-
totic properties of quantile estimation methods through the
variance-covariance matrix and Taylor series approximation,
enabling a simple and fast analytical calculation based on
the normal distribution. The additional consideration of prior
knowledge using Bayes’ theorem results in an extension of
the sample size similar to the maximum a posteriori esti-
mation for failure-based tests. To account for the reduced
variance of the lifetime quantiles due to the fixed prior knowl-
edge, the variances are reduced using a correction factor
calculated with the Bayes’ theorem. Complex systems with
multiple failure modes and system levels require a specific
approach in the reliability demonstration, namely, the eval-
uation of test data must be performed separately for each
failure mode in failure-based tests. As a result, the calculation
of the Probability of Test Success reflects this requirement.
To incorporate this in the evaluation using the Probability
of Test Success, the calculation procedure was extended to
include the variance of the epistemic uncertainty using a
mixture distribution.

The evaluation of main effects and interactions has
shown that there are clearly favored test strategies in
several scenarios. The interaction analysis has ultimately
revealed that dealing with prior knowledge is of particular
importance.

The consideration of the Boolean system structure of the
product does allow for an optimal apportionment of specimen
onto the respective component tests in order to demonstrate
system reliability in a most efficient way.
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