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ABSTRACT Attestation is one of the most critical mechanisms in confidential computing (CC).
We present a holistic verification approach enabling comprehensive and rigorous security analysis of
architecturally-defined attestation mechanisms in CC. Specifically, we analyze two prominent next-
generation hardware-based Trusted Execution Environments (TEEs), namely Arm Confidential Compute
Architecture (CCA) and Intel Trust Domain Extensions (TDX). For both of these solutions, we provide a
comprehensive specification of all phases of the attestation mechanism, namely provisioning, initialization,
and attestation protocol. We demonstrate that including the initialization phase in the formal model leads to
a violation of integrity, freshness, and secrecy properties for Intel’s claimed trusted computing base (TCB),
which could not be captured by considering the attestation protocol alone in the related work. We open-
source our artifacts. Other researchers, including a team from Intel, are adopting our artifacts for further
analysis.

INDEX TERMS Arm confidential compute architecture (CCA), confidential computing, formal
specification, Intel trust domain extensions (TDX), remote attestation, trusted execution environment.

I. INTRODUCTION
Several privacy and data protection laws, such as the
General Data Protection Regulation (GDPR) [1], mandate
protecting personal data during processing (cf. Article 32 in
GDPR). While data protection at rest and in transit has
been well-understood, protecting data in use is relatively
new. There are four primary technologies, collectively known
as Privacy-Enhancing Technologies (PETs), available as
potential solutions for protecting data in active use: 1) Secure
Multi-party computation (MPC) [2], 2) Homomorphic
Encryption (HE) [3], 3) Zero-Knowledge Proofs (ZKPs) [4],
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and 4) Confidential Computing (CC) using hardware-based
Trusted Execution Environments (TEEs) [5]. Each of these
technologies has its pros and cons. Generally speaking, while
MPC, HE and ZKPs offer a small Trusted Computing Base
(TCB) consisting of software only, they suffer from high
computation as well as communication overhead. On the
other hand, CC enables high performance at the cost of
relatively larger TCB consisting of hardware, firmware as
well as software components [5]. Because of this depen-
dence on hardware, firmware, and software components
in CC, it is necessary to attest [6] that: 1) the platform
consisting of hardware, firmware as well as trusted software
components – on which user-provided workload executes –
is real (i.e., neither simulated nor emulated), authentic, and
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up to date 2) workload executing on the data is the expected
one (i.e., unmodified). We call this architecturally-defined
attestation. If such attestation of platform and workload is not
executed correctly, user’s sensitive data may be sent to a fake
CC platform or malicious CC workload and thus overcome
the protections of CC.

While MPC, HE, and ZKPs have existed for decades
and are based on well-defined mathematical concepts,
CC is a relatively emerging technology. In addition to the
existing TEEs – such as Intel Software Guard Extensions
(SGX) [7] and AMD Secure Encrypted Virtualization-Secure
Nested Paging (SEV-SNP) [8] – new TEEs, such as Arm
Confidential Compute Architecture (CCA) [9], [10], Intel
Trust Domain Extensions (TDX) [11], RISC-V Confidential
Virtual Machine Extensions (CoVE) [12], [13], and IBMPro-
tected Execution Facility (PEF) [14], are being introduced.
Each of these TEEs has a distinctive attestation architecture
and design (Table 1). For example, Intel SGX and TDX, and
AMD SEV-SNP are deployed products where all details of
the platform attestation have been established (called vendor
solutions), while Arm CCA and RISC-V AP-TEE have
common architectural specifications that multiple products
may share (called architecture led solutions). Architecture
led solutions only provide a common design for attestation,
allowing detailed differentiation between the actual products
from their partners. Moreover, some technologies, such
as Intel SGX and TDX, have a layered structure for
attestation (called Layered Attester), while attestation in
Arm CCA comprises multiple Attesters (called Composite
Attesters) [15]. Similarly, Intel SGX performs isolation at the
process level (called process-based), while others like Intel
TDX and Arm CCA operate at Virtual Machine (VM) level
(called VM-based).

Because of the distinctive attestation architecture and
security-critical nature of the architecturally-defined attes-
tation mechanisms in TEEs, it is crucial to understand and
perform a systematic security analysis of such mechanisms
for emerging TEEs. Formalmethods provide a systematic and
mathematically rigorous approach to understanding, speci-
fying, and verifying system behavior. Specifically, symbolic
security analysis tools [16] are widely used to precisely
define and rigorously analyze the behavior and properties of
a protocol such as TLS 1.3 [17]. Compared to such protocols,
a major challenge in the formalization of architecturally-
defined attestation is that all vendors present specifications of
architecturally-defined attestation in natural language. Such
vague specifications can cause legal uncertainty [18] and thus
hamper compliance with the regulations; for instance, GDPR
(cf. Articles 5(1)(a) and 12) [1] requires that personal data
is processed transparently. Apart from a legal perspective,
a better understanding helps develop better systems.With this
motivation, in our previous works [19], [20], [21], we took the
challenge of high-level formal specification and verification
of attestation protocol phase in Intel SGX - namely EPID [19]
and DCAP [20] - and TDX [21]. However, these works cover

only the attestation protocol phase of attestation and do not
cover the provisioning and initialization phases.

In this work, we demonstrate that including the initializa-
tion phase of attestation in Intel TDX leads to a violation of
integrity, freshness, and secrecy properties on Intel’s claimed
TCB that could not be captured by performing the formal
verification of attestation protocol phase alone in our previous
work [21]. Moreover, we aim to provide wide coverage
of the different flavors of attestation in TEEs to generate
verification primitives that may be partly reused to analyze
other TEEs. As shown in Table 1, Arm CCA is the only
TEE with a composite attester. Moreover, it is the only
TEE in architecture led solutions that provides a good level
of available specification documents. In contrast, attestation
specifications of RISC-V CoVE are still to be ratified at the
time of writing. Hence, we formally analyze Arm CCA in
addition to Intel TDX. In a nutshell, this work provides a
comprehensive formal analysis of Arm CCA and Intel TDX
attestation covering all the phases. Specifically, the novel
contributions of this work include:

• first formal specification and analysis of attestation in
architectural specification group and composite attester
(Arm CCA)

• most detailed formal model (including certificate chain
and verifier steps) of Intel TDX attestation with initial-
ization phase and variable measurements. We formally
prove the insecurity of Intel’s claimed TCB. Moreover,
the formal specification led to several improvements in
Intel’s specifications.

We release our artifacts [22] under generous Apache License
v2.0 for further research and development. Other researchers
are adopting our artifacts for further analysis. This includes
a team from Intel performing formal verification of the
virtual Trusted Platform Module (vTPM) solution for the
Trust Domain (TD). Moreover, a Confidential Computing
Consortium project1 on attested Transport Layer Security
(TLS) is planning to utilize our artifacts, in addition to the
formalization of TLS [17], for the formal specification and
verification of protocol allowing a generic way of passing
Evidence and Attestation Results in the TLS handshake [23].

The rest of the paper is organized as follows: Section II
presents our approach for the specification of the attestation
mechanisms. Section III and IV present the specification
of the attestation mechanism in Arm CCA and Intel
TDX, respectively. Section V highlights our contributions
compared to the related work. Finally, Section VI concludes
the work and highlights some interesting directions for future
work.

II. APPROACH AND TERMINOLOGY
This section first presents abstract architecture and terminol-
ogy for architecturally-defined attestation in Section II-A.
We then describe the phases of attestation mechanisms –

1https://github.com/ccc-attestation/attested-tls-poc
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TABLE 1. Heterogeneity of attestation in confidential computing.

provisioning, initialization, and attestation protocol – in
Section II-B. Finally, we give an overview of formal
specification consisting of the formal model, threat model,
and properties to be verified for architecturally-defined
attestation in Section II-C.

Throughout the paper, we use capitalization of key terms.
To describe the public/private nature of cryptographic keys
precisely, we use Smart’s colour coding [24] as a visual
supplement throughout the text and figures, i.e., blue colour
to show public information, e.g., public keys, and red colour
to show secrets like private or symmetric keys. In addition,
we use green colour to represent the key-pair.

A. ABSTRACT ARCHITECTURE AND TERMINOLOGY
At a very high level, architecturally-defined attestation
consists of generation of Evidence at Attester and Appraisal
of Evidence at Verifier, as shown in Fig. 1. Our architecture –
inspired by the RATS standard [15] – predefines a number of
roles and conceptual messages.

1) MAIN ROLES
In our abstract architecture, there are two main roles, namely
Attester and Verifier. An Attester – often referring to the
combination of hardware, firmware and trusted software
deployed in the cloud – creates attestation Evidence about
itself. It consists of at least one Attesting Environment and
at least one Target Environment. An Attesting Environment
is the measuring portion of an Attester. It collects the
relevant information about the Target Environment by reading
system registers and variables, calling into subsystems, and
taking measurements on code, memory, or other security-
related assets. It then formats the Claims appropriately
and typically uses private key material to digitally sign
the Claims and generate attestation Evidence about itself.
A Target Environment represents the measured portion of an
Attester. Anything that may have an impact on the correctness
of the TCB is a candidate target. Note that Attesting
and Target Environments may be combined. A single
device can host more than one Attester, called Composite
Attester. Attesters can be chained, for instance DICE [25]
Attester.

A Verifier conducts Appraisal of Evidence in order to
evaluate the trustworthiness of the Attester. The Verifier
has trusted relationships with the supply chain – Endorsers
and Reference Values Providers – through which it acquires
accurate and timely information about Attesters from supply
chain roles.

FIGURE 1. Architecture for architecturally-defined attestation.

2) SUPPORTING ROLES
To support the attestation, we define three supply chain
roles. Identity Supplier is associated with the action of
giving the Attester its cryptographic Identity. Depending on
the attestation technology, this role may be instantiated in
different ways. For example, it could be the manufacturer
injecting secrets into the device in the plant, or a local
Certificate Authority (CA) when the device is deployed
into a network domain. As another example, in privacy-
preserving schemes like Direct Anonymous Attestation
(DAA) [26], the anonymized Identity is given by the DAA
Issuer, provided the join sub-protocol completes successfully.
Endorser andReference Value Provider supply Endorsements
and Reference Values, respectively, to the Verifier. Endorser
helps Verifier appraise the authenticity of Evidence, while
Reference Values Provider helps Verifier appraise Evidence
to determine if the Claims are acceptable.

Finally, the only administrative role, Verifier Owner,
is authorized to configure Appraisal Policy for Evidence in a
Verifier. The Appraisal Policy for Evidence is the set of rules
that define the Evidence Appraisal procedure.

Note that in general, roles can be coalesced into the same
entity or split among different entities. For example, the same
supply chain entity could be at the same time an Endorser
and a Reference Values Provider. To clearly state which entity
takes on a role in the rest of the paper, we use rectangles with
a dotted boundary to represent the roles and rectangles with a
solid boundary to represent the entity that takes on this role.

3) CONCEPTUAL MESSAGES
In our abstract attestation, there are several key messages
between roles. Each of these is explained below:
Attestation Challenge is used to establish the freshness of

the Evidence. It can be implicit (nonce, epoch identifier) or
explicit (timestamp). In this work, we consider nonce. The
Verifier sends a randomly generated nonce, and the nonce
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is then signed and included along with the Claims in the
Evidence. The Verifier checks that the sent and received
nonces are the same, ensuring that the Claims were signed
after the nonce was generated.
Evidence is a statement made by the Attester containing

a set of trust metrics associated with the Attester’s current
state. Typically, such trust metrics are encoded into key/value
pairs also known as attestation Claims. Claims may include
measurements related to the boot sequence, measurements of
the run-time state, and also telemetry (e.g., values sampled
from a secure sensor). We use the prefixes Local and Remote
with Evidence to distinguish whether the entities taking on
the roles of Attester and Verifier are on the same or different
platforms. The entities may be on different sockets in the case
of multi-socket processor but as long as they are on the same
platform, it is classified with the prefix Local.
Reference Values are known good values for the trust

metrics reported by an Attester. They are known good in the
sense that they describe the desired state of a trustworthy
device. A number of related Claims are expected to be found
in attestation Evidence which will be directly compared with
the corresponding Reference Values during the Evidence
Appraisal procedure.
Endorsements consist of Identity Endorsements as well

as Endorsed Values. Identity Endorsements establish the
cryptographic identity of the Attester, for example, a public
key corresponding to the Attester’s signing key. Endorsed
Values are Attester’s features that are not measured, for
example, a security certification associated with the attesting
device, etc. Endorsed Values are accepted after Reference
Values have been checked.
Identity includes both long-term and ephemeral identities

of Attester. It can also be anonymized, as in the case of
DAA [26].

B. PHASES OF ATTESTATION MECHANISM
With all the roles in abstract attestation architecture,
we further define three phases of attestation mechanisms,
namely Provisioning, Initialization and Attestation Protocol.
Attestation researchers often focus only on the attestation
protocol. However, we present a holistic view of all the phases
in this work since provisioning and initialization are also
crucial from a security perspective. The level of detail in the
specification of all phases should be such that one can make
a security argument from a cryptographic – in contrast to
systems – perspective.
Provisioning encompasses Attester Provisioning as well

as Verifier Provisioning. Attester Provisioning covers the
tasks typically performed by a manufacturer to provision
the platform with the secrets (shown as Identity in Fig. 1)
or certificate required to create the Attestation Root of
Trust (RoT). This phase may also involve registration
of the device with an authority to obtain the certificate.
Verifier Provisioning covers the supply of Endorsements and
Reference Values from the Endorser and Reference Values
Provider, respectively, to the Verifier, as shown in Fig. 1.

Once the chips are shipped and deployed in the production
environment, often the cloud, the device may go through a
set of initialization steps that create the basis for supporting
the Attestation Protocol. These steps are often conducted
during platform boot. A typical scenario includes loading
the firmware and then deriving dynamic secrets from the
manufacturer-provisioned root secret via Key Derivation
Functions (KDFs). The newly derived secrets are used in the
actual attestation protocol.
Attestation Protocol – the main phase of operation – is

the execution of a series of message exchanges on every
attestation request. As shown in Fig. 1, it consists of two
abstract steps, namely generation and then appraisal of
Remote Evidence. The generation of Remote Evidence should
specify at least: 1) completion of KDFs for keys used in the
process and 2) the security-relevant contents of all messages
conveyed between different entities within the process. The
appraisal of Remote Evidence should precisely specify the
algorithm for the Remote Verifier.

The Verifier can make a trust decision at the end of
the attestation protocol. If the Verifier decides to trust the
Attester, it can perform any trustworthy operations relevant
to the CC use case. For example, it may release secrets into
the CC execution environment.

C. FORMAL SPECIFICATION AND VERIFICATION
All the phases of attestation of a specific technology can
be formally specified and verified in the state-of-the-art
symbolic security analysis tool, ProVerif [27]. ProVerif is
based on Horn clauses and supports the verification of trace
and equivalence properties for an unbounded number of
sessions. For background as well as syntax and semantics
of ProVerif, we refer the readers to [27]. The formal
specification includes the formal model, threat model and
properties, as explained below.

1) FORMAL MODEL
Since the specification documents are presented in natural
language by both Arm and Intel, one of the key contributions
of this work is the formal specification of all the phases of
attestation in Arm CCA and Intel TDX. Our formal models
are based on: (i) in-depth reading of Intel and Arm speci-
fication documents (ii) our experience with Intel SGX (on
which the attestation architecture Intel TDX is largely based)
and Arm CCA (iii) extensive discussions with Intel and Arm.
Therefore, we believe we have a faithful interpretation and
thus formalization of these two specifications. For formal
modeling in ProVerif, each trusted entity in the Attester is
represented with a subprocess in ProVerif, and the sequence
of message exchanges between the entities is represented in
ProVerif’s specification language.

2) THREAT MODEL
The approach of symbolic security analysis is based
on the classical Dolev-Yao [28] adversary with perfect
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cryptographic assumption, i.e., all cryptographic primitives
(e.g., hash, encryption, MAC, digital signatures) are assumed
to be perfect. Additionally, implementation flaws, such as
side channels, are out of scope. Moreover, we assume that
the attestation-related keys are not leaked to the adversary.
We also assume that the Verifier is stateful, i.e., it can
store the generated nonce to check freshness. The adversary
capabilities are then defined by: (i) which entities are
considered trusted: in ProVerif, untrusted entities are part
of the network adversary; thus, only trusted entities are
modeled. (ii) which channels are considered secure: in
ProVerif, all channels are public except those that are
identified by the keyword private. (iii) which functions are
available to adversary: in ProVerif, all functions are available
to the adversary except those that are identified by the
keyword private. (iv) technology-specific capabilities, and
(v) modeling assumptions.

3) PROPERTIES
In the context of attestation, properties of interest include:
Integrity: Claims inside Evidence represent the current

state of the Attester and contain critical elements such as
identity fields. Hence, ensuring that the adversary does not
modify Claims during transport from the Attester to the
Verifier is critical. Integrity of Claims is typically protected
via digital signatures using an Attestation Key. In ProVerif,
integrity is formalized as correspondence assertions with
Claims as variables of agreement. Events with these variables
are placed just before sending Evidence and after successful
verification of Evidence. Now if the correspondence assertion
holds, it implies that the adversary cannot modify the
variables of agreement without being detected.
Freshness: An adversary can replay valid Evidence from

the older session and, in the meantime, change the state
of the Attester. Hence, freshness of Evidence is important.
In ProVerif, this is formalized as injective correspondence
assertions (i.e., using inj − event) with Claims as variables
of agreement. Intuitively, this checks that only one Evidence
corresponds to each nonce.
Secrecy: It must be ensured that the adversary does not

have access to attestation-related keys or secrets shared
between Attester and Verifier. In ProVerif, this is formalized
as reachability property, i.e., to analyze whether a state
where the adversary has access to the secrets in plaintext
is reachable. If such a state is not reachable, it implies that
secrecy is maintained.
Authentication:Verifier must ensure it communicates with

the intended Attester. Informally, if the Verifier receives the
public key of Target Environment, this uniquely matches
the public key generated within the Target Environment.
To formalize this in ProVerif, an event is defined after
generating the identity key in the subprocess representing
TEE. Another event is defined after verifying Remote
Evidence in the Verifier. The property then checks whether
the variable of agreement – public part of the identity key –

is the same in both events. Authentication holds if the public
keys are the same in both events.

III. ATTESTATION IN ARM CCA
The Arm AArch64 architecture creates multiple privilege
levels inwhich software can execute. These levels are referred
to as Exception Levels (EL) and have numeric names, i.e.,
EL0 is the least privileged, and EL3 is the most privileged
level [29]. From version Armv6, Arm A-Profile architecture
has supported hardware-enforced isolation between two
execution environments, namely Normal world and Secure
world (also known as TrustZone).

Arm CCA is a system consisting of both hardware and
software architectures. The hardware architecture is called
the Realm Management Extension (RME) [9]. RME allows
the creation of a separate execution world – known as
Realm world [30] – with a physical address space that
is isolated from the existing Normal or Secure execution
worlds and allows memory to be reallocated between worlds
dynamically. Arm CCA firmware (EL3) uses RME to
allocate memory to Realm world. Within the Realm world,
individually protected execution environments at EL0-EL1,
called Realms, can be created. Realms are isolated from
each other using page table mechanisms. The owner of a
Realm is not required to trust the software components that
manage the resources used by the Realm (such as the Normal
world hypervisor). The software component responsible for
managing Realms is called the Realm Management Monitor
(RMM) [10]. It executes at EL2 within the Realm physical
address space. The RMM is programmed via a set of
Application Binary Interfaces (ABIs) exposed to the Normal
world.

In addition to the CCA-specific architecture components,
additional architectural components are significant to the
system: 1) Monitor: Executing at Root EL3, this is the
most privileged software component. It is responsible for
switching between the security states used at EL2, EL1 and
EL0. 2) Hardware Enforced Security (HES): HES covers
hardware trusted controllers that can store and process secrets
outside of themain application processor (AP), such as secure
elements. This separation aids the threat model in protecting
secrets.

At the time of writing, we are not aware of any
available hardware implementing CCA.Also, not all products
implementing CCA will be identical because Arm defines
architectural specifications while leaving certain details (such
as different cryptographic algorithms) as an implementation
choice. This paper discusses the reference implementation
and the open-source release of the RMM specification and
software implementations (TF-RMM) [31]. However, the
HES is out of scope in the TF-RMM code [32]. Similarly,
TF-RMM does not provide the Verifier and Realm instances.
TF-RMM implements only the RMM actor interfaces [33]
and business logic [34]. In contrast, we provide a holistic view
covering HES, Verifier, and Realm, in addition to RMM.
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FIGURE 2. Overview of attester in Arm CCA (Composite attester with
realm attester as the lead attester) showing important claims, where h
represents hash.

A. ATTESTATION ARCHITECTURE OVERVIEW
Fig. 2 outlines the structure of the CCA Attester according to
the conceptual model described in Section II-A. It comprises
two separate but bound Attesters, namely Platform attester
and Realm attester. Each Attester has its own cryptographic
identity – the CCA Platform Attestation Key (CPAK) and the
Realm Attestation Key (RAK), respectively – which are used
to sign the corresponding Evidence. The RAK is generated
and attested by the Platform Attester, specifically within the
HES. The key attestation of the RAK, which is carried inside
the Platform Evidence, is used as the explicit delegation
mechanism between the twoAttesters, ensuring that a Verifier
can always verify their correct coupling in the produced
Evidence. In a nutshell, CCAAttester is a Composite Attester
with the Realm Attester as the lead Attester. Full details of
the Evidence produced by each Attester can be found in
section VI7.2 of the official specification [10].

1) PLATFORM ATTESTER
As shown in Fig. 2, the Platform Attester consists of HES
as the Attesting Environment and Monitor Security Domain
as the Target Environment. The Claims in Platform Evidence
include the boot state of the system (including all firmware
components and configuration within the TCB), the relevant
CCA parameters (e.g., the CCA platform implementation
identifier), and the security lifecycle state of the platform.
Additionally, the hash of the RAK public key is included
in the attested Claims, thus making the Platform Evidence
output from HES a combination of platform and key
attestation.

The HES generally works with the host bootloader to
obtain measurements of firmware components and meta-
data about those components. In many implementations,
HES will trust the bootloader to correctly compute the
measurements and pass that state to the HES. However,
some HES implementations may perform the measurement
computations themselves based on a memory range passed
by the bootloader.

2) REALM ATTESTER
As shown in Fig. 2, the Realm Attester consists of
RMM as the Attesting Environment and an instance of
Realm as the Target Environment. The Claims in Realm
Evidence include the measured state at the boot of the

Realm requesting the attestation – named the Realm Ini-
tial Measurement (RIM) – and a bank of Realm Extended
Measurements (REM). RIM is calculated during Realm
preparation. As memory is added to the Realm, it is hashed,
and the resulting values are extended into the RIM. Once
the Realm is activated, the RIM becomes immutable. Then,
Realm software can use the REM bank for storing any
kind of run-time state that may be relevant to a relying
party interacting with the application. Measurements are
applied to a REM in an extend operation available via
an ABI exposed by the RMM to Realm software. Each
Realm has a bank of 4 REMs in the CCA reference
implementation.

B. FORMALIZATION OF PROVISIONING PHASE
As introduced in Section II-B, Provisioning encompasses
Attester Provisioning as well as Verifier Provisioning. In this
section, we explain the formalization of both for Arm CCA.

1) ATTESTER PROVISIONING
The lifecycle state of the CCA platform, pLifeCycleState,
can be one of the seven possible values in Fig. 3 [10].
During manufacturing, in the Platform Root of Trust (RoT)
Provisioning lifecycle state, a set of immutable parameters
will be provisioned to a shielded location (i.e., on-chip
tamper-resistant, non-volatile storage) only available to HES.
For attestation, this includes:

1) the Group Unique Key (GUK): a random seed shared by
a group of hardware-equivalent CCA instances and

2) aHardwareUnique Key (HUK): a randomly unique seed
for an instance.

These parameters remain immutable for a CCA system in the
secured lifecycle state. In our formalization, CCA Attester
provisioning is modelled as freshly generated keys guk and
huk , representing GUK and HUK, respectively. These keys
are then passed only to the Hes subprocess, representing that
the adversary and other subprocesses cannot access these
keys.

2) VERIFIER PROVISIONING
As a prerequisite for verification of the Platform Evidence,
the supply chain that builds the CCA implementation needs
to convey, over a mutually authenticated channel, Reference
Values and Endorsements to the Platform Verifier. The
Reference Values include: 1) platform configuration pConfig
and 2) measurement value for the platform boot state
pSwCompMeasRef. The foundational Endorsement of any
CCA platform is the public part pubCpak of the derived
CPAK (see Section III-C1). Other endorsed values that could
be linked to a CCA platform and/or Realm include security
certifications, controls and benchmarks. These are typically
associated with specific states of the installed firmware,
software and related configuration, which are discovered
through Evidence verification.
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FIGURE 3. Arm CCA security life cycle [35] where boxes with rounded
edges represent lifecycle states. The seventh state unknown is not shown.

Arm does not specify or provide any recommendation on
how this mutually authenticated channel is created. So we
abstract this and formally model the Reference Values as free
names in ProVerif, so that Verifier subprocess can access
these values. For Endorsements, we assume that the Verifier
is already provisioned with pubCpak .

C. FORMALIZATION OF INITIALIZATION PHASE
The initialization phase basically provisions RMM with its
signing key RAK. This section describes the derivation of
keys. The formal model of the initialization phase in ProVerif
consists of a parallel composition of 3 subprocesses:

Hes (privCpak, guk, pLifeCycleState) | RmmInit() |

in(cRmmInitMain, (privRak, pubRak, pEvidence)); (1)

where first subprocess Hes represents HES and | represents
the parallel composition of subprocesses. To faithfully
represent the protocol, we use a second subprocess RmmInit
to represent the initialization part of RMM. However,
this raises a problem of how to transport the parameters
privRak , pubRak , and pEvidence to the RMM in the
attestation protocol phase. We use the third subprocess to
transport these parameters to the main process via a secure
channel cRmmInitMain. The ProVerif keyword in represents
message input.

1) CPAK DERIVATION
At boot, HES derives the CPAK, an asymmetric key pair that
provides the Platform RoT identity. An important property of
the CPAK is that its private part is guaranteed never to leave
the HES. At a minimum, CPAK is derived from the following
contributions:

1) The GUK (as explained in Section III-B). Note
that implementations may choose alternative schemes
for the derivation, for example, using device-unique
parameters.

2) Current security lifecycle state of the platform. The
security lifecycle is managed entirely by HES. Most
systems will remain in the secured state.

In our formalization, the private part of CPAK is derived
via a constructor kdfCpak with parameters guk and
pLifeCycleState. This key derivation is done in the main
process so that public part of CPAK can be directly passed
to Verifier subprocess. The private part is passed only to
Hes subprocess (as shown in Eq. (1)). The KDF parameters
can be updated accordingly to formally verify a specific
implementation.

A direct consequence of the key derivation strategy
described above is that, if desired, the same CPAK can be
shared by multiple systems with the same CCA hardware
implementation. Also, because of the dependency of CPAK
on the security lifecycle state, a different CPAK is derived if
the state is not secured. This has an important consequence on
the appraisal phase because only an attestation generated by
a device in the secured state can be considered trustworthy.

2) RAK DERIVATION AND ATTESTATION
Fig. 4 describes the process by which, at boot, the RMM
obtains its RAK. RMM starts by requesting HES via the
Monitor, which will only accept this request from Realm
world EL2. HES typically derives the RAK using the
following contributions (step 1 in Fig. 4):
1) GUK;
2) Boot state of the system;
3) Current security lifecycle state of the platform.

A different RAK is therefore derived if the boot state of CCA
platform firmware is updated or if the security lifecycle state
is not secured. Formally, the private part of RAK is derived
inside the Hes subprocess via a constructor kdfRak with
parameters guk , pSwComp and pLifeCycleState. The KDF
parameters can be updated accordingly to formally verify a
specific implementation.

After deriving the RAK, HES queries data from the
Target Environment – Monitor Security Domain as shown
in Fig. 2 – and populates the corresponding Entity Attestation
Token (EAT) [36] Claims. The format used is a variant of the
PSA token [37] containing the platform boot state pSwComp,
the security lifecycle state pLifeCycleState, as well the CCA
platform implementation identifier(s) pImpId . Formally,
these values are obtained as input in the Hes subprocess.
In addition, the RAK is attested by hashing its public part
and storing it into the nonce Claim pChallenge. In our
formalization, the platform Claims pClaims is represented as:

pClaims = pProfile || pChallenge || pImpId ||

pInstId || pConfig || pLifeCycle ||

pSwComp || pVer || pHashId

where || represents concatenation and other symbols are as
defined in Table 2.

The Claims are then signed with the CPAK private key
(step 2 in Fig. 4) and wrapped in a CBOR Web Token
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TABLE 2. CCA platform claims.

FIGURE 4. RAK derivation and attestation in the initialization phase. Keys
within the rectangles at the top and bottom represent initial and final
knowledge, respectively. RMM is provisioned with a signing key at the
end of the protocol. AE represents attesting environment.

(CWT) [38] that serializes the combined Platform and RAK
attestation. Finally, the computed Evidence is returned to
RMMalong with the RAK (step 3 in Fig. 4). RMMcaches the
RAK and the Platform Evidence for subsequent use (step 4 in
Fig. 4). In our formalization, the steps of HES and RMM are
modeled in the subprocesses Hes and RmmInit , respectively.

Note that because the RAK is exported from the HES,
its private part could be exposed by a side-channel in the
application processor or a vulnerability in theMonitor and/or
RMM firmware. Therefore, CPAK private key, guaranteed
never to leave the separated HES, is generally more secure
than RAK private key. The delegated design trades a slight
decrement in security with an increase in performance by
signing directly at RMM without requiring a roundtrip to
HES [35]. This is useful in deployments – especially in
a heavily multi-tenant scenario, e.g., a cloud provider data
centre – where high contention on the HES would create a
system bottleneck. An implementation may choose to refresh
the RAK on some event other than boot or use a design that
obtains Platform Evidence directly from the HES for every
Realm attestation request.

D. FORMALIZATION OF ATTESTATION PROTOCOL PHASE
This phase assumes the initialization described in
Section III-C2 to be successfully completed so that the
Platform Evidence is readily available to the RMM, along

TABLE 3. Realm claims.

with the signing key RAK. The formal model in ProVerif
consists of a parallel composition of three subprocessesRmm,
Realm and Verifier corresponding to the principals RMM,
Realm and Verifier, respectively, as shown in Fig. 5, i.e.,

!(Rmm(privRak, pubRak, pEvidence) | Realm())

| (!Verifier(pubCpak))

where ! denotes unbounded replication, privRak represents
private part of RAK, pubRak represents public part of
RAK, pEvidence represents platform Evidence, and pubCpak
represents public part of CPAK. We faithfully model all steps
shown in the figure, as described below.

1) GENERATION OF EVIDENCE
The first six steps in Fig. 5 describe the sequence of events
involved in Evidence generation in a CCA system.We assume
a challenge-response interaction between a Verifier (the
challenger) and the Arm CCA Attester (the responder) that
triggers the attestation request from the Realm to the RMM.
The Verifier sends a nonce as a challenge to the Realm
(step 1 in Fig. 5). The Realm to RMM attestation request
(step 2 in Fig. 5) is made via an ABI call, assumed to
be immune to interposition. This assumption is formally
modelled as a secure channel between RMM and Realm.

When requested to do an attestation, the RMM queries its
Target Environment and populates the corresponding EAT
Claims with the sampled values. These include the Realm’s
boot state rim, the Realm’s extended measurements rem
and the RAK public key pubRak . In addition, the challenge
coming from the Verifier via Realm is stored in the Realm
challenge claim rChallenge. The Realm Claims rClaims is
modelled as:

rClaims = rChallenge || rpv || rim || rem ||

rHashAlgoId || pubRak || rRakHashAlgoId

where symbols are as described in Table 3. In addition, the
challenge coming from the Verifier is stored in the nonce
claim.

The Realm Claims are then signed with the RAK private
key (step 4 in Fig. 5) and wrapped in a CWT that serializes
the Realm Evidence. Subsequently, the Platform Evidence
previously computed together with the newly created Realm
Evidence are assembled into an EATCollection payload [39].
The bundled Evidence is returned to the requesting Realm
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FIGURE 5. Arm CCA evidence generation and appraisal.

(step 5 in Fig. 5), which can then forward it to the Verifier
(step 6 in Fig. 5).

2) APPRAISAL OF EVIDENCE
None of the Arm specifications describes the Appraisal of
Evidence (step 7 in Fig. 5). Hence, we explain it in detail.
Successful appraisal of CCA Evidence allows the Verifier
to gain confidence that the Attester implements the Arm
CCA security guarantee [35], i.e., that the Realm’s memory
contents and execution context can neither be accessed nor
modified by other Realms or any non-CCA software or
hardware. Verifiers can be split or integrated. It can be seen
as integrated from a high level, so we formalize integrated
verifiers.

a: SPLIT VERIFIERS
Typically, two separate supply chains are involved in the
appraisal of CCA Evidence: one associated with manufactur-
ing the CCA system and another with developing the Realm
application. We separate the verification procedure along
these two axes, which also map naturally to the split between
the Platform and Realm parts of the CCA Evidence.
Platform Evidence Verification: The procedure to verify

CCA Platform Evidence is as follows:
1) Extract CCA platform implementation identifier pImpId

from the Platform Claims (note that the use of a not-yet-
authenticated claim is not a problem in this case);

2) Extract CCA platform instance identifier pInstId from
the Platform Claims;

3) Use the CCAplatform implementation identifier pImpId
and instance identifier pInstId to look up the associated
CPAK public key pubCpak;

4) Use the found CPAK public key pubCpak to verify the
signature over the Platform Claims;

5) Extract the lifecycle state claim pLifeCycleState and
check its value is secured (0 × 30);

6) Use the CCA platform implementation identifier
pImpId to look up the Reference Values for mea-
surement value pSwCompMeasRef2 and signer ID
pSwCompSignerIdRef for the platform boot state;

7) Extract the platform boot state pSwCompMeas and
pSwCompSignerId from the Platform Claims and check
its value matches the corresponding Reference Values
pSwCompMeasRef and pSwCompSignerIdRef;

8) Extract the platform configuration pConfig from the
Platform Claims and check its value matches the
Reference Value(s) pConfigRef.

Since concrete values (such as 0 × 30 in step 5) cannot
be modelled in symbolic analysis, we abstract such values
via free names, e.g., pLifeCycleStateRef for step 5. The
Verifier subprocess can then compare the received Claimwith
pLifeCycleStateRef for an exact match. Steps 6, 7 and 8 are
implemented similarly. However, because of an absence of
clear specifications, we do not model the precise association
of CCA platform implementation identifier pImpId and
instance identifier pInstId with pubCpak (step 3) and
Reference Values (step 6).
The Platform Verifier is also responsible for checking

the correctness of the binding between Realm and Platform
Evidence. The procedure to verify the binding is as follows:

1) Extract the RAK public key pubRak from the Realm
Claims;

2) Extract the nonce claim pChallenge from the Platform
Claims;

3) Hash the RAK public key and ensure it matches the
nonce claim value pChallenge from step 2;

4) Use the RAK public key pubRak to verify the CWT
signature over the Realm Claims.

If any of the steps above – platform verification and binding
check – fail, the Platform Evidence is not verified, and the
system must not be considered trustworthy. Otherwise, the
Platform Evidence is verified, and the Verifier can trust the
system to implement the CCA security guarantee, particularly
for the Realm it interacts with. The Verifier can then continue
with a further appraisal of the Realm Evidence.
Realm Evidence Verification: To fully verify the Realm

Evidence, the organization that develops the Realm applica-
tion needs to convey, over a mutually authenticated channel,
the following information to the Realm Verifier: 1) Reference
Value(s) for the Realm boot state, in particular, the RIM
rimRef, and 2) (optionally) Reference Values remRef for the
REMs. The procedure to verify Realm Evidence is as follows:

1) Extract the RAK public key pubRak from the Realm
Claims;

2) Use the RAK public key pubRak to verify the CWT
signature over the Realm Claims;

3) Check freshness (received challenge rChallenge
matches the one sent by the Verifier);

2We use the standard ProVerif fonts for representation of constants,
channels and Reference Values to distinguish them from variables.
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4) Extract the Realm initial measurements rim from the
RealmClaims and check its valuematches the Reference
Value(s) rimRef;

5) Optionally based on policy, extract the Realm extended
measurements rem from the Realm Claims and check
their value match the Reference Value(s) remRef;

6) Optionally based on policy, extract the Realm personal-
ization value rpv from the Realm Claims and check their
value match the Reference Value(s) rpvRef.

Note that steps 1 and 2 are also part of the binding checks
made by the Platform Verifier and can be avoided here
if the Realm and Platform Verifiers are integrated (see
Section III-D2b). In some circumstances, the guest OS
deployed within a Realm may be sourced from a different
organization than the Realm application. This must be
considered when sourcing the appropriate Reference Values.

b: INTEGRATED VERIFIERS
We present the algorithm when the Realm and Platform
Verifiers are integrated. We use the symbols described in
Tables 2 and 3. The suffix _Ver represents the view of Verifier
subprocess of a variable, and the suffix Ref represents the
Reference Value of the variable. We categorize all the checks
into four groups. The first group validates cryptography:

(pImpId_Ver = pImpIdRef) ∧ (pInstId_Ver = pInstIdRef)
∧ verifySign(pubCpak, pClaims_Ver, cpakSig_Ver)= true
∧verifySign(pubRak_Ver, rClaims_Ver, rakSig_Ver)= true
∧ pChallenge_Ver = sha256(pubRak_Ver)
∧ rChallenge_Ver = challenge

The second group is a check on the security lifecycle state:

pLifeCycleState_Ver = pLifeCycleStateRef

The third group checks five mandatory Reference Values:

(pSwCompMeas_Ver = pSwCompMeasRef)
∧ pSwCompSignerId_Ver = pSwCompSignerIdRef
∧ pConfig_Ver = pConfigRef
∧ pProfile_Ver = pProfileRef
∧ rim_Ver = rimRef

The last group checks the optional Reference Values and
dependent on a policy:

(rpv_Ver = rpvRef) ∧ (rem_Ver = remRef)
∧ (pVer_Ver = pVerRef)

If all the checks pass, we define an event:

event RealmVerified(pClaims_Ver, rClaims_Ver)

which is a key event for checking security properties, such as
integrity.

E. USE CASE
Architecturally-defined attestation is one of the most funda-
mental mechanisms of Confidential Computing. Hence, our
work serves as the formal foundation for all use cases of
Arm CCA. For instance, the presented attestation protocol
can be composed with authentication and key exchange
protocols. We believe our formalization can be extended
to cover a Confidential Computing Consortium project3 on
attested TLS, allowing a generic way of passing Evidence
and Attestation Results in the TLS handshake [23]. From the
attestation side, it requires only minor changes in Fig. 4 and
our artifacts:
1) Before step 1:Realm subprocess generates an ephemeral

key-pair called Realm application identity key (RIK).
2) In step 2, in addition to the challenge, RIK public part

represented by pubRik is also sent. The combination is
called Key Attestation Token (represented by kat), i.e.,
kat = challenge || pubRik .

3) In step 3, rChallenge = challenge is replaced by
rChallenge = hash(kat).

4) In step 6, kat is sent as a prefix to Platform Attestation
Token (combination of Platform Evidence and Realm
Evidence).

F. THREAT MODEL/ADVERSARY CAPABILITIES
Following the outline in Section II-C, the threat model used
in ProVerif for attestation in Arm CCA is defined as follows:
1) Entities: The participants HES, RMM, and Verifier are
honest, whereas Realm can be both honest and malicious.
These are reasonable assumptions because HES is the RoT,
which by definition must be trusted, and RMM is part of
the system’s TCB. The Verifier’s honesty must be assumed,
given its role as a Trusted Third Party. 2) Channels: All the
channels are public apart from the channel between a) HES
and RMM (Fig. 4) for transporting the RAK key pair, and
b) RMM and Realm (Fig. 5) as ABI calls between RMM
and Realm are assumed to be immune to interposition. In
both cases, the authentication and confidentiality properties
of the channel are provided architecturally. Since the Secure
Monitor Call (SMC) instruction is guaranteed to trap to
a higher Exception level, the SMC that the RMM at EL2
executes to obtain the RAK is guaranteed to be handled by
EL3, which the RMM implicitly trusts. The EL3Monitor then
forwards the RMM’s request to the HES. Similarly, any SMC
(therefore, any Realm Service Interface command) executed
by a Realm at EL1 is guaranteed to trap to the RMM at EL2.
Note, however, that the portion of the channel connecting the
EL3 Monitor (i.e., the trusted proxy) and HES is implemen-
tation-dependent. 3) Functions: All functions are available
to the adversary. 4) Technology-specific capabilities: Realm
measurements are taken as input from the adversary to allow
her to create a Realm of any desired measurements, i.e.,
potentially creating fake Realms. 5) Modeling assumptions:
Endorsement, namely Public part of CPAK, is pre-configured

3https://github.com/ccc-attestation/attested-tls-poc
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TABLE 4. Summary of verification results for Arm CCA.

in the Verifier. Reference Values are modelled as free names
(cf. Sections III-B2 and III-D2a).

G. PROPERTIES
In this section, we formalize the four properties outlined in
Section II-C for Arm CCA, where a summary is presented
in Table 4. The verification uses ProVerif version 2.04 on
Ubuntu 20.04 LTS on an Intel Core i7-11800H processor with
64GB of RAM. The average verification time to prove all the
properties in this experimental setup is 111 s. In fact, except
for the freshness of Platform Evidence, all other properties
are verified within a second.

1) INTEGRITY OF PLATFORM EVIDENCE AND REALM
EVIDENCE
Since Arm CCA Attester is composite (Fig. 2), the integrity
of PlatformClaims pClaims as well as RealmClaims rClaims
must be ensured. This can be captured by two separate
queries. We formalize the integrity check for Platform
Evidence in ProVerif as follows:

query pClaims, rClaims: bitstring;

event (RealmVerified(pClaims, rClaims))
H⇒ event (SentPlatformEvidence(pClaims)).

where query, event and bitstring are ProVerif keywords for
checking properties, non-injective correspondence assertion
and predefined bitstring datatype, respectively. As shown in
Fig. 4, event SentPlatformEvidence is placed in the Hes
subprocess just before sending out the Platform Evidence.
Moreover, event RealmVerified is placed in the Verifier
subprocess after finishing all the verification steps mentioned
in Section III-D2 (Fig. 5). Then, the above query asserts
whether pClaims remain unmodified during transport from
theHes subprocess up to theVerifier subprocess, i.e., pClaims
is the variable of agreement. ProVerif confirms that the
query holds, meaning that the protocol provides integrity
of Platform Claims to the Verifier. We also analyze the
reachability of event RealmVerified in ProVerif to ensure it
is indeed reachable.

In a similar fashion, we formalize the integrity of Realm
Evidence as follows:

query pClaims, rClaims: bitstring;

event (RealmVerified(pClaims, rClaims))
H⇒ event (SentRealmEvidence(rClaims)).

where event SentRealmEvidence is placed in the Rmm
subprocess just before sending out the Realm Evidence,
as shown in Fig. 5. In this query, rClaims is the variable of

agreement. ProVerif confirms that the query holds, meaning
that the protocol provides integrity of Realm Claims to the
Verifier.

2) FRESHNESS OF PLATFORM EVIDENCE AND REALM
EVIDENCE
Similar to integrity, freshness of Platform and Realm
Evidences can be checked separately. The one for the
platform is as follows:

query pClaims, rClaims: bitstring;

event (RealmVerified(pClaims, rClaims))
H⇒ inj−event (SentPlatformEvidence(pClaims)).

where inj−event is ProVerif keyword for injective corre-
spondence assertion, and all other symbols are as already
explained in the integrity check. The property we are
checking here is strictly stronger than the one in integrity,
that is, whether each RealmVerified event corresponds
to a unique SentPlatformEvidence event. So, it checks
freshness in addition to integrity. ProVerif confirms that the
query does not hold, meaning that the protocol does not
provide freshness of Platform Claims to the Verifier. This is
because, by design, the same Platform Evidence is sent in
each attestation request, and there is no fresh value to allow
uniqueness. Note that this is not a problem as long as the
platform TCB does not change – for example, because of
a live update, or if a different security-lifecycle state (e.g.,
debug) is entered. The current reference version of CCA does
not support live update.

Similarly, the freshness check for Realm Evidence is
formalized as:

query pClaims, rClaims: bitstring;

event (RealmVerified(pClaims, rClaims))
H⇒ inj−event (SentRealmEvidence(rClaims)).

ProVerif confirms that the query holds, meaning that the
protocol provides freshness of Realm Claims to the Verifier.

3) SECRECY
For completeness, we also analyze the secrecy properties for
CPAK and RAK private keys, represented by privCpak and
privRak , respectively, by the following two ProVerif queries:

query secret privCpak.

query secret privRak.

where secret is a ProVerif keyword for checking the secrecy
of a bound name or variable. Note that the ProVerif keyword
attacker cannot be used because privCpak and privRak are
not free names in the formal model. The secrecy queries hold
trivially as these keys are not sent on a public channel; indeed,
ProVerif confirms that.

4) AUTHENTICATION
Finally, we formalize the authentication property for the
model with the changes described in Section III-E as
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follows:

query pubRIK , pubRIK_Ver : VerifyingKey;

(event (VerIdentity(pubRIK_Ver))

∧ event (RealmIdentity(pubRIK )))

H⇒ (pubRIK = pubRIK_Ver).

where the events RealmIdentity and VerIdentity are placed
after generation of RIK in Realm subprocess, and after com-
plete verification of Remote Evidence in Verifier subprocess,
respectively. ProVerif confirms that the query does not hold,
meaning that the attestation protocol (without authentication
and key exchange protocols) does not provide server authen-
tication. The counterexample shows two different sessions
of Realm, each generating its own ephemeral key pair RIK.
The attacker sends the Evidence from one of the sessions
of Realm to the Verifier, and then after the Verification,
it causes a mismatch with the public key of other session,
failing the property. Hence, when authentication is desired,
architecturally-defined attestation must be composed with
some form of authentication and key exchange protocol (such
as TLS).

H. AMBIGUITIES IN ARM SPECIFICATIONS
While developing this formalization, we also spotted a
few ambiguities in the Arm specifications, which we have
reported already. Here is a summary:

1) The precise meaning of boot state of the system (as
used in Sections III-A1 and III-C2 in unclear. This is
important because it is one of the inputs to the key
derivation function of RAK. We define it as equivalent
to pSwComp.

2) The precise meaning of platform boot state
(Sections III-B2,III-C2 and III-D2) is unclear.We define
it as equivalent to the combination of mandatory fields –
pSwCompMeas and pSwCompSignerId – in pSwComp.

3) The precise meaning of Realm boot state
(Section III-D2) is unclear. We define it as equivalent
to the combination of rim and rpv.

IV. ATTESTATION IN INTEL TDX
Intel announced new extensions for its Instruction Set Archi-
tecture (ISA), namely TDX [11] in 2020. These extensions
combine Intel Virtual Machine Extensions (VMX), Intel
Multi-Key Total Memory Encryption (MKTME), and Intel
Central Processing Unit (CPU)-attested software module.
Intel TDX inherits some aspects of the well-known Intel
SGX. The primary difference is the granularity of memory
protection, i.e., in contrast to the process-based nature of
Intel SGX, Intel TDX is a VM-based TEE. Intel TDX
architecture provides a new CPU mode, namely Secure-
Arbitration Mode (SEAM), in which an isolated software
module – TDX Module – at ring -1 (hypervisor level)
facilitates the operation and management of the protected
VMs, namely Trust Domains (TDs) [40].

FIGURE 6. Overview of layered attester in Intel TDX showing entities
involved, local evidence, important Claims, and cryptographic keys (steps
1 and 2 are part of the initialization phase while steps 3 and 4 are part of
the attestation protocol phase).

A. ATTESTATION ARCHITECTURE OVERVIEW
Fig. 6 depicts an overview of Attester in Intel TDX.
TD Quoting Enclave (QE) is an architectural enclave
responsible for signing the Claims with Attestation Key (AK)
and generating Remote Evidence (TD Quote). Provisioning
Certification Enclave (PCE) – with its signing key Provision-
ing Certification Key (PCK) – is another architectural enclave
and serves as the local CA of TD QE. CPU hardware (HW)
and Firmware (FW) protect MAC keys for local attestation.

In a nutshell, the initialization and the generation of
Remote Evidence consist of local attestation. In the ini-
tialization phase, TD QE presents its Local Evidence (QE
REPORT) to PCE (step 1 in Fig. 6), and PCE verifies
the co-location of TD QE resulting in an Attestation Key
certificate (AK cert) (step 2). In the generation of Remote
Evidence, TD and TDXModule present their Local Evidence
(TDREPORT) to TD QE (step 3), and TD QE verifies the co-
location of TD and TDX Module, resulting in the TD Quote
(step 4), which is the Remote Evidence. The authentication
of the Local Evidence in both cases is done via Message
Authentication Code (MAC). The important Claims, such
as measurements and Security Version Numbers (SVNs),
corresponding to each entity are also shown in Fig. 6. The
Remote Evidence sent to the Verifier includes signed Claims
and a certificate (cert) chain.

To verify Remote Evidence, the Remote Verifier (cf.
Fig. 1) may obtain Endorsements – certs and Certificate
Revocation Lists (CRLs) – from the Endorser (Intel),
Reference Values – Trusted Computing Base (TCB) Info,
QE Identity and TD measurements – from Reference Value
Providers (Intel, QE owner and TD owner, respectively),
and Appraisal Policy for Remote Evidence from the Verifier
Owner (TD owner). The Remote Verifier then appraises the
Remote Evidence.

B. FORMALIZATION OF PROVISIONING PHASE
1) ATTESTER PROVISIONING
At the time of writing, the provisioning phase for Intel TDX
is not specified by Intel in any of its public specification
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FIGURE 7. Chain of trust for reference values in Intel TDX.

FIGURE 8. SGX local attestation of TD QE and PCE in the initialization
phase (Attester consists of attesting environment and target
environment).

documents [41]. We believe specification exists internally in
Intel.

2) VERIFIER PROVISIONING
Intel has not explicitly presented the complete chain of
trust for provisioning Reference Values in Intel TDX.
We thoroughly examined the specifications and summarized
our understanding in Fig. 7. TDX TCB Info structure
contains SVN of SGX TCB components, PCE and TDXTCB
components [42]. TDX QE Identity structure contains the
enclave identity of TDXQE. The keys on the arrows between
the entities (certificates, CRLs and structures) represent the
signing keys with which the entity below the arrow is signed.
For instance, TDX TCB Info is signed using TCBK. For
Endorsements, the Verifier is assumed to be pre-configured
with Intel’s root key.

C. FORMALIZATION OF INITIALIZATION PHASE
The initialization phase corresponds to steps 1 and 2 in Fig. 6,
andmore details are given in Fig. 8. This phase aims at issuing
an AK cert to TD QE. Our formal model of the initialization
phase in ProVerif consists of a parallel composition of four
subprocesses:

PCE(c_PCE_CPUinit,PCK ) |

QEinit(c_QE_CPUinit, c_QE_main,PCEinfo) |

CPUinit(c_QE_CPUinit, c_PCE_CPUinit,PCEinfo) |

in(c_QE_main, (AK : SigningKey,AKcert: bitstring));

where PCE , QEinit and CPUinit represent PCE, TD QE,
and CPU HW and FW, respectively, as shown in Fig. 8. The
fourth subprocess enables the transport of parameters AK
and AKcert to the main process for the attestation protocol
phase, as explained in Section III-C, using the secure channel
c_QE_main. The channel between TD QE and CPU is
represented by c_QE_CPUinit while the channel between
PCE and CPU is represented by c_PCE_CPUinit. Both these
channels are also secure.

As shown in Fig. 8, TDQE sends a Local Evidence request
to CPU HW and FW by specifying (i) SHA256 hash of the
public part of Attestation Key along with any authentication
data as Report data QErData, i.e.,

QErData = SHA256(pub(AK ) || authData) || zeroPad

where pub(.) represents the public key, QErData represents
the additional user-provided authentication data that needs
to be certified by the PCE, zeroPad represents 32 bytes of
zeros, and (ii) PCE as the target enclave (step 1 in Fig. 8).
Here, target enclave refers to the verifying enclave for which
the Local Evidence is generated. CPU HW and FW collect
Claims about TD QE and generate Local Evidence, namely
QE Report, targeted for PCE. These Claims are protected
via a MAC using Report Key. This Local Evidence is
conveyed to TD QE (step 2). TD QE forwards this Local
Evidence along with pubAK and QErData to PCE (step 3).
Since the QE Report was targeted for PCE, now PCE can
request Report Key from the CPU HW and FW (step 4).
On receiving the Report Key (step 5), PCE verifies the
Local Evidence based on the Appraisal Policy from the
Local Verifier Owner (step 6). The policy typically involves
verifying 1) MAC over QE Report Body; 2) hash of pubAK
andQErData; and 3) attribute PROVISIONKEY. If the result
of this appraisal is positive (i.e., MAC and hash are correct
and PROVISIONKEY attribute is set to true), then the PCE
signs the Claims to generate a so-called AK cert and sends it
back to the TD QE (step 7).

1) STRUCTURE OF LOCAL EVIDENCE (QE REPORT)
At a high level, a QE Report consists of 1) Report body
QEReportBody, 2) value for key wear-out protection keyID,
and 3) MAC QEmac over Report body. The Report body
QEReportBody consists of various fields, notably SVNs
(ISVSVN, CPU SVN), enclave identities (MRENCLAVE,
MRSIGNER, ISVPRODID), enclave attributes, and Report
data QErData. SVNs track the security-related – in contrast
to functionality-related – updates of the software. More
specifically, inside SVNs, the field ISVSVN stands for
Independent Software Vendor SVN of the enclave (in this case,
QE) assigned by the enclave’s signer, whereas CPU SVN
represents the SVN of the processor. CPU SVN reflects the
microcode update version and authenticated code modules
supported by the processor. However, Intel does not provide
the detailed structure of CPU SVN but only describes that it
cannot be mathematically compared [43]. Among the enclave
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identities, MRENCLAVE is the overall SHA256 hash of both
the enclave code and data as it is loaded. MRSIGNER is the
SHA256 hash of enclave’s signer public key (corresponding
to the 3072 bit RSA key with which enclave is signed) [44].
The signature is stored in the enclave signature structure,
named SIGSTRUCT. ISVPRODID in the SIGSTRUCT is
the product ID assigned by the enclave’s signer. Enclave
attributes in QEReportBody include the selection of different
flags, e.g., DEBUG, which represents whether the enclave
is in debug – vs. production – mode, and PROVISIONKEY,
which represents whether Provisioning Key is available. The
last part, Report data QErData, is a user-defined field of
64 bytes that the enclave owner may use to transmit data
to other enclaves. Typically, Report data contains the public
key or hash of public key appended with authentication data.
AES128 CMAC is used for MAC QEmac.

2) KDF FOR LOCAL EVIDENCE GENERATION AND
VERIFICATION
KDF for Report Key for Local Evidence Generation is
based on three major components: 1) secret values from
fuses, 2) CPU SVN, and 3) target enclave information. The
dependence on secret values from fuses ensures that any other
platform cannot generate the Report Key. The derivation
based on CPU SVN ensures that if the hardware security
version is different at the time of generation and appraisal of
Local Evidence, the Report Key will not match at the target
enclave. Target enclave information includes measurement
(MRENCLAVE) and attributes of the target enclave. The use
of a specific target (in this case, PCE) in the key derivation
ensures that no other enclave can tamper with the authenticity
of the report.

Similar to KDF for Local Evidence Generation, the KDF
for Local Evidence Verification is also based on secret values
from fuses as well as CPU SVN. The key difference is that
instead of the dependence on target enclave information,
the CPU HW and FW uses the information of the enclave
calling the ENCLU[EGETKEY] instruction. Thus, if the
PCE on the same platform (checked via dependence on
fuses) calls this instruction and the platform is in the same
security state (checked via CPU SVN), PCE would be able
to get the symmetric key for MAC verification. Another
main difference is that during generation, the key is only
accessible by the CPU HW and FW, and not by the Target
Environment (TD QE). In contrast, during the verification,
the key is accessible by the PCE (cf. step 5 in Fig. 8).

3) STRUCTURE OF AK CERT
Intel’s so-called AK cert is basically a cert-like structure
identifying the QE and the Attestation Key [45]. Intel does
not clearly specify the structure of the AK cert in the
public documents. However, Intel mentions that the Quote
includes AK cert [46]. Upon careful observation of the Quote,
we found that, as shown in Fig. 9, it basically consists
of: 1) the AK public part pubAK , 2) QE Report body

FIGURE 9. AK cert for DCAP (B represents the size in Bytes).

QEReportBody, 3) signature PCKsig over the QE Report
body using Provisioning Certification Key (PCK), and 4) QE
authentication data QErData.

D. FORMALIZATION OF ATTESTATION PROTOCOL PHASE
The formalmodel of the attestation protocol phase in ProVerif
consists of a parallel composition of five subprocesses QE ,
TD, TDXModule, CPUHardware and Verifier representing
the principals TD QE, TD, TDXModule, CPU hardware and
Verifier, respectively:

!( new c_QE_CPU : channel; new c_TDX_CPU : channel;
new c_TD_TDX : channel;

(QE(c_QE_CPU ,AK ,AKcert,PCKcert, ICAcert,

rootcert) |

TD(c_TD_TDX ) | TDXModule(c_TD_TDX , c_TDX_CPU ) |

CPUHardware(c_QE_CPU , c_TDX_CPU ,MK ))) |

(!Verifier(pub(IRK ), sgxTcbRef , pceSvnRef ,

tdxTcbSvnRef ))

where c_QE_CPU is the channel between QE and CPU,
c_TDX_CPU is the channel between TDX Module and
CPU, and c_TD_TDX is the channel between TD and TDX
Module. These three channels are secured by the system-on-
chip and therefore, these channels are modeled as private in
ProVerif. In the formalization, we use AK for Attestation Key
AK, AKcert for the AK cert, PCKcert for the PCK cert,
ICAcert for the intermediate (processor/platform CA) cert,
and rootcert for the root cert. Free names sgxTcbRef,
pceSvnRef, and tdxTcbSvnRef represent Reference
Values for SGX TCB components, PCE SVN, and TDX TCB
components, respectively.

1) GENERATION OF REMOTE EVIDENCE
As depicted in Fig. 10, TD and TDXModule take on the role
of Target Environment. TD sends a Local Evidence request
to TDX Module (step 1 in Fig. 10) by specifying the typical
usage of report data rData:

rData = SHA256(challenge) || zeroPad (2)
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FIGURE 10. Local attestation of TD+TDX module and TD QE.

where challenge is the challenge sent by the challenger (Ver-
ifier). Other authentication data can be added in the hash as
required for the specific use case. TDXModule, in turn, sends
a Local Evidence request to CPU HW and FW (step 2). CPU
HW and FW collect Claims about TD and TDX Module and
generate Local Evidence (namely SEAMREPORT) protected
via a MAC. CPU HW and FW send the Local Evidence
(SEAMREPORT) to TDX Module (step 3), which appends
TD information to form Local Evidence (TDREPORT). TDX
Module forwards TDREPORT via TD (step 4) as well as
untrusted host VMM (not shown in Fig. 10) to the TD QE
(step 5). TD QE, together with CPU HW and FW, takes
on the role of the Local Verifier. On getting the Appraisal
Policy for Local Evidence (step 6), TD QE ensures that
the hashes are correct and then asks the CPU HW and FW
(step 7) to check the MAC in the generic MAC structure
(REPORTMACSTRUCT). CPU HW and FW send the
verification result back to the TD QE (step 8). TD QE fetches
the PCK cert chain, i.e., PCKcert||ICAcert||rootcert , from
Intel Provisioning Certification Service (PCS) or caching
service (step 9). Then, the TD QE signs the Claims with AK
to form a Remote Evidence (TD Quote). The TD Quote is
conveyed via untrusted host VMM (not shown in Fig. 10) to
TD (step 10). The TD then conveys the TD Quote as the final
Remote Evidence from the platform to a Remote Verifier.

a: STRUCTURE OF LOCAL EVIDENCE (TDREPORT)
Local Evidence, as depicted in Fig. 11, consists of three
major data structures: 1) measurement and configuration of
TDX TCB tcbi, 2) TD information tdi, and 3) generic MAC
structure rms. At the time of writing, the TDX TCB structure
contains information about TDX Module only, so important
fields of the TDX TCB include SVN tsvn and measurement
mrs of TDXModule. Important fields of TD structure include
its static mrtd and runtime rtmr measurements, TD attributes
tdatt , and hash mro of ID of TD’s owner. Important fields of
the generic MAC structure include CPU SVN csvn, Report
data rdata, SHA384 hashes of data structures of TDX TCB

FIGURE 11. Simplified structure of local evidence (TDREPORT).

and TD, and MAC mac over all other fields of the generic
MAC structure. HMAC-SHA-256 is used for MAC.

b: KDF FOR LOCAL EVIDENCE GENERATION AND
VERIFICATION
KDF for the MAC key used in Fig. 11 is unspecified by Intel.
We believe specification exists internally in Intel.

c: STRUCTURE OF REMOTE EVIDENCE (TD QUOTE)
At the time of initial writing, we did not find any detailed
specification of the structure of Remote Evidence, which is
the most important data structure in TD attestation. The only
mention of contents of TD Quote in Intel’s publicly available
specifications is in a figure (cf. Fig. 14.1 in [40]) where TD
Quote is shown to consist of type, CPU SVN, hash of TDX
Module structure, hash of TD information, Report data, and
signature. We have reported this to Intel.

2) APPRAISAL OF REMOTE EVIDENCE
The Remote Verifier may need access to three main artifacts
for appraisal: 1) Endorsements, 2) Reference Values, and
3) Appraisal Policy for Remote Evidence.

a: ENDORSEMENTS
Endorsements in Intel TDX are mainly the certificate chain
and Certificate Revocation Lists (CRLs). Intel has not
publicly presented the complete chain of trust in one place in
any of its specification documents. We thoroughly examined
the specifications of Intel TDX, and our study result on
the chain of trust along with the corresponding entities
and CRLs for a single package platform in Intel TDX is
presented in Fig. 12 [47]. The keys on the arrows between
the certificates and CRLs represent the signing keys with
which the certificate/CRL/structure is signed. CRLs consist
of Root CACRL, PCK platform CACRL and PCK processor
CA CRL, issued by Root CA, PCK platform CA and PCK
processor CA, respectively.

b: REFERENCE VALUES
Reference Values in Intel TDX are mainly SVNs and
measurements. As shown in Fig. 6, SVNs of several entities
(including TDX Module, TD QE, PCE, CPU HW and FW)
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FIGURE 12. Chain of trust for single package platform in Intel TDX. For
multi-package platforms, processor CA is replaced by platform CA.

are part of the Remote Evidence. Therefore, the Remote
Verifier needs Reference Values corresponding to each of
these SVNs. Reference Values for CPU SVN, PCE SVN
and TDX Module SVN are obtained from Intel as explained
in Section IV-B (cf. Fig. 7). QE SVN is provided by the
TD QE Owner, which is Intel if Intel-provided QE is used
or otherwise some non-Intel entity in the ecosystem that
authored the QE. Similarly, the Remote Verifier may need
Reference Values of measurements of TDX Module, TD QE
and TD. They are provided by Intel, TD QE Owner and TD
Owner, respectively.

c: APPRAISAL POLICY FOR REMOTE EVIDENCE
It consists of a set of rules with which the Remote Verifier can
appraise the Remote Evidence. Specifically, it could define
rules for comparison of the current state of the Attester –
available as Claims in Evidence – to the reference state
available as Reference Values. Examples include allow list,
block list as well as upper and lower bounds. For TDX,
a policy could require that SVNs in the Remote Evidence (TD
Quote) are greater than or equal to the corresponding SVNs
in the Reference Values, and that each measurement belongs
to the corresponding set of accepted values. Additionally, the
policy must ensure verification of the signature chain from
Intel’s root cert up to the Quote and check each cert against
the list of revoked certificates – CRLs.

From a formalization perspective, a new aspect in Intel
TDX compared to Arm CCA is that in addition to exact
match, there are non-exact comparisons, i.e., greater than
or equal to, for SVNs. We formally model these SVNs as
natural numbers and obtain the Reference Values as input.
The Verifier subprocess then checks SVN >= SVNRef

where SVN represents the value in Claims and SVNRef
represents its corresponding Reference Value.

E. USE CASE
Ourwork for Intel TDX serves as the formal foundation for all
use cases of Intel TDX. For instance, the presented attestation
protocol can be composed with authentication and key
exchange protocols. Specifically, Intel is using our artifacts
for the formal specification and verification of TDXboot flow
for virtual Trust Platform Module (vTPM) TD using Security
Protocol and Data Model (SPDM) protocol [48]. From the
attestation side, it requires only minor changes in Fig. 10 and
therefore our artifacts:

1) Before step 1: TD subprocess generates an ephemeral
key-pair represented by TDK.

2) In step 1, in addition to the challenge, TDK public
part represented by pubTDK is also sent, i.e., in Eq. 2,
challenge is replaced by pubTDK∥challenge.

The complete flow, including both initialization and attesta-
tion protocol phases, is shown in Fig. 13.

F. THREAT MODEL/ADVERSARY CAPABILITIES
Following the outline in Section II-C, the threat model
used in ProVerif for attestation in Intel TDX is defined
as follows: 1) Entities: In our formalization, we assume
that the principals TD QE, CPU HW, TDX Module and
Verifier are honest. TD can be both honest and malicious.
We also model PCE as an honest principal. To evaluate Intel’s
claim that PCE is out of TCB, we purposely leak out the
corresponding key PCK . This modeling choice provides a
neat way to evaluate all properties for both cases – when
PCE is trusted and untrusted – simply by uncommenting
and commenting that line of code representing key leakage
to the adversary. 2) Channels: The following channels are
assumed to be secure because the System on Chip (SoC)
ensures this: (i) TD and TDX Module, (ii) TDX Module
and CPU Hardware, (iii) TD QE and CPU Hardware, and
(iv) PCE and CPU Hardware. All other channels are public.
3) Functions: All functions are available to the adversary.
4) Technology-specific capabilities: TD measurements are
taken as input from the adversary to allow the adversary to
create a TD of any desired measurements, i.e., to potentially
create fake TDs. 5) Modeling assumptions: Public part of
Intel’s root key is pre-configured in the Verifier.

G. PROPERTIES
At the time of this research, Intel used to claim in its
white paper [11] that the only components trusted by the
TD are: 1) Intel TDX Module, 2) Intel Authenticated Code
Modules (ACM), 3) TD QE, and 4) Intel CPU hardware,
by explicitly mentioning that all other software is untrusted
by TD (cf. Fig. 5.1 in [11]). Since remote attestation is the
fundamental characteristic of a TEE and one of the five major
capabilities of TDXmentioned in the white paper [11], Intel’s
claim of TCBmust be satisfied for the attestation mechanism.
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FIGURE 13. Complete flow of Intel TDX attestation.

We evaluate this claim formally in ProVerif by analyzing
the four properties outlined in Section II-C. As summarized
in the first row in Table 5, none of the properties hold for
Intel’s claimed TCB. We also analyze the properties for our
proposed TCB, i.e., by including PCE as a trusted entity, and
present a summary of results in the second row in Table 5.
The average verification time to prove all the properties in
the experimental setup mentioned in Section III-G is 55 s.
We reported our findings to Intel in January’23. In response to
the findings described in this section, Intel updated the white
paper by replacing TDQEwith TD attestation software in the
TCB in February’23.

1) INTEGRITY
Events, namely CPUsentSMR and TDXMsentTDR, are
placed just before sending smr and tdr (step 3 and 4 in
Fig. 10), respectively. Event QuoteVerified is placed after
all the verification steps are completed. The integrity of
tcbiClaims and rdata is then formalized in ProVerif as
follows:

query tcbiClaims, tdiClaims, rdata: bitstring;

event (QuoteVerified(tcbiClaims, tdiClaims, rdata))
H⇒ event (CPUsentSMR(tcbiClaims, rdata)).
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In this query, tcbiClaims and rdata are the variables of
agreement. Under Intel’s claimed TCB, ProVerif confirms
that the query does not hold, meaning that the protocol
does not provide integrity of TDX TCB Claims to the
Verifier. However, switching back PCE to a trusted entity,
ProVerif confirms that the query holds. We also analyze the
reachability of event QuoteVerified in ProVerif to ensure it
is indeed reachable.

Similarly, the integrity of tdiClaims is formalized in
ProVerif as follows:

query tcbiClaims, tdiClaims, rdata: bitstring;

event (QuoteVerified(tcbiClaims, tdiClaims, rdata))
H⇒ event (TDXMsentTDR(tdiClaims)).

Again, under Intel’s claimed TCB, ProVerif confirms that
the query does not hold, meaning that the protocol does not
provide integrity of TD Claims to the Verifier. However,
switching back PCE to a trusted entity, ProVerif confirms that
the query holds.

2) FRESHNESS
Freshness properties are formalized by replacing event with
inj−event.

query tcbiClaims, tdiClaims, rdata: bitstring;

event (QuoteVerified(tcbiClaims, tdiClaims, rdata))
H⇒ inj−event (CPUsentSMR(tcbiClaims, rdata)).

Since under Intel’s claimed TCB, integrity properties do not
hold, the freshness properties also do not hold. ProVerif
confirms that the above query does not hold for Intel’s
claimed TCB, while switching PCE to a trusted entity,
it holds. Similarly, the freshness of tdiClaims is formalized
as:

query tcbiClaims, tdiClaims, rdata: bitstring;

event (QuoteVerified(tcbiClaims, tdiClaims, rdata))
H⇒ inj−event (TDXMsentTDR(tdiClaims)).

Again, under Intel’s claimed TCB, ProVerif confirms that the
query does not hold, while switching PCE to a trusted entity,
it holds.

3) SECRECY
For completeness, we also analyze the secrecy properties
for PCK private part, represented by privPck , respectively,
by using the following ProVerif queries:

query secret privPck.

Again, under Intel’s claimed TCB, ProVerif confirms that the
query does not hold, while switching PCE to a trusted entity,
it holds trivially as the keys are not sent on a public channel.

4) AUTHENTICATION
For completeness, we formalize the authentication prop-
erty, which can be useful for use cases of attestation in

TABLE 5. Summary of verification results for Intel TDX.

combination with key exchange and authentication protocols
(such as TLS). For this property, we use the model with the
changes described in Section IV-E.

query pubTDK , pubTDK_Ver : VerifyingKey;

(event(VerIdentity(pubTDK_Ver))

∧ event(TDidentity(pubTDK )))

H⇒ (pubTDK = pubTDK_Ver).

where the events TDidentity and VerIdentity are placed after
generation of TDK in TD subprocess, and after complete
verification of Remote Evidence in Verifier subprocess,
respectively. ProVerif confirms that the query does not hold,
meaning that the protocol (without TLS) does not provide
server authentication.

H. AMBIGUITIES IN INTEL SPECIFICATIONS
We found several ambiguities about the fields of TD Quote.
From a transparency and formalization perspective, a critical
issue is that Intel repeatedly updates the specification on
the same Uniform Resource Locator (URL), while the older
specifications disappear. We reported this to Intel privately
and then publicly [49]. Some examples of discrepancies
found during the formalization process in the latest versions
of the specification are presented in Appendix VI-A.
We summarize the missing specifications from Intel’s pub-

lic documentation at the time of writing, including 1) attester
provisioning, 2) structure of AK cert, and 3) KDF for
generation and verification of Local Evidence (TDREPORT).
Without these important specifications, making a complete
security argument is very hard.

V. RELATED WORK
Here we focus on works related to formal specification and
verification of Arm CCA and Intel TDX. First, Arm has
internally verified the security and safety properties of both
the specification and a prototype implementation of the RMM
using HOL4 theorem prover and CBMCmodel checker [50].
However, this work does not cover attestation mechanisms
and is thus complementary to our work. Separately, Arm’s
published specification only describes the attestation report
data model, including cryptographic operations and the
API/ABI interfaces to obtain the report. In the paper,
we provided the instantiation of the CCA Attester in the
TEE-agnostic architecture (cf. Fig. 2) and the instantiation of
the challenge/response interaction model (cf. Fig. 4 and 5).
Moreover, we presented the details for the Appraisal of
Evidence (cf. Section III-D2), which are not covered in any
public specifications of Arm.
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Regarding Intel TDX, in our previous work [21], we pre-
sented a formal analysis of the attestation protocol phase
in Intel TDX using ProVerif [27]. However, that work
did not specify provisioning, initialization as well as PCE
and cert chain in the attestation protocol. Attestation in
Intel TDX is based on attestation in Intel SGX. In our
previous works, we presented the formal specification and
analysis of EPID-based [19] as well as DCAP-based [20]
attestation of Intel SGX. Challenges that we have addressed
in this work compared to these works [19], [20], [21]
include:

1) Variable (vs. constant) measurements
2) More realistic and comprehensive formal model, cov-

ering the initialization phase (cf. Section III-C) and
certificate chain (cf. Fig. 12) as well as Verifier steps
(cf. Section IV-D2). In contrast to [21], the inclusion of
the initialization phase in the formal model confirmed
the insecurity of TCB claimed by Intel. Moreover,
our formal model includes Reference Values and
Endorsements. While our previous work [21] assumes
the signature verification key is pre-configured in the
Verifier, we formally model the complete cert chain in
the attestation protocol phase in this work.

3) More precise adversary model, allowing it to launch and
control arbitrary TEEs

Therefore, this work is a substantial extension compared to
our previous works [19], [20], [21].

VI. CONCLUSION
The discovery of subtle design and security issues using our
holistic approach demonstrates that a precise specification
of all phases of attestation mechanisms can help vendors
eliminate several such issues. Since attestation is at the heart
of CC, our work serves as a solid formal foundation for many
extensions. For example, our verification artifacts, available
at [22], provide the building blocks for the composition of
attestation in TEEs with transport protocols (e.g., TLS) as
well as virtual Trust Platform Module (vTPM) to formally
verify the whole stack. A Confidential Computing Consor-
tium project4 on attested TLS plans to pursue the former,
while Intel is pursuing the latter. Moreover, specifically for
Intel TDX, it can help design high-confidence solutions for
replacing TD QE by Quoting TD, and challenging problems,
such as support for third-party TDX Module and third-
party provisioning root key. Other interesting future works
include a rigorous analysis of attestation in AMD SEV-
SNP and complement our design-time verification approach
with runtime verification [51] of properties. Since runtime
verification analyzes a single execution trace, we expect it
will not add much complexity to our approach. Runtime
verification is particularly useful for AMD SEV-SNP, which,
unlike Intel TDX, currently does not provide runtime
measurement registers.

4https://github.com/ccc-attestation/attested-tls-poc

APPENDIX
A. INTEL TDX
Here we provide examples of discrepancies found in
latest versions of the specification during the process of
formalization:

1) AMBIGUOUS (RE-)NAMING/UNDEFINED NAMES
• SEAMINFO data structure (as used in, for example,
§20.7.2, p. 153 in [40]) should be the same as
TEE_TCB_INFO data structure (tcbi).

• The leaf functions EVERIFYTDREPORT2 (as used
in, for example, Fig. 2.4, §2.7, p. 23 in [40]) and
VERIFYREPORT (as used in, for example, Fig. 8-2, p.
40 in [52]) should be the same as EVERIFYREPORT2
leaf function. This is because EVERIFYREPORT2 leaf
function is the only leaf function that is defined for the
verification of the report in [53].

2) MISSING FIELDS IN DATA STRUCTURES
• MROWNERCONFIG field (mroc) is missing in
TDINFO data structure tdi in Fig. 11.1, p. 95 of [40].
Although it is not clear whether it is part of the
SHA384 hash of the data structure, we find no good
reason why this should be excluded from the hash,
because there is no other cryptographic protection for
this field. Moreover, similar fields MROWNER (mro)
and MRCONFIGID (mrc) are included in the hash.
Therefore, we believe hash is also computed over this
field.

3) INCONSISTENT INFORMATION
• Fig. 11.1 (p. 95) of [40] shows that the SHA384
hash is taken over four fields of the TEE_TCB_INFO
data structure (tcbi) in a specific order, whereas
the SEAMREPORT leaf operation in [53] shows
that the SHA384 hash is taken over the whole data
structure (p. 2-9) in a completely different order given in
Table 2-3 (p. 2-6). It is worth pointing that order matters
for hash computation.

• Fig. 11.1 (p. 95) of [40] shows that the reserved field
(res5) in the TDINFO data structure (tdi) is not
included in the SHA384 hash stored in REPORTMAC-
STRUCT (rms) and Quote, whereas for the verification
(for reference, §20.7.3, p. 154 in the same document),
it is implied that the hash is over the complete TDINFO
data structure (tdi). Moreover, the order of fields in
TDINFO data structure (tdi) in Fig. 11.1, p. 95 of [40]
is inconsistent with the order in Table 20.20, p. 155 of
the same document.
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