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ABSTRACT Link prediction in complex networks is a critical process aimed at uncovering hidden or
potential connections among nodes. This technique is widely utilized in areas such as knowledge graphs.
Current Graph Neural Networks (GNNs) often focus exclusively on determining whether nodes are con-
nected or assessing the strength of these links by leveraging node attributes. They typically use network
structure and attributes to develop node representations through neighborhood aggregation. However, these
methods often overlook the intrinsic importance of the links themselves. This paper thoroughly examines the
significance of link value based on network structure and introduces an innovative approach for estimating
this value, and proposes a method that incorporates link value into both the formulation and training of a
link prediction graph attention network. This integration not only boosts the accuracy of link predictions
but also provides a theoretical basis for understanding the prediction results. We conducted extensive
experiments in link prediction employingwidely recognized benchmark datasets. The findings reveal that our
proposed framework for link prediction exhibits commendable performance and generalization capabilities,
and overall performance improved by an average of 1.2%, thereby establishing it as an effective baseline
model.

INDEX TERMS Complex network, graph neural network, link prediction, link value, structure analysis.

I. INTRODUCTION
Link prediction within complex networks aims to reveal hid-
den or potential connections among nodes, which includes
predicting both unexplored links and those likely to emerge
in the future. The primary goal of link prediction is to
deepen the understanding of network topology, explore the
principles of network evolution, functional characteristics,
and potential practical significance. Furthermore, link pre-
diction facilitates the anticipation of emerging connections in
the network, refining decision-making support [1], [2], [3],
[4]. In social networks, link prediction is used to suggest
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friends, enhance social media platform engagement, and pre-
dict events like disease transmission. In protein networks,
it helps infer protein interactions, predict gene regulatory
relationships, and advance our understanding of protein
structure and function. In financial networks, link predic-
tion aids in forecasting trading relationships and cash flow
paths between financial entities, contributing to market trend
analysis, changes, and risk assessment of various finan-
cial institutions. Theoretically, link prediction serves as a
crucial tool for analyzing network structure and evolu-
tionary patterns, enhancing understanding of these aspects,
and identifying key nodes and clusters. It also encourages
interdisciplinary research and collaboration. As a signifi-
cant interdisciplinary research topic, link prediction attracts
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substantial attention from researchers across various fields
and is set to play an increasingly vital role in future inter-
disciplinary studies [5], [6], [7].

However, current approaches for link prediction using
GNNs often overlook the diversity of link types or simply
apply basic weighting during GNN training, neglecting the
inherent value of links. According to network weak ties the-
ory, different links in a network have distinct values due to
their varying importance and influence. For instance, in social
networks, weak ties are crucial for spreading information
and resources, expanding social influence, and significantly
impacting societal and economic development. The valuation
of links is also crucial for network analysis tasks. For exam-
ple, links with high edge-betweenness often serve as critical
bridges between node groups, influencing boundaries and
holding significant value in node set division. Considering
these factors, this article focuses on assessing link value
and corresponding GNN training that incorporates this value,
thereby equipping a GNN for link prediction with a better
ability to comprehend network topology characteristics.

The link value can serve as an important input feature
for GNNs, aiding in the prediction model’s more accurate
learning and understanding of network structures. It is also
important to note that in social networks, link value often
represents the strength of interpersonal relationships. The
principle of triangle closure (i.e., if there is a relationship
between A and B, and between B and C, then it is very likely
that there is also a relationship between A and C) can predict
the formation of relationships more accurately when consid-
ering link value. Edges with high link values indicate stronger
social connections, increasing their likelihood of participat-
ing in triangle closures. This, in turn, helps in understanding
the clustering characteristics and small-world properties of
the network. Therefore, incorporating link value into the
development and training of GNNs fulfills a twofold purpose.
It not only enhances the effectiveness of the GNN-based link
prediction model discussed in this article but also provides a
theoretical basis for understanding the predictability of out-
comes. This study conducts an in-depth examination of link
value derived from network structure. It introduces relevant
evaluation metrics and seamlessly incorporates link value
into the model. This integration leads to the creation of an
innovative framework named the Link Value Based Graph
Attention Neural Network (LVGANN).

The principal innovations and contributions of this
research are outlined below:

• Integrating node betweenness centrality and edge
betweenness centrality in a network, a metric for eval-
uating link value is proposed, which better reflects and
describes the different roles and values of different links
(connections) in the real world. In social networks, for
example, different links represent different levels of
interaction and intensity.

• By integrating link value into the construction of link
prediction graph attention networks, the representation
learning of network nodes is enhanced, enabling not

only the aggregation of neighboring nodes’ features but
also the incorporation of the value of the edges con-
nected to these neighbors. Compared to traditional graph
attention networks, the link prediction graph neural net-
work proposed in this paper is capable of learning richer
features from the network.

• In real-world open graph benchmark datasets, including
mainstream ones like ogbl-ppa, ogbl-collab and ogbl-
ddi, a series of detailed link prediction experiments were
conducted. By comparing with different graph neural
network models, it has been verified that the link pre-
diction model LVGANN proposed in this paper serves
as a baseline with good performance.

The structure of this article is organized as follows.
Section II provides a detailed review of relevant literature
in the field. Section III elaborates on a link value estima-
tion metric and outlines the link prediction architecture that
incorporates this value. Section IV describes the experimen-
tal setup used to validate the effectiveness of the proposed
method, along with the presentation of results and their anal-
ysis. Finally, the paper concludes with a summary of key
findings and explores potential avenues for future research
in the final section.

II. RELATED WORKS
In recent years, link prediction has emerged as a significant
area of focus in network science. Consistent with the cen-
tral theme of this paper, the following sections will analyze
and summarize link prediction in networks. Additionally,
they will explore network analysis and learning, particularly
through the use of GNNs.

A. LINK PREDICTION IN NETWORKS
Conventional heuristic-based methods for link prediction
have often required the manual definition of similarity met-
rics between network nodes, presenting modeling challenges
and limited generalizability. In contrast, network represen-
tation learning autonomously acquires node representations,
supporting the computation of node similarities essential for
link prediction. Its goal is to embed network nodes into
a lower-dimensional space, transforming high-dimensional
sparse feature vectors into compact embeddings in this space.
A prominent method in this domain, particularly for link
prediction, is network representation learning based on ran-
dom walks. This approach captures contextual information
of network nodes through random walks to learn embedding
vectors, which are then used to compute node similarity and
facilitate link prediction.

One of the most notable algorithms in this area is Deep-
Walk, introduced by Bryan et al. [8], which aims to map
the structural properties of network nodes to a new vector
space. Here, nodes close within the network are similarly
proximate in the vector space, achieving this transformation
through specific optimization objectives. The feature vectors
representing node structural and attribute information are
then concatenated for further network data mining tasks.
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Grover et al. [9] expanded on DeepWalk with node2vec,
introducing Biased-Random Walks to balance the similarity
of each random walk between deep and breadth-first search
approaches. This model emphasizes community structure and
node importance, showing notable performance in network
node classification tasks [9].
LINE, introduced by Tang et al. [10], although not osten-

sibly employing a random walk strategy, is often classified
alongside them in literature [11]. This is due to the shared use
of probabilistic loss functions in both LINE and DeepWalk,
aimed at minimizing the empirical probabilities of connected
nodes and their vectorized similarity distances. Both methods
also consider first and second-order similarities, optimizing
two loss functions akin to random walk strategies. Tang et
al. introduced various preprocessing and optimization meth-
ods, such as negative sampling, to enhance learning efficacy.
In node similarity evaluation, Wang et al.’s SDNE [12] and
Cao et al.’s DNGR [13] differ in their approach to defining
similarity vectors. SDNE uses node similarity vectors directly
as inputs, while DNGR defines similarity based on common
paths from random walks. Despite its merits, DNGR faces
limitations with network size and incorporating new nodes.
The methods discussed have their strengths and limitations:
they generally lack robustness, struggle with dynamic graphs,
and face challenges in extending to new graphs. Their per-
formance in link prediction evaluation can be inconsistent.
Struc2Vec, proposed by Ribeiro et al. [14], focuses on struc-
tural homogeneity within networks. It constructs weighted
multilayer graphs to generate node context and employs hier-
archical measurements for node similarity assessment across
different scales, laying a solid foundation for link prediction.

B. NETWORK ANALYSIS AND LEARNING BASED ON GNN
GNNs, as a prominent framework in graph deep learn-
ing, employ a neighborhood aggregation strategy. In this
approach, the representation of the central node is iteratively
learned and enhanced by amalgamating and transforming
the representations of its adjacent nodes. These networks
play a significant role in network analysis and learning [15],
[16], [17]. Among various GNNmodels, the Graph Convolu-
tional Network (GCN), introduced by Kipf and Welling [18],
is particularly noteworthy. It captures graph features through
convolutional operations in the spectral domain. This process
involves computing edge weights using both the adjacency
matrix and the degree matrix, followed by a weighted sum-
mation, as shown in equation (1).

H l+1
= σ

(
D−1/2AD−1/2H lW l

)
(1)

where, H l and H l+1 illustrates representation of the l-th and
the (l + 1)-th layer, respectively. A denotes the adjacency
matrix of a network G, while D represents the degree matrix.
However, the Graph Convolutional Network (GCN) faces

several limitations: 1) During the aggregation and updating
of representations from neighboring nodes, the edge weights
remain constant, lacking adaptability; 2) The GCN’s use of

convolutional aggregation across the entire graph and its
reliance on updating gradients using the full graph create
inefficiencies and scalability issues, especially in large-scale
graphs; 3) GCN layers exhibit a low-pass filtering effect,
predominantly capturing low-frequency information. As the
number of GCN layers increases, node representations tend
to converge, leading to an over-smoothing problem.

To address the issue of static edge weights in the GCN
aggregation process, Veličković et al. [19] proposed the
Graph Attention Network (GAT), which incorporates an
attention mechanism. This model allows for the independent
learning of edge weights as shown in equation (2). Once
edge weights, denoted as αij, are determined, the model
updates node representations using attention coefficients.
This adaptability allows the model to fine-tune its parame-
ters for specific tasks, thereby enhancing its flexibility and
effectiveness.

αij =

exp
(
LeakyReLU

(
a⃗T

[
Wh⃗i||Wh⃗j

]))
∑

k∈Ni
exp

(
LeakyReLU

(
a⃗T

[
Wh⃗i||Wh⃗k

])) (2)

where a⃗T represents a weight vector, h⃗i indicates the rep-
resentation vector of node i, W is a linear transformation
matrix, || is a concatenate operator, and LeakyReLU denotes
a nonlinear activation function.

At its core, the GAT is a model focused on weighted
representation aggregation. Although it effectively addresses
the issue of static link weights in GCN aggregation, it still
depends on the entire graph for aggregation and gradient
updates. This reliance can lead to inefficiencies in scenarios
involving large-scale graphs or nodes with a high number of
neighbors, thus impeding the model’s ability to learn graph
representations efficiently.

To address these challenges, Hamilton et al. [20] intro-
duced GraphSAGE, an inductive learning approach. This
model begins by collecting a subset of neighbors for each
target node through random subgraph sampling. Similar to
GCN’s inward aggregation process, GraphSAGE combines
these sampled node representations to form the target node’s
representation. This method has demonstrated its efficacy,
particularly in tasks like graph context prediction.

Furthermore, GraphSAGE not only effectively addresses
challenges such as whole graph gradient updates and limited
learning efficiency in large-scale graphs, but it also bypasses
the requirement of GCNs to access all nodes during training.
However, with an increase in the number of GCN layers,
issues like gradient vanishing and model over-smoothing
become increasingly significant. To mitigate these issues,
Li et al. [21] took inspiration from Convolutional Neural
Networks (CNNs) and incorporated elements like residual
connections, dense connections, and dilated convolutions.
As a result, they meticulously developed a 56-layer Deep-
GCN [21]. This advancement led to a notable improvement
of 3.7% in the mean Intersection over Union metric for tasks
such as point cloud semantic segmentation, compared to
existing methods.
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To enhance the learning capabilities of Graph Neural
Networks (GNNs), Zhou et al. introduced a hierarchi-
cal structure [22]. This structure utilizes micro-pooling to
group nodes into predefined clusters, effectively transform-
ing the initial graph into a more condensed form. However,
this approach has a potential drawback: the loss of graph
topological information, which could result in suboptimal
outcomes. Additionally, the process may lead to different
graphs producing identical coarse structures, making them
indistinguishable after the transformation.

Besides, GNNs have largely overlooked the intrinsic sig-
nificance of connections within networks. The theory of
network weak ties highlights the varied roles different con-
nections or links play. For instance, weak connections are
crucial in maintaining network connectivity, ensuring stabil-
ity in biological systems, and shaping community structure
formation. In contrast, strong ties indicate a higher degree
of interaction among entities. Therefore, it is clear that
various links in a network have differing levels of impor-
tance, each contributing to distinct functionalities and roles.
Although models like the GAT [19] introduce differentiated
link weights via network structure during node representation
learning, they fall short in fully assessing and leveraging the
inherent value of these connections. This limitation results in
a lack of interpretability in link prediction outcomes, espe-
cially in certain applications [23].

Hence, the aim of this paper is to tackle the aforementioned
issues by introducing a link-centered Graph Neural Net-
work specifically tailored for link prediction. This model is
designed to seamlessly incorporate elements like link value,
thereby improving both the interpretability and accuracy of
the link prediction outcomes.

III. LINK PREDICTION FRAMEWORK INCORPORATING
LINK VALUE
This section begins by outlining the foundational concepts
related to link prediction and GNNs. It then explores the
indicators used for estimating link values and how these are
incorporated into the standard graph attention mechanism.
Lastly, it provides a summary of the link prediction frame-
work developed on the basis of the graph attention neural
network, emphasizing the integration of link values.

A. PRELIMINARIES
Notations:To improve the clarity of descriptions and explana-
tions related to link prediction and GNNs, we have compiled
a detailed list of symbols and notations used in this paper. For
their comprehensive representation, please refer to Table 1.
Link Prediction: holds significant importance within the

realm of graph datamining. This task revolves around the pre-
diction of potentially absent connections in a graph, as well as
the projection of novel edges that might emerge in the future.
In essence, link prediction strives to ascertain the presence
or potential occurrence of links between two nodes. In the
context of a given graph G = (V ,E), wherein V represents
the node set and E symbolizes the link set, and with the

TABLE 1. Notations used in this paper.

all-encompassing link set U = V × V , the objective of
link prediction pertains to the anticipation of links between
nodes vi and vj (vi, vj ∈ V ). This anticipation is founded
upon the known topological attributes and characteristics
of G. To formalize, the process of link prediction through the
application of a GNN entails the following sequential phases.
Initially, E is divided into ET and EP, indicating the traing
and validation set respectively, while the complementary set
U − E functions as the designated test set. It is evident that
ET united with EP forms the entirety of E , and their intersec-
tion remains null. Subsequently, a model grounded in graph
attention neural network principles proceeds to acquire node
representations founded on ET , subsequently undergoing
validation against EP to enhance the model’s performance.
Ultimately, by effecting Hadamard product operations upon
the acquired node representations for vi and vj, the task of
predicting the existence of a link connecting these nodes is
effectively accomplished.
Graph Attention Neural Networks are designed to effi-

ciently and effectively learn features from graph data.
In graph-structured datasets, nodes frequently establish con-
nections with multiple others. However, not all of these
connections are equally significant; some links are more
critical than others. GATs employ attention weights to iden-
tify and prioritize these more important neighboring nodes.
The inclusion of an attention mechanism offers a substantial
benefit, especially in link prediction tasks. This advantage
stems from the network’s enhanced ability to understand
and utilize the complex structural nuances inherent in graph
data. Such autonomy in feature learning leads to a deeper
comprehension of the relationships between nodes, resulting
in improved performance in link prediction tasks.
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B. LINK VALUE COMPUTATION
Different links within a network play varying roles, each
with its own unique functions and values. Drawing from
the concepts outlined by Ding and Wang [24], this article
employs metrics such as node degree, node betweenness, and
edge betweenness to determine the intrinsic value attributed
to each link.

In the context of network G = (V ,E), the degree ki
of node vi ∈ V signifies the count of edges linked to vi,
mathematically expressed as ki =

∑
j aij; The betweenness

B(vi) of vi is defined as the proportion of the total number of
shortest paths in G that must traverse through vi, as outlined
in equation (3).

B (vi) =

∑
s̸=i̸=t

nist
gst

(3)

where the variable gst denotes the cumulative count of short-
est paths originating from s and terminating at t , whereas
nist signifies the quantity of shortest paths that traverse
through the intermediary node vi. Node betweenness serves
as a metric that not only underscores the significance of
a given node but also encapsulates its centrality within
the network structure. Analogous to the conceptualization
of B (vi), the determination of edge betweenness for edge
est = {(vs, vt) |vs, vt ∈ V is formulated as delineated in
equation (4). This metric offers insight into the centrality of
links within the network, shedding light on its pivotal role in
facilitating shortest paths between nodes vs and vt .

B (est) =

∑
s̸=t

nest
gst

(4)

where the variable nest represents the number of shortest paths
starting from node s and ending at node t , passing through
the link est . Edge betweenness quantifies the level of inter-
connectedness, influence, and importance of a particular link.
A higher betweenness value indicates a more significant role
in maintaining network cohesion. It is crucial to note that
links with the same edge betweenness might vary in impor-
tance within networks of different topologies. Given this
consideration, this study adopts a comprehensive approach,
harnessing ki, B (vi) and B (est) as calculation metrics. This
approach capitalizes on the balanced influence of two nodes
situated at either end of a link. This holistic perspective
informs the computation of the link’s value, est , as determined
by the value assessment formula presented in equation (5).

LV (est) = B (est) +
B (vs) ∗ kt
ks + kt

+
B (vt) ∗ ks
ks + kt

(5)

where LV (est) denotes the value attributed to the link est ,
while B (est) signifies the edge betweenness of link est . Fur-
thermore, B (vs) and B (vt) pertain to the node betweenness
metrics of nodes vs and vt respectively, which serve as the
termini of the link in question. Subsequent to the derivation
of the links value, this study integrates the obtained link value
into the establishing process of the link prediction GNN.

This fusion is achieved through a harmonious averaging and
merging of equation (5) and (2), which confluence yields
a novel attention coefficient denoted as wij, as depicted in
equation (6).

wij = 2 ∗ αij ∗ LV
(
eij

)/ (
αij + LV

(
eij

))
(6)

In the subsequent phase, wij replaces the attention coeffi-
cient in the Graph Attention Network, marking the comple-
tion of the training and learning phase for the link prediction
GNN. Additionally, existing challenges in training GNNs
include issues such as over-smoothing and the vanishing
gradient problem. To effectively counter these challenges,
this research advocates for the integration of regularization
techniques and residual connections into the architecture and
training protocol of the link prediction graph attention neu-
ral network. A detailed discussion and implementation of
these strategies will be thoroughly explored in the follow-
ing section, with the aim of comprehensively addressing the
aforementioned issues.

C. LINK VALUE-INTEGRATED LINK PREDICTION
FRAMEWORK
Building upon the original GAT framework, this section
introduces enhancements by incorporating link value consid-
erations. Additionally, it merges a node representation nor-
malization approachwith a residual connectionmechanism to
create a comprehensive framework for link prediction, which
is visually illustrated in Figure 1.

A key focus of this study is the emphasis on Node
Representation Learning, a crucial aspect of understanding
complex network structures.Within this framework, attention
coefficients are skillfully integrated with link value. This inte-
gration is a significant advancement, demonstrated through
an improved process for learning node representations within
the graph attention network layer, as precisely outlined in
Equation (7). The integration not only enhances the accuracy
of the representations but also enriches the interpretability of
the network’s learning process. Subsequent equations provide
a detailed methodology for calculating the node represen-
tation h(l+1)

i at layer l + 1, effectively building upon the
representation established in the previous layer l. This lay-
ered approach allows for a more nuanced understanding of
node relationships and their respective importance within the
network, thereby optimizing the overall efficacy of the graph
attention network.

z(l)i = W (l)h(l)
i

e(l)ij = LeakyReLU (a⃗(l)
(
z(l)i ||z(l)j

)
α

(l)
ij =

exp
(
e(l)ij

)
∑

k∈N (i) exp
(
e(l)ik

)
w(l)
ij = 2 ∗ α

(l)
ij ∗ LV

(
eij

)/ (
αij + LV

(
eij

))
h(l+1)
i = σ

 ∑
j∈N (i)

w(l)
ij z

(l)
j


(7)

38 VOLUME 12, 2024



Z. Zhang et al.: Graph Attention Network-Based Link Prediction Method

FIGURE 1. Expanded graph attention neural Network for link prediction incorporated link values.

where || indicates the representation concatenation, then a⃗(l)

denotes a learnable weight vector, and h(l+1)
i represents the

freshly acquired node vi representation.
Node representation normalization is a critical aspect

explored in this study. The method for normalizing node
representations, detailed in Equation (8), is employed in
this paper to address the challenge of over-smoothing.
Over-smoothing is a phenomenon that occurs when node
representations linked to connections are propagated across
multiple layers within the link prediction neural network
LVGANN. This issue can lead to homogenization of node
features, diminishing the model’s ability to capture dis-
tinct characteristics and relationships within the network.
By implementing normalization techniques, the study aims
to maintain the distinctiveness of node representations while
leveraging the depth of the network for enhanced learning.

NodeNorm
(
h(l+1)
i

)
=
h(l+1)
i − u(l+1)

i

σ
(l+1)
i

(8)

where h(l+1)
i signifies the representation of vi at (l + 1)-th

layer, while u(l+1)
i and σ

(l+1)
i indicate the mean and standard

deviation, respectively, of the elements within h(l+1)
i .

Residual Connection is a mechanism primarily introduced
to address the issue of vanishing gradients within models.
In the context of the LVGANN model discussed in this
paper, the integration of residual connections aims to enhance
the synergistic flow of information across both shallow and
deep layers. This integration not only ensures a harmonious
alignment of information between these layers but also fos-
ters a more balanced network structure. Such a structure is
instrumental in facilitating the training of a more profound
LVGANN, thereby enhancing the network’s predictive capa-
bilities. In this study, the methodology incorporates residual
blocks through skip-layer connections. Consequently, the
node representation h(l+1)

i benefits from both node represen-
tation normalization and residual connections, as formulated
in Equation (9). This dual advantage allows for a robust

training process and contributes to the overall efficacy and
reliability of the model.

h(l+1)
i = ReLU

(
NodeNorm

(
h(l)
i

))
+ f (h(l)

i ,W (l)) (9)

Up to this point, the construction of LVGANN for link
prediction has been successfully accomplished within this
study. For the purpose of ensuring the reproducibility of the
research results in this paper and facilitating readers to further
develop on the basis of this study, the pseudocode related to
the LVGANN model is summarized as follows.

Following the construction phase of the LVGANN, the next
step is Link Prediction. Once the LVGANN is established,
a convolution process is applied to both the adjacency matrix
of the network and its node representations. For each pair of
nodes (vi, vj) in the graphG, a binary classifier—specifically,
the sigmoid function—is applied to the Hadamard product ⊗
of hi and hj for nodes vi and vj. This procedure is detailed in
Equation (10) and is used to predict whether there is a link
between vi and vj. In this context, a prediction of 1 indicates
the existence of a link connecting vi and vj, while a prediction
of 0 signifies the absence of such a link.

P
(
vi, vj

)
= sigmoid

(
hi ⊗ hj

)
(10)

IV. EXPERIMENTS AND DISCUSSION
To conduct a thorough evaluation of the LVGANN model
and to facilitate a comparative analysis with other baseline
methods, we adhere to the experimental framework outlined
in our previous research [1], [25]. Our methodology involves
a detailed examination across multiple benchmark datasets
to comprehensively assess the model’s performance. This
section begins by introducing the benchmark datasets uti-
lized, outlining the baseline methods for comparison, and
defining the performance evaluation metrics. Following this,
we present the experimental results and conduct a com-
parative analysis. Through this rigorous examination, our
objective is to demonstrate the stability and reliability of the
LVGANN model.
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The PyTorch Pseudocode for LVGANN
Input: a network G, and its adjacent matrix adj.
Output: The node representation matrix for link classification.
# h is the node representation
# e is the edge representation
# W is a trainable weight matrix
# a is a trainable parameter of attention mechanism.
# LV is the value matrix of edges in G.
LV = Apply Equations (3) to (5) to calculate the link value of each
edge in G.
class LVGANNLayer( ): # define the layer of LVGANN
def __init__(self, in_feats, out_feats):
super(LVGANNLayer, self).__init__()
W=Parameter(torch.empty(size=(in_feats, out_feats)))
a=Parameter(torch.empty(size=(2∗out_feats, 1)))
init.xavier_uniform_(W.data, gain=1.414)
init.xavier_uniform_(a.data, gain=1.414)
def forward(self, X, adj):
h = torch.mm(X, self.W)
N = h.size()[0]
a=torch.cat([h.repeat(1,N).view(N∗ N,-1), h.repeat(N, 1)],

dim=1).view(N,-1, 2∗out_feats)
e=leakyrelu(torch.matmul(a, self.a).squeeze(2))
zero_vec = -9e15∗torch.ones_like(e)
attention = torch.where(adj > 0, e, zero_vec)
attention = 2∗a∗attention/(a+attention)
attention = softmax(attention, dim=1)
attention = dropout(attention, training=self.training)
return torch.matmul(attention, h)
class LVGANN():
def __init__(self, nfeat, nhid, nclass, dropout):
super(LVGANN, self).__init__()
self.dropout = dropout
self.LVGANN1 = LVGANNLayer(nfeat, nhid)
self.LVGANN2 = LVGANNLayer(nhid, nclass)
def forward (self, x, adj):
x = dropout(x,dropout, training=self.training)
x = elu(self.self.LVGANN1 (x, adj))
x=dropout(x, dropout, training=self.training)
x = self.self.LVGANN2(x, adj)
return log_softmax(x, dim=1)

A. SETTINGS
The experimental setup employed in this study is metic-
ulously designed to ensure the accuracy and reliability
of the results. The experiments were conducted on a
high-performance Workstation Server, specifically a Dell
T640. This server is equipped with the CentOS-7-x86_64-
1611 operating system, which offers a stable and efficient
environment for computational tasks. The GPU used in this
setup is the Tesla V100s, known for its robust computational
capabilities, particularly in handling large-scale data process-
ing and neural network training.

Furthermore, all experiments of this article were per-
formed using CUDA version 10.2, which provides optimized
support for deep learning frameworks and GPU accelera-
tion. The programming environment was standardized using
Python 3.7, ensuring compatibility and ease of use for imple-
menting complex algorithms. For the graph neural network
implementation, PyTorch version 1.11 was chosen for its
dynamic computational graph and extensive library support.

Additionally, torch_geometric 2.1 was used, which is a spe-
cialized graph deep learning library, constructed and builded
on the framework of PyTorch, for deep learning on graphs
and provides essential tools for implementing and testing the
LVGANN model.

B. DATASETS
The graph datasets employed in this study are sourced from
the Open Graph Benchmark (OGB),1 s detailed in Table 2.
These datasets include ogbl-ppa [26], ogbl-collab [27],
and ogbl-ddi [28]. To maintain methodological consistency,
we adhere to the default partitioning settings prescribed by
OGB for splitting these diverse datasets, each characterized
by its unique scale and complexity. This approach ensures
uniformity in the experimental procedure and enables an
accurate assessment of the performance of our methods
across different types of graph data.

TABLE 2. Benchmark dataset statistic information.

C. BASELINES
The performance evaluation of the Link Value Based Graph
Attention Neural Network (LVGANN) includes a compara-
tive analysis against three established classical graph neural
networks: Graph Convolutional Network (GCN) [17], Graph
Attention Network (GAT) [18], GraphSAGE [19], and our
previous work, EdgeConvNorm [23]. It is crucial to highlight
that the use of these GNNs in this study is focused specif-
ically on node representation learning. To support the link
prediction task, an additional step involves the application
of the same sigmoid classifier to the Hadamard product of
the representations of node pairs. This methodology ensures
a comprehensive assessment of the LVGANN’s capabili-
ties in comparison with these well-known models, providing
insights into its effectiveness in the context of link prediction.

• GCN: This model was developed to extend the concept
of convolutional operations from regular grids, such
as those used in image processing, to the domain of
irregular graphs.Within theGCN framework, a graph is
inputted, and a feature transformation is applied to each
node, taking into account the representations of neigh-
boring nodes. Crucially, this shared transformation is
key to preserving the inherent local structure of the
network. The fundamental principle involves creating
a new representation for each node by aggregating
features from its neighbors. The GCN is versatile, find-
ing applications in tasks ranging from node clustering
to link prediction, demonstrating its adaptability and

1https://ogb.stanford.edu/
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effectiveness in various graph-based analytical con-
texts.

• GraphSAGE, a variant of the GCN, was developed to
tackle the challenge of scalability. It generates node
representations through feature sampling and aggre-
gation. Unlike GCN, which processes the entirety of
graph nodes during each forward pass, GraphSAGE
excels at training on large-scale graphs and gener-
ating embeddings for previously unseen nodes. This
approach significantly enhances its adaptability and
scalability, making it a powerful tool for dealing with
extensive and complex graph structures.

• GAT first brings attention mechanisms into the realm
of GNNs, enabling the differential assignment of sig-
nificance to distinct nodes. The embedded attention
mechanism in GAT is designed to independently eval-
uate the importance of neighboring nodes, thereby
recognizing the varied impacts of different neighbors.
This dynamic capability allows nodes to allocate more
attention to influential neighbors while giving less
attention to those of lesser importance. Consequently,
GAT enhances themodel’s ability to prioritize and learn
from the most relevant connections in the graph, lead-
ing to more nuanced and effective node representation.

• EdgeConvNorm is designed to enhance the process
of link representation learning. It accomplishes this
by introducing a specialized edge convolution opera-
tion, which is adept at capturing the essence of links.
Furthermore, the model integrates a normalization
strategy to refine the learned link representations. This
integration is particularly effective in mitigating the
issue of over-smoothing, a common challenge in edge
convolution-based link prediction models. A notable
aspect of EdgeConvNorm is its implementation in the
construction of the link prediction model, where it
utilizes stacked edge convolutional layers. This layered
approach enables the model to effectively extract and
process complex link features, thereby improving the
accuracy and robustness of link prediction.

D. PERFORMANCE INDICATOR
In evaluating the effectiveness of link prediction methods,
a critical metric is Hits@n. Hits@n gauges the accuracy of
predictions by tallying the number of correctly predicted links
within the top n predicted links. Specifically, for each test
scenario, all predicted links are ranked according to their pre-
dicted probabilities, arranged in descending order. A detailed
analysis is conducted to determine whether each correct link
appears within the top n ranks of these predictions. If a
correct link is found within this range, it is counted as a
successful prediction hit . The total number of thesehits is then
aggregated across all test cases and normalized by the total
number of correctly predicted links. Formally, in this context,
assuming there are k correct links, for each link eij, if it ranks
among the top n predicted links, peij is assigned a value of 1;
otherwise, peij is set to 0. Therefore, the calculation ofHits@n

is executed as per Equation (11), providing a quantifiable
measure of the model’s predictive accuracy.

Hits@n =

(
1
k

)
∗

∑
peij (11)

The Hits@n metric serves as an indicator of the precision
exhibited by link prediction models when forecasting the
top n links. An increased Hits@n value signifies improved
model performance. To evaluate model effectiveness, this
study utilizes specific values of n as parameters, namely
10, 50, and 100. It is important to note that each model is
subjected to 10 iterations, generating a series of results. The
final outcomes are determined by calculating the average
Hits@n, along with the corresponding standard error, across
these multiple iterations. Notably, this metric poses a greater
challenge compared to ROC-AUC, as it demands consistent
prioritization of predictive accuracy across a wide range of
predictions. The implication is that a model must not only
be accurate but also consistently rank the most relevant links
higher, a task that is inherently more stringent and revealing
of a model’s predictive capability.

E. EXPERIMENTS AND DISCUSSIONS
The experimental configurations for the baseline methods
have beenmeticulously refined based on the published source
code provided by OGB and [23]. In this study, the LVGANN
model functions as a comparative baseline, and its parameters
are aligned with those of the GAT. These parameters have not
been further optimized, as the primary focus is on comparing
relative performances among the models.

Throughout our experimentation, we consistently present
the most optimal results from each run. The final perfor-
mance assessment involves computing the mean and standard
deviation of the highest results obtained from 10 iterations.
Detailed results, which demonstrate the superior comparative
performance of all models across various datasets, are pre-
sented in Tables 3 to 5.

TABLE 3. The experimental outcomes obtained from various baselines
and LVGANN applied to the ogbl-collab.
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In analyzing the ogbl-collab dataset, we have expanded our
approach to encompass temporal considerations, adopting the
same data splitting method as presented in OGB. The primary
goal is to predict future author collaboration relationships
based on historical data, with an emphasis on assigning higher
ranks to genuine collaborations. A review of Table 3 clearly
shows that the LVGANN developed in this study surpasses
other baseline models in performance, and an average accu-
racy of 0.5038 was achieved. Notably, compared to the GAT,
LVGANN and EdgeConvNorm exhibit significant improve-
ments, with a maximum enhancement of 7.8%. Given the
dynamic and complex nature of the ogbl-collab, amulti-graph
dataset, LVGANN is able to derive deeper insights into node
attributes and relational dynamics. This capacity, bolstered by
the integration of link value, empowers LVGANN to more
effectively predict the existence of a link between two nodes.

For the ogbl-ddi dataset, we utilized a protein-target
split method. The primary objective of this approach is to
predict drug-drug interactions using information from previ-
ously established interactions. Upon analyzing the results in
Table 4, it is clear that while the LVGANN shows improved
performance compared to the GAT, it does not outperform
the GraphSAGE model, but LVGANN still achieved an aver-
age accuracy of 0.5760. This difference in performance can
be attributed to the specific characteristics of the ogbl-ddi
dataset, especially the protein interaction characteristics.

TABLE 4. The experimental results obtained from diverse baselines and
LVGANN applied to the ogbl-ddi.

The ogbl-ddi dataset is characterized by its dense net-
work structure, consisting of a total of 4,267 nodes and a
remarkable 1,334,889 edges. This inherent density presents
significant challenges for predictive models. Nonetheless, the
innovative node sampling strategy employed by GraphSAGE
proves to be highly effective in this scenario. By strategically
selecting nodes during the training process, GraphSAGE
adeptly mitigates issues related to the dataset’s large-scale
graph, the computational demands of full graph gradi-
ent updates, and the challenges associated with training

efficiency. This approach not only enhances the model’s abil-
ity to manage the dataset’s complexity but also optimizes
overall performance, making GraphSAGE particularly suit-
able for handling densely interconnected networks like the
ogbl-ddi dataset.

As a result, the GraphSAGE model stands out as the
most suitable choice for link prediction tasks within densely
interconnected graph data, such as that found in the ogbl-
ddi dataset. The strategic implementation of node sampling
techniques endows GraphSAGEwith a significant advantage,
allowing it to effectively navigate the challenges presented by
dense graphs.

Regarding the ogbl-ppa, which represents the most exten-
sive benchmark in this study, we adopt a biological through-
put approach for partitioning edges into training, validation,
and test sets. This partitioning strategy is in accordance with
the standard methodology established in the OGB frame-
work. The primary objective of this approach is to predict
specific types of protein relationships, with a focus on
physical protein-protein interactions. To facilitate this pre-
diction, the study leverages alternative protein connections.
These auxiliary connections provide a simplified yet effective
means of assessment and have shown a strong correlation
with the targeted interactions, thus enhancing the reliability
and accuracy of the predictions in the context of protein
relationships.

TABLE 5. The experimental results obtained from diverse baselines and
LVGANN applied to ogbl-ppa.

Regrettably, the empirical results presented in Table 5
reveal a significant insight. While the LVGANN shows
a slight performance over other three benchmark models,
although LVGANN achieved an average accuracy of 0.1658,
the overall experimental outcomes for both LVGANN and
these models do not meet the anticipated expectations,. This
shortfall can be attributed to the vastness and complexity of
the data within the ogbl-ppa dataset. Moreover, the intricate
dynamics between proteins (nodes) and the nuanced roles
of their interconnections remain largely unexplored, high-
lighting a critical knowledge gap. This gap underscores the
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need for innovative approaches in representation learning
and aggregation strategies, specifically tailored to capture
and elucidate the complex interactions among proteins. Such
strategies are essential for forging a path towards more accu-
rate predictive modeling in protein interaction networks.

It is also important to note that LVGANN exhibits
increased time complexity compared to its predecessor, the
GAT, and other models used in this study. This higher
complexity stems from the incorporation of betweenness cen-
trality calculations for link value assessment in LVGANN,
which involves a more complex computational process and
consequently higher time requirements.

In conclusion, the challenges posed by the extensive
dataset of the ogbl-ppa and the intricate nature of protein
interactions underline the urgent need for novel strategies.
These new approaches must transcend current state-of-the-
art methods to achieve a more precise depiction of protein
interactions, thereby enhancing the effectiveness of predictive
models in this demanding field.

F. TIME COMPLEXITY ANALYSIS
The time complexity of the LVGANN primarily hinges on
several key factors: the betweenness centrality of nodes, the
betweenness centrality of links, the calculation of link value,
the computation of weights and their normalization, and the
linear transformation of node representations. In the follow-
ing contents, wewill succinctly analyze and calculate the time
complexity of LVGANN, providing a clear understanding of
its computational demands in various scenarios.

(1) Node Betweenness Centrality. The computation of
node betweenness centrality typically involves determining
the shortest paths between all pairs of nodes in a network.
To calculate a node’s betweenness centrality, it’s essential to
account for all the shortest paths that traverse through that
node. Consequently, the time complexity of computing node
betweenness centrality is dependent on the chosen shortest
path algorithm and the structure of the network. A commonly
used method employs a breadth-first search (BFS) based
algorithm for each node. In an unweighted graph G, the time
complexity for computing centrality for each node using a
BFS-based method is O(|V | + |E|), where |V | is the number
of nodes and |E| is the number of edges. Therefore, the overall
time complexity for the entire networkG isO(|V |·(|V |+|E|)),
accounting for the BFS computation across all nodes.

(2) Link Betweenness Centrality. The computation of link
betweenness centrality involves identifying the shortest paths
between all pairs of nodes within a graph. Unlike node
betweenness centrality, this measure focuses on the sig-
nificance of edges, rather than nodes, in these paths. For
unweighted graphs, the prevalent method to calculate link
betweenness centrality utilizes the breadth-first search (BFS)
algorithm. The time complexity for employing BFS to deter-
mine the shortest path for each node isO(|V |+|E |), where |V |

represents the number of nodes and |E| the number of edges.
To ascertain the link betweenness centrality for an entire
graph, a BFS search is required for each node. Consequently,

this leads to an overall time complexity of O(|V | · (|V | +

|E|)), reflecting the cumulative computational effort needed
to perform BFS for every node in the graph.
(3) Link Value Estimation. Referring to Equation (5),

it becomes clear that once the node betweenness centrality
and link betweenness centrality have been determined, the
time complexity of calculating the link value is contingent
upon computing the degrees of the nodes. Typically, for a
graph represented by an adjacency matrix, the time complex-
ity of calculating the degrees for all nodes is O(|V |

2), where
|V | denotes the number of vertices in the graph. This calcu-
lation is crucial as it directly influences the efficiency and
feasibility of the link value computation process in large-scale
graph structures.
(4) Weight Calculation and Normalization. Based on for-

mulas (7) and (8), it is clear that the weight calculation
and normalization in LVGANN involve the application of
weight scores and the softmax function. The computation of
the weight scores involves linear transformation of the node
features, and the application of these weight scores to the
softmax function results in the computation of link weights.
The time complexities of these two steps are respectively
O(|V | · d) and O(|V | · k), where k indicates the average node
degree of G. Moreover, the weight normalization process
involves normalizing these weights, with this step having a
time complexity of O(|V | · d). Therefore, the overall time
complexity of weight calculation and normalization isO(|V |·

(d + k)).
(5) Node Representation Linear Transformation. For each

node, the representation linear transformation involves the
weighted summation of neighboring nodes’ features using
weights, followed by a linear transformation to obtain a new
representation of the node. The time complexity of this step
is O(|V | · d). It should be noted that the aforementioned
weight calculation, normalization, and linear transformation
of node representations pertain to one layer of LVGANN.
If LVGANN has F layers, then the time complexity needs
to be multiplied by F .
In summary, the time complexity of the LVGANN pro-

posed in this paper is O(2 |V | · (|V | + |E|) + |V |
2
+ F · |V | ·

(d + k) + F · |V | · d). This level of complexity is relatively
high, which may lead to suboptimal performance in large-
scale networks. However, it is worth noting that we have
addressed the issue of LVGANN’s high time complexity in a
separate research work, exploring potential solutions to opti-
mize its efficiency in handling extensive network datasets.

V. CONCLUSION
This paper introduces significant advancements in the realm
of link prediction in network analysis. A novel metric inte-
grating node and edge betweenness centrality is proposed to
evaluate link value, offering amore nuanced understanding of
the varying roles and values of links in networks, such as the
differing levels of interaction in social networks. Addition-
ally, by incorporating this link value into the construction of
link prediction graph attention networks, the paper enhances
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node representation learning. This approach not only aggre-
gates features of neighboring nodes but also factors in the
value of the edges connecting these neighbors, allowing for
richer feature learning compared to traditional graph atten-
tion networks. Furthermore, the paper conducts extensive
link prediction experiments on real-world open graph bench-
mark datasets, including ogbl-ppa, ogbl-collab, and ogbl-ddi.
These experiments showed an average performance improve-
ment of 1.2% overall, and validate the proposed LVGANN
as a robust baseline model with commendable performance
compared to various graph neural network models.

Through experimentation, it is evident that the LVGANN
proposed in this paper performs well on various bench-
mark datasets, particularly on the real-world datasets ogbl-
collab and ogbl-ppa, thereby validating the practicality of
LVGANN. Besides, it can be observed from the experimen-
tal consequences in Tables 3 to 5 that LVGANN has good
performance stability and robustness, without significant
fluctuations. Nonetheless, it is imperative to acknowledge
that this enhanced performance comes at the cost of an ele-
vated time complexity O(2 |V | · (|V | + |E|) + |V |

2
+F · |V | ·

(d + k) + F · |V | · d) when compared to other baselines.
As a direct consequence of this observation, our forthcoming
efforts will be dedicated to targeted refinements and opti-
mizations. These endeavors aim to mitigate the elevated time
complexity exhibited by the LVGANNmodel. By addressing
this particular limitation, we seek to strike a balance between
predictive prowess and computational efficiency, thus further
enhancing the practical utility and applicability of LVGANN
in real-world scenarios.
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