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ABSTRACT Project managers make decisions weighing financial returns (net present value, NPV) and
value creation expected by stakeholders. Often, plans maximizing NPV neglect stakeholder benefits while
those focused strictly on value creation may reduce financial viability. This paper puts forth a new stochastic
optimization model handling this compromise using a mixed integer program solved with reinforcement
learning. The model incorporates uncertain activity durations and considers positive and negative cash flows.
Our Monte Carlo control method with ϵ-greedy policies and timed start actions for activities facilitates the
simultaneous maximization of NPV and project value. The resulting efficient frontier delineates various
project plans, demonstrating the trade-off between maximizing NPV and project value, providing decision
makers with visual analysis to select plans that fit organizational needs. Computational experiments
demonstrate superior performance over a mathematical solver limited by the problem’s complexity and a
metaheuristic lacking guided online learning. The results help senior management select satisfactory plans
that balance financial returns with stakeholder preferences. The methodology contributes a novel tool for
quantitatively incorporating value creation alongside financial objectives in project planning.

INDEX TERMS Integer programming, project management, project scheduling, reinforcement learning,
simulation.

I. INTRODUCTION
Solutions to the maximization of project net present value
(max-NPV) problem are a sought-after commodity today.
Decision makers need to evaluate different project alterna-
tives, make go/no go decisions, and decide which projects
will be part of their project portfolio [1]. It is common
knowledge, however, that the evaluation of a project should
not be based solely on financial considerations; a project
can be unsuccessful by NPV criteria and yet deliver the
expected value1 to customers and other stakeholders. For
example, [2] describes a construction company planning a
major industrial safety campaign in response to its poor safety

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabrizio Messina .
1Project value and benefit are used interchangeably in the literature. In this

paper we use the term project value.

record and high insurance premiums. The project aims to
reduce insurance costs by $250,000 annually and improve the
company’s ranking in an industry safety review from the 90th

percentile to the 10th percentile. The project has a negative
NPV of −$350,000, which, taken alone, may mean a no-go
decision. Nevertheless, if the company’s board also considers
the value criterion — the improved industry ranking and that
it outweighs the financial loss — it could decide to proceed.2

Thus, project value is increasingly becoming a vital factor in
Project Management [2].3

Project value can be defined as a combination of attributes
that depend on the stakeholders’ preferences ‘‘such as

2On the flip side, project value alone may be an insufficient criterion for
project evaluation, since the negative NPV may be prohibitive for the Board.

3Throughout this paper we understand value according to the definition
found in [3]: ‘‘Value is what the customer says it is, considers important, and
is willing to pay for.’’
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features, functions, reliability, size, speed, availability, design
aesthetics, etc.’’ [4]. This paper adopts the framework used
in [5], where the attributes are formulated as an objective
function that reflects the value according to the customers’
and stakeholders’ preferences. In Section IV, we present an
example of how the project value is calculated.

Research has tended to focus on themax-NPV problem and
project value as separate research tracks rather than consid-
ering them together. We feel strongly that the consideration
of both goals in tandem presents decision makers with a
more thorough evaluation of a project when reviewing project
alternatives. In this paper, we introduce a new formulation
of the maximization problem that includes both NPV and
project value, model a multimode setting that allows the
consideration of different project plan alternatives, develop
algorithms to solve the problem, and consider the tradeoff
between realizing both objectives.

Other key components of our formulation are stochastic
activity durations and the use of a robust form of NPV.
Uncertainties are common in real-life projects and often
result in budget and schedule overruns. According to one
report that analyzed over 50,000 projects in 1,000 organi-
zations, more than half (56%) of the projects went over the
planned budget and almost two-thirds (60%) of the projects
fell behind schedule [6]. More recent findings by the Project
Management Institute indicate global figures of 38% and
45% for project budget and time overruns, respectively [7].
By focusing on stable solutions, we think that we provide a
more relevant tool for decision makers than is available today.

The literature dealing with this paper’s topic can be divided
into two main branches: the max-NPV problem and project
value management.

A. THE MAX-NPV PROBLEM
There is a considerable amount of research on the max-NPV
problem. An early study of the deterministic problem was
carried out by [8], where the objective function was linearized
by approximation using the first terms in the Taylor expan-
sion. Since then, more research on the max-NPV problem has
accumulated. A review of past literature can be found in [9];
we focus on more current research. The problem has been
extended to include resource constraints, in the resource-
constrained project scheduling problem with discounted cash
flows (RCP-SPDC). This is also an extension of the resource
constrained project scheduling problem (RCPSP), which was
proven to be NP-hard [10]. Gu et al. [11] offered an exact
solution approach for the RCPSPDC limited to small projects
and a Lagrangian relaxation with a decomposition method
for large problems. Leyman and Vanhoucke [12] solved the
RCPSPDC by constructing sets of activities and moving
them together. Later they extended their work to include
capital constraints and different cash outflow models [13].
Klimek [14] examined projects with payment milestones
and different scheduling techniques such as activity right-
shift, backward scheduling and left-right justification are

compared. In [15], the RCPSPDC is solved by combining
a genetic algorithm and an immune algorithm. The authors
employ different crossover, mutation, and immunization
operators and select the best one at each stage. In a
similar research, the authors enhance the combined genetic
and an immune algorithm with a variable insertion-based
local search, a forward-backward improvement, a restart
mechanism and an activity move rule to delay the activities
with negative cash flow [16].

The multimode version of the RCPSPDC is an extension
of the original problem. Projects with up to 30 activities
and three modes are solved optimally with a network flow
model in [17]. The scheduling technique in [12], mentioned
above, is extended in [18] to include multimode projects and
different payment models for cash inflows. Zhang et al. [19]
balanced theNPVof the contractor and client in a bi-objective
optimization problem.

Another extension of the original deterministic max-NPV
problem is the stochastic max-NPV problem (denoted as
SNPV by [20]) where the activity durations and cash flows
are random variables ( [20] present a detailed review of early
literature on this topic). Creemers et al. [21] maximized the
expected value of the NPV (eNPV) with variable activity
durations, the risk of activity failure and different paths or
modules to mitigate this risk, ignoring resource constraints.
In a similar vein, [1] considered a general project failure
risk that decreases with project progress, and activity-specific
risks; earlier activity completion on the one hand eliminates
its risk of failure, improving the eNPV, but on the other
hand may also accelerate costs, which worsens the eNPV.
Weather condition modeling was incorporated into stochastic
durations by [22], where the decision variables are gates when
resources are made available for specific activities.

Creemers [23] found globally optimal solutions for the
SNPV problem where activity durations are phase-type
distributed, cashflows are deterministic, and no resource
constraints are considered. The author subsequently applied
the results to finding the optimal sequence of stages in
multistage sequential projects with stochastic stage dura-
tions, also obtaining exact, closed-form expressions for
the moments of the NPV and using a three-parameter
lognormal distribution to approximate the NPV distributions
accurately [24]. He showed that the problem is equivalent
to the least cost fault detection problem (LCFDP; this was
also proven by [25]). Hermans and Leus [26] offered a new
efficient algorithm and showed that in Markovian PERT
networks, where activities are exponentially distributed and
there are no resource constraints, the optimal preemptive
solution solves the non-preemptive case as well. Two known
proactive scheduling time bufferingmethods and two reactive
scheduling models were employed by [27] to investigate the
max-eNPV problem with stochastic activity durations. Time-
buffer allocation was also proposed in [28], who added the
expected penalty cost as a measure of solution robustness.
Rezaei et al. [29] considered uncertainty in activity duration
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and cash flow and two objectives: maximization of eNPV
and minimization of NPV risk. Their model ignores resource
constraints.

B. PROJECT VALUE MANAGEMENT
In [30] we reviewed the growing body of literature on
project value management; here we cite the main references.
A qualitative approach was taken by some researchers who
study value in projects. For example, these researchers
developed a framework to evaluate and formulate value [31].
They also examined the influence of value management on
project success [32], [33], [34], suggested a scale to determine
target values [35], explained how value is created [36], inves-
tigated value management in the dismantling of infrastructure
projects [37], and contrasted the value of projects done
offshore with those done domestically [38].
Another research direction that focuses on value is

quantitative. It involves measuring the progress of product
development based on the value added to customers [39],
computing the value contribution to the project by staff
member skills [40], quantifying value according to the
attributes that matter to stakeholders [41], and developing
a framework to plan and monitor cost, schedule, risk, and
technical performance based on these attributes [4]. Some
researchers in this quantitative field also use Quality Function
Deployment (QFD) for project management. QFD is a
well-known tool that captures the voice of the customer and
converts it into engineering requirements [42]. It measures the
value or performance of a product in multiple dimensions.
We apply QFD to determine project value by using value
parameters in the activity modes. Section IV shows an
example of how we translate the voice of the customer
into product value parameters and calculate the value of a
specific project. Other recent papers apply QFD to project
management [43], [44], [45].
A third research direction in project value is a new

branch of research integrating project scope with product
scope, which is the outlook we adopt in this paper. This
research branch is characterized by expanding the idea
of activity mode to cover not only cost and duration but
also value parameters. Mode selection will, therefore, affect
project value. In [46], a cost-effective design strategy is
investigated, aiming to maximize the effectiveness-to-cost
ratio and integrating decisions on project schedules, resource
allocations, and product performance. Balouka et al. [5],
on the other hand, extended the deterministic multimode
resource-constrained project scheduling problem to include
project value. Project management is combined with systems
engineering in [47], who synchronize each activity mode
with selected architectural components. Shtub et al. [48]
and [49] described the use of simulation-based training in the
integration of project and product scopes.

Table 1 summarizes the main features and characteristics
of this and existing studies. It also highlights the gaps in
the literature that this paper addresses. The most prominent

lacuna is that none of the previous papers considers
both NPV and value as objectives in the same model.
The present study, in contrast, aims to find the efficient
frontier between these two alternative goals. Another gap
is that most papers that involve NPV assume single mode
projects, whereas this paper deals with multimode projects,
which allow generating alternate project plans that offer
a range of value outcomes to stakeholders. Moreover, the
present paper incorporates risk into the NPV calculation
by using stochastic activity durations, while most papers
that use NPV adopt deterministic models. Furthermore,
we develop a quantitative optimization model for project
value management, which is rare in the literature, as most
papers focusing on project value are qualitative or descriptive.
Finally, this paper employs reinforcement learning (RL) as a
solution method, which is a novel and powerful approach for
project management problems. To the best of our knowledge,
the only previous paper that uses RL for project value
management is our own [29], and this is the first paper
that applies RL to project management problems related
to NPV.

The aim of this paper is to model the tradeoff between
project value and NPV in a multimode setting, where the
selection of an activity mode will impact cost, duration,
resource usage, and value, thus combining project scope (the
tasks to be completed) with product scope (the characteristics
and capabilities of the product and the resulting value) [50].
We consider stochastic activity durations to model realistic
uncertain environments and introduce a new measurement of
robustness in the NPV decision variable. Both objectives are
introduced in a mixed integer program, and the evaluation of
the objective function can be used to plot the efficient frontier
(see Section IV for an example). To solve the proposed
problem, we offer an innovative reinforcement learning (RL)
based algorithm.

We have organized the rest of this paper in the fol-
lowing way. Section II presents the mathematical formu-
lation. In Section III, our RL based solution is explained.
We describe an example in Section IV and the experimental
setting in Section V. Section VI presents our results, which
are discussed in Section VII. Some conclusions are drawn in
the final section.

II. THE PROPOSED MIXED INTEGER PROGRAM (MIP)
FORMULATION
We formulate the problem as a mixed integer program (MIP).
To model resource allocations, we employ a flow-based
formulation adopted in many recent project scheduling
works, e.g., [51], [52], [53], [54], [55], [56], [57], [58].
This formulation is especially suitable for stochastic models,
where the activity start or finish times may vary according
to the realized durations. The multimode setting, where each
activitymode represents an alternativewith its own time, cost,
resource, and value parameters, is essential for the generation
of different solutions on the efficient frontier of the project
value/NPV curve. In a single-mode problem no change in
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TABLE 1. A summary of the main features and characteristics of this and existing studies.

the project value is possible, and an efficient frontier cannot
be constructed. The model seeks to maximize the robust
project NPV and the project value. We tackle the chance
constraints using a scenario approach (SA), introduced in [59]
and applied in recent project scheduling papers [60], [61],
[62]. The idea is to take S samples or scenarios of the
realization of the random variables in the constraints—in our
case, the activity durations—and substitute the deterministic
scenario constraints for the stochastic chance constraints.
Table 2 lists the mathematical model’s sets, parameters, and
decision variables.

Let us consider a project with J activities. Each activity
j can be executed in one of Mj modes and is preceded
by a set of immediate predecessors P(j). Each activity j
executed in mode m in scenario s ∈ {1, · · · , S} has a
duration djms. There areK different renewable resources, each
with unit cost ck per period. Activity j executed in mode m
needs rkjm units of resource k , which has a total availability
of Rk . Apart from the duration-dependent resource costs,
there is a fixed cash inflow or outflow cjm associated with
activity j executed in mode m, composed of fixed costs and
payments received.Without loss of generality, we assume that
payments are received or made at the end of each activity.
The literature contains two main approaches to avoid gaps
between activities and to prevent an activity with negative
cash flow from being indefinitely postponed: 1) using a
deadline [12] and 2) assuming a sufficiently large payoff at
the end of the project that offsets the gains from postponing
activities that affect project completion [21]. In this paper we
adopt the latter approach.

For problems that seek to minimize project duration,
a common robustness measure is the timely project comple-
tion probability (employed, for example, in [63]). We adopt
this concept and define, in our problem, decision variable
rNPV , the robust NPV, as the project NPV delivered with a
probability of at least γ . This way, instead of applying the

robustness measure to a given schedule, we search directly
for a schedule with the desired robustness.

We set parameter NPVUP as an upper bound for rNPV .
Parameter

⌢
r is the discount rate, and EFjs and LFjs are the

earliest and latest finish times for activity j in scenario s,
respectively. Tmax is an upper bound for the project duration.

Binary decision variable δjm indicates (value 1) if activity
j is carried out in mode m (as presented in [64]) and decision
variable tjs ∈

{
EFjs, . . . , LFjs

}
denotes, for scenario s, the

finish time of activity j, j = 0, . . . , J + 1, where activities
0 and J + 1 are dummy activities (milestones) with a single
mode, no duration, and no resources, and represent the start
and end of the project, respectively. τs is a binary decision
variable indicating (value 1) whether the scenario NPV is
greater than rNPV . Decision variable βjs is the discount factor
for activity j in scenario s and parameter βUP is an upper
bound for the discount factor. Binary decision variable zij
indicates (value 1) if activity j starts after activity i finishes.
The amount of resource k transferred from activity i to
activity j is modeled by the flow variable φkij .

The project has V different value attributes. As noted
in the Introduction, these attributes depend on the stake-
holders’ preferences (see there for examples of attributes).
Let Vjmv be the parameter that represents the value of
attribute v for activity j performed in mode m. Let
V ′
jv be the decision variable that denotes the value of

attribute v for activity j performed in its chosen mode.
We use a project-specific function Fv(V ′

1v, · · · ,V ′
Jv) that

computes the project value for each attribute v based on
the individual attributes V ′

jv and a project-specific func-
tion V ′′

(
F1
(
V ′

11, · · · ,V ′

J1

)
, · · · ,FV

(
V ′

1V , · · · ,V ′
JV

))
that

determines the project value based on the values for each
attribute (we introduced these value functions, decision
variables and parameters in [50]). Parameters w1 and
w2 represent the objective function weights for rNPV and
project value, respectively. By solving the MIP for different
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TABLE 2. Sets, parameters, and decision variables for the mathematical
model.

weights w1 and w2, the efficient frontier between rNPV and
the project value can be determined.

We also employ additional variables for linearizing two
constraints. Binary variables tpjs are equal to 0 for all p < tjs
and 1 for all p ≥ tjs, p = 0, · · · ,Tmax. Variables yjms replace
the products βjs · δjm. We now present the model, followed by
an explanation of the objective function and constraints.

Max
(
w1 · rNPV + w2 · V ′′

(
F1
(
V ′

11, · · · ,V ′

J1
)
,

· · · ,FV
(
V ′

1V , · · · ,V ′
JV
)))

, (1)

subject to:
J+1∑
j=0

Mj∑
m=1

yjms

(
cjm +

K∑
k=1

ck · rkjm · djms

)
+ NPVUP (1 − τs) ≥ rNPV , ∀s = 1, · · · , S, (2)

yjms ≤ βUP · δjm, ∀j = 0, · · · , J + 1, ∀m = 1, · · · ,Mj,

∀s = 1, · · · , S, (3)

yjms ≤ βjs, ∀j = 0, · · · , J + 1, ∀m = 1, · · · ,Mj,

∀s = 1, · · · , S, (4)

yjms ≥ βjs −
(
1 − δjm

)
βUP, ∀j = 0, · · · , J + 1,

∀m = 1, · · · ,Mj, ∀s = 1, · · · , S, (5)

yjms ≥ 0, ∀j = 0, · · · , J + 1, ∀m = 1, · · · ,Mj,

∀s = 1, · · · , S, (6)

βjs =

Tmax∑
p=1

(
1 +

⌢
r
)−p (

tpjs − tp−1
js

)
, ∀j = 0, · · · , J + 1,

∀s = 1, · · · , S, (7)
Tmax∑
p=1

p
(
tpjs − tp−1

js

)
= tjs, ∀j = 0, · · · , J + 1,

∀s = 1, · · · , S, (8)
Tmax∑
p=1

(
tpjs − tp−1

js

)
= 1, ∀j = 1, · · · , J + 1,

∀s = 1, · · · , S, (9)

tpis ≥ tpjs, ∀i ∈ P(j), ∀j = 1, · · · , J + 1,

∀p = 0, · · · ,Tmax, ∀s = 1, · · · , S, (10)

tpjs = 0, ∀j = 1, · · · , J + 1, ∀p = 0, · · · ,EFj − 1,

∀s = 1, · · · , S, (11)

tpjs = 1, ∀j = 1, · · · , J + 1, ∀p = LFj + 1, · · · ,Tmax,

∀s = 1, · · · , S, (12)

tp0,s = 1, ∀p = 0, · · · ,Tmax, ∀s = 1, · · · , S, (13)
S∑
s=1

τs ≥ γ · S, (14)

zij + zji ≤ 1, ∀i = 0, · · · , J , ∀j = 1, · · · , J + 1,

∀i < j, (15)

zij + zjh − zih ≤ 1, ∀i, j, h = 0, · · · , J + 1,

∀i ̸= j ̸= h, (16)

zij = 1, ∀i ∈ P(j), ∀j = 1, · · · , J + 1, (17)

tjs −

Mj∑
m=1

δjm · djms−M · zij ≥ tis −M ,

∀i, j = 0, · · · , J + 1, ∀i ̸= j, ∀s = 1, · · · , S, (18)

EFjs ≤ tjs ≤ LFjs, ∀j = 0, · · · , J + 1,

∀s = 1, · · · , S, (19)

φij − min
(
r̃kim, r̃kjm′

)
zij

− (1 − δim)
(
r̃max,k
ij − min

(
r̃kim, r̃kjm′

))
−
(
1 − δjm′

) (
r̃max,k
ij − min

(
r̃kim, r̃kjm′

))
≤ 0,

where r̃max,k
ij = max

(
max

m=1,··· ,Mi
r̃kim, max

m′=1,··· ,Mj
r̃kjm′

)
,
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and r̃kjm =

{
rkjm if 0 < j < J + 1

Rk if j = 0 or j = J + 1,

∀i = 0, · · · , J , ∀j = 1, · · · , J + 1, ∀i ̸= j, ∀k = 1, · · · ,K ,

∀m = 1, · · · ,Mi, ∀m′
= 1, · · · ,Mj, (20)

Mj∑
m=1

δjm = 1, ∀j = 0, · · · , J + 1, (21)

∑
j∈{1,··· ,J+1}\{i}

φkij =

Mi∑
m=1

r̃kim · δim, ∀i = 0, · · · , J ,

∀k = 1, · · · ,K , (22)∑
i∈{0,··· ,J}\{j}

φkij =

Mj∑
m=1

r̃kjm · δjm, ∀j = 1, · · · , J + 1,

∀k = 1, · · · ,K , (23)

0 ≤ φkij ≤ min
(

max
m=1,··· ,Mi

r̃kim, max
m=1,··· ,Mj

r̃kjm

)
,

∀i = 0, · · · , J , ∀j = 1, · · · , J + 1, ∀i ̸= j,

∀k = 1, · · · ,K , (24)

V ′
jv =

Mj∑
m=1

δjm · Vjmv, ∀v = 1, · · · ,V ,

∀j = 1, · · · , J . (25)

The objective function (1) aims to maximize a weighted
sum of the project’s rNPV and value. The weighted-sum
approach is commonly used in multi-objective optimization
in general [65] and is applied in a number of project
scheduling papers (for example, [28]; [66]). Constraints (2)
indicate whether a scenario’s NPV is greater than the project’s
rNPV . Initially, these constraints would be nonlinear because
the positive or negative cash flow associated with each
activity mode, cjm +

∑
k ck · rjkm · djms, would have to be

multiplied by the discount factor variable and the indicator
variable, βjs · δjm, indicating that the cash flow would have
to be discounted according to the finish time and realized
only for the selected mode. To avoid this nonlinearity, we use
variables yjms in constraints (2). Constraints (3)–(6) guarantee
that yjms = βjs · δjm.

We use a discrete discount factor as in [67], which has

the form βjs =

(
1 +

⌢
r
)−tjs

. Constraints (7) linearize this
exponential function. Constraints (8) link the binary variables
tpjs with tjs and constraints (9) make sure that an activity
only finishes once. Constraints (10) further bound tpjs, since
a predecessor will always assume the value of 1 before its
successor. Likewise, constraints (11) and (12) fix the value
of tpjs for finish times before the early finish and after the late
finish, respectively, and constraints (13) fix the value for the
initial dummy activity. Constraint (14) counts the fraction of
scenarios that yield the rNPV and force this fraction to remain
above the predetermined threshold.

The following constraints were introduced by us in a prior
conference paper [64]. Constraints (15) and (16) avoid cycles

of 2 and 3 or greater, respectively, thus guaranteeing that the
network is acyclic [51], [68]. Constraints (17) enforce the
precedence constraints. Constraints (18) link the continuous
activity finish time variables with the binary sequencing
variables. Constraints (19) give upper and lower bounds
for the activity finish times. Constraints (20), from [51],
connect the continuous resource flow variables with the
binary sequencing variables and the binary mode variables.
Constraints (21) force the selection of only one mode per
activity. Outflow constraints (22) ensure that all activities,
except for J+1, send their resources to other activities. Inflow
constraints (23) ensure that all activities, except for activity 0,
receive their resources from other activities. Constraints (24)
bound the flow variables with the maximum resource
consumption modes. Finally, constraints (25), which we
introduced in [50], determine the value attributes according
to the selected modes.

With the linearization of the constraints described above,
if the project’s value function is linear, the MIP is a mixed
integer linear program (MILP) and can be solved with a
commercial solver. We use this method as a benchmark in
the computational experiments (Section V).

We previously presented a scenario-based MIP model for
the multimode RCPSP (MRCPSP) with the objective of
minimizing the duration in [64]. In this paper, we extend that
model by incorporating the following innovations: 1) The
new objective function that jointly maximizes the robust
NPV and the project value; 2) Additional constraints that
capture the NPV and value aspects of the project; 3) The extra
variables and constraints for linearizing the non-linear terms
in the model.

III. THE REINFORCEMENT LEARNING SOLUTION
From learning to play backgammon at near the level of the
world’s best players [69], through landing unmanned aerial
vehicles (UAVs) [70], beating the highest ranked players
in Jeopardy! [71], and human-level performance in Atari
games [72], RL has been successful in applications for
uncertain environments. This success is the factor motivating
our application of RL to the formulation discussed in
Section II. RL-based heuristics have been applied to project
scheduling [73], [74], [75], [76], but to the best of our
knowledge, [30] is the only study that tackled multimode
problems involving chance constraints.

The RL model begins with an agent in state S. It takes
action A and transitions to state S ′, earning reward R′.
Then it performs action A′, transitioning to state S ′′, and
earning rewardR′′, and so on. The agent’s life trajectory can
be expressed as S,A,R′,S ′,A′,R′′,S ′′,A′′,R′′′,S ′′′,A′′′,
etc. The agent follows a policy π (S,A) that indicates which
action it should choose at each state. The goal of the RL
problem is to learn a policy that maximizes the agent’s
reward. We also define an action-value function q (S,A, ) as
the estimated reward for choosing action A on state S and
then following policy π (S,A) [30].
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TABLE 3. Additional notation for the RL method.

Applying the RL model to the formulation presented in
Section II, we define a state as project activity j. The agent
undertakes an action by choosing a mode m̂j and start time
t̂j for activity j, and then moves on to the next activity. After
selecting modes and start times for all activities j = 1, · · · , J ,
it can calculate its reward R (j,m, t). As it receives rewards,
it learns the action-value function q (j,m, t) and which policy
π (j,m, t) to follow.
The RL method that we apply in this paper is Monte

Carlo control (MCC), based on [77]. We employed MCC
because it fits best the problem at hand, making full use of
Monte Carlo simulation to run the project plans, determine
the cumulative probability distributions for rNPV , and obtain
an exact value of the reward for each simulation run, without
the need for bootstrapping, i.e., estimating the reward based
on another estimate.MCC is a state-of-the-art RLmethod that
has been employed in recent works such as [78], [79], [80],
[81], [82], [83], [84], [85], and [86] to solve various problems
in different domains. Table 3 summarizes our RL notation,
in addition to the notation employed in the quantitativemodel.
Our pseudocode and an explanation of our MCC method
follows. The main procedure is shown in Algorithm 1.
Our algorithm starts with the initialization of the

action-value list (Algorithm 2). For each activity, the action
taken is selecting the mode and the start time. We use η

start times, equally spaced from zero to an upper bound,
the maximum sequential project duration. We initialize the
table with artificially high values, a technique known as
optimistic initial values, in order to allow initial exploration
of all actions.

The action-value list is then used to calculate the policy
(Algorithm 3). To balance exploration and exploitation,
we adopt an ϵ-greedy policy, meaning that in the policy list,
we ascribe a probability ϵ of taking a random action and a
probability (1 − ϵ) of taking a greedy action, i.e., the action
with the highest action value.

Next, we take an action based on the policy (Algorithm 4),
selecting, for each activity, the mode and start time according

Algorithm 1Main Procedure for MCC

initialize_action_values
(
J , η,Mj,LSj, ∀j = 1, · · · , J

)
from Algorithm 2;
while not stopping criterion:

calculate_policy
(
J , η,Mj, q(j,m, t), ∀j =

1, · · · , J
)
from Algorithm 3;

choose_mode_start
(
π (j,m, t), dMLjm̂ ,P(j), ∀j =

1, · · · , J
)
from Algorithm 4;

calculate_reward
(
sorted(m̂j),P(j), η, dMLjm̂ , rkjm̂,

Rk , ∀j = 1, · · · , J , ∀k = 1, · · · ,K
)
from

Algorithm 5;
update_action_values_RL1

(
J , m̂j, t̂j, ∀j = 1, · · · , J

)
from Algorithm 6;
or
update_action_values_RL2

(
J , m̂j, t̂j, ∀j = 1, · · · , J

)
from Algorithm 7;

Algorithm 2 Initialization of the Action-Value List
def
initialize_action_values

(
J , η,Mj,LSj, ∀j = 1, · · · , J

)
:

for activity j = 1, · · · , J :
for mode m = 1, · · · ,Mj:

for start time t = 0, LSj
η−1 ,

2LSj
η−1 , · · · ,LSj:

q (j,m, t) = large number;
return q (j,m, t) , ∀j = 1, · · · , J , ∀m =

1, · · · ,Mj, ∀t = 0, LSj
η−1 ,

2LSj
η−1 , · · · ,LSj

Algorithm 3 Policy Calculation

def calculate_policy
(
J , η,Mj, q (j,m, t) , ∀j =

1, · · · , J
)
:

for activity j = 1, · · · , J :
q∗

= maxm,t q (j,m, t);
x = number of action values for which
q (j,m, t) = q∗;

π (j,m, t) =
1
x

(
1 −

ϵ

η ·Mj

(
η ·Mj−x

))
, ∀m,

t | q (j,m, t) = q∗

ϵ

η ·Mj
, ∀m, t | q (j,m, t) ̸= q∗

;

return π (j,m, t) , ∀j = 1, · · · , J ,
∀m = 1, · · · ,Mj, ∀t = 0, LSj

η−1 ,
2LSj
η−1 , · · · ,LSj

to the probabilities in the policy list. Then, by right-shifting
the activities, adding to each start time the finish time of
the latest-finishing immediate predecessor, we adjust the
start times to make them precedence-feasible. This means
that if we select a start time of t̂j for activity j, we right-
shift this activity to start at time t̂j after its immediate
predecessor finishes. The finish times are determined using
the most likely duration of each activity in its selected mode.
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Algorithm 4 Select Activity Mode and Start Time

def choose_mode_start
(
π (j,m, t) , dMLjm̂ ,P (j) ,

∀j = 1, · · · , J
)
:

for activity j = 1, · · · , J :
choose m̂, t̂ according to π (j,m, t);
if P (j) == ∅:

t̂∗j = t̂j ;
else:

t̂∗j = t̂j + max
(
t̂∗i + dMLim̂ , ∀i ∈ P (j)

)
;

return sorted
(
m̂j | j ∈ {1, · · · , J},

m̂j ∈ {1, · · · ,Mj}, key = t̂∗j
)

Thereafter, we sort all activities according to their adjusted
start times, obtaining a precedence-feasible activity list with
the activities and their selected modes. The construction of
this precedence-feasible activity list is the first of two steps
of the implementation of the start time selection. The second
step (Algorithm 5, described below) is implemented in the
calculate_reward function.

Note that the selection of start times to generate an activity
list is really a surrogate for selecting different combinations
of precedencies between the activities. The range of possible
start times between zero and the upper bound provides
ample options of early start or postponement of each activity,
providing a richer search space with the possibility of better
solutions. Furthermore, the adjustment to generating only
precedence-feasible activity lists avoids both wasting runtime
with infeasible solutions and discarding potentially good
solutions.

The next step in the algorithm is to calculate the reward
for the actions taken (Algorithm 5). Here, we implement the
second step of the start time choice: the insertion of each
activity in the baseline schedule. We handle each activity
sequentially. First, we determine the interval between the
earliest precedence-feasible start and the latest activity finish
time of the activities scheduled until this point. This interval
is divided into η equal periods and we start the activity
according to the index of its start time t̂j in the policy list.
For example, if t̂j is the third start time in the policy list,
we use the third period in the interval, rounding it to the
nearest activity finish time. If there are not enough resources,
we repeatedly right-shift the activity to the next scheduled
activity finish time until there are enough resources. With
the schedule in place, we calculate the objective function
value. To calculate rNPV we simulate the NPV cumulative
distribution function (CDF). For example, if the decision-
makers desire a 95% probability of delivering the rNPV , the
baseline schedule is simulated 1000 times, the realized NPVs
are sorted in increasing order, and the 50th element of the
NPV list is the rNPV . We define the reward as the objective
function value. As pointed out in Section II, to calculate the
objective function value we define weights w1 and w2 for
rNPV and project value, respectively (equation 1); repeating

Algorithm 5 Calculating the Reward

def calculate_reward
(
sorted

(
m̂j
)
,P (j) , η, dMLjm̂ ,

rkjm̂,Rk , ∀j = 1, · · · , J , ∀k = 1, · · · ,K
)
:

t∗sorted(m̂j)[0] = 0;

for activity mode m̂j in sorted
(
m̂j
)
[1 : ]:

I = b− a, where b = max
(
t∗j + dMLjm̂

)
, a =

min
(
t∗j | t∗j ≥ t∗i + dMLim̂ , ∀i ∈ P(j)

)
;

t∗j = min
(
tj | tj ≥

[
a, a+

I
η−1 , a+ 2 I

η−1 ,

· · · , b
]
[π (j,m, t) .index]

(
t̂j
)
and rkjm̂ ≤

Rksurplus, ∀k = 1, · · · ,K
)
, where

Rksurplus = min[
tj,tj+dMLjm̂

)(Rk
−
∑

i∈A(j) r
k
im̂

)
;

returnR
(
j, m̂j, t̂j

)
= w1 · rNPV

+w2 · V ′′

(
F1
(
V ′

11, · · · ,V ′

J1

)
, · · · ,FV

(
V ′

1V , · · · ,

V ′
JV

))
| Pr

[
NPV ≥ rNPV

]
≥ γ, ∀j = 1, · · · , J

the algorithm for different weight values gives us different
points on the efficient frontier.

In [64], we introduced an RL algorithm for the MRCPSP
with the objective of minimizing the project duration. In this
paper, we extend that algorithm by incorporating a novel
feature: Algorithm 5, which allows the agent to select the start
time of each activity from a set of feasible options, rather
than always choosing the earliest possible start time. This
feature enables the agent to account for the impact of positive
and negative cash flows. For instance, when an activity has
a negative cash flow, delaying its start time can increase the
NPV by reducing the present value of the cash outflow.

The last step in the algorithm is to update the action-value
list using the reward. We can choose from two update
methods, RL1 (Algorithm 6) and RL2 (Algorithm 7). For
both, we only update the action values corresponding to the
selected modes and start times. RL1 learns an action value by
averaging all the rewards this action (mode and start time)
has received each time it was taken. This signifies that new
rewards have an increasingly smaller impact the more the
actions are taken. The means are calculated incrementally to
speed up the process and savememory.RL2 updates the action
values using a formula very similar to the incremental mean
from RL1, but instead of using the decreasing step 1

N , it uses
a constant step α, giving an exponentially large weight to the
last action. These methods are explained in [77]; RL1 and,
to a lesser extent, RL2 appear in the recent MCC papers listed
above in this section [78], [79], [80], [81], [82], [83], [84],
[85], [86].

We repeat the process, calculating the policy based on the
updated action values, selecting the modes and start times
based on the policy, calculating the reward, and updating
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Algorithm 6 Action-Value Update Using Average
Rewards (RL1)

def update_action_values_RL1
(
J , m̂j, t̂j,

∀j = 1, · · · , J
)
:

for activity j = 1, · · · , J :
q
(
j, m̂j, t̂j

)
+ =

1
N

(
R
(
j, m̂j, t̂j

)
−q

(
j, m̂j, t̂j

))
;

return q
(
j, m̂j, t̂j

)
, ∀j = 1, · · · , J

Algorithm 7 Action-Value Update Using Constant
Step (RL2)

def update_action_values_RL2
(
J , m̂j, t̂j,

∀j = 1, · · · , J
)
:

for activity j = 1, · · · , J :
q
(
j, m̂j, t̂j

)
+ = α

(
R
(
j, m̂j, t̂j

)
−q

(
j, m̂j, t̂j

))
;

return q
(
j, m̂j, t̂j

)
, ∀j = 1, · · · , J

FIGURE 1. Project network diagram.

the action values, until reaching a stopping criterion. The
solution takes the form of a baseline schedule consisting of
the selected activity modes and start times, the rNPV and the
project value.

IV. EXAMPLE
We use a radar development example, a simplified version
of a real project [30], to demonstrate our problem and RL
solution approach. The AON network of the project is shown
in Fig. 1 and Table 4 gives the five project activities with
two modes each, the durations (O, ML and P) for optimistic,
most likely and pessimistic scenarios, the fixed cost (FC)
of each activity, the resources per period needed for each
activity mode (engineers, E, and technicians, T), the value
parameters, and the income received after completing the
activity. Three activities have negative cash flows, comprising
the fixed and resource costs, and two of them have positive
cash flows due to the income.

This is a practical example of how to define and compute
value. The value attributes of range, quality, and reliability
(R, Q and Re in Table 4) reflect the needs and expectations
of the project stakeholders. They are influenced by the value
parameters in each activity mode. We use the notation from
Section II and have three value attributes, V = 3. The radar
equation [87] is applied to calculate the range (R), quality
(Q) and reliability (Re) of the radar system [46], since they
depend on technical parameters such as transmitter power
and antenna gain, which vary according to the technological

alternatives considered for eachmode. Themode selection for
the project plan will affect not only the value, but also the cost
and NPV, thus integrating both project value components.

We now present the value functions for each attribute,
Fv
(
V ′

1v, · · · ,V ′
Jv

)
, J = 5, v = 1, 2, 3. The equation

for the radar range (R) is F1 = ([TP] · [RS] · [AG])0.25,
where [TP] is transmitter power, [RS] is receiver sensitivity
and [AG] is antenna gain, extracted from the activities of
‘‘transmitter design’’ (TD), ‘‘receiver design’’ (RD), and
‘‘antenna design’’ (AD), respectively, in Table 4. Using the
notation from Section II, [TP], [RS], and [AG] are decision
variables V ′

21,V
′

31, and V ′

41, respectively. When we select
one of the two modes, say, for the TD activity, we are
also determining which of the parameter values, V211 (50
in Table 4) or V221 (100 in Table 4), will be assigned to
the decision variable V ′

21 ([TP] in this example). This same
mechanism applies for decision variables V ′

31 and V
′

41 ([RS]
and [AG]), allowing us to compute the value of function F1,
the value for the (R) attribute.

The equation for the radar quality (Q) is F2 =

100 [SEQ] · [QT ] · [QR] · [QA] · [QI ] , where the factors
[SEQ] , [QT ] , [QR] , [QA] , and [QI ] indicate the impact
of systems engineering, transmitter, receiver, antenna, and
integration on quality, respectively. The equation for the
radar reliability (Re) is F3 = 100 [AR] · [IR] · [TR] ·

[RR] , where the factors [AR] , [IR] , [TR] , and [RR]
denote the reliability of antenna design, integration effort,
transmitter, and receiver, respectively. The value of the
project V ′′

(
F1
(
V ′

11, . . . ,V ′
J1
)
, . . . ,FV

(
V ′

1V , . . . ,V ′
JV
))

is calculated by a weighted sum of the three value attributes,
a technique that is widely used in multi-attribute utility
theory [88]: V ′′

=
7
21F1 +

8
21F2 +

6
21F3.

There are a total of 11 engineers and four technicians
available and the resource unit costs per period are $100
for engineers and $50 for technicians. We want to solve the
problem for different weightsw1 andw2 and find the efficient
frontier for an rNPV probability of 95%. The result is
shown in Fig. 2 with four non-dominated points. We reached
similar objective values using RL1 and RL2. For convenience,
we normalized the project values to be between 0 and 100 as
in [5]. Decision makers can conduct a tradeoff analysis and
select the solution that best meets stakeholders’ needs and
requirements.

As explained in Section III, rNPV is determined in each
iteration by simulating the NPV CDF. For the point (76.62,
40,772) in Fig. 2, the CDF plot is shown in Fig. 3 and
the rNPV is marked. For any solution that the decision
makers select, a baseline schedule can be constructed easily
by the process highlighted in Algorithm 5 and explained
in Section III. The solution highlighted above produces the
Gantt chart shown in Fig. 4. The activity durations are the
most likely durations from the three-point estimates, and
the selected modes are shown next to the activities.

It is interesting to visualize how our RL agent learns better
solutions. Recall from Section III that the agent wants to learn
the best actions, i.e., select activity modes and start times
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TABLE 4. Summary of data for radar development activity modes.

FIGURE 2. Efficient frontier for radar project.

FIGURE 3. NPV cumulative distribution for the solution with
rNPV = 40,772.

that will maximize its reward. In our RL model, we defined
the reward as the weighted sum of rNPV and project value;
thus, the agent will learn the action values, generate policies
from the action values, and take actions based on the policies,
seeking to maximize the objective function.

Fig. 5 exhibits the learning curves for both action-value
updating variants,RL1 andRL2.We see at the beginning of the
curves the effect of the optimistic initial values (Section III):
even though a near-maximum objective was found early on,
the agent kept searching haphazardly, ‘‘thinking’’ that it could

FIGURE 4. Gantt chart for a project with value = 76.62 and rNPV = 40,772.

FIGURE 5. Radar example learning curves for RL1 and RL2: 95% rNPV
probability, w1 = w2 = 0.5.

receive a better reward by taking other actions, since the
action-value list was initialized with artificially high values.
The objective eventually stabilized on about 20,000. Since
we used ϵ-greedy policies (Section III), sometimes the agent
still wanted to explore, so the project delivery never settled
completely on themaximum, jumping occasionally to smaller
objective values.

V. HYPOTHESES AND EXPERIMENTAL SETTING
In this section, we explain our factorial experiment, summa-
rized in Table 5. The experiments were conducted to prove
two hypotheses:

A. HYPOTHESIS H1
Our RL methods are suitable for solving the formulation
presented in Section II, compared to established benchmarks.

B. HYPOTHESIS H2
The start time selection RL actions can be leveraged for
solving the problem with positive and negative cashflows.
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TABLE 5. Fractional factorial design.

To evaluate H1, we selected two additional methods as
benchmarks. First, we solved our MILP from Section II
using the Python interface for the commercial solver Gurobi
version 9.5, and second, we employed tabu search (TS),
applied in several project scheduling studies.4 In the different
TS applications in the literature, the general TS algorithm,
described in [91], is tweaked specifically for the problem at
hand. We selected a multimode RCPSPDC application [92],
closer to our subject matter, thus simplifying the adaptation
of TS to our problem.5 Additionally, we compared the
performances of the algorithms for three project sizes, each
with three modes per activity: 10 and 20 activities, which are
small problems with greater potential of quickly covering a
wider search space and obtaining faster solutions, and 50 and
100 activities, closer to real-life projects. To evaluate H2 we
ran our RL algorithm using both methods for updating the
action values described in Section III, RL1 and RL2, and
compared them with RLES1 and RLES2 , a simplification of
RL1 and RL2 where all activities are scheduled as early as
possible.

For the 10- and 20-activity projects we used the complete
PSPLIB J10 and J20 datasets [93], and for the 50- and
100-activity projects, the complete MMLIB50 and
MMLIB100 datasets [94]. These datasets are the standard
in the multimode project management literature [95].
We analyzed projects with two types of cash flows: positive
cash flows only (+), and cash flows that are both positive
and negative (+−). In the former, the NPV criterion is a regular
scheduling objective, meaning that in a given schedule it is
never beneficial to delay an activity if it could be scheduled
earlier. In the latter, this observation does not hold [96].

Because of the long runtimes, the solver runs were
performed only for 10- and 20-activity projects.6 The
TS application in [92] was developed for a deterministic
multimode RCPSPDC problem with positive cash flows, and
thus in this paper we use TS as a benchmark only for settings

4A literature review on TS applications in project scheduling falls outside
the scope of this paper. Recent research includes [27], [28], [89], and [90].

5We opted for TS because in that publication it produced smaller maximal
relative deviations from the best solutions than simulated annealing.

6In our tests the solver could not generate a single incumbent solution for
a sample of four 50-activity projects after 48 hours of runtime. Even when
we tried to run the sample for 100 scenarios instead of 1000, after 6.8 hours
the solver was still running the linear relaxation and had not yet started to
solve the MIP.

with positive cash flows (see Appendix A for more details
about our TS implementation).

We calculated the activity start times for RLES1 and RLES2 in
the calculate_reward function (Algorithm 5), as t̂∗j = min

(
tj |

tj ≥ t∗i +dMLim̂ , ∀i ∈ P(j) and rkjm̂ ≤ Rksurplus, ∀k = 1, · · · ,K
)
.

The start times in TS were also calculated this way. RES1
and RES2 were the only RL methods used with the positive
cashflow instances. In the positive and negative cashflow
instances, they were used for comparison to evaluate the
improvement in the objective function obtained by selecting
the start times instead of starting as early as possible.

The stopping criterion for all RL methods was 1000 iter-
ations after having visited all states with optimistic initial
values. For TS, we used two stopping criteria: the maximum
runtime between RLES1 and RLES2 for the corresponding
instance7 and double this time (TSD). For the solver, because
of the long runtimes, we set the gap between the lower
and upper objective bounds to 10% (Gurobi parameter
MIPGap = 0.1) and a maximum runtime of 30 min-
utes (Gurobi parameter timeLimit = 1800). We employed
1000 scenarios for the solver for the 10-activity runs and
100 scenarios for the 20-activity experiments (because of the
long runtimes); we used 1000 simulation runs to calculate
each RL reward and TS objective function.

To determine the durations of different activity modes,
we employed a three-point estimation technique. The
dataset’s duration was defined as the most likely duration,
while the pessimistic duration was set at 2.25 times this value.
Similarly, the optimistic duration was determined to be half
of the most likely duration. These factors, which can be found
in [97], align with the widely recognized observation that
activity durations in project management tend to be skewed
towards longer durations (refer to [98] for an example).
To simulate realized durations for the activities, we utilized
a triangular distribution, a commonly used method in project
simulation (see the scenario presented in [99]). The resulting
durations were then rounded to the nearest integer. The
optimistic, most likely and pessimistic durations were used
for the triangular distribution lower limit, mode and upper
limit parameters, respectively [100].

The objective function was evaluated with weights
w1 = w2 = 0.5. We set γ , the desired probability of the
project to yield the rNPV , to 0.95. We defined the discount
rate r̂ = 0.01 per period and generated positive activity mode
cashflows, randomly drawing from uniform distributions
from the interval (0, 10), and positive and negative cashflows
from the interval (-100, 100). At the end dummy activity,
a final payment of 10 was received in the experiments with
positive cash flows; in the positive and negative cash flows,
the final payments were 1000, 2000, 5000, and 10,000 for 10,
20, 50, and 100 activities, respectively.

To tune the RL algorithm parameters, we undertook a
full factorial experiment based on the F-Race algorithm,
following [101]. The inputs for F-Race are a target algorithm

7We wished to allow TS at least the same RL runtime.
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TABLE 6. Configurations evaluated in the factorial experiment.

(in our case, the RL algorithms), a set of configurations,
a set of problem instances, and a performance metric (in
our case, the objective function). F-Race internally employs
statistical tests to guide its search process, as follows. When
a minimum sample of instances is run for all configurations,
a rank-based Friedman test is performed. If the test indicates
significant performance differences, Wilcoxon signed rank
(WSR) pairwise tests are executed and the configurations
with inferior performance are gradually eliminated (for more
details, refer to [101]). The advantage of using F-Race in the
factorial experiment is that we do not need to run all instances
for all configurations, only for the ‘‘winners’’ at each step.

To run F-Race in our experiments, we randomly shuffled
the complete datasets. In most cases, one best configuration
(with the highest objective function values) was found
after running some instances; in some cases, there were
ties. We conducted the Friedman and WSR tests with a
significance level of 0.05. In all experiments, after finding
the best configuration, we continued running it on the
remaining instances; thus, the best configurations were run
on the complete datasets. Table 6 details the configurations
evaluated.8

We used two value attributes (V = 2) and defined
their relative weights as 0.6 and 0.4. We established an
additive project value function Fv for each attribute, forming
the linear objective function 0.5rNPV + 0.5

(
0.6

∑J
j=1 V

′

j1

+0.4
∑J

j=1 V
′

j2

)
that could be tackled by Gurobi. The value

parameters Vjmv were drawn from uniform distributions from
the interval (0, 10) for the experiments with positive cash
flows and from the interval (0, 100) for positive and negative
cash flows.

The algorithms were coded in Python. We ran all
experiments on a computer with an Intel(R) Core (TM)
i7-7700 CPU 3.60GHz, 8 GB RAM. To analyze the data,
we conducted pairwise comparisons of the objective function
value generated by each method and used JMP to calculate
the p-values (p) for the WSR tests with a significance level of
0.05. Pareto analysis was also used to gain more insight into
the results.

VI. RESULTS
This section begins by examining the leading RL algorithm
configurations found by the full factorial experiment.We then
present the experiment results for instances with positive
cash flows, and those with cash inflows and outflows. The
files with the datasets used and the results obtained can be
accessed in [102].

8These parameter values are found in examples in [77] and other RL
resources.

TABLE 7. Best configurations. Those for RL1 and RLES
1 experiments are

represented by the tuple (ϵ; η), and for RL2 and RLES
2 experiments, by the

tuple (ϵ; η; α).

A. PARAMETER TUNING FACTORIAL EXPERIMENT
Table 7 lists the top configurations for all RL algorithms and
experiments.

The best value found for the probability of random action
ϵ and for step-size parameter α was 0.1. As regards the
number of possible start times to select from, η, discounting
two ties, the top values were 2, followed by 10. In our
shared results [102], we show the F-Race process gradually
narrowing down to the best configurations.

B. POSITIVE CASH FLOWS
Strong evidence of the suitability of the RL methods
was found. Table 8 presents the results of the pairwise
comparison. The average percent difference (%dif) andWSR
p-value (p) for each pair of methods is shown.

TS and TSD generated objectives closest to the solver
values in the smaller 10- and 20-activity projects, outper-
forming RLES1 and RLES2 . For the larger 50- and 100-activity
projects, however,RLES1 outperformed the TS algorithms, and
RLES2 only lost to TSD in 50-activity projects. The average
difference between the solver solutions and other methods
increased for 20 activities in relation to ten activities.

Note that throughout this subsection and the next one,
we considered only solver solutions with a maximum gap
between the lower and upper objective bounds of 0.1 rounded
up to the nearest tenth. The solutions with larger gaps were
inferior; including them, thus, would distort the results.
Please refer to Appendix B for the results with gaps larger
than 10%.

Table 9 reports the number of times each method generated
the highest objective value. The results are in complete
agreement with the pairwise comparison shown above.
Where the solver found a solution within the time limit,
the MILP solution generated more best solutions. Otherwise,
TSD gave better results for ten and 20 activities, RLES1
outperformed the other methods for 50 and 100 activities, and
RLES2 outperformed TSD for 100 activities.

C. POSITIVE AND NEGATIVE CASH FLOWS
The tests showed that RL1 generated the objective values
closest to the MILP solver solutions and outperformed the
other methods. The MILPs for the 20-activity projects, which
had more difficulty in generating feasible solutions in the
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TABLE 8. Pairwise comparison between the objective values for projects with positive cash flows only. Data is for the pairwise difference between the
row value and the column value.

TABLE 9. Pareto count of highest objective values (in percentage).

30-minute runtime, only produced statistically significant
comparisons with the RL2 variants. Table 10 highlights
the results of the pairwise comparisons. We omitted the
differences RL1 − RLES2 and RL2 − RLES1 because we are
interested in comparing start time selection with early start
schedule generation for the same RL methods (Hypothesis
H2). Accordingly, in all cases, the non-early start strategies
generated better results than the early start ones.

The count of the number of times each method generated
the highest objective value (Table 11) reflects the results
obtained above. RL1 found more best solutions than RL2 and
RLES1 , and RL2 outperformed RLES2 .

Our results lead us to accept Hypotheses H1 and H2,
validating both the quality of our RL results, particularly RL1,
and the leverage of RL start time selections to increase the
objective values.

VII. DISCUSSION
Although all values for the probability of random action
ϵ and step-size parameter α inputted into the F-Race
algorithm are found in the literature, the best value found
for both parameters, 0.1, is consistent with [77], where this
configuration is the most common one employed.9

If we turn to the number of possible start times from which
to select η, in most RL variants and project sizes, two start-
time actions, an early start and a late one, were sufficient
to generate the highest objective values. Presumably, there
is a balance between, on one hand, the improved learning

9This configuration is also common in the well-known data science
and machine learning resources such as towardsdatascience.com and
geeksforgeeks.org.

generated by the higher frequency in which each start-time
action is taken due to the fewer number of start-time options,
and on the other hand, the potential gains accrued by a wider
range of start-time alternatives. In most cases, the improved
learning offset the finer start-time tuning. In some cases,
η = 10 was found to be superior; understandably, with one
exception, this was observed in the larger 50- and 100-activity
projects, where the longer project durations could warrant the
need for more intermediary start-time actions between the
early and late starts.

As hypothesized, our experiments validate the usefulness
of RL as a method for analyzing the tradeoff between
the project value and its net present value compared to
established benchmarks (Hypothesis H1). Our RL agent
captures a signal at each iteration (i.e., the reward) indicating
how good the solution is, and immediately acts upon this
signal. Therefore, from the beginning, an informed search is
launched based on online information. TS, in contrast, is a
neighborhood search with a memory mechanism to avoid
being trapped in local optima. It does not use information
obtained during the search to direct its next steps. Apparently,
this works well for smaller projects, where the search space
can be thoroughly covered by TS’s local search mechanism.
For example, for 10-activity projects, the average difference
between TSD and TS was only 0.06% (Table 8) and in
238 instances (almost half the dataset) the difference was
null, meaning that the search space was already covered
before doubling the runtime. This lack of learning, however,
hampers TS’s ability to embark on more promising sections
of the search space earlier on, and this factor could well
explain why RLES1 outperformed TS for 50- and 100-activity
projects, even when TS was given double the time.

As far as TS is concerned, the results point to the likelihood
of a deterioration in the quality of its solutions vis-‘a-visRLES1
as the projects increase in size. This can be seen in the 50- and
100-activity projects if we observe the significant differences
between the solutions (Table 8; for 100 activities RLES2 also
outperformed TSD) and the smaller percentage of instances
where the TS algorithms rendered the highest objective values
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TABLE 10. Pairwise comparison between the objective values for projects with cash flows that are both positive and negative. Data is for the pairwise
difference between the row value and the column value.

TABLE 11. Pareto count of highest objective values (in percentage).

(Table 9). It would seem that the explanation reported above
applies here also: larger search spaces slow down the process
of exploring superior search space sections because of TS’s
lack of exploitation or learning.

A significant difference was identified between RL1,
RL2 and their early start counterparts, confirming Hypothesis
H2. These values correlate fairly well with [13] and further
support the idea of NPV improvement by moving activity
start times. We accomplished this in the RL framework
by integrating the activity moves into the RL actions. The
first step of the start time selection was implemented for
the experiments with positive cash flows where the RL
actions generated an activity list that was then decoded into
a unique early start schedule (this process is known as a
serial scheduling scheme; for a detailed review on this topic,
see [103]). This worked well with the positive cash flows
because, as pointed out in Section V, for a regular scheduling
objective it is never beneficial to delay an activity if it
could be scheduled earlier. The second step of the start time
selection was implemented for the experiments with positive
and negative cash flows, where the activity list no longer
generated a unique early start schedule, but rather a schedule
with start times determined by the start time selection actions.

As expected, the solver generated the best results. Nev-
ertheless, as was noted in the Introduction, the problem
is NP-hard and thus the long runtimes prevent the use
of this method for larger problems. Even for 10-activity
projects, the solver could not find an incumbent solution
after the 30-minute limit in 39% of the projects for the
experiments with positive cash flows,10 and in 43% of
the projects for the experiments with positive and negative
cash flows. For 20-activity projects, these figures grow to
85% and 95%, respectively, even with the reduced number

10Note that even for positive cash flows, an early-start schedule is not
necessarily feasible because of the resource constraints. This problem is,
thus, NP-hard, which explains the long runtimes.

FIGURE 6. Solver and RLES
1 runtime distributions for experiment with

positive cash flows and ten activities. The high frequency on 1800s
corresponds to the runtime limit.

FIGURE 7. Solver and RL1 runtime distributions for experiment with
positive and negative cash flows and ten activities. The high frequency on
1800s corresponds to the runtime limit.

of scenarios considered in the MILPs. Comparing the
solver and RL1 runtime distributions for both experiments
(Figs. 6 and 7), MILP solver-based solutions tend to be a less
interesting option.

We were surprised to find that RL1 and RLES1 outperformed
RL2 and RLES2 in all our experiments.11 Since the constant-
step action-value update gives larger weight to the last actions

11We applied RL2 trying to maximize a project value function and in some
cases RL2 outperformed RL1 [30].
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TABLE 12. Pairwise comparison between the objective values obtained with RL and TS and those obtained with the solver for positive cashflows for
10-activity projects. WSR tests for the 20-activity projects did not show statistical significance.

TABLE 13. Pairwise comparison between the objective values obtained with RL and those obtained with the solver for positive and negative cash flows.

and exponentially less weight to previous ones, we would
think that the RL2 and RLES2 results could be more promising:
the last decisions tend to be better because of the learning
and ascribing them more weight could more quickly point
to better policies. It would appear that RL2 and RLES2 could
find acceptable results with fewer iterations than RL1 and
RLES1 ; however, after more iterations, while RL1 and RLES1
stabilize the action values by averaging the rewards, RL2 and
RLES2 over-emphasize the last decisions, good or bad. This
short memory causes the forgetting of near-optimal policies
that could maximize the objective value. Further research is
required to consider potential upgrades to the constant-step
methods.

Finally, our findings suggest that analyzing the tradeoff
between the project value and its NPV using the RL method
can be a valuable tool for project managers. The near-optimal
solutions obtained can be used to plot the efficient frontier
between project value and rNPV and decision makers can
conduct a tradeoff analysis to select the project plan that
satisfies stakeholders’ requirements sufficiently.

VIII. CONCLUSION
This paper has investigated the tradeoff between project value
and its NPV in a stochastic multimode setting. We have
presented an MIP formulation for the problem using a
flow-based model with a project-specific value function and
a robust NPV decision variable, and modeled its robustness
by means of chance constraints, tackled using a scenario
approach. We have employed linearization techniques that
allowed us, in the case of linear benefit functions, to produce
MILP models that could be solved for small projects by a
commercial solver.

We have found a cutting-edge solution for the MIP
formulation using RL and illustrated its application with
an example. We have designed and conducted a frac-
tional factorial experiment and obtained satisfactory results
showing that the RL method is suitable for solving our
formulation (HypothesisH1) and that the activities’ start time
selection can be leveraged as RL actions for solving the
problem with positive and negative cashflows (Hypothesis
H2). Furthermore, this work has revealed that our RL method
is able to tackle large multimode projects with 50 and
100 activities, where the search space is very large.

The usefulness of our contribution lies in finding the
efficient frontier between the robust NPV and the project

value, enabling the decisionmakers tomake focused tradeoffs
between different alternatives of project plans. Since these
two factors represent the project scope and the product
scope, decision makers are presented with a more thorough
evaluation of each project alternative.

While results demonstrate the promise of the proposed
approach, scalability to highly complex projects remains
untested. Performance on large-scale programs with hun-
dreds of project activities or multi-year durations may expose
limitations in the optimization efficiency. Additionally,
expanding benchmarking to include comparisons against a
wider range of emerging metaheuristic and hyperheuristic
algorithms for project scheduling problems could further vali-
date effectiveness. Generalizability also requires examination
through real-world project data case studies and evaluation in
multiproject environments.

Several meaningful extensions present avenues for advanc-
ing the model. Applying state-of-the-art function approxima-
tion techniques may enhance scalability for mega-projects.
Variations that combine project- and portfolio-level goals
or integrate additional objectives such as flexibility metrics
could significantly increase applicability to practice.

APPENDIX A
THE TABU SEARCH (TS) ALGORITHM USED IN THIS
PAPER
As a benchmark we customized the general TS algorithm
found in [91] and adopted the solution representation
and neighborhood moves published in [92]. The following
adaptations were made for the formulation presented in
Section II:

• The objective function (1) from Section II was used
instead of the original pure NPV objective. As pointed
out in Section V, TS was designed for a regular
objective. Since our value function is time-independent,
it does not affect the regular objective attribute and thus
TS can be applied.

• The TS method was published for deterministic prob-
lems. To calculate the objective function in our stochas-
tic problem, we proceeded as in the RL algorithms: we
simulated 1000 project runs as shown in Algorithm 5
and explained in Section III, with the early start
simplification explained in Section V.

• There were no penalty functions since all our solutions
are feasible.

7514 VOLUME 12, 2024



C. Szwarcfiter, Y. T. Herer: Managing the Balance Between Project Value and Net Present Value

A discussion of TS falls outside the scope of this paper.
More details on this topic can be found in [91] and in the
references cited in footnote 3.

APPENDIX B
RESULTS FOR MIP GAPS LARGER THAN 10%
Aswas noted in the Results section, the solver results for large
MILP gaps were not considered because their low quality
would distort the results. In this subset of instances, the
solver was outperformed by all the other methods both for
the experiments with positive cashflows (Table 12) and for
those with positive and negative cashflows (Table 13).
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