IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 3 December 2023, accepted 17 December 2023, date of publication 25 December 2023,
date of current version 16 January 2024.

Digital Object Identifier 10.1109/ACCESS.2023.3346533

==l RESEARCH ARTICLE

Optimal Allocation of TCSC Devices in
Transmission Power Systems by a Novel
Adaptive Dwarf Mongoose Optimization

HASHIM ALNAMI', ALl M. EL-RIFAIE 2, (Senior Member, IEEE), GHAREEB MOUSTAFA"1,
SULTAN H. HAKMI', ABDULLAH M. SHAHEEN 3,
AND MOHAMED A. TOLBA“45, (Senior Membetr, IEEE)

!Electrical Engineering Department, College of Engineering, Jazan University, Jazan 45142, Saudi Arabia
2College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait

3Department of Electrical Engineering, Faculty of Engineering, Suez University, Suez, Egypt

#Nuclear Research Center, Reactors Department, Egyptian Atomic Energy Authority, Cairo 11787, Egypt
SElectrical Power Systems Department, National Research University “MPEL” 111250 Moscow, Russia

Corresponding authors: Ali M. El-Rifaie (ali.el-rifaie@aum.edu.kw) and Abdullah M. Shaheen
(abdullah.mohamed.eng19 @suezuni.edu.eg)

ABSTRACT This paper introduces a novel Improved Dwarf Mongoose Optimizer (IDMO) based on an
Alpha-Directed Learning Process (ADLP) for dealing with different mathematical benchmark models and
engineering problems. The dwarf mongoose’s foraging behavior motivated the DMO’s primary design.
Three social groupings are used: the alpha group, babysitters, and scouts. The unique suggested solution
includes an upgraded ADLP to boost searching abilities, and its upgrading mechanism is substantially led
by the improved alpha. First, the IDMO and DMO are put through their paces using CEC 2017 single
objective optimization benchmarks. Also, several recent optimization techniques are taken into contrast,
including artificial ecosystem optimization (AEO), aquila optimization (AQU), equilibrium optimization
(EO), enhanced slime mould algorithm (ESMA), Gorilla troops optimization (GTO), red kite optimization
(RKO), subtraction-average-based algorithm (SAA) and slime mould algorithm (SMA). Further, their
application validity is examined for optimal allocation of Thyristor Controlled Series Capacitor (TCSC)
devices in transmission power systems. The simulations are implemented on two different IEEE power
systems of 30 and 57 buses, and considering different numbers of TCSC devices. The suggested IDMO
and DMO are compared to several different current and popular techniques for all applications. The findings
from the simulation demonstrate that, in relation to efficiency and effectiveness, the suggested DMO beats
not only the standard DMO but also a large number of other contemporary solutions. For the first system,
considering three TCSC devices to be optimized and based on the mean acquired losses, the proposed
IDMO accomplishes 5.65%, 0.68%, 3.72%, 16.44%, and 5.88% reduction in power losses in compared
to DMO, SAA, AEO, Grey Wolf Optimizer (GWO) and AQU, respectively. Similarly, for the second
system, the proposed IDMO achieves improvement reduction 28.96%, 54.20%, 9.44%, 60.99% and 48.54%,
respectively, compared to the obtained results by the DMO, SAA, AEO, GWO and AQU.

INDEX TERMS Dwarf Mongoose optimizer, alpha-directed learning process, thyristor controlled series
capacitor technology, power systems, power losses minimization.

NOMENCLATURE OF ACRONYMS
ACPTDF AC Power Transfer Distribution Factor. AEO

- ; Artificial Ecosystem Optimizer.
ADLP Alpha-Directed Learning Process.

AGC Automatic Generation Control.
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approving it for publication was Ali Raza . ATC Available Transfer Capability.
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BBO Biogeography Based Optimization.
CSSO Chaotic Salp Swarm Optimizer.
DE Differential Evolution.

DMO Dwarf Mongoose Optimizer.

ECSA Emended Crow Search Algorithm.

EM Electromagnetism-like Mechanism.

EO Equilibrium Optimization.

ESMA Enhanced Slime Mould Algorithm.

FACTS Flexible Alternating Current Transmission
Systems.

GA Genetic Algorithm.

GBOA Gradient-Based Optimization Algorithm.

GWO Grey Wolf Optimizer.

GTO Gorilla Troops Optimizer.

HP Helogale Parvula.

IPSO Improved Particle Swarm Optimization.

IDMO Improved Dwarf Mongoose Optimization.

ITSE Integral of Time multi-plied Squared Error.

WO Invasive Weed Optimization.

OPFI Optimal Power Flow Issue.

PID Proportional Integral Derivative.

PPS Powell’s Pattern Search.

PSO Particle Swarm Optimization.

QMFT Quantum computing with Moth Flame
Technique.

RKO Red Kite Optimization.

SAA Subtraction-Average-based Algorithm.

SMA Slime Mould Algorithm.

SSSC Static synchronous series compensator.

TCSC Thyristor Controlled Series Capacitor.

TCPS Thyristor controlled phase shifter.

TLBO Teaching-Learning Based Optimization.

WCEMFT Water Cycle Emerged with Moth Flame
Technique.

WOA Whale Optimization Algorithm.

I. INTRODUCTION

A. MOTIVATION

The electrical network that makes up the power system
is a complex one, very large in size, and it consists of
loads, distribution and transmission systems, and generating
stations. These networks are dispersed across a very large
geographic area. In recent years, consumption of electricity
has been increasing at an exponential rate, necessitating con-
stant efforts by the power network sectors in the generation,
transmission, and distribution of electrical power [1]. These
sectors continue to promote their strategies in order to pre-
serve the framework for competition in the electricity market.
The primary goal is to develop deregulation of electricity
production throughout the world in an attempt to create com-
petitive marketplaces for buying and selling electric power.
The deregulated energy market presents a slew of innova-
tive technological hurdles to electrical market participants
[2], [3], [4]. All-generation firms and distribution companies
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compete for the most profitable transactions in a restructured
environment [5].

In practical electrical networks, TCSC technology is
frequently used as a powerful and cost-effective series
FACTS device with high performance, enabling precise and
secure OPFI management of power lines [6]. The series-
compensating characteristics provided by TCSC make it one
of the most cost-effective methods of releasing the transmis-
sion network’s capacity to transport additional real power
[7], [8]. In order to minimize tie-line power and area fre-
quency fluctuations, three series of FACTS devices of TCSC,
TCPS and SSSC were considered and simulated in AGC
investigations regarding multi-area connected electrical sys-
tems [9]. The damping controllers in this work have been
developed using an IPSO technique and the ITSE minimiza-
tion objective. The suggested TCSC-AGC performed better
than TCPS and SSSC in terms of damping of vibrations, tie-
line transmitted powers, and area frequencies. In addition,
tests of sensitivity have been carried out to demonstrate the
TCSC-AGC’s resilience. This concluding finding demon-
strated the importance and beneficial advantages of the TCSC
over the SSSC in transmission systems, and therefore it
reveals its applicability in real life.

B. LITERATURE REVIEW

In order to address OPFI, academic scholars have lately
developed a variety of classical and metaheuristic optimiza-
tion approaches [10]. Newton-based methods [13], linear and
nonlinear programming, gradient approaches, interior point
methods [12], sequential unconstrained methodology [11],
and fuzzy linear methods [11] are some of the conventional
approaches. Nevertheless, it should be highlighted that such
approaches are ineffective for huge electrical networks and do
not create perfect solutions. As a result, scholars have sought
to establish metaheuristic approaches to overcome the short-
comings of older methodologies. Numerous of these methods
have high convergence properties and can effectively impose
inequality boundaries. However, these traditional approaches
may become stuck at a local minimum since they rely on the
initial configuration and are unable to produce the true opti-
mal result. Additionally, each approach needs to be modelled
with specific OPFI variants, and they are unable to handle dis-
crete and integer variables with ease. Therefore, it is crucial
to create metaheuristic methods to get around the aforemen-
tioned drawbacks. In the recent two decades, there has been
a tendency towards employing various heuristic (population-
based) strategies to address a variety of OPFI difficulties
[12] [13]. To deal with the OPFI, several population-based
algorithms such as the EM approach [14], SAA [15], TLBO
[16], GA [17], GWO and DE [18], CSSO [19], GBOA [20],
BBO [21], PSO [22], WCEMFT [23], and QMFT [24] are
utilized. In addition, in [25], the TLBO approach was created
and used to solve the allocation optimization problem of
capacitor devices in electrical systems for the purpose of
power factor adjustment.
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Diverse augmentations of the techniques’ strategies have
been characterized to reduce the energy loss of the OPFIL.
The equation for solutions that depend on the best and worst
solutions for losses and voltage profile has been adjusted for
JAYA in [26]. In ref [27], an enhanced social spider opti-
mizer was described to reduce power losses by balancing the
movement patterns of male and female spiders. In [28], the
IWO has been emerged with PPS including a combinational
strategy for OPFI investigation with the addition of FACTS.
GTO was used on the OPFI with IEEE 30 bus system in
[29]. The GTO incorporates five methods for gorilla collec-
tive actions: engaging other gorillas, moving to an unknown
location, travelling in a specific orientation, competing for
adult females, and pursuing the silverback. GTO was used
on the OPFI with the addition of the TCSC modules in [30].
Nevertheless, the size and allocation of the TCSC were not
considered. An ECSA was used on the OPFI, as shown in
[31], including modifications to combine an innovative bat
strategy. In [32], a placement methodology based on com-
bined sensitivity indices was presented to install TCSC in
power systems considering the situations of normal operation
and line outages. In this study, the performance index and the
ranking index were combined where the performance index
selects the severe lines based on contingency cases while the
ranking index selects the severe lines based on the system
loading level for a specific outage. Despite the work in [32]
derived significant mitigation the line overloads on transmis-
sion lines in the event of a network outage in IEEE 5 bus and
14 bus networks, it missed the determination of the suitable
sizing of the TCSC in the investigated networks which has
strong impacts on such applications. In [33], an improved ver-
sion of GA was introduced to determine the optimal location
and compensation level of TCSC devices. The presented GA
was incorporated with dual mutation probability in order to
enhance the available transfer capability in power systems.
In [34], a modified version of SAA is presented for the
allocation of TCSC for reducing losses in electrical power
grids. This study incorporates a cooperative learning tech-
nique based on the leader solution into the standard SAA.
In [35], a multi-objective particle swarm optimization has
been carried out for multi-objective optimal allocation model
for TCSC in order to improve the available transfer capa-
bility and the voltage stability utilizing the L index. In this
study, a chaos initialization technique was introduced, and
a variable inertia weight setting was implemented which is
applied for only one transmission grid of the IEEE-30 bus
system.

Dwarf Mongoose Optimizer (DMO) is a revolutionary
approach created by studying the foraging behavior of Helo-
gale Parvula (HP) animals (dwarf mongoose’s) [36]. It uses
the alpha category, babysitters, and scouts as distinct HP
social groupings. The entire group seeks together, with the
alpha female beginning off and choosing the path, geograph-
ical distance, and sleeping locations [37]. Because of its out-
standing broadly searching capacity and adaptability, it has
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been employed in tackling a variety of real-world engineering
optimization problems [38], [39], [40], [41], [42], [43], [44],
[45]. Table 1 describes several recent variants of the DMO
that are developed and designed for solving different engi-
neering problems.

C. MAIN OBJECTIVE OF THIS WORK

The main objective of this work is dedicated for optimal
allocation of TCSC devices in transmission power systems.
In this regard, an innovative Improved Dwarf Mongoose
Optimizer (IDMO) is presented. To prove its effectiveness,
it is tested for CEC 2017 benchmarks. Also, it is developed to
solve the TCSC allocation problem considering two different
IEEE power systems of 30 and 57 buses and considering
different number of TCSC devices. The suggested IDMO
and DMO are compared to a number of different current
and popular techniques for all applications. The findings
from the simulation demonstrate that, in relation to efficiency
and effectiveness, the suggested DMO beats not only the
standard DMO but also a large number of other contemporary
solutions.

D. PAPER CONTRIBUTIONS

This study suggests an innovative Improved Dwarf Mon-
goose Optimizer (IDMO) incorporating the Alpha-Directed
Learning Process (ADLP) for addressing various mathemat-
ical benchmark functions and engineering difficulties. The
unique suggested solution includes an improved ADLP to
boost searching capacities, and its upgrading procedure is
substantially led by the amended alpha. Firstly, the proposed
IDMO and DMO are put through their paces using CEC
2017 benchmarks. Further, the proposed IDMO is adopted
for optimal allocation of TCSC devices in transmission power
systems in order to minimize the overall system losses. Addi-
tionally, the proposed IDMO’s accuracy and superiority of
solution are demonstrated in comparison to the others while
considering various numbers of TCSC devices.

The main contributions cited in this study include the

following:

o The study introduces a distinctive IDMO technique,
including ADLP, which has been proven to have a signif-
icant advantage over conventional DMO in several CEC
2017 benchmark works. The TCSC devices’ positioning
and size have been strategically managed to minimize
power losses, unlike previous efforts.

o The suggested IDMO outperforms the DMO and other
contemporary methods like AEO, SAA, and AQU in
handling this situation.

Il. ALLOCATION OF TCSC DEVICES IN TRANSMISSION
POWER SYSTEMS: PROBLEM FORMULATION

A. MODELLING OF TCSC DEVICES

The TCSC has become one of the significantly commonly
used FACTS components belonging to the series type, which
offers a lot of advantages such as high performance, quick
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TABLE 1. Several variants of DMO for solving different engineering problems.

Validation on

Ref. DMO Version benchmarks Applications
Frequency control for Power
[38] Standard form - System with solar energy and
Storage Device
[39] Standard form ) Prediction of Thermal Expansion of

Nanocomposites

by using the DMO operators.

A novel DMO variation including a quantum-based optimization is
showcased. The sampling of the set for testing is first split into training
and testing. The next step is to determine the starting value for a group of
[41] | people who reflect the answer to the problem being evaluated. Then, -
employing the sample of training, calculate each person's fitness value
and assign the best value to them. The present solutions are then updated

Feature Selection problem

[44] Search results in a hybrid technique.

Combining the DMO with the mutualism phase of Symbiotic Organism

Generation Expansion Planning in
electrical systems

A new approach that applies intelligent optimization algorithms utilizing

Twenty-three

[45] | three main parts of DMO, generalized normal distribution, and benchmark Data clustering applications
opposition-based learning strategy. functions
Based on improving the Prairie Dog optimization algorithm's searching Twenty-three
[46] | procedure by utilizing the DMO's main update mechanism, a hybrid benchmark -
algorithm is presented. functions
A new controlling operator that regulates the alpha motion is used to
change 'the' alpha choice in a modified DMO that is provided. Also, CEC 2020 Engincering Design Problems such
[47] randomization is qseq to alte_r the motions of the scout group. benchmark as welded beam, compression and
Furthermore, the criteria for switching babysitters have been adjusted functions pressure vessel design problems
such that, upon meeting the requirement, the swapping babysitters
communicate with the DMOs in order to share information.
eighteen CEC2017,
[48] | A hybrid approach is presented by combining the AEO with DMO. andbt:r?cgigimg Feature selection problem
functions

—y
T
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I |
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Control

(a) Mounting

FIGURE 1. Transmission line with installed TCSC.

reaction, and low cost. The two reactive modes of operation
that are accessible to TCSC systems include inductive and
capacitive. As a result, the reactance of the relevant transmis-
sion line is able to be adjusted in increasing or decreasing
directions. Figure 1(a) depicts the TCSC model in power
networks linked in series with a line. It is made up of a
capacitance (C) linked in parallel with an inductance (L),
that is regulated by a valve situated in two thyristors (T1
and T2). The angle of extinction («), which may be set to
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(b) Apparent Reactance

any value between 90° and 180°, determines how the valve
operates [49].

A variable capacitive reactance (Xrcsc) was injected into
the transmission line by the compensator TCSC as depicted in
Fig. 1(b). The regulated thyristors’ angle (o), which can range
from 90° to 180° and is defined by the subsequent equation,
directly affects how Xtcsc is represented [50], [51]. As a
consequence, the transmission-line reactance (Xz;) is used
to symbolize the TCSC’s reactance. To prevent transmission
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line overcompensation, the TCSC device’s (Xtcsc) required
value can be calculated using Eq. (1) [52], [53]:

Xp(a) x X¢

Xresc(a) = m (D
b4
Xi(e) = (n —sinQat) — Za) XL max @)
—1
XL max = Qrf)L, Xc = W 3)

substituting the terms Xy () and Xc, Eq. (1) will be formu-
lated as follows:

bis
(n—sin(Za)—Za) XL max X Xc

Xresc(a) = .
(n—sin(Za)—Za) X1 max +Xc

“

B. TCSC ALLOCATION-BASED LOSSES MINIMIZATION
AND CONSTRAINTS

To technically improve the electrical system and the overall
voltage profile, the main objective is to minimise overall

network losses, which could be computationally portrayed as
follows [54]:

oJ

Nbus Nbus
=D | 22 GV + Vi =2 x (ViuViucos )
m=1 n=1
m#n
(%)

where Np,s represents the number of buses; Gy, reflects
the conductance of the transmission line connected between
buses m and n; 6,,, and V,,,,, displayed the difference regarding
phase angle and voltage, respectively between the buses m
and n.

To handle the TCSC allocation issue; many inequalities
and equality constraints relating to both dependent and inde-
pendent variables have to be fulfilled.

The control variables regarding the optimal TCSC alloca-
tion problems are:

1. Reactance compensation of each TCSC device to be

installed.

2. Candidate transmission lines to be selected for each

TCSC device to be installed.

3. Reactive power injection from existing Var sources in

the transmission system.

4. Generator voltage

5. Generator output powers

6. Tap settings of the transformers.

The requirements for independent variables, reactance
compensation, and TCSC locations must be met, as indicated
in Egs. (6) and (7), accordingly.

—50%XLinercscx = Xresc(@k = +50%XLinercsc
k=1,2,...Nrcsc 6)
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Niines > Linercsck > 1,k =1,2,...Nrcsc
@)

where Linercsc.x denote the potential lines for installing
TCSC systems; Njj,es denotes the total number of transmis-
sion lines; Nrcsc indicates the number of TCSC equipment
that will be placed; Xpinesege, indicates the reactance of the
respective lines which have been selected for installing TCSC
equipment.

In terms of independent variables, Egs. (8)-(11) manage
the constraints for reactive power injection from Var sources,
generator voltage, generator output powers, and tap settings,
accordingly.

QI = Qlyy < QIy". Vr=12...Ng  ®
Vghin < Vg <Vg"¥ m=1,2,...Ng (9
Tpp™ < Tp, < Tpi'™, k=1,2,.Nr (1)

where Ng denotes the total number of VAr sources, Ng signi-
fies the total number of generating units, and Nt denotes the
total number of transformers. Pg depicts the actual power out-
put of generators; Tp stands for the tap values regarding tap
transformers. The voltages of the generators are represented
by Vg, whereas the injected reactive power of VAr sources is
represented by QOI.

In addition, in terms of variables that are dependent,
Egs. (12)-(14) are used to address the constraints for buses
voltage, apparent power flow over the transmission lines, and
reactive powers output of the generators.

ymin <y, < VM =1,2,....Nbus  (12)

m

ISFL| < SFIT™, L =1,2,... Nipes (13)
0g"" < Qg < 0", m=1.2,...Ng (14

m

where Qg specifies the produced reactive power from gener-
ators and SF denotes transmission flow limitations.

The active and reactive power loading balance calculations
at every bus, on the other hand, must be kept as equality
restrictions. These limitations are entirely met using the load
flow routine’s completion.

Ill. IDMO FOR SOLVING THE OPTIMAL TCSC
ALLOCATION

A. DMO

Dwarf Mongoose Optimizer (DMO) is developed by the for-
aging behavior of the Helogale Parvula (HP) animals (dwarf
mongoose’s) [36]. The HP animals’ population in the DMO
is divided into three distinct hierarchical groups: the alpha
category, scouts, and babysitters. The alpha is the leader of
the entire group. Babysitters are provided by a subgroup of
the HP animals group, and they are often a mix of both
gender kinds. They will remain beside the youngsters till the
remainder of the gathering comes later in the afternoon. The
babysitters are initially switched for the purpose to continue
feeding with the others. The HP animal family does not
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| Specity Hpuir, Hpyewr Nop, CPand I |

| Initialize at random the HP population using Eq. (15), Ir=1 |

L]
| Evaluate the fitness for each individual |
¥
‘I Extract Hppos |
k=1

Dl Calculate the likelihood worth of every group's fitness using Eq. (16) |

I

A

| Choose randomly a searching individual |

Update the individual position according to Eq. (23) l

l—

|Check if solutions go outside the search space and bring them backl

v
k=k+1
No

I Update the individual position according to Eq. (23)

Evaluate the fitness function

| Calculate SMy, y;, CF and M using Eqs. (18, 19, 21 and 22), respectively |

| Update the scout mongoose position according to Equation (20) | |k —k+1 |
3

v No
| Check if solutions go outside the search space and bring them back |
| Evaluate the fitness function |
No /\ Yes
FIGURE 2. Proposed IDMO flowchart.
TABLE 2. Mathematical data of the benchmarks regarding CEC 2017.
No. Function Optimal | No. Function Optimal
Fn,; Shifted and Rotated Bent Cigar 100 Fn, Shifted and Rotated Zakharov 300
Fns Shifted and Rotated Rosenbrock’s 400 Fny Shifted and Rotated Rastrigin’s 500
Fns Shifted and Rotated Expanded Scaffer’s F6 600 Fns Shifted and Rotated Lunacek Bi_Rastrigin 700
Fn; Shifted and Rotated Non-Continuous Rastrigin’s 800 Fng Shifted and Rotated Levy 900
Fno Shifted and Rotated Schwefel’s 1000 Fnyy Hybrid 1 (N=13) 1100
Fn;; Hybrid 2 (N = 3) 1200 Fn;, Hybrid 3 (N=13) 1300
Fny; Hybrid 4 (N =4) 1400 Fnyy Hybrid 5 (N=4) 1500
Fnys Hybrid 6 (N =4) 1600 Fnys Hybrid 6 (N=15) 1700
Fny; Hybrid 6 (N =5) 1800 Fng Hybrid 6 (N=15) 1900
Fnjo Hybrid 6 (N = 6) 2000 Fny Composition 1 (N =3) 2100
Fny Composition 2 (N = 3) 2200 Fny, Composition 3 (N =4) 2300
Fny; Composition 4 (N =4) 2400 Fnyy, Composition 5 (N =5) 2500
Fnjs Composition 6 (N = 5) 2600 Fns Composition 7 (N = 6) 2700
Fny; Composition 8 (N = 6) 2800 Fng Composition 9 (N =3) 2900

construct a nest to shelter their young; alternatively, they
constantly shift their resting mound in search of a fresh area.
The HP animals have formed a semi-nomadic way of life. It
ensures that every square area is examined, thus guaranteeing
no formerly journeyed to resting mounds have been brought
back [36].

In the DMO, the initial HP animals’ population of Ny,
potential solutions is produced randomly as follows:

Hp,(0) = Hp,,,, + rand(0, 1). [Hpmax — Hpmm]

k=12, ... Ng (15)

where, Hpy denotes the position of every HP (k); Hp,;, and
Hpay imply the minimal and highest boundaries. Each HP
position is computationally related to the set of the control
variables which their number is symbolized by Dim.
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Once the HP animals’ population of solutions is initialized,
the fitness score (Fitk) of each option (k) is computed. After
that, the alpha female («) is selected as described in Eq. (16)
based on the probability worth of each group’s fitness.

Fit;,
o =
NHp

> Fity
k=1

(16)

The number of HP animals in the alpha party corresponds
with the gap between the overall group number (NDM) and
the number of babysitters (Bst). Peep is the alpha female’s
vocalisation, that keeps the HP animals’ group on course.
Every HP rest inside the initial resting mound that has been
allotted to. To construct a prospective food position, the DMO
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TABLE 3. Compared algorithms: Parameters and applications.

Algorithm Ref. Year Parameters Applications
generation expansion planning, autoregressive exogenous
. Population size (PS) = 30 model i.dentiﬁcationz detection of diab_etic retinopathy,
DMO J. O. Agushaka 2022 . Maximum number of itere’ltions heart disease d-etectlon,‘ fejature selection for _datasets,
et al. [36] MND= 500 thermal expansion prediction of Nanocomposites, and
( )= . frequency regulation with photovoltaic and storage units
. Number of babysitters = 3 [38]-[45].
. Alpha female vocalization (peep=2)
IDMO Proposed 2023
Reconfiguration of distribution networks [64],
AEO W. Zhao 2020 | ° PS =30, groundwater level modeling [65], combined heat and
et al. [56] . MNI = 500 power dispatch [66], path planning for unmanned combat
aerial vehicles [67].
] PS =30,
AQU A. H. Abualigah 2021 . MNI =500 wind energy potential assessment [68], multiple
et al. [57] . Alpha parameter = 0.1 renewable energy resources in distribution network [69]
. Delta parameter = 0.1
. _ Allocation of batteries in distribution systems [70],
EO A.;:lr agggzn 2020 : IF\)/ISN_I ios’ 00 models of Battery Cells [71], integration of biomass
) distributed generation in distribution systems [72]
ESMA S. Sarhan 2022 : II\)/ISNI iOS’ 00 Frequency Stability in Power Systems [73]
et al. [59]
. z parameter = 0.03
GTO B. ”;bt‘i‘;.”?;‘oz]adeh 2021 | ¢ i/[SN} i05’ 00 Fuel-cell parameter estimation [74]
RKO 5 Rfollb_gal}]lmel 2022 : II\DASN} ios’ 00 Electricity Consumption Prediction [61]
P. Trojovsky e PS=30,
SAA et al. [62] 2023 . MNI = 500
S Li e PS=30,
SMA : 2020 | ¢  MNI=500
et al. [63]
. z parameter = 0.03

applies the equation presented in Eq. (17).

Hp, (It + 1) = Hp,(It) + rand (0, 1) x peep,

k =1:Npp — Best (17)

where It denotes the current iteration. Following every itera-
tion, the resting mound is represented in Eq. (18):

Fit, ., — Fit,

k+1
max (|Fit,,, — Fit,|)

SM, = (18)
Eq. (19) provides the mean value (i) of the detected
resting mound.
Nup

> SMy
k=

v, =
k NHp

When the babysitting transfer condition is met, the DMO
technique moves to the scouting step, whenever the next food
resource or resting mound is identified. Scouting proceeds
simultaneously while foraging in DMO, when the scouts look
for a different resting mound, assuring exploring. According
to the complete performance of the HP animals, the move-
ment that ensues is shown as an efficient or failure evaluation

19)

of constructing a new mound. As in Equation (20), shown at
the bottom of the page, may be used to model the scout mon-
goose, where CF parameter is shown in Eq. (21) and M seems
to be a vector that determines the HP animals’ migrating to
its subsequent resting mound as shown in Eq. (22).

2 x It/
It Ttpx
CF=(1- 2n
Ttngx
Nup
H SM,
M = Z APk X oMk (22)

o Hp

where Ity is the maximum number of iterations.

B. PROPOSED IDMO FOR SOLVING THE TCSC
ALLOCATION PROBLEM

A novel IDMO utilizing an alpha-directed Learning Pro-
cess (ADLP) is presented in this part. The creatively rec-
ommended treatment incorporates an improved ADLP to
improve searching abilities, and the upgrading mechanism
is partly led by the adapted alpha. In order to improve
the searching capabilities, the ADLP is combined with the

Hp, (It + 1) =

VOLUME 12, 2024

Hp,(It) — CF x rand(0, 1) x (Hpk(lt) — M)
Hp,(It) + CF x rand(0, 1) x (Hpk(lt) — M)

f Y >,

Else (20)

k=1,2,.... Ny,
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FIGURE 3. Convergence properties of IDMO and DMO for CEC 2017 problems.
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FIGURE 3. (Continued.) Convergence properties of IDMO and DMO for CEC 2017 problems.

equation presented in Eq. (17) to create a probable food
position. As a result, the location of each seeking solu-
tion inside the area of search is enhanced as described
as in Eq. (23), shown at the bottom of page 11, where,
Hpp.s is the alpha position regarding the seeking animal
with lowest value of the objective; Hpgy corresponds to a
randomly picked HP animal; and LSV represents the like-
lihood of selection value. LSV is adjusted to 50% to strike
a compromise between the heightened exploitation features
given in Eq. (23) and the exploratory qualities indicated

VOLUME 12, 2024

in Eq. (17). The exploitative characteristics are significant
and powerful though by means of the previously mentioned
framework, while the exploratory searching attributes are
retained and accomplished through the conventional way at
the same time. The essential stages of the IDMO are displayed
in Figure 2.

IV. SIMULATION RESULTS
In this part, the application of the proposed IDMO is exe-

cuted in two directions. At first, simulations of benchmark
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TABLE 4. Statistical outcomes of IDMO and DMO for CEC 2017 benchmarking tasks.

No. Index IDMO DMO AEO AQU EO ESMA GTO RKO SAA SMA
Best 100.7876 103.1033 101.8204 631630.4 100.1497 100.3841 102.2414 101.3583 106.8504 115.6355
Fn, Mean 1833.425 4947.712 2882.311 7117627 1296.579 3042.833 3185.564 6394.494 3812.14 1296.579
Worst 10627.66 63834.88 12645.98 47965063 5774.671 5542.366 12581.75 12725.47 12866.27 5554.671
Std 2310.289 12150.27 2748.079 8879770 1727.267 1949.333 3349.887 4340.656 3324.979 1527.267
Best 300 426.9525 300 862.8424 300.0409 300.0009 300 301.5553 433.8029 300
Fn, Mean 300.005 1075.823 300.0055 14241.48 302.9692 300.0944 300 1791.484 1892.281 300.0217
Worst 300.0741 2487.439 300.1652 78883.29 335.2222 300.3938 300.0013 28092.82 20047 300.2815
Std 0.015802 420.1405 0.024216 17008.76 5.960751 0.094327 0.000183 4446.282 2775.047 0.048374
Best 400.0056 400.5637 400.1317 402.9141 400.0196 400.011 401.2798 405.4006 403.8382 400.0429
Fns Mean 403.1635 405.2926 404.1969 418.5362 404.718 405.4084 422.5109 450.0849 410.8517 408.777
Worst 405.0699 406.8646 466.8414 576.6982 406.8178 407.2103 481.1919 905.8536 496.1308 476.984
Std 1.572968 1.199943 9.19856 29.72566 1.841029 2.106057 2441179 78.84186 18.50037 15.8229
Best 502.9849 518.0095 512.9345 514.84 501.9921 505.9717 503.9798 502.097 511.9395 503.9838
Fny Mean 509.9966 530.0403 535.6209 528.8363 511.3244 515.6199 525.483 516.5253 535.7457 511.3244
Worst 521.848 539.6044 559.6972 552.2148 528.8538 521.4943 552.7323 543.6022 577.6057 528.8538
Std 4.927657 5.370918 11.92463 9.884062 5.690601 3.876852 10.33986 10.16285 16.49356 5.690601
Best 600 600 602.2025 607.8623 600 600.0447 600.4136 600 603.8165 600.0785
Fns Mean 600 600 619.4128 616.8517 600.0018 600.0892 607.1628 600.623 617.543 600.0018
’ Worst 600.0002 600.0001 645.7046 636.7507 600.0396 600.1194 628.7749 617.8881 647.1749 600.0396
Std 4.1E-05 1.77E-05 9.91575 6.212097 0.005762 0.022851 6.537381 2.806871 9.427292 0.005762
Best 701.9899 728.6148 733.0717 728.4909 712.062 712.8488 720.3034 714.6422 721.5113 715.2008
Fng Mean 724.9523 743.0721 764.578 760.7281 722.8181 724.8084 751.6431 734.864 751.7038 722.8181
Worst 750.1594 753.9905 809.9773 812.3142 738.97 731.801 787.9011 761.6374 791.7054 738.97
Std 10.17492 5.371381 19.37887 18.5329 5.659119 5.107153 15.84439 12.40402 18.37205 5.659119
Best 804.9748 811.2899 811.9395 812.173 801.99 806.9651 804.9748 803.0511 805.9697 804.9792
Fn, Mean 811.3417 829.6501 830.2268 828.0318 812.1872 814.5285 827.3158 813.5723 822.3442 812.1872
Worst 826.8638 841.7104 862.682 846.8473 824.0725 820.8969 841.5043 837.339 841.7882 824.0725
Std 4.85141 6.106073 13.06553 7.133653 4.290194 4.193956 8.150514 9.903987 7.530569 4.290194
Best 900 900 912.7674 9359179 900 900.0002 902.6364 900 910.5194 900.0007
Fns Mean 900.0218 900 1062.502 1080.06 900.2292 900.0015 951.3241 900.9298 1080.856 900.2292
Worst 900.4543 900 1312.112 1358.738 901.8173 900.003 1195.189 918.829 1895.92 901.8173
Std 0.090935 2.53E-09 105.2 93.07999 0.471233 0.000835 64.66907 2.873668 170.4958 0.471233
Best 1003.665 1615.589 1361.636 1282.538 1000.188 1165.269 1224.032 1382.47 1221.682 1168.721
Fno Mean 1528.554 2276.483 2044.173 1898.988 1505.309 1462.236 2005.585 1809.26 2024.885 1505.309
Worst 2498.384 3533.997 2702.938 2405.251 2058.839 1679 2757.256 2535.195 3318.621 2058.839
Std 406.6325 277.9387 315.3252 239.4575 271.8187 146.268 309.5439 3244173 370.4943 271.8187
Best 1100.35 1103.032 1104.978 1126.013 1101.077 1101.012 1103.123 1101.18 1103.253 1103.395
Fr Mean 1104.631 1107.101 1142.565 1245.853 1107.331 1112.406 1136.846 1152.762 1158.702 1107.331
Worst 1113.661 1112.527 1225.362 1543.506 1122.641 1124.254 1474.95 1361.733 1273.258 1122.641
Std 2.989418 2.507902 26.48832 95.9905 4.106186 6.674326 52.57824 85.62553 43.42037 4.106186
Best 1215.061 7581.318 1468.727 59003.65 2401.326 3253.422 2251.604 11046.39 2220.099 5561.43
Fny, Mean 17608.6 147990.2 16070.97 5839942 9346.397 213446.9 19484.78 556267.5 16173.04 9346.397
Worst 55835.9 848651.8 49512.6 21294607 31534.92 597806.4 52538.98 15705336 53781.33 30534.92
Std 14061.98 157984.9 13360.44 6235390 6211.869 189660.3 14651.39 2309722 13805.32 6201.869
Best 1309.993 1471.087 1359.1 2983.547 1338.598 1319.615 1301.353 1596.162 1521.598 1465.071
Fnyy Mean 5704.653 4806.373 1902.443 16104.91 7758.507 2161.825 1661.761 12489.74 11073.28 7758.507
‘ Worst 20603.37 14058.03 7881.334 57140.58 22741.2 4041.885 2445.92 72354.44 36272.32 22741.2
Std 4845.41 2962.256 1146.132 11977.37 6177.924 647.7571 301.6881 11704.68 9503.086 6177.924
Best 1405.386 1437.532 1421.297 1475.86 1436.545 1434.14 1413.99 1468.283 1451.43 1435.026
Frs Mean 1437.81 93986408 1460.401 2726.689 1472.594 1764.307 1461.535 1594.974 3218.386 1472.594
Worst 1519.64 3.81E+09 1602.707 7300.955 1584.345 2503.962 1513.531 249251 14794.43 1584.345
Std 25.11236 5.51E+08 30.65953 1181.206 26.43559 326.2715 27.67236 161.0686 2633.219 26.43559
Best 1501.567 1574.339 1511.757 1704.87 1528.837 1504.672 1503.209 1666.848 1562.425 1522.306
Frs Mean 1607.876 189431 1590.464 7155.795 1781.199 4320.751 1586.639 2545.096 3284.562 1781.199
Worst 1983.927 2742.553 2787.242 13013.25 3504.08 7356.117 1860.807 4767.804 5926.97 3504.08
Std 122.1004 289.9846 179.6528 2819.584 337.9089 1898.652 74.26103 803.5599 1216.997 337.9089
Best 1600.168 1601.544 1601.514 1625.733 1600.752 1601.818 1601.468 1600.854 1601.703 1602.053
Fnys Mean 1618.608 1613.991 1756.826 1799.318 1653.25 1646.452 1700.231 1632.426 1817.625 1653.25
Worst 1733.113 1738.793 2010.423 2117.308 1855.858 1731.645 1992.801 1900.84 2135.552 1855.858
Std 42.59626 22.69649 136.1562 128.3401 84.77303 45.34023 95.75652 58.07911 142.0484 84.77303
Best 1700.44 1712.647 1718.391 1745.723 1702.668 1705.451 1716.933 1706.86 1723.965 1720.961
Fng Mean 1716.586 1740.727 1771.682 1781.167 1730.943 1730.1 1742.867 1742.974 1783.957 1730.943
Worst 1783.647 1761.893 1898.971 1858.912 1795.37 1747.782 1800.339 1781.586 1925.583 1795.37
Std 17.16368 9.774917 39.24548 26.89721 19.93134 12.02978 16.51172 11.82739 53.54611 19.93134
Fns Best 1926.524 1983.072 1839.184 6124.661 2247.015 2166.893 1849.487 3489.732 1990.645 3473.383
Mean 9969.52 7055.869 4711.676 45811.23 11821.5 24255.66 4734.006 33008.39 10866.06 11821.5
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TABLE 4. (Continued.) Statistical outcomes of IDMO and DMO for CEC 2017 benchmarking tasks.

Worst 31100.49 19019.33 20898.85 72733.15 34209.1 35618.39 34251.62 209371 55426.05 34209.1
Std 7118.979 4063.737 4337.082 15609.74 8429.008 9720.003 6545.115 34519.64 11000.98 8429.008
Best 1902.787 1911.531 1904.357 2007.858 1916.638 1915.654 1904.802 1947.243 2025.102 1908.044
Frs Mean 1984.067 2172.458 1943.842 25488.55 2783.073 3553.279 1963.373 3129.286 11852.15 2783.073
Worst 2560.898 3884.533 2176.958 120047.6 12165.36 13985.14 2095.158 9117.7 208941.3 12165.36
Std 114.2122 328.5189 47.23035 21289.85 1954.927 2695.933 53.05017 1670.582 28897.4 1954.927
Best 2000 2000.323 2021.307 2049.27 2000.312 2004.049 2021.732 2001.065 2031.366 2005.325
Fryo Mean 2002.347 2010.275 2089.448 2134.692 2021.964 2021.755 2092.222 2040.972 2146.249 2021.964
Worst 2017.46 2035.596 2253.704 2262.899 2140.046 2036.477 2206.172 2161.175 2324.983 2140.046
Std 3.165724 10.40192 54.23813 56.72375 31.21513 10.29943 53.84462 48.08278 74.54465 31.21513
Best 2200 2207.963 2200 2206.064 2200.033 2200.035 2200 2202.68 2200 2202.781
Fr Mean 2241.143 2421.83 2233.399 2303.841 2296.691 2313.871 2217.228 2269.041 2311.109 2296.691
Worst 2317.597 3423.376 2347.792 2348.035 2323.166 2328.945 2342.25 2341.668 2379.046 2323.166
Std 53.15606 276.8203 57.32245 49.8612 39.24597 31.07273 43.09881 59.03082 53.57661 39.24597
Best 2224.237 2290.772 2215.181 2245.189 2300 2300.512 2237.236 2225.953 2244.561 2241.042
Fny, Mean 2298.119 2302.682 2305.617 2310.746 2300.585 2301.876 2303.812 2395.433 2309.082 2300.585
Worst 2302.433 2306.795 2361.027 2331.133 2301.545 2302.875 2319.036 3882.778 2345.843 2301.545
Std 14.81279 2.544353 18.1344 14.20948 0.430805 0.649297 10.3266 333.9873 12.51222 0.430805
Best 2600 2611.39 2614.973 2614.735 2600.529 2607.424 2607.767 2605.674 2614.191 2612.391
Fr Mean 2612.981 2626.133 2651.285 2639.714 2613.545 2616.508 2623.589 2628.164 2655.502 2613.545
Worst 2628.926 2643.387 2724.523 2680.313 2629.856 2623.644 2683.03 2712.256 2714.223 2629.856
Std 5.582052 7.061391 26.47565 13.18305 6.756141 4.604779 13.03785 25.15645 25.23442 6.756141
Best 2500 2529.358 2500 2743.333 2500 2735.422 2500 2737.125 2500 2734.674
Fnys Mean 2702.739 2779.46 2694.044 2765.077 2723.141 2750.97 2722.229 2760.733 2776.754 2723.141
Worst 2756.668 4667.793 2858.199 2791.924 2748.113 2762.685 2785.801 2862.941 2881.822 2748.113
Std 89.56668 403.3049 126.3004 11.60206 57.12793 7.401766 91.37158 25.74767 48.65351 57.12793
Best 2897.746 2898.008 2897.762 2898.884 2897.762 2897.835 2897.757 2897.94 2897.941 2898.208
Froe Mean 2927.649 2923.861 2929.203 2938.885 2923.014 2917.771 2928.394 2928.859 2927.008 2923.014
Worst 2948.79 2945.222 2957.215 3030.515 2949.895 2947.002 2971.013 2953.657 2978515 2949.895
Std 22.86882 20.46398 23.68665 27.90755 23.50277 23.58085 25.28154 24.11888 25.58298 23.50277
Best 2800 2606.09 2600 2825.635 2800 2800.154 2800 2900 2600 2816.011
Fn;s Mean 2903.254 2865.906 3030.664 3020.676 2885.049 2953.345 2984.508 3165.254 3132.256 2885.049
Worst 2959.341 2900.003 3461.777 3489.538 2958.158 2999.128 3207.704 4028.093 4234.516 2958.158
Std 28.02168 56.84354 155.2969 153.5662 42.05265 46.95114 99.90624 384.0885 363.1331 42.05265
Best 3090.001 3091.548 3098.815 3095.366 3091.967 3089.013 3090.752 3089.308 3093.179 3089.031
Fnss Mean 3095.652 3095.589 3126.583 3100.941 3099.475 3091.03 3101.365 3099.07 3129.619 3099.475
Worst 3103.205 3100.03 3233.854 3116.125 3171.966 3092.688 3198.189 3197.703 3209.53 3171.966
Std 2.793392 1.944856 31.32213 4.757791 11.537 1.184862 19.81815 18.70578 36.35269 11.537
Best 2800 3100 2800.001 3182.341 2800 3166.526 3100 3108.935 2800.009 3167.467
Frsy Mean 3187.874 3191.247 3252.369 3379.829 3261.622 3342.206 3289.245 3352.853 3277.773 3261.622
Worst 3444.132 3411.823 3446.527 3499.317 3446.483 3411.823 3783.223 3731.813 3412.053 3446.483
Std 143.5352 88.55182 154.9652 83.32384 161.7679 102.4616 187.6894 193.3343 147.9899 161.7679
Best 3141.97 3186.272 3183.416 3153.017 3144.619 3134.422 3147.311 3138.465 3161.176 3134.366
Fros Mean 3183.661 3223.056 3264.007 3234.006 3192.803 3180.666 3219.908 3175.727 3271.415 3192.803
Worst 3273.349 3265.67 3403.968 3332.945 3302.278 3235.338 3397.49 3234.517 3424.743 3302.278
Std 20.41437 16.49242 53.20727 43.72574 33.45711 32.19293 58.00608 24.26783 65.41059 33.45711

functions are implemented considering CEC 2017 single
objective optimization competition with comparison to sev-
eral recent metaheuristic algorithms. Second, simulations are
conducted in solving the TCSC allocation problems in power
networks considering two IEEE standard power systems of
30 and 57 buses.

A. APPLICATION ASSESSMENT FOR CEC 2017
BENCHMARKING MODELS

Due to the lack of a formal proof, it can be difficult to
determine the amount of “good” of an effective optimisation

strategy; therefore, benchmarking functions provide an
important role in evaluating the usefulness of these strategies.
As a consequence, the proposed IDMO and DMO tech-
niques’ performance is evaluated in this work utilizing the
CEC 2017 competition as a benchmark [55]. This test pro-
vides a number of routines for checking different attributes.
Unimodal, multimodal, mixed, and composite functions are
among those explored. Table 2 shows those unrestricted
benchmarking functions. For all the 28 benchmarking func-
tions, the considered dimension is 30 control variables while
their bounds are [—100,100].

Hp (It +1)=
P ) Hp, (It) + rand(0, 1) x peep

VOLUME 12, 2024

Hppes: (It) + rand (0, 1) x (Hpk (It) — Hpy, (It))

if rand < LSV

Else k=1,2,.Npyy, — Best (23)
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TABLE 5. Ranking by Friedman of the comparing algorithms’ average objective values for the CEC 2017 problems.

Task IDMO DMO AEO AQU EO ESMA GTO RKO SAA SMA
Fn, 3 8 4 10 1.5 5 6 9 7 1.5
Fn; 2 8 3 9 6 5 1 10 4 7
Fn; 1 5 2 10 3 6 7 9 8 4
Fny 1 8 9 7 2 4 6 5 10 3
Frns 1.5 1.5 10 8 3 5 7 6 9 4
Frg 4 6 10 9 1 3 7 5 8 2
Fn; 1 9 10 8 2 5 7 4 6 3
Frng 3 1 8 9 4 2 7 6 10 5
Fny 4 10 9 6 2 1 7 5 8 3
Fny 1 2 7 10 3 5 6 8 9 4
Fny 5 7 3 10 1 8 6 9 4 2
Fny, 5 4 2 10 6 3 1 9 8 7
Fnys 1 10 2 8 4 7 3 6 9 5
Fnyq 3 6 2 10 4 9 1 7 8 5
Fnys 2 1 8 9 5 4 7 3 10 6
Frus 1 5 8 9 3 2 6 7 10 4
Fny; 4 3 1 10 6 8 2 9 5 7
Frys 3 4 1 10 5 8 2 7 9 6
Fryo 1 2 7 9 4 3 8 6 10 5
Fr 3 10 2 7 5 9 1 4 8 6
Fryy 1 5 7 9 2 4 6 10 8 3
Fny, 1 6 9 8 2 4 5 7 10 3
Fny; 2 10 1 8 4 6 3 7 9 5
Fnyy 6 4 9 10 2 1 7 8 5 3
Fiys 4 1 8 7 2 5 6 10 9 3
Frzs 3 2 9 7 5 1 8 4 10 6
Fny; 1 2 3 10 4 8 7 9 6 5
Frs 3 7 9 8 4 2 6 1 10 5
Summation 70.5 147.5 163 245 95 133 146 190 227 122
Mean rank 2.517857 | 5.267857 5.821429 8.75 3.392857 475 5214286 | 6.785714 | 8.107143 | 4.357143
Final Ranking 1 6 7 10 2 4 5 8 9 3
Improvement % - 52.20% 56.75% 71.22% 25.79% 46.99% 5171% | 62.89% | 68.94% | 42.21%
The suggested IDMO is carried out in contrast to the tradi- 29 27, @ 28

tional DMO, with the CEC 2017 single objective optimization ] [

criteria, which are shown in Table 2, taken into account. Also, = 26 =

several recent optimization techniques are taken into con- 23 | o4

trast including artificial ecosystem optimization (AEO) [56],
aquila optimization (AQU) [57], equilibrium optimization
(EO) [58], enhanced slime mould algorithm (ESMA) [59],
Gorilla troops optimization (GTO) [60], red kite optimization
(RKO) [61], subtraction-average-based algorithm (SAA) [62]
and slime mould algorithm (SMA) [63]. In relation to the con-
trasted techniques, Table 3 shows their necessary settings and
a number of effective applications. Fifty different operations
based on each method for every benchmark have been looked
at to eliminate the impact of randomness.

Based on the circumstances stated in Table 3, the compared
algorithms are applied for the CEC 2017 benchmarks that are
described in Table 2. Fig. 3 displays the convergence features
of the DMO, IDMO, AEO, AQU, EO, ESMA, GTO, RKO,
SAA and SMA, respectively. In similar time, Table 4 depicts
the regarding statistical metrics in terms of the best, mean,
worst and standard deviation (Std) outcomes. As shown in
Table 4, the introduced IDMO technique demonstrates the
best strength by attaining the least statistical indices in most
of the benchmark functions. As shown:

o Compared to the standard DMO, the IDMO shows

improvement of 96.43%, 71.43%, 60.71% and 46.43%,
accordingly regarding the best, mean, worst and Std.
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22

FIGURE 4. Line-diagram of the first power system [77].

e Compared to the AEO, the proposed IDMO derives
improvement of 89.29%, 75.00%, 85.71% and
82.14%, accordingly.

e Compared to the AQU, the proposed IDMO
acquires improvement of 100.00%, 100.00%,
96.43% and 82.14%, respectively.
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TABLE 6. Outcomes of the compared algorithms for TCSC device allocations regarding Case 1.

Initial Case AQU GWO AEO SAA DMO IDMO

VG 1 1.0500 1.1000 1.099568 1.099351 1.1000 1.077325 1.0997
VG2 1.0400 1.1000 1.095818 1.094747 1.09755 1.07729 1.097107
VG5 1.0100 1.09728 1.08001 1.074308 1.079716 1.05654 1.078474
VG 8 1.0100 1.09288 1.085785 1.083873 1.08684 1.066889 1.084998
VG 11 1.0500 1.1000 1.078706 1.099959 1.1000 1.097459 1.099309
VG 13 1.0500 1.1000 1.081997 1.099709 1.1000 1.089488 1.099962
Ta 6-9 1.0780 1.1000 1.025412 1.028284 1.067173 0.979025 1.023229
Ta 6-10 1.0690 0.910477 0.961107 0.925326 0.9000 0.94149 0.937607
Ta 4-12 1.0320 1.009181 1.008998 0.999935 0.986297 0.973187 0.983766
Ta 28-27 1.0680 1.034419 1.00225 0.98665 0.973996 0.968219 0.976997
Qr 10 0.000 5.000 2.13309 4.152465 5.000 2.041835 4.453243
Qr12 0.000 3.962959 3.124115 4.930084 5.000 3.90699 4.760074
Qr15 0.000 5.000 0.258411 4.952519 4.999997 4.341322 4.095576
Qr 17 0.000 5.000 3.793636 4.912524 4.999982 4.602435 4.995081
Qr20 0.000 5.000 2.796705 1.71465 4.081398 3.530735 4461134
Qr21 0.000 5.000 4.209032 4.899575 4.968112 4.89273 4.973731
Qr23 0.000 4.881004 3.763496 0.885251 2.58453 3.418359 2.662936
Qr24 0.000 5.000 3.481095 3.534451 5.000 4.364901 4.941651
Qr29 0.000 3.107001 2.864193 2.708482 2.275642 1.892259 2.560601
PG 1 99.2400 51.3952 62.3303 51.4936 51.21077 52.61437 51.33157
PG2 80.000 80.000 79.61742 79.78346 80.000 79.5501 79.97828
PGS 50.000 50.000 49.8189 49.86303 50.000 49.83164 49.99382
PG 8 20.000 35.000 33.99505 34.99899 35.000 34.71168 34.94736
PG 11 20.000 30.000 29.7921 29.55887 30.000 29.72535 29.98847
PG 13 20.000 40.000 37.77225 39.98309 40.000 39.98591 39.97617

TCSC location - 6-28 4-6 28-27 28-27 10-17 28-27
TCSC Compensation - -42.017% -35.028% -49.490% -49.998% -11.44% -49.72%
Losses (MW) 5.832400 2.990 3.035 2.844 2.8217 3.019 2.81565

Positive and negative indications represent an increase or decrease in the transmission line reactance connected with TCSC,

respectively.

7
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FIGURE 5. Implemented algorithms’ convergence curves regarding Case 1.

e Compared to the EO, the IDMO shows improve-
ment of 85.71%, 78.57%, 71.43% and 71.43%,
accordingly.

e Compared to the ESMA, the proposed IDMO
achieves improvement of 89.29%, 75.00%, 50.00%
and 50.00%, respectively.
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TABLE 7. Statistical outcomes of the obtained Losses (MW) for Case 1.

DMO | IDMO | SAA | AEO | GWO | AQU
Best 3.019 | 2.816 | 2.8217 | 2.867 | 3.035 | 2.990
Mean | 3.065 | 2.875 | 2.930 | 3.007 | 3.472 | 3.080
Worst | 3.109 | 3.038 | 3.188 | 3.180 | 3.849 | 3.172
STD 0.026 | 0.061 | 0.117 | 0.100 | 0.200 | 0.057
Time* | 0.673 | 0.688 | 0.511 | 0.925 | 0.721 | 0.954

Time indicates the average time per iteration measured in seconds.

e Compared to the GTO, the proposed IDMO finds
improvement of 92.86%, 78.57%, 78.57% and
67.86%, accordingly.

e Compared to the RKO, the proposed IDMO obtains
improvement of 82.14%, 96.43%, 92.86% and
89.29% %, respectively.

e Compared to the SAA, the proposed IDMO attains
improvement of 96.43%, 92.86%, 92.86% and
85.71%, accordingly.

e Compared to the SMA, the proposed IDMO pro-
vides improvement of 92.86%, 78.57%, 71.43%
and 71.43%, respectively.

Additionally, for the benchmarking task functions of the
CEC 2017, Table 5 records the outcomes of a Friedman rank-
ing test related to the proposed IDMO, the basic DMO [36]
(2020), AEO [56] (2020), AQU [57] (2021), EO [58] (2020),
ESMA [59] (2022), GTO [60] (2021), RKO [61] (2022),
SAA [62] (2023) and SMA [63] (2020), respectively. As
shown, the designed IDMO achieves the least average rank of
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2.517 achieving the superior outcomes by obtaining the first
rank. In the second level, the EO accomplishes a mean rank of
3.3928 while the SMA realizes the third level by 4.357. Also,
ESMA, GTO and the standard DMO comes in the fourth,
fifth and sixth order, respectively with mean ranks of 4.75,
5.214 and 5.267. Furthermore, AEO, RKO and SAA come in
the fourth, fifth and sixth order, respectively with mean ranks
of 8.82, 6.785 and 8.107 while AQU shows the worst perfor-
mance with mean rank of 8.75. Based on these results, the
proposed IDMO shows improvement reduction of 25.79%,
42.21%,46.99%,51.71%, 52.20%, 56.75%, 62.89%, 68.94%
and 71.22% in comparison to EO, SMA, ESMA, GTO, DMO,
AEOQO, RKO, SAA and AQU, respectively.

B. APPLICATIONS FOR TCSC ALLOCATIONS IN IEEE
STANDARD 30-BUS TRANSMISSION NETWORK

In this section, the IEEE standard 30-bus system, shown in
Fig. 4 [75], is utilized to handle the optimal TCSC allocations.
This system includes 41 lines, 30 nodes, 4 transformers,
and 9 compensators [76]. The maximum generator voltage
1.10 p.u. and the corresponding tap positions is 0.90 p.u.
For the load buses, the voltage limits are 1.05 and 0.95 p.u.,
these limits for the generator bus are 1.10 and 0.90 p.u.,
respectively. The IDMO is contrasted with DMO and other
recent algorithms of AQU, GWO, AEO and SAA. For all
implemented algorithms, 20 times are separately executed
where the number of iterations and searching individuals are
taken of 300 and 50, respectively. They are performed. Based
on the number of the candidate allocated TCSC devices, three
disparate cases are investigated considering one, two and
three devices.
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FIGURE 7. Implemented algorithms’ convergence curves regarding Case 2.
TABLE 8. Outcomes of the compared algorithms for TCSC device allocations regarding Case 2.
Initial Case AQU GWO AEO SAA DMO IDMO
VG 1 1.0500 1.1 1.095119 1.099352 1.1 1.088672 1.09986
VG2 1.0400 1.1 1.089415 1.096829 1.097584 1.084124 1.095882
VG5 1.0100 1.1 1.071614 1.078726 1.079817 1.063908 1.077982
VG 8 1.0100 1.094221 1.078618 1.086607 1.087006 1.076237 1.084631
VG 11 1.0500 1.1 1.084584 1.099927 1.1 1.098864 1.099862
VG 13 1.0500 1.1 1.074647 1.099558 1.1 1.079165 1.09972
Ta 6-9 1.0780 1.044803 1.049704 0.976591 1.064807 0.973169 1.051505
Ta 6-10 1.0690 0.929538 1.032416 1.016372 0.900035 1.004953 0.915569
Ta4-12 1.0320 1.011769 1.063337 1.00762 0.980145 0.986186 0.985467
Ta 28-27 1.0680 1.023534 1.002449 0.994596 0.980535 0.974498 0.970748
Qr 10 0 5 3.497458 4.482774 5 1.238543 4.624782
Qr 12 0 5 0.832066 3.665279 5 3.739474 4.991793
Qrl15 0 4.987603 4.166941 3.945993 0 4.203835 4.625295
Qr 17 0 5 3.173012 4.659533 5 2.920776 4.873148
Qr20 0 4.879124 0.851722 4.934657 5 4.001807 4.231455
Qr 21 0 5 3.394242 2.590238 4.999997 4.127666 4.976453
Qr23 0 5 1.978594 2.648497 4.274824 3.891986 2.761689
Qr24 0 5 1.815333 4.935695 5 4.158987 4.887319
Qr 29 0 5 0.977867 2.42653 2.352175 1.801884 2.027743
PG 1 99.2400 51.39525 62.3303 51.49365 51.18843 53.22761 51.28323
PG2 80 80 72.62864 79.80634 80 79.01535 79.94034
PG5 50 50 49.966 49.99955 49.99428 49.82904 49.9956
PG 8 20 35 32.48052 34.98885 35 34.8643 34.9966
PG 11 20 30 29.75128 29.99324 30 29.8851 29.99234
PG 13 20 40 39.47006 39.98501 40 39.58471 39.99446
First TCSC installed Lines - 10-17 6-8 6-9 28.27 10-21 4-12
First TCSC Compensation - -13.64% 24.83% 16.10% -50.00% -13.52% 49.78%
Second TCSC installed Lines - 6-28 16-17 4-12 6-28 15-23 2-5
Second TCSC Compensation - -44.06% -2.74% 49.90% -50.00% 23.10% -25.01%
Losses (MW) 5.832400 2.995 3.227 2.867 2.820 3.006102 2.802571
Positive and negative indications represent an increase or decrease in the transmission line reactance connected with TCSC,
respectively.
The obtained results are compared with DMO, SAA, AEO,
1) CASE 1 AQU, and GWO.
The allocation of one TCSC device is optimized in this case Table 6 shows the optimal control variables which are
to get the minimum power losses using the proposed IDMO. the generators voltage and output power, the Var sources
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FIGURE 8. Box plot related to the outcomes of the compared algorithms for Case 2.

injection power and the tap value besides the placement and
sizing of the TCSC device. Furthermore, the proposed IDMO,
standard DMO, AEO, AQU, and GWO converging curves are
shown in Fig. 5. As demonstrated, the proposed IDMO pro-
duces the lowest power losses of 2.8156 MW. The proposed
IDMO gets the transmission line (28-27) as best location of
TCSC with 49.72% subtraction in sizing from the installed
line reactance. The proposed IDMO attained a 51.72% reduc-
tion in power losses when compared with the initial case.
When comparing the results of the proposed IDMO with
the standard DMO, the proposed IDMO accomplishes a sig-
nificant reduction percentage of 6.74% in the power losses.
Also, the proposed IDMO achieves a 5.83% reduction in
the power losses compared with the AQU. Likewise, the
proposed IDMO achieves a 7.23% reduction compared to
GWO. Furthermore, the proposed IDMO achieves a nearly
1% reduction percentage compared to the obtained results by
the AEO and SAA.

TABLE 9. Statistical outcomes of the obtained Losses (MW) for Case 2.

DMO | IDMO | SAA | AEO | GWO | AQU
Best | 3.006 | 2.803 | 2.820 | 2.867 | 3.227 | 2.995
Mean | 3.063 | 2.873 | 2.938 | 2.988 | 3.501 | 3.105
Worst | 3.119 | 3.034 | 3.168 | 3.214 | 4.180 | 3.181
STD | 0.033 | 0.063 | 0.112 | 0.103 | 0266 | 0.053
Time* | 0.681 | 0.698 | 0.524 | 0.951 | 0.749 | 0.972

Time indicates the average time per iteration measured in seconds.
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Fig. 6 shows the box plot associated with the results of
the compared algorithms for Case 1 in order to perform a
statistical assessment of the compared procedures. Table 7
displays the associated statistical outcomes of the obtained
Losses (MW) for this case. It is evident that by aggregating
the fewest indices from the obtained objective values, the pro-
posed IDMO works best. In terms of average acquired losses,
DMO, SAA, AEO, GWO, and AQU receive losses of 3.065,
2.930, 3.007, 3.472, and 3.080 MW, respectively, while the
suggested IDMO finds the lowest losses of 2.875 MW. In
comparison to the results achieved by the DMO, SAA, AEO,
GWO, and AQU, the suggested IDMO achieves improvement
reductions of 6.22%, 1.87%, 4.39%, 17.20%, and 6.67%,
respectively. The suggested IDMO finds the lowest losses,
3.038 MW, based on the worst obtained losses, whereas
DMO, SAA, AEO, GWO, and AQU receive losses, 3.109,
3.188, 3.180, 3.849, and 3.172 MW, respectively. In com-
parison to the findings achieved by the DMO, SAA, AEO,
GWO, and AQU, the suggested IDMO achieves improvement
reductions of 2.29%, 4.71%, 4.46%, 21.08%, and 4.23%,
respectively. Table 7 provides the computation burden, mea-
sured as the average time per iteration as well.

2) CASE2

The allocations of two TCSC devices are optimized in this
case to get the minimum power losses using the proposed
IDMO. Table 8 shows the optimal control variables related to
the proposed IDMO, standard DMO, AEO, SAA, AQU, and
GWO where the corresponding convergences are displayed
in Fig. 7. As demonstrated, the IDMO outputs the lowest
power losses of 2.802 MW. The proposed IDMO selects the
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FIGURE 9. Implemented algorithms’ convergence curves regarding Case 3.
TABLE 10. Outcomes of the compared algorithms for TCSC device allocations regarding Case 3.
Initial Case AQU GWO AEO SAA DMO IDMO
VG 1 1.0500 1.097922 1.086747 1.099981 1.1 1.086175 1.098742
VG2 1.0400 1.097226 1.082197 1.095393 1.1 1.081437 1.094726
VG35 1.0100 1.082092 1.061782 1.076605 1.082327 1.060443 1.076291
VG 8 1.0100 1.091701 1.068615 1.083436 1.08939 1.065392 1.08014
VG 11 1.0500 1.095909 1.081636 1.088431 1.1 1.096995 1.097647
VG 13 1.0500 1.088444 1.070184 1.099988 1.1 1.090123 1.098893
Ta 6-9 1.0780 1.01364 0.993708 0.996884 1.1 1.008815 1.044226
Ta 6-10 1.0690 1.045173 1.042592 0.949036 0.9 0.946162 0.904684
Ta4-12 1.0320 1.063428 1.018614 1.031631 0.990567 0.975652 0.977235
Ta 28-27 1.0680 1.020301 0.991104 0.976953 0.989463 0.983985 0.979132
Qr 10 0 5 2.966956 4.374692 5 3.411287 4.844738
Qr 12 0 3.430701 0.713832 4.366721 1.5E-06 2.250819 4.864826
Qr 15 0 1.754133 1.657207 4.974559 5 2.335161 4.557783
Qrl17 0 4.858897 1.784874 0.865704 5 3.443132 4.902339
Qr 20 0 5 2.792935 2.802873 4.40039 2.022624 3.614843
Qr21 0 5 1.804884 4.07292 5 4.225295 4.840288
Qr23 0 5 1.079345 1.849487 2.71585 3.516276 3.594097
Qr24 0 5 3.888447 4.716259 5 4.033772 4.583233
Qr29 0 5 2.454247 2.050629 2.271475 4.504769 2.553763
PG 1 99.2400 51.36892 56.25298 51.43609 51.18571 52.70405 51.57972
PG 2 80 80 78.58037 79.97287 80 79.32674 79.6883
PG5 50 50 49.96991 49.99684 50 49.90259 49.93927
PG 8 20 35 33.73529 34.99919 35 34.92388 34.9989
PG 11 20 30 28.5719 29.97878 30 29.87712 29.99568
PG 13 20 40 39.47651 39.89602 40 39.68273 39.9928
First TCSC installed Lines - 10-17 9-11 28-27 6-28 15-23 28-27
First TCSC Compensation - -39.76% -0.62% -44.65% -36.96% -14.12% -48.39%
Second TCSC installed Lines - 6-28 12-13 6-7 10-20 16-17 4-12
Second TCSC Compensation - 6.83% -7.28% -5.97% -50.00% -14.06% 45.30%
Third TCSC installed Lines - 25-26 - 10-20 28-27 23-24 6-7
Third TCSC Compensation - -50.00% - -49.50% -50.00% -37.21% 47.00%
Losses (MW) 5.832400 2.969 3.187 2.880 2.821 3.017108 2.794672

Positive and negative indications represent an increase or decrease in the transmission line reactance connected with TCSC,

transmission lines (4-12) and (2-5) with compensation levels
of 49.78% addition and 25% subtraction from the installed
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line reactance, respectively. The IDMO over the original
case accomplished a 51.95% reduction in power losses.
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FIGURE 10. Box plot related to the outcomes of the compared algorithms for Case 3.
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FIGURE 11. Voltages profile after candidate TCSC installment for cases 1-3 using the

designed IDMO.

TABLE 11. Statistical outcomes of the obtained losses (MW) for Case 3.

DMO | IDMO | SAA | AEO | GWO | AQU

Best | 3.017 | 2795 | 2.821 | 2.880 | 3.187 | 2.969
Mean | 3071 | 2.898 | 2.918 | 3.010 | 3.468 | 3.079
Worst | 3-143 | 3.080 | 3.189 | 3.536 | 3.856 | 3.198
STD | 0.029 | 0.073 [ 0.123 | 0.150 | 0.173 | 0.066
Time* | 0.690 | 0.710 | 0.542 | 0.975 | 0.766 | 0.999

Time indicates the average time per iteration measured in seconds.

In comparison to results achieved by the standard DMO, the
proposed IDMO achieves a 7.46% reduction in power losses.
The proposed IDMO achieves a 6.87% reduction when com-
pared to the obtained results by the AQU. In addition, the
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proposed IDMO achieves a 15.14% reduction compared to
GWO. Additionally, the proposed IDMO achieves a 2.3%
reduction when compared to AEO and SAA.

Fig. 8 displays the box plot related to Case 2 to esti-
mate the statistical indices of the applied techniques. Table 9
displays the associated statistical outcomes of the obtained
Losses (MW) for this case. Using the mean acquired losses
and the worst acquired losses as bases, the proposed IDMO
extracts the lowest indices of the obtained objective values.
Comparing the IDMQ’s findings to those produced by the
DMO, SAA, AEO, GWO, and AQU, respectively, shows
improved reductions of 6.21%, 2.22%, 3.84%, 17.95%, and
7.47% based on the mean acquired losses. When compared to
the findings produced by the DMO, SAA, AEO, GWO, and
AQU, respectively, the suggested IDMO discovers improved
reductions of 2.75%, 4.24%, 5.61%, 27.42%, and 4.62%
based on the worst acquired losses.
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TABLE 12. Outcomes of the compared algorithms for TCSC device allocations regarding Cases 1-3.

Case 1 Case 3
Initial Scenario DMO IDMO DMO IDMO DMO IDMO
Vg, 1.010 1.029156 1.055399 1.017788 1.04775 1.007932 1.051661
Vg, 1.010 1.01216 1.048466 1.002 1.042348 0.992942 1.044435
Vg, 1.010 1.009199 1.052619 1.008656 1.054655 0.998492 1.046605
Vg 1.010 1.015682 1.057393 1.006801 1.070256 1.015478 1.049904
Vg 1.010 1.028094 1.065556 1.016439 1.079823 1.031396 1.053022
Vg, 1.010 0.999384 1.044359 0.996696 1.048386 1.000715 1.0309
Vg 1.010 0.999002 1.049063 1.012335 1.038555 1.001056 1.036724
Tap 4.3 0.970 1.052404 0.928202 1.047611 1.03564 1.042464 0.960822
Tap 415 0.978 0.963536 0.974739 1.074266 0.997582 0.964078 1.012136
Tap 2120 1.043 0.948827 0.99604 0.93705 1.075473 1.038865 1.032366
Tap 2425 1.000 1.005515 0.928102 1.021563 1.012975 1.002942 1.01449
Tap r405 1.000 0.971179 1.082998 0.989687 1.008818 1.0684 1.048149
Tap »4.26 1.043 0.991316 1.005914 1.017962 1.008848 1.017281 0.993082
Tap 7.9 0.967 0.980754 0.957808 1.026711 0.967861 0.993982 0.957576
Tap 343 0.975 0.982885 0.980212 1.005269 0.961879 1.024749 0.949418
Tap 1141 0.955 1.038914 0.910106 0.932378 0.908157 0.961831 0.914396
Tap 1545 0.955 0.943313 0.945486 0.968472 0.937494 0.925017 0.940501
Tap 1446 0.900 0.994661 0.936625 0.967083 0.933566 0.910426 0.942134
Tap 1051 0.930 1.001696 0.953009 0.9587 0.947167 0.966417 0.940568
Tap 1549 0.895 0.928278 0.925885 0.942943 0.91396 0.909518 0.930535
Tap 1143 0.958 0.981477 0.982129 1.024464 0.930207 0.956848 0.936254
Tap 4056 0.958 1.027998 1.009618 1.003132 0.994886 0.980958 1.01481
Tap 39.57 0.980 0.991682 0.972984 0.982698 0.978169 0.973298 0.940079
Tap o.55 0.940 1.007147 0.964339 1.061374 0.953957 1.004027 0.941957
Qc 5 10.000 1531775 1.550864 29.52335 5.954505 14.91417 11.68338
Qc 25 5.900 19.72919 12.92438 17.42499 12.88076 19.84854 17.22348
Qc 53 6.300 18.96992 12.79661 10.10077 11.23059 14.50879 9.863362
Pg, 478.635 177.3609 189.2655 200.5117 185.2979 205.5998 197.388
Pg, 0.000 65.07995 5407112 39.10329 4.581609 53.09737 13.94101
Pg; 40.000 94.47558 134.5214 124.0211 136.656 110.1488 131.4228
Pgs 0.000 77.06884 98.80492 53.46179 99.91842 47.34087 96.94933
Pgg 450.000 365.432 323.0517 346.953 325.6818 360.6855 312.4387
Pgy 0.000 84.73127 99.62949 96.75116 99.21885 81.42472 99.45746
Pg1» 310.000 399.954 409.9662 403.0061 409.3974 405.7088 408.949
First TCSC installed Lines - 12-17 19-20 4-18 14-46 24-25 24-25
First TCSC Compensation - 0.05% 9.68% -27.89% 10.62% 0.02% 20.42%
Second TCSC installed Lines - - - 13-15 10-51 6-7 21-22
Second TCSC Compensation - - - -13.79% -6.39% 4.28% -27.97%
Third TCSC installed Lines - - - - - 22-23 13-49
Third TCSC Compensation - - - - - -44.30% -44.55%
Losses (MW) 27.835 13.30243 9.846252 13.00813 9.951942 13.20578 9.746247

Positive and negative indications represent an increase or decrease in the transmission line reactance connected with

TCSC, respectively.

FIGURE 12. IEEE 57-bus power system [79].

3) CASE 3
In this case, the allocations of three TCSC devices are opti-

mized to get the minimum power losses using the proposed
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IDMO and the other algorithms. Table 10 displays the control
variables, and the related converging properties are shown in
Fig. 9. The developed IDMO gets the lowest power losses of
2.795 MW. The locations of the three TCSC are the transmis-
sion lines (28-17), (4-12), and (6-7) with compensation level
of 48.39% subtraction, 45.3% addition, and 47% addition,
respectively.

Based on the best outcomes stated in Table 10, the pro-
posed IDMO achieves 7.37%, 0.95%, 2.96%, 12.31%, and
5.87% reduction in power losses with comparing to the
DMO, SAA, AEO, GWO and AQU, respectively. Fig. 10
displays the box plot related to the outcomes of the com-
pared algorithms for Case 3. Table 11 displays the associated
statistical outcomes of the obtained Losses (MW) for this
case. Based on the mean acquired losses, the proposed IDMO
accomplishes 5.65%, 0.68%, 3.72%, 16.44%, and 5.88%
reduction in power losses in compared to the obtained results
by the DMO, SAA, AEO, GWO and AQU, respectively.
Based on the worst acquired losses, the proposed IDMO finds
1.99%, 3.43%, 12.90%, 20.11% and 3.69% reduction when
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FIGURE 13. Implemented algorithms’ convergence curves regarding Cases 1-3.

compared to the obtained results by the DMO, SAA, AEO,
GWO and AQU, respectively.

4) VOLTAGE PROFILE-BASED TCSC INSTALLATIONS FOR THE
IEEE 30-BUS SYSTEM

Based on the utilized TCSC using the proposed IDMO, the
voltages profiles in the previous three cases are represented
in Fig. 11 compared to the initial case.

Grid buses have improved significantly for the three situ-
ations examined, as has been observed. The biggest voltage
increase is on the last grid bus (No. 30), which goes from
0.9012 per unit (p.u.) to 1.075, 1.0686 and 1.0699 p.u. with
improvements of 16.17%, 15.67% and 15.77% for the Cases
1, 2, and 3, respectively.

C. APPLICATIONS FOR TCSC ALLOCATIONS IN IEEE
STANDARD 57-BUS TRANSMISSION NETWORK

The standard IEEE 57-bus transmission network, illustrated
in Fig. 12, is utilized in this section. This system consists of
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57 nodes, 80 lines, 17 on-load tap changing transformers,
7 generators, and three capacitive sources on buses. The
system data is extracted from [78]. The three cases studied are
investigated considering one, two and three TCSC devices to
reduce the power losses. The IDMO and DMO are applied
where Table 12 tabulates their obtained control variables.
As shown, the proposed IDMO shows higher reduced power
losses of 9.846, 9.952 and 9.746 MW compared to 13.302,
13.008 and 13.206 MW for the cases 1-3, respectively. Oth-
erwise, the converging properties are depicted in Fig. 13. The
proposed IDMO shows better searching capability over the
standard DMO in finding and developing the best individual
through the iterations.

Moreover, Fig. 14 displays the box plot related to the
outcomes of the compared algorithms for all considered
cases. As demonstrated, the suggested IDMO performs best
by gaining the fewest indices among the acquired objec-
tive values. From this figure, it can be concluded the
following:

VOLUME 12, 2024
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o For the first case, based on the mean acquired
the proposed IDMO finds the least losses

losses,

VOLUME 12, 2024

of 10.215 MW while DMO, SAA, AEO, GWO
and AQU obtain losses of 14.611, 21.300, 11.138,
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24.544 and 22.346, respectively. Therefore, the pro-
posed IDMO achieves improvement reduction 30.08%,
52.04%, 8.28%, 58.38% and 54.28% respectively, com-
pared to the obtained results by the DMO, SAA, AEO,
GWO and AQU.

o For the second case, based on the mean acquired
losses, the proposed IDMO finds the least losses
of 11.124 MW while DMO, SAA, AEO, GWO
and AQU obtain losses of 15.613, 25.016, 15.288,
32.709 and 30.916, respectively. Therefore, the pro-
posed IDMO achieves improvement reduction 28.75%,
55.53%, 27.23%, 65.99% and 64.02%, respectively,
compared to the obtained results by the DMO, SAA,
AEO, GWO and AQU.

o For the third case, based on the mean acquired
losses, the proposed IDMO finds the least losses of
10.33 MW while DMO, SAA, AEO, GWO and AQU
obtain losses of 14.541, 22.554, 11.406, 26.476 and
20.072, respectively. Therefore, the proposed IDMO
achieves improvement reduction 28.96%, 54.20%,
9.44%, 60.99% and 48.54%, respectively, compared to
the obtained results by the DMO, SAA, AEO, GWO and
AQU.

Based on the candidate TCSC installment using the
designed IDMO in the previous cases, the voltages profile
over all the system buses are depicted in Fig. 15 compared
to the initial case.

As can be shown, grid buses have significantly improved
in each of the scenarios examined. The largest voltage profile
rise is seen on the last grid bus (No. 31), which increased from
0.9359 p.u. to 1.027, 1.022, and 1.058 p.u. with improvements
of 8.87%, 8.42%, and 11.54% for Cases 1-3, respectively.

V. CONCLUSION

This paper provides a revolutionary IDMO incorporating an
ADLP for dealing with a variety of mathematical benchmark
functions and technical difficulties. The creatively proposed
technique has an improved learning strategy to improve
searching features, and portion of its update operation is
driven by the updated alpha. Firstly, the suggested IDMO is
opposed to the conventional DMO and assessed using CEC
2017 single objective criteria. The designed IDMO achieves
the least average rank of 2.517 achieving the superior out-
comes by obtaining the first rank. It shows improvement
reduction of 25.79%, 42.21%, 46.99%, 51.71%, 52.20%,
56.75%, 62.89%, 68.94% and 71.22% in comparison to EO,
SMA, ESMA, GTO, DMO, AEO, RKO, SAA and AQU,
respectively. Furthermore, the application is conducted for
optimal allocation of TCSC devices in transmission power
systems considering two different IEEE power systems of
30 and 57 buses and considering different number of TCSC
devices. For all applications, the suggested IDMO outper-
forms the DMO, SAA, AEO, GWO, and AQU by accumu-
lating the fewest indexes of the acquired values for objective.
Additionally, the overall grid buses have advanced signifi-
cantly in all scenarios examined for the two IEEE systems.
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