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ABSTRACT This paper introduces a novel Improved Dwarf Mongoose Optimizer (IDMO) based on an
Alpha-Directed Learning Process (ADLP) for dealing with different mathematical benchmark models and
engineering problems. The dwarf mongoose’s foraging behavior motivated the DMO’s primary design.
Three social groupings are used: the alpha group, babysitters, and scouts. The unique suggested solution
includes an upgraded ADLP to boost searching abilities, and its upgrading mechanism is substantially led
by the improved alpha. First, the IDMO and DMO are put through their paces using CEC 2017 single
objective optimization benchmarks. Also, several recent optimization techniques are taken into contrast,
including artificial ecosystem optimization (AEO), aquila optimization (AQU), equilibrium optimization
(EO), enhanced slime mould algorithm (ESMA), Gorilla troops optimization (GTO), red kite optimization
(RKO), subtraction-average-based algorithm (SAA) and slime mould algorithm (SMA). Further, their
application validity is examined for optimal allocation of Thyristor Controlled Series Capacitor (TCSC)
devices in transmission power systems. The simulations are implemented on two different IEEE power
systems of 30 and 57 buses, and considering different numbers of TCSC devices. The suggested IDMO
and DMO are compared to several different current and popular techniques for all applications. The findings
from the simulation demonstrate that, in relation to efficiency and effectiveness, the suggested DMO beats
not only the standard DMO but also a large number of other contemporary solutions. For the first system,
considering three TCSC devices to be optimized and based on the mean acquired losses, the proposed
IDMO accomplishes 5.65%, 0.68%, 3.72%, 16.44%, and 5.88% reduction in power losses in compared
to DMO, SAA, AEO, Grey Wolf Optimizer (GWO) and AQU, respectively. Similarly, for the second
system, the proposed IDMO achieves improvement reduction 28.96%, 54.20%, 9.44%, 60.99% and 48.54%,
respectively, compared to the obtained results by the DMO, SAA, AEO, GWO and AQU.

INDEX TERMS Dwarf Mongoose optimizer, alpha-directed learning process, thyristor controlled series
capacitor technology, power systems, power losses minimization.

NOMENCLATURE OF ACRONYMS
ACPTDF AC Power Transfer Distribution Factor.
ADLP Alpha-Directed Learning Process.
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AEO Artificial Ecosystem Optimizer.
AGC Automatic Generation Control.
AQU Aquila Algorithm.
ATC Available Transfer Capability.
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BBO Biogeography Based Optimization.
CSSO Chaotic Salp Swarm Optimizer.
DE Differential Evolution.
DMO Dwarf Mongoose Optimizer.
ECSA Emended Crow Search Algorithm.
EM Electromagnetism-like Mechanism.
EO Equilibrium Optimization.
ESMA Enhanced Slime Mould Algorithm.
FACTS Flexible Alternating Current Transmission

Systems.
GA Genetic Algorithm.
GBOA Gradient-Based Optimization Algorithm.
GWO Grey Wolf Optimizer.
GTO Gorilla Troops Optimizer.
HP Helogale Parvula.
IPSO Improved Particle Swarm Optimization.
IDMO Improved Dwarf Mongoose Optimization.
ITSE Integral of Time multi-plied Squared Error.
IWO Invasive Weed Optimization.
OPFI Optimal Power Flow Issue.
PID Proportional Integral Derivative.
PPS Powell’s Pattern Search.
PSO Particle Swarm Optimization.
QMFT Quantum computing with Moth Flame

Technique.
RKO Red Kite Optimization.
SAA Subtraction-Average-based Algorithm.
SMA Slime Mould Algorithm.
SSSC Static synchronous series compensator.
TCSC Thyristor Controlled Series Capacitor.
TCPS Thyristor controlled phase shifter.
TLBO Teaching-Learning Based Optimization.
WCEMFT Water Cycle Emerged with Moth Flame

Technique.
WOA Whale Optimization Algorithm.

I. INTRODUCTION
A. MOTIVATION
The electrical network that makes up the power system
is a complex one, very large in size, and it consists of
loads, distribution and transmission systems, and generating
stations. These networks are dispersed across a very large
geographic area. In recent years, consumption of electricity
has been increasing at an exponential rate, necessitating con-
stant efforts by the power network sectors in the generation,
transmission, and distribution of electrical power [1]. These
sectors continue to promote their strategies in order to pre-
serve the framework for competition in the electricity market.
The primary goal is to develop deregulation of electricity
production throughout the world in an attempt to create com-
petitive marketplaces for buying and selling electric power.
The deregulated energy market presents a slew of innova-
tive technological hurdles to electrical market participants
[2], [3], [4]. All-generation firms and distribution companies

compete for the most profitable transactions in a restructured
environment [5].

In practical electrical networks, TCSC technology is
frequently used as a powerful and cost-effective series
FACTS device with high performance, enabling precise and
secure OPFI management of power lines [6]. The series-
compensating characteristics provided by TCSC make it one
of the most cost-effective methods of releasing the transmis-
sion network’s capacity to transport additional real power
[7], [8]. In order to minimize tie-line power and area fre-
quency fluctuations, three series of FACTS devices of TCSC,
TCPS and SSSC were considered and simulated in AGC
investigations regarding multi-area connected electrical sys-
tems [9]. The damping controllers in this work have been
developed using an IPSO technique and the ITSE minimiza-
tion objective. The suggested TCSC-AGC performed better
than TCPS and SSSC in terms of damping of vibrations, tie-
line transmitted powers, and area frequencies. In addition,
tests of sensitivity have been carried out to demonstrate the
TCSC-AGC’s resilience. This concluding finding demon-
strated the importance and beneficial advantages of the TCSC
over the SSSC in transmission systems, and therefore it
reveals its applicability in real life.

B. LITERATURE REVIEW
In order to address OPFI, academic scholars have lately
developed a variety of classical and metaheuristic optimiza-
tion approaches [10]. Newton-based methods [13], linear and
nonlinear programming, gradient approaches, interior point
methods [12], sequential unconstrained methodology [11],
and fuzzy linear methods [11] are some of the conventional
approaches. Nevertheless, it should be highlighted that such
approaches are ineffective for huge electrical networks and do
not create perfect solutions. As a result, scholars have sought
to establish metaheuristic approaches to overcome the short-
comings of older methodologies. Numerous of these methods
have high convergence properties and can effectively impose
inequality boundaries. However, these traditional approaches
may become stuck at a local minimum since they rely on the
initial configuration and are unable to produce the true opti-
mal result. Additionally, each approach needs to be modelled
with specific OPFI variants, and they are unable to handle dis-
crete and integer variables with ease. Therefore, it is crucial
to create metaheuristic methods to get around the aforemen-
tioned drawbacks. In the recent two decades, there has been
a tendency towards employing various heuristic (population-
based) strategies to address a variety of OPFI difficulties
[12] [13]. To deal with the OPFI, several population-based
algorithms such as the EM approach [14], SAA [15], TLBO
[16], GA [17], GWO and DE [18], CSSO [19], GBOA [20],
BBO [21], PSO [22], WCEMFT [23], and QMFT [24] are
utilized. In addition, in [25], the TLBO approach was created
and used to solve the allocation optimization problem of
capacitor devices in electrical systems for the purpose of
power factor adjustment.

6064 VOLUME 12, 2024



H. Alnami et al.: Optimal Allocation of TCSC Devices in Transmission Power Systems

Diverse augmentations of the techniques’ strategies have
been characterized to reduce the energy loss of the OPFI.
The equation for solutions that depend on the best and worst
solutions for losses and voltage profile has been adjusted for
JAYA in [26]. In ref [27], an enhanced social spider opti-
mizer was described to reduce power losses by balancing the
movement patterns of male and female spiders. In [28], the
IWO has been emerged with PPS including a combinational
strategy for OPFI investigation with the addition of FACTS.
GTO was used on the OPFI with IEEE 30 bus system in
[29]. The GTO incorporates five methods for gorilla collec-
tive actions: engaging other gorillas, moving to an unknown
location, travelling in a specific orientation, competing for
adult females, and pursuing the silverback. GTO was used
on the OPFI with the addition of the TCSC modules in [30].
Nevertheless, the size and allocation of the TCSC were not
considered. An ECSA was used on the OPFI, as shown in
[31], including modifications to combine an innovative bat
strategy. In [32], a placement methodology based on com-
bined sensitivity indices was presented to install TCSC in
power systems considering the situations of normal operation
and line outages. In this study, the performance index and the
ranking index were combined where the performance index
selects the severe lines based on contingency cases while the
ranking index selects the severe lines based on the system
loading level for a specific outage. Despite the work in [32]
derived significant mitigation the line overloads on transmis-
sion lines in the event of a network outage in IEEE 5 bus and
14 bus networks, it missed the determination of the suitable
sizing of the TCSC in the investigated networks which has
strong impacts on such applications. In [33], an improved ver-
sion of GA was introduced to determine the optimal location
and compensation level of TCSC devices. The presented GA
was incorporated with dual mutation probability in order to
enhance the available transfer capability in power systems.
In [34], a modified version of SAA is presented for the
allocation of TCSC for reducing losses in electrical power
grids. This study incorporates a cooperative learning tech-
nique based on the leader solution into the standard SAA.
In [35], a multi-objective particle swarm optimization has
been carried out for multi-objective optimal allocation model
for TCSC in order to improve the available transfer capa-
bility and the voltage stability utilizing the L index. In this
study, a chaos initialization technique was introduced, and
a variable inertia weight setting was implemented which is
applied for only one transmission grid of the IEEE-30 bus
system.

Dwarf Mongoose Optimizer (DMO) is a revolutionary
approach created by studying the foraging behavior of Helo-
gale Parvula (HP) animals (dwarf mongoose’s) [36]. It uses
the alpha category, babysitters, and scouts as distinct HP
social groupings. The entire group seeks together, with the
alpha female beginning off and choosing the path, geograph-
ical distance, and sleeping locations [37]. Because of its out-
standing broadly searching capacity and adaptability, it has

been employed in tackling a variety of real-world engineering
optimization problems [38], [39], [40], [41], [42], [43], [44],
[45]. Table 1 describes several recent variants of the DMO
that are developed and designed for solving different engi-
neering problems.

C. MAIN OBJECTIVE OF THIS WORK
The main objective of this work is dedicated for optimal
allocation of TCSC devices in transmission power systems.
In this regard, an innovative Improved Dwarf Mongoose
Optimizer (IDMO) is presented. To prove its effectiveness,
it is tested for CEC 2017 benchmarks. Also, it is developed to
solve the TCSC allocation problem considering two different
IEEE power systems of 30 and 57 buses and considering
different number of TCSC devices. The suggested IDMO
and DMO are compared to a number of different current
and popular techniques for all applications. The findings
from the simulation demonstrate that, in relation to efficiency
and effectiveness, the suggested DMO beats not only the
standard DMO but also a large number of other contemporary
solutions.

D. PAPER CONTRIBUTIONS
This study suggests an innovative Improved Dwarf Mon-
goose Optimizer (IDMO) incorporating the Alpha-Directed
Learning Process (ADLP) for addressing various mathemat-
ical benchmark functions and engineering difficulties. The
unique suggested solution includes an improved ADLP to
boost searching capacities, and its upgrading procedure is
substantially led by the amended alpha. Firstly, the proposed
IDMO and DMO are put through their paces using CEC
2017 benchmarks. Further, the proposed IDMO is adopted
for optimal allocation of TCSC devices in transmission power
systems in order to minimize the overall system losses. Addi-
tionally, the proposed IDMO’s accuracy and superiority of
solution are demonstrated in comparison to the others while
considering various numbers of TCSC devices.

The main contributions cited in this study include the
following:

• The study introduces a distinctive IDMO technique,
includingADLP, which has been proven to have a signif-
icant advantage over conventional DMO in several CEC
2017 benchmark works. The TCSC devices’ positioning
and size have been strategically managed to minimize
power losses, unlike previous efforts.

• The suggested IDMO outperforms the DMO and other
contemporary methods like AEO, SAA, and AQU in
handling this situation.

II. ALLOCATION OF TCSC DEVICES IN TRANSMISSION
POWER SYSTEMS: PROBLEM FORMULATION
A. MODELLING OF TCSC DEVICES
The TCSC has become one of the significantly commonly
used FACTS components belonging to the series type, which
offers a lot of advantages such as high performance, quick
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TABLE 1. Several variants of DMO for solving different engineering problems.

FIGURE 1. Transmission line with installed TCSC.

reaction, and low cost. The two reactive modes of operation
that are accessible to TCSC systems include inductive and
capacitive. As a result, the reactance of the relevant transmis-
sion line is able to be adjusted in increasing or decreasing
directions. Figure 1(a) depicts the TCSC model in power
networks linked in series with a line. It is made up of a
capacitance (C) linked in parallel with an inductance (L),
that is regulated by a valve situated in two thyristors (T1
and T2). The angle of extinction (α), which may be set to

any value between 90◦ and 180◦, determines how the valve
operates [49].

A variable capacitive reactance (XTCSC ) was injected into
the transmission line by the compensator TCSC as depicted in
Fig. 1(b). The regulated thyristors’ angle (α), which can range
from 90◦ to 180◦ and is defined by the subsequent equation,
directly affects how XTCSC is represented [50], [51]. As a
consequence, the transmission-line reactance (XLine) is used
to symbolize the TCSC’s reactance. To prevent transmission
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line overcompensation, the TCSC device’s (XTCSC) required
value can be calculated using Eq. (1) [52], [53]:

XTCSC (α) =
XL(α) × XC
XL(α) + XC

(1)

XL(α) =

(
π

π − sin(2α) − 2α

)
XL ,max (2)

XL ,max = (2π f )L, XC =
−1

j (2π f )C
(3)

substituting the terms XL(α) and XC, Eq. (1) will be formu-
lated as follows:

XTCSC (α) =

(
π

π−sin(2α)−2α

)
XL ,max × XC(

π
π−sin(2α)−2α

)
XL ,max + XC

(4)

B. TCSC ALLOCATION-BASED LOSSES MINIMIZATION
AND CONSTRAINTS
To technically improve the electrical system and the overall
voltage profile, the main objective is to minimise overall
network losses, which could be computationally portrayed as
follows [54]:

OJ

=

Nbus∑
m=1


Nbus∑
n = 1
m ̸= n

Gmn(V 2
m + V 2

n − 2 × (VmVncos (θmn))


(5)

where Nbus represents the number of buses; Gmn reflects
the conductance of the transmission line connected between
busesm and n; θmn andVmn displayed the difference regarding
phase angle and voltage, respectively between the buses m
and n.
To handle the TCSC allocation issue; many inequalities

and equality constraints relating to both dependent and inde-
pendent variables have to be fulfilled.

The control variables regarding the optimal TCSC alloca-
tion problems are:

1. Reactance compensation of each TCSC device to be
installed.

2. Candidate transmission lines to be selected for each
TCSC device to be installed.

3. Reactive power injection from existing Var sources in
the transmission system.

4. Generator voltage
5. Generator output powers
6. Tap settings of the transformers.
The requirements for independent variables, reactance

compensation, and TCSC locations must be met, as indicated
in Eqs. (6) and (7), accordingly.

−50%XLineTCSC,k ≥ XTCSC (α)k ≥ +50%XLineTCSC,p ,

k = 1, 2, . . .NTCSC (6)

Nlines ≥ LineTCSC,k ≥ 1, k = 1, 2, . . .NTCSC
(7)

where LineTCSC,k denote the potential lines for installing
TCSC systems; Nlines denotes the total number of transmis-
sion lines; NTCSC indicates the number of TCSC equipment
that will be placed; XLineTCSC,k indicates the reactance of the
respective lines which have been selected for installing TCSC
equipment.

In terms of independent variables, Eqs. (8)-(11) manage
the constraints for reactive power injection from Var sources,
generator voltage, generator output powers, and tap settings,
accordingly.

QIminVr ≤ QIVr ≤ QImaxVr , Vr = 1, 2, . . .Nq (8)

Vgminm ≤ Vg
m

≤ Vgmaxm , m = 1, 2, . . .Ng (9)

Pgminm ≤ Pgm ≤ Pgmaxm , m = 1, 2, . . .Ng (10)

Tpmink ≤ Tpk ≤ Tpmaxk , k = 1, 2, ..Nt (11)

where Nq denotes the total number of VAr sources, Ng signi-
fies the total number of generating units, and Nt denotes the
total number of transformers.Pg depicts the actual power out-
put of generators; Tp stands for the tap values regarding tap
transformers. The voltages of the generators are represented
by Vg, whereas the injected reactive power of VAr sources is
represented by QI.

In addition, in terms of variables that are dependent,
Eqs. (12)-(14) are used to address the constraints for buses
voltage, apparent power flow over the transmission lines, and
reactive powers output of the generators.

Vmin
m ≤ Vm ≤ Vmax

m , m = 1, 2, . . . .Nbus (12)

|SFL | ≤ SFlmaxL , L = 1, 2, . . . .Nlines (13)

Qgmin
m

≤ Qg
m

≤ Qgmax
m
, m = 1, 2, . . .Ng (14)

where Qg specifies the produced reactive power from gener-
ators and SF denotes transmission flow limitations.
The active and reactive power loading balance calculations

at every bus, on the other hand, must be kept as equality
restrictions. These limitations are entirely met using the load
flow routine’s completion.

III. IDMO FOR SOLVING THE OPTIMAL TCSC
ALLOCATION
A. DMO
Dwarf Mongoose Optimizer (DMO) is developed by the for-
aging behavior of the Helogale Parvula (HP) animals (dwarf
mongoose’s) [36]. The HP animals’ population in the DMO
is divided into three distinct hierarchical groups: the alpha
category, scouts, and babysitters. The alpha is the leader of
the entire group. Babysitters are provided by a subgroup of
the HP animals group, and they are often a mix of both
gender kinds. They will remain beside the youngsters till the
remainder of the gathering comes later in the afternoon. The
babysitters are initially switched for the purpose to continue
feeding with the others. The HP animal family does not
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FIGURE 2. Proposed IDMO flowchart.

TABLE 2. Mathematical data of the benchmarks regarding CEC 2017.

construct a nest to shelter their young; alternatively, they
constantly shift their resting mound in search of a fresh area.
The HP animals have formed a semi-nomadic way of life. It
ensures that every square area is examined, thus guaranteeing
no formerly journeyed to resting mounds have been brought
back [36].

In the DMO, the initial HP animals’ population of NHp
potential solutions is produced randomly as follows:

Hpk (0) = Hpmin + rand(0, 1).
[
Hpmax − Hpmin

]
k = 1, 2, . . . .NHp (15)

where, Hpk denotes the position of every HP (k); Hpmin and
Hpmax imply the minimal and highest boundaries. Each HP
position is computationally related to the set of the control
variables which their number is symbolized by Dim.

Once the HP animals’ population of solutions is initialized,
the fitness score (Fitk) of each option (k) is computed. After
that, the alpha female (α) is selected as described in Eq. (16)
based on the probability worth of each group’s fitness.

α =
Fitk

NHp∑
k=1

Fitk

(16)

The number of HP animals in the alpha party corresponds
with the gap between the overall group number (NDM) and
the number of babysitters (Bst). Peep is the alpha female’s
vocalisation, that keeps the HP animals’ group on course.
Every HP rest inside the initial resting mound that has been
allotted to. To construct a prospective food position, the DMO
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TABLE 3. Compared algorithms: Parameters and applications.

applies the equation presented in Eq. (17).

Hpk (It + 1) = Hpk (It) + rand(0, 1) × peep,

k = 1 : NHp − Best (17)

where It denotes the current iteration. Following every itera-
tion, the resting mound is represented in Eq. (18):

SMk =
Fitk+1 − Fitk

max
(∣∣Fitk+1 − Fitk

∣∣) (18)

Eq. (19) provides the mean value (ψ) of the detected
resting mound.

ψk =

NHp∑
k=1

SMk

NHp
(19)

When the babysitting transfer condition is met, the DMO
technique moves to the scouting step, whenever the next food
resource or resting mound is identified. Scouting proceeds
simultaneously while foraging in DMO, when the scouts look
for a different resting mound, assuring exploring. According
to the complete performance of the HP animals, the move-
ment that ensues is shown as an efficient or failure evaluation

of constructing a new mound. As in Equation (20), shown at
the bottom of the page, may be used to model the scout mon-
goose, where CF parameter is shown in Eq. (21) andM seems
to be a vector that determines the HP animals’ migrating to
its subsequent resting mound as shown in Eq. (22).

CF =

(
1 −

It
ItMx

)(
2 × It/ItMx

)
(21)

M =

NHp∑
k=1

Hpk × SMk

Hpk
(22)

where ItMx is the maximum number of iterations.

B. PROPOSED IDMO FOR SOLVING THE TCSC
ALLOCATION PROBLEM
A novel IDMO utilizing an alpha-directed Learning Pro-
cess (ADLP) is presented in this part. The creatively rec-
ommended treatment incorporates an improved ADLP to
improve searching abilities, and the upgrading mechanism
is partly led by the adapted alpha. In order to improve
the searching capabilities, the ADLP is combined with the

Hpk (It + 1) =

{
Hpk (It) − CF × rand(0, 1) ×

(
Hpk (It) −M

)
Hpk (It) + CF × rand(0, 1) ×

(
Hpk (It) −M

) if ψk+1 > ψk

Else
k = 1, 2, . . . .NHp (20)
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FIGURE 3. Convergence properties of IDMO and DMO for CEC 2017 problems.
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FIGURE 3. (Continued.) Convergence properties of IDMO and DMO for CEC 2017 problems.

equation presented in Eq. (17) to create a probable food
position. As a result, the location of each seeking solu-
tion inside the area of search is enhanced as described
as in Eq. (23), shown at the bottom of page 11, where,
HpBest is the alpha position regarding the seeking animal
with lowest value of the objective; HpRd corresponds to a
randomly picked HP animal; and LSV represents the like-
lihood of selection value. LSV is adjusted to 50% to strike
a compromise between the heightened exploitation features
given in Eq. (23) and the exploratory qualities indicated

in Eq. (17). The exploitative characteristics are significant
and powerful though by means of the previously mentioned
framework, while the exploratory searching attributes are
retained and accomplished through the conventional way at
the same time. The essential stages of the IDMOare displayed
in Figure 2.

IV. SIMULATION RESULTS
In this part, the application of the proposed IDMO is exe-
cuted in two directions. At first, simulations of benchmark
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TABLE 4. Statistical outcomes of IDMO and DMO for CEC 2017 benchmarking tasks.
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TABLE 4. (Continued.) Statistical outcomes of IDMO and DMO for CEC 2017 benchmarking tasks.

functions are implemented considering CEC 2017 single
objective optimization competition with comparison to sev-
eral recent metaheuristic algorithms. Second, simulations are
conducted in solving the TCSC allocation problems in power
networks considering two IEEE standard power systems of
30 and 57 buses.

A. APPLICATION ASSESSMENT FOR CEC 2017
BENCHMARKING MODELS
Due to the lack of a formal proof, it can be difficult to
determine the amount of ‘‘good’’ of an effective optimisation

strategy; therefore, benchmarking functions provide an
important role in evaluating the usefulness of these strategies.
As a consequence, the proposed IDMO and DMO tech-
niques’ performance is evaluated in this work utilizing the
CEC 2017 competition as a benchmark [55]. This test pro-
vides a number of routines for checking different attributes.
Unimodal, multimodal, mixed, and composite functions are
among those explored. Table 2 shows those unrestricted
benchmarking functions. For all the 28 benchmarking func-
tions, the considered dimension is 30 control variables while
their bounds are [−100,100].

Hpk (It + 1) =

{
HpBest (It) + rand(0, 1) ×

(
Hpk (It) − HpRd (It)

)
Hpk (It) + rand(0, 1) × peep

if rand < LSV
Else

k = 1, 2, ..NHp − Best (23)
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TABLE 5. Ranking by Friedman of the comparing algorithms’ average objective values for the CEC 2017 problems.

The suggested IDMO is carried out in contrast to the tradi-
tional DMO,with the CEC2017 single objective optimization
criteria, which are shown in Table 2, taken into account. Also,
several recent optimization techniques are taken into con-
trast including artificial ecosystem optimization (AEO) [56],
aquila optimization (AQU) [57], equilibrium optimization
(EO) [58], enhanced slime mould algorithm (ESMA) [59],
Gorilla troops optimization (GTO) [60], red kite optimization
(RKO) [61], subtraction-average-based algorithm (SAA) [62]
and slimemould algorithm (SMA) [63]. In relation to the con-
trasted techniques, Table 3 shows their necessary settings and
a number of effective applications. Fifty different operations
based on each method for every benchmark have been looked
at to eliminate the impact of randomness.

Based on the circumstances stated in Table 3, the compared
algorithms are applied for the CEC 2017 benchmarks that are
described in Table 2. Fig. 3 displays the convergence features
of the DMO, IDMO, AEO, AQU, EO, ESMA, GTO, RKO,
SAA and SMA, respectively. In similar time, Table 4 depicts
the regarding statistical metrics in terms of the best, mean,
worst and standard deviation (Std) outcomes. As shown in
Table 4, the introduced IDMO technique demonstrates the
best strength by attaining the least statistical indices in most
of the benchmark functions. As shown:

• Compared to the standard DMO, the IDMO shows
improvement of 96.43%, 71.43%, 60.71% and 46.43%,
accordingly regarding the best, mean, worst and Std.

FIGURE 4. Line-diagram of the first power system [77].

• Compared to the AEO, the proposed IDMO derives
improvement of 89.29%, 75.00%, 85.71% and
82.14%, accordingly.

• Compared to the AQU, the proposed IDMO
acquires improvement of 100.00%, 100.00%,
96.43% and 82.14%, respectively.
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TABLE 6. Outcomes of the compared algorithms for TCSC device allocations regarding Case 1.

FIGURE 5. Implemented algorithms’ convergence curves regarding Case 1.

• Compared to the EO, the IDMO shows improve-
ment of 85.71%, 78.57%, 71.43% and 71.43%,
accordingly.

• Compared to the ESMA, the proposed IDMO
achieves improvement of 89.29%, 75.00%, 50.00%
and 50.00%, respectively.
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FIGURE 6. Box plot related to the Outcomes of the compared algorithms for Case 1.

TABLE 7. Statistical outcomes of the obtained Losses (MW) for Case 1.

• Compared to the GTO, the proposed IDMO finds
improvement of 92.86%, 78.57%, 78.57% and
67.86%, accordingly.

• Compared to the RKO, the proposed IDMO obtains
improvement of 82.14%, 96.43%, 92.86% and
89.29% %, respectively.

• Compared to the SAA, the proposed IDMO attains
improvement of 96.43%, 92.86%, 92.86% and
85.71%, accordingly.

• Compared to the SMA, the proposed IDMO pro-
vides improvement of 92.86%, 78.57%, 71.43%
and 71.43%, respectively.

Additionally, for the benchmarking task functions of the
CEC 2017, Table 5 records the outcomes of a Friedman rank-
ing test related to the proposed IDMO, the basic DMO [36]
(2020), AEO [56] (2020), AQU [57] (2021), EO [58] (2020),
ESMA [59] (2022), GTO [60] (2021), RKO [61] (2022),
SAA [62] (2023) and SMA [63] (2020), respectively. As
shown, the designed IDMO achieves the least average rank of

2.517 achieving the superior outcomes by obtaining the first
rank. In the second level, the EO accomplishes a mean rank of
3.3928 while the SMA realizes the third level by 4.357. Also,
ESMA, GTO and the standard DMO comes in the fourth,
fifth and sixth order, respectively with mean ranks of 4.75,
5.214 and 5.267. Furthermore, AEO, RKO and SAA come in
the fourth, fifth and sixth order, respectively with mean ranks
of 8.82, 6.785 and 8.107 while AQU shows the worst perfor-
mance with mean rank of 8.75. Based on these results, the
proposed IDMO shows improvement reduction of 25.79%,
42.21%, 46.99%, 51.71%, 52.20%, 56.75%, 62.89%, 68.94%
and 71.22% in comparison to EO, SMA, ESMA,GTO,DMO,
AEO, RKO, SAA and AQU, respectively.

B. APPLICATIONS FOR TCSC ALLOCATIONS IN IEEE
STANDARD 30-BUS TRANSMISSION NETWORK
In this section, the IEEE standard 30-bus system, shown in
Fig. 4 [75], is utilized to handle the optimal TCSC allocations.
This system includes 41 lines, 30 nodes, 4 transformers,
and 9 compensators [76]. The maximum generator voltage
1.10 p.u. and the corresponding tap positions is 0.90 p.u.
For the load buses, the voltage limits are 1.05 and 0.95 p.u.,
these limits for the generator bus are 1.10 and 0.90 p.u.,
respectively. The IDMO is contrasted with DMO and other
recent algorithms of AQU, GWO, AEO and SAA. For all
implemented algorithms, 20 times are separately executed
where the number of iterations and searching individuals are
taken of 300 and 50, respectively. They are performed. Based
on the number of the candidate allocated TCSC devices, three
disparate cases are investigated considering one, two and
three devices.
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FIGURE 7. Implemented algorithms’ convergence curves regarding Case 2.

TABLE 8. Outcomes of the compared algorithms for TCSC device allocations regarding Case 2.

1) CASE 1
The allocation of one TCSC device is optimized in this case
to get the minimum power losses using the proposed IDMO.

The obtained results are compared with DMO, SAA, AEO,
AQU, and GWO.

Table 6 shows the optimal control variables which are
the generators voltage and output power, the Var sources
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FIGURE 8. Box plot related to the outcomes of the compared algorithms for Case 2.

injection power and the tap value besides the placement and
sizing of the TCSC device. Furthermore, the proposed IDMO,
standard DMO, AEO, AQU, and GWO converging curves are
shown in Fig. 5. As demonstrated, the proposed IDMO pro-
duces the lowest power losses of 2.8156 MW. The proposed
IDMO gets the transmission line (28-27) as best location of
TCSC with 49.72% subtraction in sizing from the installed
line reactance. The proposed IDMO attained a 51.72% reduc-
tion in power losses when compared with the initial case.
When comparing the results of the proposed IDMO with
the standard DMO, the proposed IDMO accomplishes a sig-
nificant reduction percentage of 6.74% in the power losses.
Also, the proposed IDMO achieves a 5.83% reduction in
the power losses compared with the AQU. Likewise, the
proposed IDMO achieves a 7.23% reduction compared to
GWO. Furthermore, the proposed IDMO achieves a nearly
1% reduction percentage compared to the obtained results by
the AEO and SAA.

TABLE 9. Statistical outcomes of the obtained Losses (MW) for Case 2.

Fig. 6 shows the box plot associated with the results of
the compared algorithms for Case 1 in order to perform a
statistical assessment of the compared procedures. Table 7
displays the associated statistical outcomes of the obtained
Losses (MW) for this case. It is evident that by aggregating
the fewest indices from the obtained objective values, the pro-
posed IDMOworks best. In terms of average acquired losses,
DMO, SAA, AEO, GWO, and AQU receive losses of 3.065,
2.930, 3.007, 3.472, and 3.080 MW, respectively, while the
suggested IDMO finds the lowest losses of 2.875 MW. In
comparison to the results achieved by the DMO, SAA, AEO,
GWO, andAQU, the suggested IDMO achieves improvement
reductions of 6.22%, 1.87%, 4.39%, 17.20%, and 6.67%,
respectively. The suggested IDMO finds the lowest losses,
3.038 MW, based on the worst obtained losses, whereas
DMO, SAA, AEO, GWO, and AQU receive losses, 3.109,
3.188, 3.180, 3.849, and 3.172 MW, respectively. In com-
parison to the findings achieved by the DMO, SAA, AEO,
GWO, andAQU, the suggested IDMO achieves improvement
reductions of 2.29%, 4.71%, 4.46%, 21.08%, and 4.23%,
respectively. Table 7 provides the computation burden, mea-
sured as the average time per iteration as well.

2) CASE 2
The allocations of two TCSC devices are optimized in this
case to get the minimum power losses using the proposed
IDMO. Table 8 shows the optimal control variables related to
the proposed IDMO, standard DMO, AEO, SAA, AQU, and
GWO where the corresponding convergences are displayed
in Fig. 7. As demonstrated, the IDMO outputs the lowest
power losses of 2.802 MW. The proposed IDMO selects the
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FIGURE 9. Implemented algorithms’ convergence curves regarding Case 3.

TABLE 10. Outcomes of the compared algorithms for TCSC device allocations regarding Case 3.

transmission lines (4-12) and (2-5) with compensation levels
of 49.78% addition and 25% subtraction from the installed

line reactance, respectively. The IDMO over the original
case accomplished a 51.95% reduction in power losses.
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FIGURE 10. Box plot related to the outcomes of the compared algorithms for Case 3.

FIGURE 11. Voltages profile after candidate TCSC installment for cases 1-3 using the
designed IDMO.

TABLE 11. Statistical outcomes of the obtained losses (MW) for Case 3.

In comparison to results achieved by the standard DMO, the
proposed IDMO achieves a 7.46% reduction in power losses.
The proposed IDMO achieves a 6.87% reduction when com-
pared to the obtained results by the AQU. In addition, the

proposed IDMO achieves a 15.14% reduction compared to
GWO. Additionally, the proposed IDMO achieves a 2.3%
reduction when compared to AEO and SAA.

Fig. 8 displays the box plot related to Case 2 to esti-
mate the statistical indices of the applied techniques. Table 9
displays the associated statistical outcomes of the obtained
Losses (MW) for this case. Using the mean acquired losses
and the worst acquired losses as bases, the proposed IDMO
extracts the lowest indices of the obtained objective values.
Comparing the IDMO’s findings to those produced by the
DMO, SAA, AEO, GWO, and AQU, respectively, shows
improved reductions of 6.21%, 2.22%, 3.84%, 17.95%, and
7.47% based on the mean acquired losses. When compared to
the findings produced by the DMO, SAA, AEO, GWO, and
AQU, respectively, the suggested IDMO discovers improved
reductions of 2.75%, 4.24%, 5.61%, 27.42%, and 4.62%
based on the worst acquired losses.
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TABLE 12. Outcomes of the compared algorithms for TCSC device allocations regarding Cases 1-3.

FIGURE 12. IEEE 57-bus power system [79].

3) CASE 3
In this case, the allocations of three TCSC devices are opti-
mized to get the minimum power losses using the proposed

IDMO and the other algorithms. Table 10 displays the control
variables, and the related converging properties are shown in
Fig. 9. The developed IDMO gets the lowest power losses of
2.795 MW. The locations of the three TCSC are the transmis-
sion lines (28-17), (4-12), and (6-7) with compensation level
of 48.39% subtraction, 45.3% addition, and 47% addition,
respectively.

Based on the best outcomes stated in Table 10, the pro-
posed IDMO achieves 7.37%, 0.95%, 2.96%, 12.31%, and
5.87% reduction in power losses with comparing to the
DMO, SAA, AEO, GWO and AQU, respectively. Fig. 10
displays the box plot related to the outcomes of the com-
pared algorithms for Case 3. Table 11 displays the associated
statistical outcomes of the obtained Losses (MW) for this
case. Based on the mean acquired losses, the proposed IDMO
accomplishes 5.65%, 0.68%, 3.72%, 16.44%, and 5.88%
reduction in power losses in compared to the obtained results
by the DMO, SAA, AEO, GWO and AQU, respectively.
Based on the worst acquired losses, the proposed IDMOfinds
1.99%, 3.43%, 12.90%, 20.11% and 3.69% reduction when
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FIGURE 13. Implemented algorithms’ convergence curves regarding Cases 1-3.

compared to the obtained results by the DMO, SAA, AEO,
GWO and AQU, respectively.

4) VOLTAGE PROFILE-BASED TCSC INSTALLATIONS FOR THE
IEEE 30-BUS SYSTEM
Based on the utilized TCSC using the proposed IDMO, the
voltages profiles in the previous three cases are represented
in Fig. 11 compared to the initial case.

Grid buses have improved significantly for the three situ-
ations examined, as has been observed. The biggest voltage
increase is on the last grid bus (No. 30), which goes from
0.9012 per unit (p.u.) to 1.075, 1.0686 and 1.0699 p.u. with
improvements of 16.17%, 15.67% and 15.77% for the Cases
1, 2, and 3, respectively.

C. APPLICATIONS FOR TCSC ALLOCATIONS IN IEEE
STANDARD 57-BUS TRANSMISSION NETWORK
The standard IEEE 57-bus transmission network, illustrated
in Fig. 12, is utilized in this section. This system consists of

57 nodes, 80 lines, 17 on-load tap changing transformers,
7 generators, and three capacitive sources on buses. The
system data is extracted from [78]. The three cases studied are
investigated considering one, two and three TCSC devices to
reduce the power losses. The IDMO and DMO are applied
where Table 12 tabulates their obtained control variables.
As shown, the proposed IDMO shows higher reduced power
losses of 9.846, 9.952 and 9.746 MW compared to 13.302,
13.008 and 13.206 MW for the cases 1-3, respectively. Oth-
erwise, the converging properties are depicted in Fig. 13. The
proposed IDMO shows better searching capability over the
standard DMO in finding and developing the best individual
through the iterations.

Moreover, Fig. 14 displays the box plot related to the
outcomes of the compared algorithms for all considered
cases. As demonstrated, the suggested IDMO performs best
by gaining the fewest indices among the acquired objec-
tive values. From this figure, it can be concluded the
following:
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FIGURE 14. Box plot related to the outcomes of IDMO, DMO, AEO, SAA, AQU, and GWO for Cases 1-3.

FIGURE 15. Voltages profile after candidate TCSC installment for cases 1-3 using the designed IDMO for the second system.

• For the first case, based on the mean acquired
losses, the proposed IDMO finds the least losses

of 10.215 MW while DMO, SAA, AEO, GWO
and AQU obtain losses of 14.611, 21.300, 11.138,
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24.544 and 22.346, respectively. Therefore, the pro-
posed IDMO achieves improvement reduction 30.08%,
52.04%, 8.28%, 58.38% and 54.28% respectively, com-
pared to the obtained results by the DMO, SAA, AEO,
GWO and AQU.

• For the second case, based on the mean acquired
losses, the proposed IDMO finds the least losses
of 11.124 MW while DMO, SAA, AEO, GWO
and AQU obtain losses of 15.613, 25.016, 15.288,
32.709 and 30.916, respectively. Therefore, the pro-
posed IDMO achieves improvement reduction 28.75%,
55.53%, 27.23%, 65.99% and 64.02%, respectively,
compared to the obtained results by the DMO, SAA,
AEO, GWO and AQU.

• For the third case, based on the mean acquired
losses, the proposed IDMO finds the least losses of
10.33 MW while DMO, SAA, AEO, GWO and AQU
obtain losses of 14.541, 22.554, 11.406, 26.476 and
20.072, respectively. Therefore, the proposed IDMO
achieves improvement reduction 28.96%, 54.20%,
9.44%, 60.99% and 48.54%, respectively, compared to
the obtained results by the DMO, SAA, AEO, GWO and
AQU.

Based on the candidate TCSC installment using the
designed IDMO in the previous cases, the voltages profile
over all the system buses are depicted in Fig. 15 compared
to the initial case.

As can be shown, grid buses have significantly improved
in each of the scenarios examined. The largest voltage profile
rise is seen on the last grid bus (No. 31), which increased from
0.9359 p.u. to 1.027, 1.022, and 1.058 p.u. with improvements
of 8.87%, 8.42%, and 11.54% for Cases 1-3, respectively.

V. CONCLUSION
This paper provides a revolutionary IDMO incorporating an
ADLP for dealing with a variety of mathematical benchmark
functions and technical difficulties. The creatively proposed
technique has an improved learning strategy to improve
searching features, and portion of its update operation is
driven by the updated alpha. Firstly, the suggested IDMO is
opposed to the conventional DMO and assessed using CEC
2017 single objective criteria. The designed IDMO achieves
the least average rank of 2.517 achieving the superior out-
comes by obtaining the first rank. It shows improvement
reduction of 25.79%, 42.21%, 46.99%, 51.71%, 52.20%,
56.75%, 62.89%, 68.94% and 71.22% in comparison to EO,
SMA, ESMA, GTO, DMO, AEO, RKO, SAA and AQU,
respectively. Furthermore, the application is conducted for
optimal allocation of TCSC devices in transmission power
systems considering two different IEEE power systems of
30 and 57 buses and considering different number of TCSC
devices. For all applications, the suggested IDMO outper-
forms the DMO, SAA, AEO, GWO, and AQU by accumu-
lating the fewest indexes of the acquired values for objective.
Additionally, the overall grid buses have advanced signifi-
cantly in all scenarios examined for the two IEEE systems.
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