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ABSTRACT Synthesizing facial images from monochromatic sketches is one of the most fundamental tasks
in the field of image-to-image translation. However, it is still challenging to teach model high-dimensional
face features, such as geometry and color, and to the characteristics of input sketches, which should be
considered simultaneously. Existing methods often use sketches as indirect inputs (or as auxiliary inputs) to
guide models, resulting in the loss of sketch features or in alterations to geometry information. In this paper,
we introduce a Sketch-Guided Latent Diffusion Model (SGLDM), an LDM-based network architecture
trained on the paired sketch-face dataset. We apply a Multi-Auto-Encoder (AE) to encode the different
input sketches from the various regions of a face from the pixel space into a feature map in the latent
space, enabling us to reduce the dimensions of the sketch input while preserving the geometry-related
information of the local face details. We build a sketch-face paired dataset based on an existing method
XDoG and Sketch Simplification that extracts the edge map from an image. We then introduce a Stochastic
Region Abstraction (SRA), an approach to augmenting our dataset to improve the robustness of the SGLDM
to handle arbitrarily abstract sketch inputs. The evaluation study shows that the SGLDM can synthesize
high-quality face images with different expressions, facial accessories, and hairstyles from various sketches
having different abstraction levels, and the code and model have been released on the project page.
https://puckikk1202.github.io/difffacesketch2023/

INDEX TERMS Diffusion model, image synthesis, sketch-guided image generation.

I. INTRODUCTION
Synthesizing images, especially human faces, from a
monochromatic sketch is one of the most fundamental tasks
in the image-to-image translation, as it benefits various
applications, such as character design and inmate tracking.
However, the sparse distributions of single-channel sketch
data challenge feature extraction and generalization. In addi-
tion, collecting paired datasets of painter’s sketches and the
corresponding photographs is time-consuming and labor-
intensive; similarly, it is challenging for the synthesis model
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to understand themonochromatic sketch input with redundant
semantic information (e.g., separated facial components,
expressions, accessories, and hairstyles ).

Generative Adversarial Network-based-based generative
models [10], [16] are one of the most feasible solutions
for sketch-to-image generation based on semantic mask-
annotated datasets [2], [10]. Despite allowing users to arrange
facial semantics (i.e., regional-only conditions), many details
may be lost or arbitrarily synthesized, such as wrinkles and
mustaches. Instead of applying semantic masks, previous
GAN-based models [3] trained using sketch-face paired
datasets can directly generate (and edit) face images from
monochrome sketches. However, they are unsuitable for
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FIGURE 1. A Sketch-Guided Lantent Diffusion Model (SGLDM) synthesizes high-quality face images with a high consistency with input sketches, SGLDM
enables users to simply edit face images, such as different expressions, facial components, hairstyle, etc. The edited strokes are highlighted in red.

handling local geometrical details, such as accessories and
expressions, as no semantic information was directly spec-
ified in the rough monochromatic sketches. More recently,
the diffusion model (DM) [8], [14], [25] and Contrastive
Language-Image Pre-training (CLIP) [18] have achieved
tremendous success with the text-to-image task. However,
in the case of image-to-image transformation, especially
sketch-to-image, their system requires not only an image
input but also appropriate text inputs, and it may not
generate desired images, as shown in Figure 2. The other
conditioning-guided DM-based models, such as ILVR [4]
and SDEdit [12], approached the image-to-image task by
inputting an RGB image reference to control the synthesis.
However, it is generally difficult to specify image details after
noise injection and resampling of the query input.

To maximize the generative models to learn from the
paired sketch to gather more accurate information, in this
work, we introduce a Sketch-Guided Latent Diffusion Model
(SGLDM), a network architect trained using a sketch-face
dataset. The LDM is exceptional at flexible and high-quality
inference under different conditions, so we apply an LDM as
a backbone for our sketch-guided image synthesis training.
We also apply a Multi-Auto-Encoder (AE) to encode query
sketches from the pixel space into feature maps in the
latent space of the image feature, enabling us to reduce
the dimensions of the sketch input while preserving the
geometrical-related information of the face’s local details.

Moreover, we apply a two-stage training process to achieve
better distribution mapping between the sketch and image
domains. Because different people focus on different facial
regions, this often leads to varied levels of abstraction in
the input sketch. For example, some people focus on the
details of the eyes, while others focus on the mouth. To access
sketch data with different levels of abstraction, we introduce
a data-augmentation method, named Stochastic Region
Abstraction (SRA) to improve the robustness of SGLDM,
while sketch data are extracted from Celeba-HQ using sketch
simplification methods [23], [24], [29]. The evaluation study
shows our model can generate natural-looking face images
from sketches with different levels of detail. In addition, the
SGLDM also enables users to synthesize desired face images
(at a resolution of 256 × 256) with different expressions,
facial accessories, and hairstyles via a monochromatic sketch
(see Figure 1).
In short, ourmain contributions are summarized as follows.

• We proposed SGLDM, a sketch-input-only model, trained
via a two-stage training process to synthesize faces with
high quality and input consistency.

• We introduced SRA, a data augmentation strategy for
synthesizing convincible faces from input sketches at
different levels of abstraction.

• We verified the SGLDM achieves superior scores in
variousmetrics compared to state-of-the-art methods and it
is sufficiently robust to generate the intended face images.
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FIGURE 2. An example of implementing an LDM-based model, stable
diffusion [20] with pre-trained weights. Although we inputted a single
sketch (left) and texts (e.g., ‘‘a face photo’’ or ‘‘a portrait’’), the generated
results are not colored images but monochromatic sketches, and they do
not reproduce the contours of the input sketch.

II. RELATED WORK
A. SKETCH-BASED IMAGE SYNTHESIS
The field of image synthesis from sketches has witnessed
significant exploration over the past decade. From its incep-
tion, the problem of sketch-to-image translation has been
tackled as an image-to-image transformation task. As such,
researchers have endeavored to train deep learning-based
networks to bridge the gap between monochromatic sketches
and full-color RGB images.

Several supervised GAN-based generative models, such
as Pix2Pix [36] and Pix2pixHD [27], rely on paired sketch-
image datasets, which are created by extracting the edge
information from real images to facilitate model training.

To enhance the efficacy of translating the image domain
into the sketch domain, the construction of a substantial
corpus of paired sketches and photographs is imperative.
Consequently, such datasets as Sketchycoco [6], which
categorize objects into distinct classes, have been introduced.
However, concerning to facial sketch image datasets, the
availability is notably limited, as exemplified by the datasets
CUHK Face Sketches [28], [35].
Conversely, unsupervised image-to-image translation

methods, such as CycleGAN [36] and DualGAN [32],
have been explored in other works. More recently, with
the burgeoning advancement in disentangled representation
within StyleGAN’s w+ space, sketch-to-sketch translation
has been treated as a style transfer task, illustrated by
methods likeDualStyleGAN [30] and Pixel2Style2Pixel [19].
Furthermore, akin to the recently popular text-to-image
generative models, GAN-based approaches also permit users
to generate and edit images via textual and sketch inputs, such
as [15] and [17].
Nonetheless, end-to-end GAN-based models have been

associated with such issues as unstable training and suscep-
tibility to overfitting on specific datasets. These challenges
restrict the diversity and quality of synthesized results. Hence,
drawing inspiration from the notable performance of LDMs
in conditional image synthesis tasks, we propose the SGLDM
as a solution for achieving high-quality face synthesis with
enhanced input consistency.

B. DIFFUSION MODELS
In recent times, diffusion and score-based models have
emerged as formidable contenders in the realm of image

synthesis, a fundamental component of which is the
U-Net architecture [21], lauded for its excellence in fostering
diversity, ensuring quality, stabilizing training, and offering
module extensibility.

Noteworthy advancements have been presented in previous
studies, such as [8] and [25], demonstrating a superior
performance, particularly in the domain of unconditional
image synthesis. However, a significant impediment remains
the hefty computational costs, which subsequently constrain
the resolution of the images produced. In a serendipitous turn
of events, contributions by [20] have provided a solution.
In their approach, images are initially encoded from a
high-dimensional RGB space to a more manageable, low-
dimensional latent feature space.

Subsequently, this latent representation is employed to
navigate both the forward and backward diffusion processes.
In addition, the architecture’s commendable modular exten-
sibility equips it to handle a plethora of image-to-image
tasks. This includes, but is not limited to, image inpainting,
semantic mask-to-image translation, and layout-to-image
generation, as elucidated by [20].
While certain methodologies have focused on altering

the network architecture of DM-based designs, alternative
approaches start from ILVR [4] and SDEdit [12]. Upto
more recently represented by ControlNet [13] and T2I-
Adatper [34], many have chosen a different path. However,
these strategies involve fine-tuning the models with sup-
plementary plug-in condition modules. Alternatively, during
the sampling process, they incorporate extra constraint loss
functions to govern the sampling procedure. This concerted
effort has yielded impressive results, enabling models to
excel in the task of generating high-quality images from
sketches. Intriguingly, their method necessitates a blurry
RGB reference, which serves the dual purpose of iteratively
guiding the sampling process and acting as an input
reference. Despite their efforts, the delineation of intricate
image details was compromised, primarily attributable to
the conditioning’s inherent blurriness. Meanwhile, when
considering the sketch-to-image task, a paramount challenge
emerges: the monochromatic sketches inherently possess a
dearth of semantic information. Consequently, executing the
sketch-to-image transformation via DMs invariably demands
supplementary inputs, such as auxiliary text prompts, to com-
pensate for this information void.

III. METHOD
A. OVERVIEW
Our goal is to synthesize a high-quality face images that
are highly consistent with the input sketch. We assume that
the feature distribution of the monochromatic sketches in the
dataset is much more irregular and sparser than that of the
RGB images. Jointly training a model to encode the sketch
embedding, and map the sketch domain to the image domain
may result in a rough distribution (see Figure 4 [dashed
line])). Therefore, we implemented a two-stage training
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FIGURE 3. The framework of SGLDM. In the sketch-embedding stage (a), given a sketch input S, a pretrained sketch encoder ζ which
consists of ζ = {ζleftEye, ζrightEye, ζnose, ζmouth, ζface} encodes S into a feature vector S′

leftEye, S′

rightEye, S′
nose, S′

mouth, S′

face. We then

combine the feature into an overall feature map (c). The decoder θ then decoders (c) into a feature map S̃. In the latent denoising stage
(b), the random latent code ZT is concatenated by the feature map S̃ and denoised to Z0 by a U-Net. Finally, the output latent code Z0 is
decoded by D to the final output.

FIGURE 4. The illustration of feature distribution mapping between the
jointly-trained conditional embedding (dashed line) and the
separately-trained conditional embedding (solid line), from the sketch
(a) to the image (b) domain.

method to optimize the distribution mapping between the
sketch and image domains, as shown in Figure 4 (solid line).
More details can be found in Section IV.

B. PRELIMINARIES
DMs represent a subset of generative models, underpinned
by two fundamental mechanisms: first, the diffusion process,
often referred to as the forward process, incrementally intro-
duces Gaussian noise to the dataset through a predetermined
Markov chain spanning T steps. Second, the denoising
process, an algorithmic model trainable to synthesize sam-
ples deriving from Gaussian noise. Furthermore, DMs are
versatile, with the ability to be contingent on other inputs.
For instance, in the context of text-to-image DMs, text can be
used as an input condition. Central to the operational efficacy

of these models is their training objective. Typically, for a
DM, this objective is symbolized as ϵθ , which essentially
predicts the noise, and it objective is typically framed as a
streamlined iteration of the variational bound:

LDM = Ex0,ϵ∼N (0,I ),c,t [∥ϵt − ϵθ (xt , c, t)∥2] (1)

where x0 denotes the authentic data, which are augmented
with a conditioning element, represented as c. The diffusion
process temporal progression is captured by t , which ranges
within [0,T ]. This acts as a chronological gauge, signaling
the evolution of the diffusion process across its steps. The
noisy data at a particular time step t are symbolized by xt ,
a function of the genuine data x0, the Gaussian noise ϵ,
and the predefined coefficients αt and σt . Specifically, xt =

αtx0 + σtϵ articulates the amalgamation of the real data
and noise, moderated by αt and σt , the roles of which are
pivotal. They are not arbitrary but are systematically defined
functions of t , and their values influence the trajectory and
intensity of the diffusion process. After successfully training
the model ϵθ , it is then empowered to generate visual content,
or images, starting from arbitrary noise. This generation
is not instantaneous, but unfolds iteratively, resembling the
incremental character of the diffusion process.

In a more recent development, a method called LDM,
as introduced by Rombach and colleagues [20], has emerged
with the aim of mitigating computational costs. The rationale
behind this approach hinges on the observation that, even
after passing through the neural network of the AE model,
certain features that contribute to perceptual intricacies and
semantic significance remain embedded within the latent
code.

The LDM technique involves the utilization of a
pre-trained encoder denoted as ε, which is tasked with
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encoding an image x residing in a high-dimensional RGB
space, represented as x ∈ RH×W×3, into a lower-dimensional
latent code z, situated in z = ε(x) ∈ Rh×w×3. Subsequently,
a pre-trained decoder D is employed to reverse this process,
effectively generating images from the latent code, denoted
as x̃ = D(z). The significance of this transformation lies in
its potential to facilitate a transition in the loss-term LLDM .

LLDM = Ex0,ϵ∼N (0,I ),c,t [∥ϵt − ϵθ (zt , c, t)∥2] (2)

IV. SKETCH-GUIDED LATENT DIFFUSION MODEL
A. FRAMEWORK
In the context of face synthesis, our objective is to generate
facial images based on a single provided sketch input.
To achieve this, we treat the sketch as a guiding condition
for the model during the denoising process. The framework
of our approach, denoted as SGLDM, is illustrated in
Figure 3(a, d). Drawing inspiration from the work of
Rombach and colleagues [20], we also incorporate an LDM
to optimize computational efficiency.

Incorporating our sketch-condition pairs, the training loss
LSGLDM for the conditional LDM can be expressed as
follows:

LSGLDM = Ex0,ϵ∼N (0,I ),c,t [∥ϵt − ϵθ (zt , τθ (S̃), t)∥2] (3)

In this formulation, S̃ represents a sketch feature that has been
encoded by a pre-trained sketch encoder, denoted as ζ (S),
operating on the input sketch S. The τθ function serves as a
decoder, responsible for estimating a conditional map allows
for the reversal of the diffusion process applied to ε(x). It’s
important to note that both τθ and ϵθ are concurrently trained.

Instead of solely training a sketch encoder to gen-
erate a conditional feature map for ZT to facilitate
denoising, we introduce a ‘‘Conditioning Module’’ by
pretraining a Multi-AE network architecture. Drawing
inspiration from previous works that segmented the global
facial structure into local components for individual
networks, as seen in DeepFaceDrawing [3], APDraw-
GAN [31], and MangaGAN [26], our overarching encoder
ζ comprises five distinct partial encoders, denoted as
ζ = {ζleftEye, ζrightEye, ζnose, ζmouth, ζface}, as illustrated
in Figure 3(b,c).
For face editing, as opposed to face synthesis, we introduce

an original facial input. To facilitate this, we train a VQVAE,
which employs vector quantization to enhance the quality of
image synthesis by learning discrete latent representations,
using our sketch dataset to encode the dilated sketch. Both the
original face and the sketch input are inversely masked, with
the face being masked by the region designated for editing
and the sketch input being masked by the remaining area.
Subsequently, we concatenate the two encoded features with
an additional binary mask map to train the LDM.

B. 2-STAGE TRAINING STRATEGY
Our training phase incorporates a two-stage process. During
the sketch embedding phase, we pre-train the Conditioning

Module. This pre-training is achieved by minimizing the
cumulative Mean Squared Error (MSE) loss LMulti-AE,
stemming from each individual partial encoder. This can be
mathematically formulated as:

LMulti-AE = ∥

∑
ζi∈ζAE

ζi(x) − x∥2 (4)

where ζAutoEncoder denotes the Multi-AE, where ζi represents
the autoencoder for each facial region i. This includes an
encoder ζleftEye and a corresponding decoder ζ ′

leftEye, among
others. It should be noted that these decoders are exclusively
employed during the training phase of the Multi-AE and are
not utilized in either the training stage of the conditional LDM
or the overall inference stage.

FIGURE 5. The original image in Celeba-HQ and its extracted edge map
(a), and the result of paired data after removing the background (b).
Sketch simplification results from 3 different resolutions faces
(bottom-left), and the random seamed data samples (bottom-right).

Our decision to initiate pre-training with the Multi-AE
rather than proceeding directly to joint training for the sketch
encoders-thereby providing a conditional feature map for the
SGLDM-is underpinned by two core motivations:

• Domain Distribution Alignment: Our intent is to
cultivate a model that more adeptly discerns and
maps the relationships between the distinct domain
data distributions characterizing the sketches and faces.
In doing so, we aim to yield a seamlessly integrated
domain distribution space, as visualized in Figure 4.

• Computational Efficiency:Adopting a two-stage train-
ing strategy provides computational advantages. Specif-
ically, by decoupling the trainable parameters of models
across distinct stages, we streamline and enhance the
model optimization process.

In the subsequent training phase, and to bolster the
SGLDM’s adaptability across a variety of sketches, we incor-
porate what we term the arbitrarily masking conditional
training strategy, inspired by the Masked AutoeEncoder [7],
involves randomly occluding segments of the input, leaving
it to the model to these sections. Given the pre-trained status
of our sketch encoder, ζ , our approach specifically entails the
random masking of the conditioning feature map, S, during
the training phase for denoising U-Net.
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FIGURE 6. Examples of corner cases of sketch inputs that featured
glasses, a hat, or a side profile.

C. STOCHASTIC REGION ABSTRACTION DATA
AUGMENTATION
To build our training dataset, we use 10,000 high-quality face
images from the Celeba-HQ dataset [10]. We first remove
the background of the photos, as shown in Figure 5(a,b).
Next, we utilize sketch simplification [23], [24] to generate
edge maps of the faces. To enhance the robustness of the
SGLDM to manage sketch inputs with arbitrary abstraction,
we introduce SRA to augment the dataset. We observed that
the abstraction levels of the extracted edge maps depend
on the image resolution. As such, we resized the original
photos into 128 × 128-, 256 × 256-, and 512 × 512- pixel
resolutions respectively (see Figure 5 [left-bottom]), and we
augmented our sketch dataset. The red box highlighted a
clear difference in the different abstraction levels in the hair
and eye regions. Moreover, following our Multi-AE related
region of every single encoder, we crop the edge maps
into five different pieces and randomly combine them back
together to form a new edge map with random seams at
different abstraction levels, as shown in Figure 5 (bottom-
right). We finally utilized 8,000 images for training, 1,000
for validating, and 1,000 for testing.

V. EXPERIMENT AND RESULTS
We conducted several experiments to verify the quality and
sketch input consistency of the SGLDM’s synthetic face
images.

A. IMPLEMENTATION
Both stages of SGLDM are trained on a single NVIDIA
RTX3090 GPU. In stage one Multi-AE training, the training
is performed for 500 epochs with an Adam optimizer with
β1 = 0.9, β2 = 0.999, and a batch size 64. The dimensions
of the latent space of every AE are the same at 512. In stage

TABLE 1. Preference results of user study.

two, our SGLDM is trained on 300 epochs with an Adam
optimizer as well, but the batch size is 8. The feature map of
the sketch embedding has 8 channels, plus three channels of
the LDM latent size, our denoising U-Net input is 11 channels
of latent code and the output is 3 channels.1

B. QUANTITATIVE COMPARISONS
We compare SGLDM with several state-of-the-art image-
to-image translation methods on the sketch2face task
(pip2pixHD [27], pix2pix [36], DeepFaceDrawing [3],
pixel2style2pixel (PSP) [19], and Palette [22]). We re-
trained most of the models on our 10K faces dataset picked
from Celeba-HQ in the same training settings. We directly
implement the pre-trained weight based on 512× 512- of the
DeepFaceDrawing Model.

For the overall quality of results from different competing
methods, as shown in Figure 11, the SGLDM synthesizes
more realistic faces while more faith is placed in the
input sketch. Pix2pix, Pix2pixHD, and DeepFaceDrawing,
however, tended to synthesize noisy faces when faces’
sketches were not facing straight, such as the third and
the last columns. Note that DeepFaceDrawing additionally
required a condition to control the gender of synthetic faces,
so we prepared both of the results. Although PSP achieved
higher quality results visually than other methods, their
methods showed poor fidelity of the sketch. Besides, Palette,
one DM-based image-to-image translation method, failed to
synthesize convincible faces from a sketch-only input. To our
knowledge, there is less state-of-the-art DM-based trained
from-scratch pipeline that relies only on monochromatic
sketch input, (In addition to some finetune on pre-trained
models, such as ControlNet [34] and T2I-adapter [13]) and
most are based on text2image, segmap2image, or image
inpainting pipelines fused with sketch input (e.g., [9]).
Next, we compared SGLDM, Pix2pixHD, and PSP which

have similar fidelity results (see Figure 12). The black strokes
on the right are input sketches for synthesizing the left-
face images, and the red strokes behind the black strokes
are filtered versions of the synthesized images using Adobe
Photoshop’s sketch filter tool [1].

From the results, we confirm that the SGLDM can
synthesize noiseless faces maintainingmaximum consistency
with the input sketch, except for some facial details, such
as nasolabial folds. Figure 6 shows examples of generated
face images with expressions, accessories, and hairstyles,

1Check up the codes and pre-trained model in our project page.
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TABLE 2. Quantitative comparisons. We applied the Fréchet inception distance (FID) (↓) score to measure the synthetic faces quality, the Learned
Perceptual Image Patch Similarity (LPIPS) (↓) scores to evaluate the consistency between real faces and synthesized results, and a recall ratio (REC↑) to
evaluate the input consistency.

FIGURE 7. The comparison of synthetic results of different sketch inputs having three abstraction levels.

demonstrating that our method achieves a better balance
between visual quality and input consistency of inputs.

We further conducted a user study to compare the visual
quality and the input consistency of three methods: SGLDM,
Pix2pixHD, and PSP, some of the compared samples are
shown in Figure 6. Note that Pix2pix was not included as its
visual quality is similar to that of Pix2pixHD. Participants
were asked to choose their preferences among the three types
of synthetic face images generated from different models
for both visual quality and input consistency. From Table 1,
we confirmed that face images synthesized by the SGLDM
achieved the highest preference for input consistency and
visual quality, not dissimilar to PSP.

C. QUALITATIVE EVALUATION
Concerning the input consistency, we calculated the recall
ratio (REC) between the black and red strokes (see Figure 12).

In addition, as the visual differences in the output are minimal
with different resolutions of input sketches (as mentioned
in Section IV-C), we prepared input sketches by manually
erasing some strokes from the original sketches, and we
generated face images (see Figure 7). From these results,
we confirmed that SGLDM is robust enough to handle rough
sketches with different abstraction levels.

We also conducted an ablation study to compare the
metrics scores between the joint training & two-stage training
methods and to verify the validity of our SRA strategy,
as shown in Table 2 (lower-rows). We observed that the
scores of SGLDM trained via joint training methods showed
a similar performance to Pix2pixHD. Although SGLDM
instructed on a single abstraction level dataset (without
SRA), shows the best performance on highly detailed sketch
input (low abstraction), it declined significantly under higher
abstraction inputs, as shown in Figure 8 (rightmost column,
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FIGURE 8. The synthetic faces of the ablation study.

downward). From the results, both separate training and data
augmentation methods improved the overall performance of
the SGLDM on various sketch inputs (see Figure 8 (second
column)).

D. EDITING CAPABILITY
We considered the usefulness of face editing. Figure 9
shows examples of partial editing, (a,b) hair styles of both
males and females, (c) the earings, and (d) expressions.
In addition, we compared the synthetic faces of the two-stage
trained model and the jointly trained model (see Figure 8).,
illustrating that the two-stage trained SGLDM is more robust
than the jointly trained SGLDM,forming a different identity
easily after editing, (see Figure 8 [third column, upward]).
As a result, the SGLDM is sufficiently robust enough to edit
the intended face at will using the synthetic results.

VI. LIMITATIONS AND FUTURE WORK
Although the SGLDM achieves high consistency with input
sketches, the synthesized result tends to be too strongly
affected by the input sketches. That is, noise and artifacts
might be generated when inputting extremely poor sketches,
as shown in Figure 10. To solve this issue, some trade-off
methods or algorithms will be required to keep the balance
between inputs’ consistency and outputs’ convincibility.
In addition to monochromatic sketch input, we plan to
consider a method of inputting several color cues to
handle color information such as skin and hair regions.
Moreover, we evaluated SGLDM’s performance on the face

FIGURE 9. Examples of face editing with SGLDM. (a,b) hairstyles,
(c) earrings, and (d) expressions.

FIGURE 10. Less successful examples generated from the low-quality
sketch inputs. Except for the second sketch from the right, the input
sketches are from [3].

synthesizing task. We believe that a similar framework can
also be applied into other sketch-image tasks by changing
the training dataset such as, Large-scale Scene Understanding
(LSUN) [33] and (Animal Face HQ) AFHQ [5]. In addition
SRA can simply augmented each dataset to enhance the
robustness of each model.

In this paper, although we implemented an LDM-based
method to reduce the computation costs, the SGLDM
(i.e., the training and the sampling stage) is still computation-
ally heavier than GAN-based models. In the training stage
of a 256 × 256 model, the maximum batch size on a single
NVIDIARTX3090 is 8, while a 512×512model’s maximum
batch size is only 1, and in the sampling stage, the average
time cost of one image is around 15.2 seconds. Although it
can be cut down to 50 sampling steps, and takes around 5 to
6 seconds when using the denoising diffusion implicit models
(DDIM) sampling strategy, the current implementation is still
difficult to incorporate into a real-time interactive graphical
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FIGURE 11. Qualitative comparisons of the proposed SGLDM with the state-of-the-art methods.

FIGURE 12. Fidelity comparisons of the proposed SGLDM with competing methods.

user interface (GUI). Furthermore, the latest methods like the
Latent Consistency Models (LCMs) [11] significantly reduce
the sampling generation time by requiring only 2 to 4 steps for
sampling. We plan to reference their approach for application
in our SGLDM to enable more real-time interaction in the
future.

VII. CONCLUSION
This paper has proposed SGLDM, an LDM-based architect
face synthesizing model with a Multi-AE to encode the
query sketch as a conditional map while preserving the
geometrical-related information of the face’s local details.
We also introduced SRA, a data-augmentation strategy that
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enables the models to deal with a sketch input of different
abstraction levels. We conducted experiments to verify that
the SGLDM could synthesize high-quality face images with
high input consistency. Moreover, the SGLDM is robust
enough to edit the synthetic results with different expressions,
facial accessories, and hairstyles.
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