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ABSTRACT Brain-computer interface BCI) is a technology that assists in straight link among the human
brain as well as external devices like computers or robotic systems, without including muscles and peripheral
nerves. BCI allows individuals with motor disabilities to manage external devices with the aid of brain
signals such as motor imagery detected from electroencephalography (EEG) signals. An EEG Motor
Imagery Classification for BCI is a specific application of EEG in which brain signals directly related
to motor imagery tasks are analyzed and classified to control external devices or applications, namely
robotic systems or computers. In this regard, the study introduces a Jellyfish Optimization with Fuzzy Logic
Enabled EEG Motor Imagery Classification for Brain Computer Interface (JFOFL-MICBCI) technique. The
JFOFL-MICBCI technique aims to exploit the fuzzy logic system with metaheuristics for classifying EEC
motor imagery signals. It initially executes Continuous Wavelet Transform (CWT) for transforming 1D-EEG
signals into 2D time-frequency amplitude ones. For feature extraction, the JFOFL-MICBCI technique
uses the SqueezeNet method, and its hyperparameters can be adjusted by the employ of the JFO system.
The JFOFL-MICBCI method exploits the adaptive neuro-fuzzy inference system (ANFIS) approach for
performing the classification process. A comprehensive range of experiments has been accompanied to
demonstrate the higher efficiency of the JFOFL-MICBCI technique. The obtained results inferred the better
of the JFOFL-MICBCI technique with other recent systems.

INDEX TERMS EEG signals, human—computer interaction, fuzzy logic, brain—computer interface, meta-
heuristics.

I. INTRODUCTION

A Brain-Computer Interface (BCI) is an evolving tech-
nique which is mainly designed to measure and transform
brain activity into artificial outputs, which can include
improving, restoring, replacing, supplementing, or enhancing
normal central nervous system outputs [1], [2], [3]. Motor
Imagery (MI) is a powerful skill wherein the user mentally
envisions motor movements without actual physical execu-
tion, involving no activation of peripheral nerves or muscles.
A Motor Imagery Brain-Computer Interface (MI-BCI) works
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as a method to transform brain signals produced in these
imaginings into activity order [4]. MI-BCI technique chiefly
uses electroencephalogram (EEG) to measure brain move-
ment [5]. EEG offers higher temporal resolution, could be
moveable at a comparatively lower price, and characterizes
synchronous electrical signals generated by the brain [6].
However, recorded EEG signals have been nonstationary and
endure a reduced spatial resolution as well as a lower signal-
to-noise ratio (SNR) [7], [8], [9]. Thus, using them in the
BCI technique can be required to employ innovative signal
processing models for cleaning the information in artefacts
and extracting related frequency, temporal, and spatial data
in the signals for classification issues [10].
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Conventionally, MI-BCIs work on machine learning (ML)
approaches so that spatial features related to action imag-
inings can be identified [11], [12]. The imagining of both
right and left body movements is combined with lateralized
event-related (de)synchronization (ERS or ERD) from beta
(13 to 30 Hz) and mu (7 to 13 Hz) frequency bands of
EEG signals [13]. These brain action features are generally
collected using the Common Spatial Pattern (CSP) technique
and serve as input to the ML approach categorizing imagined
body actions [2], [14], [15]. As a result, the method depends
on the user for deliberately modulating its brain activity,
thereby, the lateralization is identified [16], [ 17]. With the fast
growth of high-power computing devices, deep learning (DL)
has become extremely popular in several domains [18], [19].
A great benefit of bringing DL technology into the BCI
technique is that feature extraction and classification stages
have been learned directly from information, also referred to
as ‘end-to-end’ learning [20].

This article presents a Jellyfish Optimization with Fuzzy
Logic Enabled EEG Motor Imagery Classification for Brain
Computer Interface (JFOFL-MICBCI) technique. A purpose
of the JFOFL-MICBCI methodology is to feat the FL sys-
tem with metaheuristics for the classification of EEC motor
imagery signals. It initially executes Continuous Wavelet
Transform (CWT) for transforming 1D-EEG signals into 2D
time-frequency amplitude ones. For feature extraction, the
JFOFL-MICBCI method uses the SqueezeNet technique, and
its hyperparameters can be adjusted by utilizing the JFO
system. The JFOFL-MICBCI method exploits the adaptive
neuro-fuzzy inference system (ANFIS) approach to execute
the classification process. A comprehensive range of experi-
ments has been accompanied to establish a high solution of
the JFOFL-MICBCI process.

Il. RELATED WORKS

EEG motor imagery classification is a pivotal component
in the field of BCI research. The ability to decode and
interpret neural signals related to motor imagery tasks holds
tremendous promise in empowering individuals with neu-
rodegenerative disorders or severe physical impairments to
interact with and control external devices through the power
of their thoughts. This section offers an extensive explo-
ration of the existing EEG motor imagery classification
models in the BCI domain. By examining the existing studies,
methodological advancements, and the challenges faced by
researchers, a thorough understanding of the current state of
the art can be made and identify critical avenues for further
exploration and improvement in this exciting and transforma-
tive field.

Sharma et al. [21] offer a widespread comparison
among classification approaches and suggest the impor-
tance of DL-based BCI methods, particularly multi-layer
perceptron (MLP). Briefly, with EEG signal during motor
imagery task, SVM demonstrates the short training time
and prediction speed with similar performance amongst
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classical ML-based algorithms. Subasi et al. [22] intro-
duced an automatic detection of MI tasks. Wavelet
Packet Decomposition (WPD), efficient hybridization of
the Multiscale Principal Component Analysis (MSPCA),
ensemble learning-based classifiers, and statistical fea-
tures extraction from subbands for classification of MI
task. The EEG signal is denoised and segmented and is
accomplished with Daubechies model-based wavelet trans-
form (WT). Liu et al. [23] introduce a Matlab-based real-time
MI-BCI (MartMi-BCI) software that includes a model
training platform (MTP) and a real-world EEG analysis
platform (RTEEGAP).

In [24], authors proposed a novel method that depends on
the 10-layer one-dimensional convolutional neural networks
(1D-CNNis) to categorize 5 brain states (a ‘baseline’ class and
four MI classes) employing a data augmentation method and
a small amount of EEG channels. Moreover, a transfer learn-
ing (TL) model was employed to remove crucial attributes
from EEG group datasets. Mirzaei and Ghasemi [25] intro-
duced a new feature extraction technique that results in the
potential performance of MI classification. The time series of
the EEG channel was divided into temporal blocks and cal-
culate connectivity matrix for all the blocks utilizing adaptive
sparse representation (ASR). A vibrant connectivity pattern is
constructed using 3D tensors. Next, nonlinear convolutional
autoencoders (CAE) or kernel PCA is exploited to this tensor
for learning discriminative representation. The author in [26],
intends to help communities affected by this disorder with
the improvement of a technique that can detect the objective
to perform the movement in the upper limits of the body.
Furthermore, a digital signal filter was intended to keep the
frequency band.

Kamble et al. [27] exploited new adaptive signal decompo-
sition techniques, namely variational nonlinear chirp mode
decomposition, empirical WTs, variational mode decompo-
sition, and empirical mode decomposition for decomposing
EEG signals into different modes. Dhiman [28] applied the
Pearson correlation coefficient (PCC) method for selecting
channels for signals of EEG. WPD is exploited for extracting
features. The channel selection method and WPD are incor-
porated for categorizing MI signals. Lastly, feature extraction
was categorized using support vector machines (SVMs) and
K-nearest neighbour (KNN).

Sadiq et al. [29] developed a simple and robust mechanical
multivariate empirical wavelet transform (MEWT) model for
decoding dissimilar MI challenges. In [30], a new design is
presented for the automatic precise detection of MI tasks.
Primary, raw EEG signals denoised by multiscale main factor
study. Then, denoised signals decayed by experiential WT
in various manners. In 3 stage, dual-dimensional modelling
of types is proposed to recognize differences in diverse sig-
nals. In [31], a new and effective computer-aided diagnosis
architecture is presented for the detection of MI-EEG sig-
nals. Foremost, a multivariate variation mode decomposition
(MVMD) technique is used to get combined modes in occur-
rence scale through entire networks.
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Geng et al. [32] present a processing algorithm for EEG
signals with the combination of independent component anal-
ysis (ICA), WT and common spatial pattern (CSP). Firstly,
the ICA model is used to break the EEG signals into indepen-
dent components. Next, these components are decomposed
by WT to attain the wavelet coefficient of all the indepen-
dent sources. Sun et al. [33] introduced an end-to-end DL
architecture named EEG channel active inference neural net-
work (EEG-ARNN), which is based on a graph convolutional
neural network (GCN) to utilize the correlation of signals
in the spatial and temporal domains. Tiwari [34] established
a Logistic S-shaped Binary Jaya Optimization Algorithm
(LS-BJOA), which integrates a logistic mapping with the Jaya
optimization algorithm (IOA) to mitigate the computation
burden made by the channel.

Ill. THE PROPOSED MODEL

This work presents an automated EEG Motor Imagery Clas-
sification for BCI using the JFOFL-MICBCI method. The
main goal of the JFOFL-MICBCI technique is to utilize
the FL system with metaheuristics for the classification of
EEC motor imagery signals. It comprises different sub-
processes such as CWT-based pre-processing, SqueezeNet
feature extractor, JFO-based hyperparameter tuning as well
and ANFIS-based classification. Fig. 1 depicts the entire flow
of the JFOFL-MICBCI algorithm.

A. PRE-PROCESSING
Firstly, the data preprocessing takes place in two major phases
namely MSPCA-based denoising and CWT-based decom-
position. MSPCA is a robust mechanism widely known for
decreasing noise in EEG signals. This technique excels at
improving the quality of EEG information by effectively
eliminating noise while preserving important neural data.
By carrying out a multiscale analysis, MSPCA can tackle
noise components at different temporal and spatial scales,
making it suitable for the varied nature of EEG signals.
By using PCA, it reaches dimensionality reduction, effi-
ciently separating noise from the neural signal components.
MSPCA is especially valuable in cases where sources of
noise are statistically independent of the EEG signals, as it
extracts independent components. Furthermore, its adaptabil-
ity allows for fine-tuning to suit the certain requirements of
the EEG information and the task at hand. The wide-ranging
use of MSPCA in EEG signal processing and its established
efficiency make it a reliable choice for denoising, contribut-
ing to the enhancement of the data quality before succeeding
processing steps namely classification and feature extraction.
For decomposition, CWT is a popularly adopted strategy
to convert a 1D signal to a 2D matrix in the frequency
domain [35]. When compared to the conventional cosine
and Fourier transform (FT), WT is an efficient technique as
a time-frequency transform. As compared with FT, which
generates a spectrogram with fixed time-frequency resolu-
tion, WT integrates different scales, and for such reasons,
it provides optimum time-frequency resolution. The wavelet
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filtering bank exploits the analytic Morse wavelet with the
time-bandwidth product and symmetry parameters equivalent
to 60 and 3, correspondingly. According to the energy extent
of the wavelet from the time-frequency domain, the wavelet
maximum and minimum scales can automatically be defined.
Meanwhile, the scalogram image of WT is 69 x 400, rescaled
to 224 x 224 via bicubic interpolation. This step is essential
since pre-trained GoogLeNet takes input with the dimension
of 224 x 224.
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FIGURE 1. The overall flow of the JFOFL-MICBCI algorithm.

B. OPTIMAL SqueezeNet-BASED FEATURE EXTRACTION
To derive features effectually, the SqueezeNet model is used.
Classical structures have the demerits of demanding an enor-
mous number of parameters for training. So, researcher
workers introduced ““SqueezeNet” a new framework that has
a very small method size and needs some training parame-
ters [36]. The architecture of SqueezeNet comprises 8 fire
modules and one convolutional layer. A fire module has a
convolution layer with a 1 x 1 filter as well as an “n”
filter size, signified as a “Squeeze” layer. Next, there exist
dual corresponding layers, called as “Expand” layer. The
primary “Expand’ layer has 4n filters as well as a 1 x 1 filter
size. Likewise, the 2" “Expand” layer has 4n filters and a
3 x 3 filter size. The “Squeeze” and “Expand” layers are in
sequence. A max-pooling layer is exploited (stride = 2) after
1t convolution layer and 2" and 4 fire modules reduce the
size of feature maps by half. A fully connected (FC) layer
(weight = 1000) is exploited after the last fire module that
transforms feature maps into a one-dimensional vector. While
these feature vectors passed over the average pooling layer.
Every prior convolution layer follows a rectified linear unit
(ReLU) function. At last, the softmax layer adapts feature
vectors into double classification.

A JFO algorithm was applied for the hyperparameter
selection process. JFO is a recent metaheuristic optimiza-
tion technique derived from the jellyfish (JF) behaviours for
searching for food in the ocean [37]. This technique was
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stimulated by the movement patterns and exploration strat-
egy of JF in the ocean. In this work, the quantity of food
at dissimilar positions differs; thus, by comparing the food
proportion of JF, the optimal position was easily traced. This
technique provides an optimum balance between exploitation
and exploration strategies, and therefore, the optimum solu-
tion can be attained in a shorter period. It is essential to know
about the passive and active movements of ocean currents
inside the JF swarm to simulate the search behaviour of the JF.
This algorithm makes use of three fundamental rules.

1. A ““time control mechanism’ permits JF to shift between
going inside the swarm and the ocean current.

2. Food availability in the ocean.

3. The region and its objective functions have a consider-
able effect that several foods are available.

Ocean current was evaluated using Eq. (1):

Xi (t +1) = X; (1) + rand (0, 1) * (X" — B x rand (0, 1)) ,
(H

In Eq. (1), the updated position can be defined by X; (r + 1),
the mean location is w, and 8 shows the distribution coef-
ficient (8> 0). In the swarming movement, JFs are active
(type B, j) and passive (type A, i). The movement of JF in
the positions is represented as type A, and a location change is
shown in Eq. (2), where y > 0 denotes the motion coefficient.
Lj, and Uy, are the lower and upper bounds for the objective
function. Type B motion of the JF (j) in opposition to the type
A motion. Eq. (4) is used to update the position, and Eq. (3)
is regarded to estimate the direction of motion.

Where and refer to the time control mechanism. Values
differ from zero to one and signify the time period at a specific
instant.

Xi(t+ 1) =Xi(t) +y xrand 0. 1) (Up —Lp). ()
Xj(0) = Xi@):if %D =7 &),y
Xi (1) = Xj (1) if (X0) < f (X0).

where c(t) and ¢, refer to the time control mechanism. c(t)
values differ from zero to one, and t signifies the time period
at a specific instant.

|Direction| = [

X; (t +1) = X; (t) + rand (0, 1) * Direction, @

1

c(t) = X 2=xrand (0,1) — 1) (5)

Maxiseration

Population initialization can be performed by using Eq. (6):
Xipi=axXix(1=x();0=X, <1, (6)

Here, X; refers to the logistic chaotic value of " JE X, €
(0, 1), and the value of “a” is selected as 4.0. Eq. (6), denotes
the “initialization stage”, which is an initial step in the JFO
technique, and Eq. (5) shows the time control mechanism in
JFO. The next step is to set boundary conditions for dissim-
ilar functions. These conditions are significant such that JF
doesn’t move outside the searching region. Eq. (7) provides
a limit of JF in a boundary condition or search region to JF.
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A JF is positioned in X; 4 at the d™ dimension. Up.a,and Ly 4
denote upper and lower boundaries in search space .

Xy =Xia— Upa+L(d):if Xia > Upa. ...

1

Xiga=Xia—Lpa+U@);if Xiqg <Lpga. @)

The JFO method derives a fitness function (FF) to obtain the
high efficiency of the classifier. It describes a positive value
to characterize the optimal results of the solution candidate.
The decline of the classifier error rate is assumed as an FF.

fitness (x;) = ClassifierErrorRate (x;)
_ No. of misclassified samples

100 8
Total No. of samples * ®)

C. FUZZY LOGIC-BASED CLASSIFICATION
The ANFIS model is used for the classification process.
ANFIS incorporates the benefits of FL systems and neural
networks (NNs) [38]. It exploits a learning model of NN
for the automatic extraction of input and rules of sampling
datasets, thus making an ANFIS that consists of 5 layers.
ANFIS is a variant of artificial intelligence (AI) technology
that incorporates the power of ANN or FL systems. ANFIS
is a hybrid mechanism that exploits FIS embedding in NN
architecture. The FIS model of ANFIS employed to repre-
sent linguistic procedures that define the relation between
input and output in a model. Based on input-output training
datasets, the NN model was used to adjust the parameters of
the FIS, such as membership function parameters and the rule
weights. This allows the ANFIS to predict new input values
and “learn” the connections between inputs and outputs.
Fig. 2 displays the framework of ANFIS. ANFIS is exploited
for an enormous amount of work, including function approx-
imation, time series prediction, and control. It is a new type of
FL system that is capable of learning and adapting a learning
model. Based on the training dataset, the learning mechanism
adjusts the parameters of the FL system to improve efficiency.
The Adaptive component of ANFIS makes it highly relevant
for applications whereby basic procedure is exposed to vari-
ations over time, i.e., modelling dynamic systems.

It is an addition to conventional FL systems and has
a similar architecture that encompasses FIS, output, and
input layers. In summary, ANFIS incorporates the ability to
describe uncertain or vague knowledge of FIS with the ability
to learn from data of the NN.

Layer 1: Every node is an adaptive node. The output is a
fuzzy membership grade of input, as given below:

O} = pa, (0)i=1,2 ©)
Ol =up,_, (y)i=3,4 (10)

where 4, (x), p,_,(y) adopted a fuzzy membership function.

Layer2: The node is a fixed node. They were labelled
with M and played a simple multiplier, as shown in the
following.

07 = w; = pa, () g, (0 i=1,2 (1n
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FIGURE 2. ANFIS structure.

Layer3: The node was fixed. They were labelled with N,
which represents that they implement normalization to firing
strength from the previous layer as follows.

wj

0} =w = i=1,2 (12)

w1 + w2
Layer4: The node was adaptive. Each output node is a product
of the Ist-order Sugeno model (1st-order polynomial), and

normalized firing strength, as shown below:
Ot =aifi = @i (pix +qiy+r)i=1,2 (13)

Layer5: There is one fixed node labelled with S. These nodes
play as a summation of all the incoming signals.

2 2
_ Z'—1 oifi

0’ = o — Li=1 UL 14
; gwf T (14)

The concluding output of ANFIS is shown below.

— _ 1 o))

Jour = ®1f1 + @2f2 = 1+ f2 (15)

wi + w? wi + wy

IV. RESULTS AND DISCUSSION

The experimental results of the JFOFL-MICBCI approach
were tested on 2 databases containing BCI competition
2003 dataset-IIT and BCI competition-IV database 2b. BCI
competition 2003, database-III [39], contains 3-channel EEG
data in normal females for the imagination of right and left-
hand actions. BCI competition-IV database 2b contains nine
subjects, all with five sessions of MI experimentally. Among
that, the primary two sessions can be confirmed with no
feedback, and the remaining three sessions can be integrated
with online feedback [40].

Table 1 and Fig. 3 depict the classifier outcome of the
JFOFL-MICBCI model on the BCI Competition-III database.
The results imply effectual results of the JFOFL-MICBCI
technique under all runs.

For instance, on runl, the JFOFL-MICBCI tech-
nique offers prec, of 98.61%, reca; of 97.29%, accuy
of 98.01%, and Fycore of 98.13%, respectively. Also,
on run2, the JFOFL-MICBCI system attains prec, of
98.76%, reca; of 97.46%, accuy, of 98.05%, and Fycore
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TABLE 1. Classifier outcome of JFOFL-MICBCI technique on BCI

Competition-Ill database.

BCI Competition-III Database

No. of iterations Prec,  Reca; Accu, Fcore
Run 1 98.61 97.29 98.01 98.13
Run 2 98.76 97.46 98.05 98.10
Run 3 98.82 100.29  99.64  99.61
Run 4 94.76 98.65 96.77 96.80
Run 5 95.98 97.47 96.63 96.56
Average 97.39 98.23 97.82 97.84

BCI Competition Ill Dataset

I Runl @8 Runid
= Run5

100 -
99
98 |

97

Values (%)

96 1

95

94 1

93 -

Precision Recall

Accuracy F-score

FIGURE 3. Classifier outcome of JFOFL-MICBCI technique on BCI
Competition-11l database.

of 98.10% correspondingly. Afterwards, on run4, the JFOFL-
MICBCI approach obtains prec;, of 94.76%, reca; of 98.65%,
accuy of 96.77%, and Fiore of 96.80%, respectively. Eventu-
ally, on run$, the JFOFL-MICBCI methodology gains prec,
of 95.98%, reca; of 97.47%, accuy of 96.63%, and Fscore Of
96.56% correspondingly.

Table 2 and Fig. 4, the comparative investigation of
the JFOFL-MICBCI approach with present systems on the
BCI Competition-III database [41]. The outcomes imply the
effectual outcomes of the JFOFL-MICBCI technique exhibit
improved outcomes. Based on accu,, JFOFL-MICBCI
method offers increasing accu, of 97.82% while Adaptive
PP-Bayesian, STFT-DL, Enhanced GA FKNN-LDA, WTSE-
SVM, CWTFB-TL, and AORNDL-MIC approaches obtain
decreasing accuy values of 90%, 90%, 84%, 86.40%, 95.71%,
and 96.14% correspondingly.

Fig. 5 illustrates the training accuracy TR_accu, and
VL_accuy of the JFOFL-MICBCI algorithm on the BCI
Competition-III database. TL_accuy, is described by the esti-
mate of the JFOFL-MICBCI procedure on the TR database,
whereas VL_accuy is intended to estimate performance on a
distinct testing database. The outcomes exhibit that TR_accu,
and VL _accuy increase with an upsurge in epochs. Therefore,
the performance of the JFOFL-MICBCI model enhances on
TR and TS database by a growth in the sum of epochs.
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TABLE 2. Accuy outcome of JFOFL-MICBCI algorithm with other methods
on BCl Competition-1ll database.

BCI Competition-III Database

Methods Accuracy
Adaptive PP-Bayesian 90.00
STFT-DL 90.00
Optimized GA FKNN-LDA 84.00
WTSE-SVM 86.40
CWTFB-TL 95.71
AORNDL-MIC 96.14
JFOFL-MICBCI 97.82

BCI Competition Ill Dataset

HEl Adaptive PP-Bayesian 8 CWTFB-TL
Em STFT-DL =3 AORNDL-MIC
I Optimized GA FKNN-LDA [ JFOFL-MICBCI
100.0 1 Em WTSE-SVM
~ 97.51 ]
X e
> 95.0
v
g
5 92.51
7]
"]
< 90.01
87.5
85.0 I
82.5- . T
1 2 3 a4 5 7

Methods

FIGURE 4. Accuy outcome of JFOFL-MICBCI system on BCI
Competition-IIl database.

Training and Validation Accuracy - BCI Competition Il Dataset

o—o0
0.95 9—0—0—0—0

9—0—0—0—0—0—0—0—0—0—0 o
0.90 -

0—0—0—0

Accuracy

—e— Training
o Validation

0 5 10 15 20 25
Epochs

FIGURE 5. Accuy curve of JFOFL-MICBCI technique on BCI Competition-IlI
database.

In Fig. 6, TR loss and VR_loss analysis of the
JFOFL-MICBCI approach on the BCI Competition-III
database is exposed. TR_loss defines error between predictive
solution as well as original values on TR data. VR_loss
signifies the extent of the outcome of the JFOFL-MICBCI
technique on separate validation data. The results direct that
TR_loss and VR_loss incline to reduce with rising epochs.
It exposed the greater outcome of the JFOFL-MICBCI sys-
tem and its capability to make accurate classifications. The
smaller value of TR_loss, as well as VR_loss, establishes a
greater outcome of the JFOFL-MICBCI method on capturing
patterns and relationships.
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Training and Validation Loss - BClI Competition Il Dataset
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FIGURE 6. Loss curve of JFOFL-MICBCI technique on BCI Competition-II1
database.

TABLE 3. Training accuy outcome of JFOFL-MICBCI technique with
distinct runs and samples on BCI Competition-IV database.

BCI Competition-1V Database

No.of runs Sl S2 S3 S4 S5
Run 1 88.62 86.51 89.54 87.72 85.60
Run2 72.68 8476 81.70 95.65 86.52
Run 3 85.73 9774 9552 99.55 89.73
Run 4 83.67 9251 76.64 90.54 92.51
Run 5 83.65 8259 87.52 92.80 82.75
Average 82.87 88.82 86.18 93.25 87.42
No. of runs  S6 S7 S8 S9 Average
Run 1 77.58 8450 97.65 84.50 86.91
Run2 80.51 92.67 8478 93.76 85.89
Run 3 91.63 86.63 90.59 88.52 91.74
Run 4 93.67 82.63 89.58 96.60 88.71
Run 5 88.53  96.62 90.69 82.74 87.54

Average 86.38 88.61 90.66 89.22 88.16

Table 3 and Fig. 7 represent an extensive classifica-
tion result of the JFOFL-MICBCI technique on the BCI
Competition-IV database. The results imply effectual out-
comes of the JFOFL-MICBCI technique under all runs and
samples. For instance, on S1, the JFOFL-MICBCI tech-
nique offers accu, of 88.62%, 72.68%, 85.73%, 83.67%,
and 83.65% underruns 1-5, respectively. Also, on S3, the
JFOFL-MICBCI system achieves accuy of 89.54%, 81.70%,
95.52%, 76.64%, and 87.52% underruns 1-5, correspond-
ingly. In addition, on S7, the JFOFL-MICBCI technique
offers accuy, of 84.50%, 92.67%, 86.63%, 82.63%, and
96.62% underruns 1-5, respectively. Meanwhile, on S-9,
the JFOFL-MICBCI methodology attains accu,, of 84.50%,
93.76%, 88.52%, 96.60%, and 82.74% underruns 1-5,
correspondingly.

Table 4 and Fig. 8 demonstrate an overall compar-
ative study of the JFOFL-MICBCI system on the BCI
Competition-IV database. The outcomes exhibited that the
CSP model and FBCSP MIRSR systems have attained worse
outcomes. At the same time, the FDBN and AORNDL-MIC
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FIGURE 7. Training accuy outcome of JFOFL-MICBCI technique on BCI
Competition-1V database.

TABLE 4. Accuy outcome of JFOFL-MICBCI technique with other methods
on BCl Competition-IV database.

BCI Competition-1V Database
. FBCSP

Subject  CSP\ipsr FPBN | Mic micBcr
S-1 6769 7154 8276 82.88 9061
S22 6351 6265 6676 8878  90.36
S3 5861 6278 67.62 8632  88.00
S-4 9857 9950 99.80 9334  94.89
S-5 7861 9467 9469 8743  89.17
S6 7679 8258 89.56 8658  88.38
S7 7854  79.62 8374  88.80  90.50
S-8 9470 9463 9578  90.69  92.45
S9 8472 8875 9278 89.12  90.82

Average 77.97 81.86 8594 8822  90.58

AORND JFOFL-

BCI Competition IV Dataset

mm CsP I AORNDL-MIC
mmm FBCSP MIRSR @ JFOFL-MICBCI
@ FDBN
100 -
g 9
>
8
5 804
v
<
70 1
60
50 -
s1 s2 s3 s4 S5 S6 S7 S8 59
Subject

FIGURE 8. Accuy outcome of JFOFL-MICBCI technique on BCI
Competition-1V database.

methods have obtained slightly increased performance. How-
ever, JFOFL-MICBCI technology attained maximum perfor-
mance in all subjects.

Fig. 9 represents an average comparative result of the
JFOFL-MICBCI technique on the BCI Competition-IV
database. The outcome signified that the JFOFL-MICBCI

46008

technique reaches better performance than other models. For
instance, the JFOFL-MICBCI technique obtains an increas-
ing average accuy of 90.58% while the CSP, FBCSP MIRSR,
FDBN, and AORNDL-MIC techniques accomplish decreas-
ing average accuy, values of 77.97%, 81.86%, 85.94%, and
88.22% respectively.

BCI Competition IV Dataset

96
. CsP @ AORNDL-MIC
94 1 Emm FBCSP MIRSR @ JFOFL-MICBCI
3] B FDBN
8 904
2 881
g
S 86
v
v
< 841
o
Z 82
80
76 -
1 2 3 4 5
Methods

FIGURE 9. Average Accuy outcome of JFOFL-MICBCI technique on BCI
Competition-1V database.

Fig. 10 determines the training accuracy TR_accu, and
VL_accuy of the JFOFL-MICBCI approach on the BCI
Competition-1V database. TL_accuy, determined by the cal-
culation of the JFOFL-MICBCI model on the TR database,
while VL_accuy, was computed by estimating the outcome on
a separate testing database. The results display that TR_accu,
and VL _accuy, rise with growth in epochs. Thus, the outcome
of the JFOFL-MICBCI approach is an increase in the TR and
TS database with growth in the amount of epochs.

Training and Validation Accuracy - BCl Competition IV Dataset

—e— Training
0.950 - —e— Validation

0.925 -

0.900

0.875

Accuracy

0.850

0.825 -

0.800 -

0.775

Epochs

FIGURE 10. Accuy curve of JFOFL-MICBCI technique on BCI
Competition-IV database.

In Fig. 11, the TR_loss and VR loss curve of the
JFOFL-MICBCI system on the BCI Competition-III database
isrevealed. The TR_loss states an error between the predictive
solution and original values on TR data. VR_loss signi-
fies a measure of the performance of the JFOFL-MICBCI
technique on individual validation data. The results des-
ignate that TR_loss and VR_loss tend to be lesser with
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FIGURE 11. Loss curve of JFOFL-MICBCI technique on BCl Competition-IV
database.

rising epochs. It described the improved performance of the
JFOFL-MICBCI method and its ability to produce an accu-
rate classification. The lesser value of TR _loss and VR _loss
reveals an improved outcome of the JFOFL-MICBCI method
on capturing patterns and relationships.

V. CONCLUSION

This manuscript presents an automated EEG Motor Imagery
Classification for BCI using the JFOFL-MICBCI method.
The main goal of the JFOFL-MICBCI technique is to
utilize the FL system with metaheuristics for the clas-
sification of EEC motor imagery signals. It comprises
different sub-processes such as CWT-based pre-processing,
SqueezeNet feature extractor, JFO-based hyperparameter
tuning, and ANFIS-based classification. For feature extrac-
tion, the JFOFL-MICBCI approach employs the SqueezeNet
algorithm, and its hyperparameters can be adjusted by the
use of the JFO algorithm. The JFOFL-MICBCI technique
has employed the ANFIS model to perform the classifica-
tion process. A comprehensive range of experiments has
been accompanied to demonstrate the high efficiency of the
JFOFL-MICBCI algorithm. The obtained outcomes referred
to the better of the JFOFL-MICBCI algorithm with other
existing systems. In future research, the JFOFL-MICBCI
model can be extended to address real-time implementation
challenges, aiming for seamless integration into practical
BCI applications. Further investigations into optimizing the
computational efficiency of the model would be valuable,
allowing for faster and more responsive BCI control. Addi-
tionally, exploring the adaptability of the JFOFL-MICBCI
technique across a broader range of EEG datasets and expand-
ing its capabilities to accommodate more diverse motor
imagery tasks could enhance its versatility and applicability
in various clinical and assistive technology settings.
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