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ABSTRACT M-ary Aggregate Spread Pulse Modulation (M-ASPM) is a recently introduced physical
layer (PHY) modulation technique that is well suited for use in low-power wide-area networks (LPWANs).
Notably, M-ASPM combines high energy-per-bit efficiency, robustness, resistance to interference, and a
number of other favorable technical characteristics, with the spread-spectrum ability to maintain the capacity
of an uplink-focused network while extending its range. However, while the essential tools for detection and
synchronization of pulsed spread-spectrum waveforms in general, and the M-ASPM signals in particular,
have been previously provided, a practical framework for combining the detection, synchronization, and
decoding of an M-ASPM packet has not yet been suggested. In this paper, we outline such a framework, and
describe a prototype algorithm for its implementation. This implementation can be subsequently adapted,
under given technical constraints, to specific practical complications such as, for example, significant delay
spreads, external technogenic interference, or co-channel and inter-channel collisions. In addition to low
latency and computational complexity, the main requirement for this prototype algorithm is that the signal
quality remains effectively invariant, for a given path loss, and for a wide range of the data rates, payload
sizes, lengths of pulse shaping filters (PSFs), and pulse duty cycles, for a relatively large carrier frequency
offset (CFO) between the transmitter (TX) and the receiver (RX). Further, this needs to be achieved without
any feedback communications between the TX and the RX, and performed entirely in the RX software.

INDEX TERMS Aggregate spread pulse modulation (ASPM), LoRa, low-power wide-area network
(LPWAN), M-ary ASPM (M-ASPM), median tracking filter (MTF), modulo power averaging (MPA),
nonlinear signal processing, physical layer (PHY), quantile tracking filter (QTF), spread spectrum.

I. INTRODUCTION AND MOTIVATION
The M-ary Aggregate Spread Pulse Modulation (M-ASPM)
is a recently introduced physical layer (PHY) modulation
scheme with a number of appealing technical features that
have not yet been fully explored and/or quantified. Its first
description was given in [1], where the main goal was to
examine the spectral and energy efficiencies of coherent
and noncoherent M-ASPM variants, and evaluate the bit
error probability for M-ASPM links in an additive white
Gaussian noise (AWGN) channel. Then in [2] the primary
focus was on quantifying M-ASPM networks’ scalability,
that is, on the spread-spectrum properties of M-ASPM.
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In particular, we showed that when M-ASPM is used as a
spread-spectrum technique (that is, when it operates at the
spectral efficiencies below the maximum for a given M ,
where log2M is the number of bits encoded in a single
pulse), its processing gain is proportional to the M-ASPM’s
average interpulse interval (IpI). As a result, this interval
directly affects such link properties as its time-on-air (ToA),
the signal-to-interference ratio (SIR) margin and, for a given
transmit power, the link’s range. In particular, both the ToA
and the SIR margin are effectively proportional to the IpI,
while the range, if it is a monotonically increasing function
of the path loss, is a monotonically increasing function
of the IpI. This enables us to maintain the capacity of
an uplink-focused M-ASPM network while extending its
range.
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However, when all M-ASPM nodes transmit with the same
average power, implementation of such capacity-preserving
range extension may become impractical in complicated
propagation environments with greatly varying path losses.
Favorably, the efficiency ofM-ASPMwith constant-envelope
pulses can be maintained effectively the same as the
efficiency of transmitting a continuous constant-envelope
waveform. Then the transmit power of different nodes can
be adjusted, without sacrificing the transmission efficiency,
to compensate for differences in the path attenuation. This
enables us to significantly simplify planning and manage-
ment of the network. In addition, such a variable-power
approach generally increases the network capacity and the
average energy efficiency of the nodes, as compared with
the arrangement of the nodes with a constant transmit
power. Consequently, in [3] we outline a practical approach
to implementing such an energy-efficient M-ASPM power
control by changing the duty cycle of the pulse shaping filters
(PSFs). This can be used for scaling low-power wide-area
networks (LPWANs) with realistic desired and/or actual areal
distributions of the uplink nodes under diverse propagation
conditions.

Nevertheless, even though [1], [2], [3] highlight the
main features of M-ASPM communications that make them
particularly suitable for LPWANs, they do not provide a
holistic roadmap to their practical low-cost deployment.
Most importantly, they rely on the assumption that an
adequate carrier synchronization is performed beforehand.
Since such synchronization at low signal-to-noise ratios
(SNRs) is far from trivial, this is an impactful omission
that needs to be addressed in practical implementations.
In addition, the mathematical description of M-ASPM in [1],
[2], and [3] may create an impression that detection of
arrival of asynchronous M-ASPM packets in the RX requires
continuous filtering, at full sampling rate, with high-order
(e.g., with length in hundreds or thousands of samples) finite
impulse response (FIR) filters. While for uplink-focused
networks this computational burden would be carried by
the gateway, it still creates an undesirably costly overhead.
Therefore, the goal of this paper is to rectify these omissions
by outlining a practical implementation framework for com-
bined detection, synchronization, and decoding of M-ASPM
packets.

In our presentation, we simultaneously pursue two main
goals. First, we provide a prototype algorithm that can be
used ‘‘as is’’ to implement a working M-ASPM system
in, e.g., a software-defined radio (SDR). In the description
of this algorithm, we do not explicitly include treatment
of many important practical complications such as, for
example, significant delay spreads, external technogenic
interference, or co-PSF and inter-PSF collisions. Instead,
as the second goal, in the explanations of the algorithm
steps we provide sufficient reasoning and details to facilitate
the subsequent adaptations of the algorithm, under given
technical constraints, to specific practical scenarios.

For the prototype algorithm, our main target is for the
signal quality to remain effectively invariant, for a given path
loss, for (i) a relatively large mismatch in the frequency of the
local oscillators (LOs) in the transmitter (TX) and the receiver
(RX), and (ii) TX and RX motions at relatively high speeds.
This should hold for a wide range of the data rates, payload
sizes, the lengths of pulse shaping filters (PSFs), and the
pulse duty cycles. Further, we want to achieve this invariance
without any feedback communications between the TX and
RX, any hardware or software changes in the TX, and any
hardware adjustments in the RX (e.g., in the LO frequency or
sampling time offsets).

As a practical guideline, when choosing the specific
numerical values for illustration of the relevant components
of the algorithm, we target wireless communications with
the nominal carrier frequency fc = 915MHz, bandwidth
B = 500 kHz, and ±30 parts per million (ppm) LOmismatch
combined with Doppler shifts due to the relative speeds up
to 200mph.

In Section II, we describe the noncoherent single-sideband
M-ASPMwith constant-envelope pulses, which is used in the
subsequent sections of the paper.

In Section III, we introduce the basic algorithm for
synchronization, decoding, and measuring M-ASPM signal
quality in an AWGN channel when both the carrier fre-
quency offset (CFO) and the sampling time offset (STO)
are negligible, and provide simulated examples of its
performance.

In Section IV we show that, when the CFO is still
negligible, the impact of a constant STO on the performance
of the basic algorithm is insignificant, and illustrate this with
simulations.

In Section V, we examine the impact of a CFO on
the received pulses, which can be quite significant for
long PSFs. Initially, we assume that the cumulative STO
due to the associated sampling frequency offset (SFO)
is negligible. Then, for the CFO with known sign and
magnitude, this impact can be effectively averted by a
simple modification of the matched filter in the RX,
without introducing any changes to the basic algorithm of
Section III.
In Section VI, we evaluate the impact of the cumulative

STO due to the mismatch in the frequencies of the LOs,
and describe a simple algorithm for its mitigation, which
prevents deterioration of the signal quality due to SFO in long
M-ASPM payloads.

In Section VII, we demonstrate how the CFO can be
accurately measured during the detection of the arrival of
an M-ASPM packet. We evaluate the sensitivity of such
detection combined with the CFOmeasurements, and discuss
the tradeoffs in matching this sensitivity to the signal quality
of the payload. In this section, we also provide the description
of the quantile tracking filters (QTFs) used for robust and
efficient detection of M-ASPM packets, and assess the
properties of the modulo power averaging (MPA) filtering in
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FIGURE 1. Illustration of single-sideband M-ary ASPM link with constant-envelope pulses and noncoherent detection.

its impact on the sensitivity, latency, and the energy efficiency
of the detection.

We provide additional comments on the presented
approach in Section VIII, along with an example of simulated
performance of a full prototype algorithm. In this section,
we also address filtering and sampling issues in the context
of the computational complexity of the algorithm, and discuss
using multiple PSF channels within this framework. We then
conclude the paper in Section IX.

Further, all acronyms used in the paper are listed in
Appendix A, and the mathematical notations are discussed
in Appendix B. Finally, Appendix C illustrates numerical
implementation of QTFs.

In several places in the paper, the M-ASPM performance
is compared with that of LoRa (short for ‘‘Long Range’’),
a popular modulation technique for LPWANs [4], [5]. For
a given number of bits per waveform, LoRa has the same
energy-per-bit efficiency as M-ASPM. (In LoRa, this number
is represented by the ‘‘spreading factor’’ (SF), which can
typically take values from 6 to 12.) Thus, when operating
under effectively the same physical conditions (e.g., the
same physical frequency band, transmit power, antenna
gains, and various system attenuations such as insertion,
path, and matching losses, etc.), LoRa represents a suitable
benchmark for M-ASPM. When such comparison is given,
to distinguish between the respective quantities for LoRa
and M-ASPM, we mark those for LoRa by overhead
tildes.

II. NONCOHERENT SINGLE-SIDEBAND M-ASPM WITH
CONSTANT-ENVELOPE PULSES
For convenience of the reader, let us first briefly describe a
particular version of a noncoherent M-ASPM link. This link
is illustrated in Fig. 1, and used in the rest of the paper. Amore
detailed and general M-ASPM PHY description can be found
in [1], [2], and [6].
We can encode information in the ‘‘arrival times’’ kj of the

pulses in a digital ‘‘pulse train’’ x̂[k], where only relatively
small fraction of samples have non-zero values. Such a
‘‘designed’’ pulse train (an example shown on the left of
Fig. 1(I)) can be expressed as

x̂[k] =

∑
j

Jk=kjK (−1)j , (1)

where k is the sample index, kj is the sample index of the
j-th pulse, and J . . . K is the Iverson bracket [7] which is equal
to 1 if the expression inside is true and 0 if it is false. The
alternating signs of the pulses in (1) simply ensure that x̂[k]
is a zero-mean signal. This helps to eliminate a direct current
(DC) bias in the modulating signal, which is convenient but
not strictly necessary.

For the arrival times in (1) one can use, for example,

kj = jNp + 1N + 1k[mj] , (2)

where Np is the average interpulse interval (IpI), 1N is an
integer offset, mj ≤ M is a positive integer, and 1k[m] is an
integer-valued invertible function such that 0 ≤ 1k[m] < Np
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and 1k[m] ̸= 1k[l] for m ̸= l. The average ‘‘pulse rate’’ fp
in such a train is fp = Fs/Np, where Fs is the sample rate.
For mj ∈ {1, 2, . . . ,M} this pulse train encodes log2M bits
per pulse, and thus the raw bit rate fb is fb = fp log2M . In the
example of Fig. 1, M = 8 and x̂[k] encodes 3 bits per pulse.
The corresponding 3-bit binary numbers are indicated for
each pulse. Note that the peak-to-average power ratio (PAPR)
of the designed pulse train x̂[k] is rather large, as it is equal
to the IpI Np ≫ 1, and this train would be unsuitable for
modulating a carrier.

However, the high-PAPR train x̂[k] given by (1) can
be ‘‘reshaped’’ by linear filtering, creating a lower-PAPR
modulating signal. In particular, the impulse response ζ̂i[k] of
such a ‘‘pulse shaping’’ filter (PSF) can be a nonlinear chirp
with the desired autocorrelation function (ACF), e.g.

ζ̂i[k] = ĝi[k] + i ĥi[k] =
1

√
Li

J0≤k<LiK exp (i8i[k]) ,

(3)

where 8i[k] is the phase and Li is the ‘‘duration’’ (length)
of the chirp in samples. (To generate such a waveform, one
can use, for example, the approach described in [8].) In (3),
the imaginary part of ζ̂i[k] is the discrete Hilbert transform
of its real part, i.e., ĥi[k] = H

{
ĝi[k]

}
[9], [10]. For the

i-th PSF ζ̂i[k], we will denote its matched filter ζ̂ ∗
i [−k] =

ĝi[−k] − i ĥi[−k] by removing the overhead hat symbol,
as ζi[k] = ζ̂ ∗

i [−k].
Filtering the designed train x̂[k] with the PSF ζ̂i[k] creates

the digital modulating signal zi[k] (‘‘reshaped train’’)

zi[k] =

√
Li (x̂ ∗ ζ̂i)[k] =

√
Li

∑
j

ζ̂i[k−kj] (−1)j , (4)

where ζ̂i[k] is given by (3) and the asterisk denotes
convolution. Since in Fig. 1 we show only a single PSF
channel, in the figure we omit the subscript i, and also denote
the real and imaginary parts of z[k] as xg[k] and xh[k],
respectively.

After digital-to-analog (D/A) conversion, the real and
imaginary parts of zi(t) can be used for quadrature amplitude
modulation of a carrier with frequency fc, providing the trans-
mitted waveform Re(zi(t)) sin(2π fct) + Im(zi(t)) cos(2π fct).
Since ĥi[k] is the Hilbert transform of ĝi[k], this waveform
will occupy only a single sideband with the physical
bandwidth B equal to the baseband bandwidth of ζ̂i[k] [9].
In addition, if we require that the chirps in (4) do not overlap
(i.e., Li ≤ Np − maxm(1k[m])), then

|zi[k]| =

∑
j

J0≤k−kj<LiK , (5)

and, as illustrated in Fig. 1(II), the transmitted signal will
consist of constant-envelope pulses. Note that the variance of
such a reshaped train is equal to Li/Np, and thus, for a given
IpI Np, the average power of zi[k] is proportional to Li.

For noncoherent (‘nc’) detection (Fig. 1(III)), in the
receiver’s (Rx) quadrature demodulator the noisy passband

signal is multiplied by the orthogonal sinusoidal signals
from a local oscillator, lowpassed, and converted to the
in-phase and quadrature digital signals I [k] andQ[k]. We can
then use the matched filters g[k] and h[k], as shown in
Fig. 1(III), to obtain the high-peakedness pulse train ync[k]
corresponding to the designed pulse train. Note that after
synchronization we would need to obtain only M =

8 samples per pulse, i.e., we can use g[k] and h[k] as
decimation filters. Out of each 8 samples of y2nc[k], the
position of the sample with the largest magnitude will
correspond to the position of the respective pulse in the
designed train.

A. UNCODED BER PERFORMANCE OF M-ASPM IN AWGN
CHANNEL AND SIGNAL QUALITY CONTROL BY IPI
While AWGN is only a ‘‘background’’ noise in most practical
LPWAN applications, the performance in an AWGN channel
provides a suitable benchmark for the M-ASPM’s overall
efficiency assessment and for examining its main scaling
properties.

As a reminder (see [1], [2]), for noncoherent M-ASPM the
bit error probability Pb in AWGN channel can be expressed
as

Pb = Pb

(
0

η

)
=

1
2(M−1)

M∑
k=2

(−1)k
(
M
k

)
exp

(
−
k−1
k

0

η
log2M

)
,

(6)

where
(n
m

)
=

n!
(n−m)!m!

is the binomial coefficient, 0 is the
SNR, and η = fb/B is the spectral efficiency. The SNR can
be further expressed as 0 = (Eb/N0) × (fb/B), where Eb is
the energy per bit and N0 is the (one-sided) power spectral
density (PSD) of the noise. Notably, as illustrated in Fig. 2,
the AWGN bit error probability for M-ASPM is the same as
for noncoherent LoRa whenM = 2SF, where SF is the LoRa
spreading factor [5].

FIGURE 2. Uncoded BER vs Eb/N0Eb/N0Eb/N0 performances of LoRa (dashed lines)
and single-sideband M-ASPM (solid lines) for noncoherent detection in
AWGN channel.

If we desire to achieve the same BER performance for the
same path loss (i.e., at the same 0) for LoRa (with a given M̃ )
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FIGURE 3. Uncoded BER vs SNR performances of LoRa (dashed lines),
single-sideband 16-ASPM (solid lines), and single-sideband 64-ASPM
(dotted lines) for noncoherent detection in AWGN channel.

FIGURE 4. Spectral efficiency vs path loss for LoRa and M-ASPM
(noncoherent detection).

and M-ASPM (with a givenM ), the value of η (and thus Np)
can be obtained as a solution of the equalities

Pb
(
0;M ,Np

)
= P̃b

(
0; M̃

)
= BER . (7)

An example is given in Fig. 3 for M-ASPM with M = 16
and M = 64, and BER = 10−4. Then, from the condition
0/η = const it follows that the M-ASPM SNR for a
given BER is 0 ∝ η ∝ 1/Np. This is in contrast with
LoRa, where LoRa’s spectral efficiency is constant for a
given spreading factor. While Np is an integer, it is rather
large (Np ≥ 4M for noncoherent M-ASPM) and, for
a sufficiently large M (e.g., M ≥ 16), the M-ASPM’s
spectral efficiency can be treated as a continuous quantity.
For example, Fig. 4 illustrates M-ASPM’s spectral efficiency
vs. path loss at AWGN BER = 10−4, as compared with
LoRa. For M-ASPM, for the spectral efficiencies larger
than (log2M )/M (i.e., in the spread-spectrum region) the
value of η is obtained as the solution of the equality
Pb (0/η;M) = BER. For LoRa, the spectral efficiency is the
maximum value of η̃ satisfying the inequality P̃b (0/η̃) ≤

BER.
Without noise, the received pulse train ync[k] will be

proportional to the convolution of the designed train x̂[k]
with the ACF of the PSF. Thus, as discussed in [1] and [2],
a good choice for the ACF would be a pulse that combines a
small time-bandwidth product (TBP) [11], [12] (e.g., close to
that of a Gaussian pulse) with a compact frequency support.
An example of such ACF would be a raised-cosine (RC)

pulse [13] with a sufficiently large roll-off factor 0 ≤ β ≤ 1.
Then the sample rate Fs in the digital waveforms can be
chosen as Fs = 2NsB, where 1 ≤ Ns = 2/(1+β) < 2 is
the oversampling factor. Throughout the rest of this paper,
we use β = 1/4, and thus Ns = 8/5.
With this, the value of the spectral efficiency can be

obtained as

η =
fb
B

=
2Ns

Np
log2M =

16
5Np

log2M . (8)

Further, the signal quality in the received pulse train y2nc[k]
can be quantified by the ratio of the peak signal power and the
average noise power. This signal quality indicator (SQI) λ

can be expressed as

λ =
20
η

log2M =
Np0

Ns
=

5
8
Np0, (9)

and it is a product of the SNR 0 and the processing gain
Np/Ns.

III. BASIC ALGORITHM FOR SYNCHRONIZATION,
DECODING, AND MEASURING SIGNAL QUALITY
In our presentation of the prototype algorithm for detection,
synchronization, and decoding of M-ASPM packets, let us
begin with an idealized M-ASPM scheme where both the
CFO and the STO are negligible, and the noise is the only
concern. Further, for the quantitative illustrations we assume
an AWGN channel. This basic algorithm is illustrated in
Fig. 5. In particular, here we use M = 16 and Np = 512,
and thus η = 1/40. The SNR is 0 = −10 dB, which
roughly corresponds to the uncoded AWGN BER = 10−3.
The processing gain is 5Np/8 = 25 dB, and thus λ = 15 dB.

A. FIGURE 5(I)
Panel I of Fig. 5 shows the received pulse train y2nc[k] obtained
by continuous filtering of I [k] + iQ[k] by the matched
filter ζ [k]. The information is encoded in non-zero position
offsets of the payload pulse sequence, highlighted in blue.
For the offset 1k[mj] of the j-th pulse, we use mjnoff, with
mj ∈ {1, 2, . . . ,M} and noff = 8. For better visibility,
we use a relatively short payload sequence with Npl = 45.
For synchronization, the payload sequence is preceded by a
relatively short timing pulse sequence (highlighted in red),
where the pulses have zero position offsets. Here we use
Nsync = 9. In Fig. 5(I), we also show the ‘‘noise level’’
produced as the output q[k] of the median tracking filter
(MTF) applied to y2nc[k]. This output is subsequently used
for obtaining both the robust fence (threshold) α[k] and the
SQI λ .

1) MEDIAN TRACKING FILTER
The MTF output q[k] can be expressed as

q[k] = q[k−1] + µ sgn
(
y2nc[k] − q[k−1]

)
, (10)

where µ is the rate parameter . Further discussion of the
quantile tracking filters (QTFs), that include the MTF as a
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particular case, is provided in Section VII-C and Appendix C
of this paper, and more details can be found in [14].
For now, we will note that, for a sufficiently small µ,
q[k] will approximate the median of y2nc[k] obtained in
a moving boxcar time window with the width 1T of
order 2 × IQR/µ ≫ ⟨f ⟩−1, where ⟨f ⟩ is the average crossing
rate of y2nc[k] with its median, and IQR is the interquartile
range of y2nc[k].
Our preference of themedian over an averaging filter is due

to the fact that the former effectively ignores the impulsive
M-ASPM signal, and thus q[k] accurately represents the
noise level even for high SNRs. In particular, for an AWGN
channel, the value of q[k] would correspond to approximately
0.7 times the average noise power. Further, for the same
timescale 1T , q[k] is more robust than an output of an
averaging filter, as a median filter is insensitive to outliers
such as impulsive noise. (Note that even for an AWGN
channel the noise is quite impulsive, as it has chi-squared
distribution with two degrees of freedom, and its kurtosis is
three times that of a Gaussian distribution [15].) A smaller
filtering timescale is especially advantageous when the noise
is non-stationary, e.g., due to co- and inter-PSF collisions
and/or other interference. Also, the computational cost of (10)
is even lower than that of the exponential moving average
(1st order lowpass IIR filter).

FIGURE 5. Basic algorithm for synchronization, payload sampling, and
measuring signal quality when CFO and STO are negligible.

B. FIGURE 5(II)
Panel II shows the output p̄[k] of themodulo power averaging
(MPA) filter, which can be expressed as

p̄[k] =
K−1
K

p̄[k − Np] +
1
K
y2nc[k], (11)

where K ≥ 1. In particular, K = 5 is used in Fig. 5(II). Note
that the steady-state output of the MPA filter for a stationary

periodic signal with the period Np is equal to the input, with
the 90% rise time in response to the timing pulse sequence
approximately equal to 2.3Np × (K− 1) (in samples).
We elaborate on the MPA filtering in Section VII. For now,

we will note that, without noise, for K = 5 and Nsync =

9 the peak magnitude of p̄[k] corresponding to the last peak
in the timing sequence reaches about 87% of the peak value
of y2nc[k]. Also, for K = 5 the standard deviation of the noise
power is reduced to 1/3 of its average power.

FIGURE 6. Simulated performance of basic algorithm. Black dashed lines
in upper panel show theoretical BER with ideal synchronization. In right
axis of lower panel, dashed lines are for λλλ according to (9).

The fence α[k] shown in Fig. 5(II) is simply α[k] =

γ q[k], where γ is a positive scaling parameter of order ten,
and it is ‘‘robust’’ in the sense that it is insensitive to the
M-ASPM pulses (as well as to short-duration noise outliers).
Specifically, in this illustration γ = 8. Then, with K = 5,
α[k] is about 13.8 standard deviations above the average
noise power, and the noise peaks that protrude above the fence
will be quite rare. At the same time, the ‘‘gap’’ between α[k]
and the average noise power is 4.6 times the latter, and, for
large processing gains, the magnitude of the signal peaks will
significantly exceed this gap even at low SNRs. Then the p̄[k]
peaks above α[k] can be reliably detected before the end of
the timing sequence.

As a helpful practical tool for detection, timing, and
sampling of the pulses in p̄[k], we can use a simple pulse
counting function C p̄α[k] that returns unit values for the local
extrema of p̄[k] that protrude above the fence α[k], and is zero
otherwise. In its essential form, such pulse counting function
can be expressed as

C p̄α[k] = Jp̄k >αkKJp̄k > p̄k−1KJp̄k ≥ p̄k+1K . (12)

For better readability, in (12) we use p̄k and αk in place of
p̄[k] and α[k].
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FIGURE 7. Impact of constant fractional sampling time offset on peak pulse magnitude of received pulses is insignificant.

To reduce the number of false-positive detections due
to noise outliers (e.g., due to impulsive noise), we further
require the detection of two consecutive peaks in p̄[k] that
are separated by the IpI Np. That is, we use the condition
C p̄α[k0−Np] C p̄α[k0] = 1, where k0 is the sample index of the
second peak.

Next, it is desirable to determine both the sample index
and the magnitude of p̄[k] corresponding to the last peak
in the timing sequence. The sample index of the last timing
pulse provides us with the knowledge of the beginning of
the payload, and the magnitude gives us the most accurate
measurement of the SQI λ (since this peak contains the
largest signal contribution from all peaks in the timing
sequence). Therefore, once we obtained k0, we evaluate
Jy20 > max{y21, y

2
2, . . . , y

2
M }K, where y2m = y2nc[k0 + nNp +

mnoff], m ∈ {0, 1, 2, . . . ,M}, and n is a positive integer.
We start with n = 1, and increment it until the value of the
bracket becomes zero. With this n, k0+(n−1)Np is the sample
index of the last timing pulse. For convenience, we reset this
index to zero (at the vertical dashed line in Fig. 5(II)).
Then, with K = 5 and Nsync = 9, for AWGN channel the

SQI λ can be obtained as

λ ≈ 1.6 ×
p̄[0]
q[0]

− 2 . (13)

While, by itself, the knowledge of λ is not necessary
for the implementation of any components of the algorithm
described in this paper, it is useful for planning and
management of M-ASPM networks. For example, it may
be wasteful to attempt decoding a long payload if the SQI
value obtained during the synchronization is too small. Also,
if feedback communications between the TX and RX are
available, the SQI knowledge allows us to adjust the TX, RX,
and the algorithm parameters in order to optimize the overall
performance.

C. FIGURE 5(III)
Once we detected the last pulse in the timing sequence (at
k = 0), we begin extracting the information encoded in the
payload. For this, we sample y2nc[k] at k = jNp+mnoff, where
j ∈ {1, 2, . . . ,Npl} and m ∈ {1, 2, . . . ,M}. Then, for each
j-th pulse in the payload sequence, the value of mj can be

determined from the condition

y2mj = max{y21, y
2
2, . . . , y

2
M } , (14)

where y2m = y2nc[jNp +mnoff]. This is illustrated in Fig. 5(III)
for j = 12.

D. SIMULATED PERFORMANCE
In Fig. 6, we provide an example of the simulated perfor-
mance of the basic algorithm described above. It demon-
strates that the impact of the synchronization errors on
the overall BER efficiency becomes negligible for uncoded
BER ≳ 10−2.
To account for false-negative synchronization errors

(‘‘missed packets’’), the BER for the respective ‘‘missed’’
payloads (120 pulses each) in the simulations is assumed to
be at its maximum (BER = 1/2). This way, the impacts of
the false-positive and false-negative synchronization errors
on the average BER are effectively equivalent, and there is
no need to discriminate between the two. Hence, in the left
axis of the lower panel, we plot only the total synchronization
error rate ε.

In the right axis of the lower panel, the dashed lines
represent the SQI calculated as λ = 5Np0/8 (see (9)), and
the dots plot, for each SNR value in the simulations, the
decile (10)-quantile) values [16] of λ obtained according
to (13) (for 40,000 packets at each SNR). One can see that
such measured values of λ provide meaningful assessment
of the signal quality even for weak signals. For example, even
for relatively large BER = 10−3, 80% of the measured values
of λ lie within about ±17% of the value calculated according
to (9).

IV. INSENSITIVITY TO CONSTANT SAMPLING TIME
OFFSET
Let us now assess the impact of a constant STO on
performance of the basic algorithm when the CFO is still
negligible.

Clearly, the synchronization procedure described in the
previous section makes any constant integer STO irrelevant.
However, fractional STOs still need to be considered, as they
alter the peak magnitude of the received signal pulses.
Favorably, as illustrated in Fig. 7, this magnitude is not
significantly affected by fractional STOs, and its variation
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is confined to about ±3% range. As further illustrated by
the simulations shown in Fig. 8, this translates into the
respectively small uncertainties in the RX sensitivity and/or
measured SQI.

Therefore, the impact of a constant STO on the perfor-
mance of the basic algorithm is insignificant. Nevertheless,
in Section VI we will revisit the impact of a STO for variable
(cumulative) STOs due to the sampling frequency offset
(SFO).

FIGURE 8. Simulated performance of basic algorithm for constant
fractional STOs (0, 1/4, and 1/2).

V. IMPACT OF CARRIER FREQUENCY OFFSET AND ITS
COMPENSATION
When considering the impact of the carrier frequency offset
(CFO) 1fc on a single received pulse, we can usually ignore
the SFO. Indeed, even for the ±30 ppm SFO, the cumulative
change in the STO will remain below 0.3 for PSFs of lengths
smaller than 10, 000. Therefore, in practice, the SFO’s impact
on a single pulse will be negligible.

If we use the value 3/(4π1/21fc) for the coherence
time [17], then the condition for the CFO 1fc impact on a
received pulse to remain ‘‘small’’ can be expressed as

|1fc| ≲ 0.423
Fs
L

≈ 1.354
B
L

, (15)

where L is the length of the PSF. For the CFOs with larger
magnitudes, the deterioration of the received pulse becomes
significant. This is illustrated in the left panel of Fig. 9.

Favorably, if the value of 1fc is known, this deterioration
can be effectively reversed by using, instead of ζ [k], the
adjusted matched filter ζ1[k] in the RX, where ζ1[k] is
expressed as

ζ1[k] = ζ [k] exp
(

−i 2π
1fc
Fs

k
)

. (16)

FIGURE 9. Illustration of impact of different CFOs on received waveform
for unmodified (left) and adjusted (right) matched filters. For adjusted
matched filters all received pulses are identical.

FIGURE 10. Example of matched filter modification to compensate for
CFO 1fc1fc1fc.

The effectiveness of such CFO compensation is illustrated
in the right panel of Fig. 9, and an example of the impulse
responses of ζ [k] and ζ1[k] is given in Fig. 10.

Note that the time shifts shown in the left panel of Fig. 9 are
for an upchirp ζ [k] (downchirp PSF ζ̂ [k]). These shifts will
be opposite in sign if ζ [k] is a downchirp (upnchirp ζ̂ [k]).
This difference in time shifts for ‘‘flip’’ PSFs can be used
for development of various enhancements and extensions
of the prototype algorithm for packet detection and CFO
measurements described in Section VII.

A. LO MISMATCH AND DOPPLER SHIFT COMPENSATION
If the mismatch in the frequencies of the LOs is small (e.g.,
within ±3 ppm), then our ±30 ppm targeted range of the
CFO tolerance enables effective Doppler shift compensation
for significantly large relative speeds. For example, the
magnitude of relative Doppler shift for a satellite at the alti-
tude 200 km above the ground remains below about 26 ppm
(7.9 km/s speed), and the rate of change of this shift is
within ±1 ppm/s [18]. Then this Doppler shift, combined
with the ±3 ppm LO mismatch, falls within the ±30 ppm
range.

On the other hand, for the relative speeds up to 200mph
(< 90m/s) the Doppler shift remains below±0.3 ppm, which
is less than 1% of our targeted CFO tolerance. Then the CFO
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can be assumed to be almost entirely due to the ±30 ppm
LO mismatch.

VI. OFFSET IN SAMPLING FREQUENCY AND
COMPENSATION FOR CUMULATIVE STO
If the LO frequencies of the RX and the TX are fc and
f ′
c = fc + 1fc, respectively, then the ratio of the sampling
frequencies is F ′

s/Fs = 1 + 1fc/fc.
For a single pulse, the resulting impact of this SFO on the

STOwould normally be negligible. For example, even for the
±30 ppm mismatch of the LOs (i.e., 1fc/fc = ±3 × 10−5),
the cumulative change in the STO for a PSF of length L =

1, 000 would be only ∓3%, and the STO for the entire pulse
duration can be assumed constant.

However, the cumulative STO difference δkj between two
pulses separated by jNp samples is

δkj = j δk1 = −j Np
1fc
fc

, (17)

and it can become quite significant for a sufficiently large
number j of the IpIs. For example, for Np = 2, 000 and the
±30 ppm LO mismatch, |δk1| = 0.06 and the magnitude of
δkj will exceed half of the sampling interval when j > 8.
For a noise-free signal, the impact of such cumulative STO

on the magnitude of the sampled pulses in the payload is
illustrated in the upper panels of Figs. 11 and 12, for different
values of the STO for the first pulse. Here, and throughout this
section, in the RX we use the modified matched filter ζ1[k]
given by (16), and thus the y2nc[k] pulses remain narrow.

FIGURE 11. Impact of cumulative STO on magnitude of sampled payload
pulses (upper panel), and its compensation to within ±1 (lower panel),
for different initial STO values. TX frequency is smaller than RX frequency
(1fc < 01fc < 01fc < 0).

A. STO COMPENSATION TO WITHIN ±1
Let us define the nearest integer function nint(x) = ⌊1/2+x⌋,
where ⌊x⌋ is the floor function. Then, by adding nint (j δk1) to
the sampling indices of the j-th pulse, we can keep the impact
of the cumulative STO to within ±0.5 samples from the STO
of the first pulse in the payload. In other words, we sample
the payload at

k = jNp + noff m+ nint (j δk1) , (18)

FIGURE 12. Impact of cumulative STO on magnitude of sampled payload
pulses (upper panel), and its compensation to within ±1 (lower panel),
for different initial STO values. TX frequency is larger than RX frequency
(1fc > 01fc > 01fc > 0).

where δk1 is given by (17) and m ∈ {1, 2, . . . ,M}.
With this, the total STO for any pulse is confined to

the ±1 interval, and the respective deterioration in the
magnitude of the sampled peaks in the payload remains
below about 1 dB. This is illustrated in the lower panels of
Figs. 11 and 12.

B. STO COMPENSATION TO WITHIN ±0.75
Of course, the impact of any particular STO of a pulse can
be accurately mitigated by employing a matched filter that
is sampled with the respective offset δkj. This is illustrated
in Fig. 13 for the fractional STO 1/2. Such matched filters
resampled for fractional STO corrections can then be used,
in combination with the integer adjustment in the sampling
index described above, to further reduce deterioration in the
signal quality due to cumulative STO.

For example, in Fig. 14 we alternate ζ [k] and ζ+[k] for
the payload filtering, confining the total STO for any pulse
to within ±0.25 samples from the STO of the first pulse in
the payload. Thus the total STO for any pulse is confined to
the ±0.75 interval, and we lose less than about 0.5 dB of the
signal quality relative to the first pulse.

VII. PROTOTYPE ALGORITHM FOR PACKET DETECTION
COMBINED WITH CFO MEASUREMENTS
Implementation of the CFO and the SFO corrections
described in Sections V and VI requires knowledge of the
CFO 1fc, which needs to be obtained ahead of processing
the timing pulse sequence. Therefore, we need to develop
a procedure for obtaining the CFO value at the beginning
of an M-ASPM packet. In this section, we introduce such a
procedure, that combines the M-ASPM packet detection with
the CFO measurements.

First, let us consider a ‘‘regular’’ (i.e., without pulse-
position offsets) designed pulse train given by

x̂[k] =

jmax∑
j=0

Jk= j NpK (−1)j . (19)
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FIGURE 13. Correction of fractional STO = 1/2 by resampled matched filter ζ+[k]ζ+[k]ζ+[k].

FIGURE 14. Impact of cumulative STO on magnitude of sampled payload
pulses (upper panel), and its correction to within ±0.75 (lower panel), for
different initial STO values. TX frequency is smaller than RX frequency
(1fc < 01fc < 01fc < 0).

For this train, if the cumulative STO is negligible, the
following relation will hold for the values of the noise-free
received signal sampled at kj = j Np:

ync[kj] = ync[0] (−1)j exp
(

−i 2π
1fc
Fs

kj

)
, (20)

where j ∈ {0, 1, . . . , jmax}. From (20) it follows that,
by measuring ync[k] at the indices corresponding to the peaks
in y2nc[k], we can determine 1fc in the ±Fs/(2Np) range with
Fs/(2Npjmax) accuracy.
To be able to measure a given CFO 1fc using (20), the

value of Np needs to be sufficiently small, namely

Np ≤
Fs

2 |1fc|
=

8B
5fc

fc
|1fc|

. (21)

For example, Np ≤ 29 for the ±30 ppm CFO, the nominal
carrier frequency fc = 915MHz, and the bandwidth B =

500 kHz. Favorably, if the IpI satisfies (21), then for a PSF
with the length L ≤ Np the condition |1fc| ≤ Fs/(2L)
necessarily holds, and implementing a CFO correction
described in Section V is not necessary.

A. LEADING PULSE SEQUENCE
Therefore, a regular pulse train with a sufficiently small
IpI, shaped with a sufficiently short PSF, can be used for
measuring the CFO. Consequently, we can use such a train
as a leading pulse sequence, preceding the timing sequence

in an M-ASPM packet, for detection of the packet’s arrival
and for obtaining the CFO value. Then this CFO value can
be used to modify the RX’s matched filter for the CFO
compensation (see Section V), and to implement the STO
correction described in Section VI.
An example of such leading pulse sequence is provided

in Fig. 15. Here we use L ′
= N ′

p = 29 ≪ L, and
the leading sequence is a constant-envelope signal with the
same amplitude as the pulses in the timing and the payload
sequences.

FIGURE 15. In leading pulse sequence we use short PSFs and small IpIs.

B. PACKET DETECTION COMBINED WITH CFO
MEASUREMENTS
Let us now demonstrate how a leading pulse sequence
can be used for packet detection combined with the CFO
measurements. Initially, for visual clarity, we will consider
an idealized noise-free case.

First, let us examine the waveforms shown in Fig. 16.
Here, the ‘‘primed’’ quantities relate to the output obtained by
filtering I + iQ with ζ ′[k], which is the matched filter for the
PSF ζ̂ ′[k] used to create the leading pulse sequence. For the
numerical values, we use L ′

= N ′
p = 29 (12.6 dB processing

gain) and Np = 512 (25 dB processing gain). Further, the
pulse duty cycle in the timing and payload sequences is
about 70%, and the CFO is within ±Fs/60 range.

In Fig. 16(I), we show the RX signal y2nc[k] obtained
by filtering I + iQ with ζ1[k]. As one can see, the peak
magnitude of y2nc[k] in response to the leading pulse sequence
is orders of magnitude smaller that the magnitude of the
pulses in the timing and the payload sequences. Thus the
presence of the leading sequence has no impact on the basic
algorithm for synchronization, decoding, and measuring the
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FIGURE 16. Received waveforms without noise for packet detection
combined with CFO measurements.

signal quality. In other words, if we start applying ζ1[k] (to
obtain y2nc[k]) before the end of the leading sequence, the
performance of the basic algorithm will not be affected.

While the processing gain for N ′
p is much smaller than

for Np, y′2nc[k] corresponding to the leading sequence still
consists of well-defined, relatively narrow pulses. This is
shown in Fig. 16(II). In particular, the 1st quartile of y′2nc[k] for
the leading sequence is less than 0.25%, and the IQR is less
than 2.5%, of the peak pulse magnitude. Thus, by sampling
y′nc[k] at the indices corresponding to the peaks in y′2nc[k],
from (20) we can reliably determine, with Fs/(58 jmax)
resolution, 1fc that falls within the ±Fs/58 range.

In Fig. 16(II), the number of pulses in the leading sequence
is rather large, N1f = 106. However, the time duration of the
leading sequence is still relatively small, as it spans only six
IpIs Np.

The MPA output p̄′[k] shown in Fig. 16(III) is obtained
for K ′

= 21, and the robust fence α′[k] is constructed using
the quantile tracking filters described in the next subsection.
For reliable detection of the onset of p̄′[k] in the presence of
noise, we require that relativelymany peaks of p̄′[k] (21 peaks
in this illustration) with IpIs N ′

p protrude above α′[k]. (This
is in contrast with only two consecutive peaks in the basic
algorithm.) We elaborate on this in the next subsection.

Once such group of peaks is detected, we determine
the sample index of the first peak. Then, for convenience,
we reset this index to zero (at the left vertical dashed line in
Fig. 16(III)), and obtain the values of (−1)j y′nc[j N

′
p], where

j ∈ {0, 1, . . . , jmax}. Here, jmax = 64. These values are
plotted in the left panel of Fig. 17 for several different CFOs.

Further, the right-hand panel shows the periodograms
of (−1)j y′nc[j N

′
p] [19], where the locations of the peaks

correspond to the measured CFOs. Here, the shown physical

frequency range is for the nominal carrier frequency fc =

915MHz and the bandwidth B = 500 kHz.

FIGURE 17. Measured CFOs without noise (k ′

j = j N ′
pk ′

j = j N ′
pk ′

j = j N ′
p).

C. MPA FILTERING, AND ROBUST FENCING WITH
QUANTILE TRACKING FILTERS
As M-ASPM operates at small spectral efficiencies (e.g.,
in 10−1 to 10−3 range), the noise power would be typically
more than an order of magnitude larger than the signal power
(e.g., 0 ≲ −10 dB). Further, for N ′

p ≪ Np, the processing
gain for the leading pulse sequence is much smaller than that
for the payload (e.g., only 12.6 dB for N ′

p = 29). Thus even
the peak power of the received pulses can remain smaller than
the average noise power.

Favorably, the steady-state output of the MPA filter for
a stationary periodic signal with the period N ′

p is equal to
the input, with the 90% rise time in response to the leading
pulse sequence approximately equal to 2.3N ′

p × (K ′
− 1)

(in samples). At the same time, as illustrated in Fig. 18, the
dispersion of the noise is inversely proportional to

√
K ′ for

large K ′. Thus, for a sufficiently large K ′, we can detect the
signal’s peaks as protrusions above the fence α′[k] that is
somewhat above the mean value of the noise. Consequently,
for establishing such robust fence α′[k] in the presence
of dominant noise, we need the means to continuously
monitor both the central tendency and the dispersion of the
noise. (Of course, the noise will be zero-mean if the MPA
filtering is applied to the difference y′2nc[k] − y′2nc[k−1N ′

p],
where, e.g., 1N ′

p = ⌊N ′
p/2⌋, and we would only need to

monitor the noise dispersion. However, such simplification
would come at the expense of doubling the noise variance.
Nevertheless, this approach should be considered in the
subsequent development, in particular, when considering the
effects of co- and inter-PSF collisions.)

As a practical matter, quantile tracking filters (QTFs) [14],
[20], [21] are an appealing choice for fencing of the MPA
output, as their computational cost is O(1) per output value
in both time and storage, and only two of such filters are
needed to continuously monitor both the central tendency and
the dispersion.
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FIGURE 18. MPA filtering is computationally inexpensive way to reduce
noise relative to peak signal power in leading pulse sequence.

In brief, the signal Qq(t) that is related to the given
input x(t) by the equation

d
dt
Qq = µ

[
lim
ε→0

Sε(x−Qq) + 2q− 1
]

, (22)

where µ is the rate parameter and 0 < q < 1 is the
quantile parameter , can be used to approximate (‘‘track’’) the
q-th quantile of x(t). In (22), the comparator function Sε(x)
can be any continuous function such that Sε(x) = sgn(x)
for |x| ≫ ε, and Sε(x) changes monotonically from ‘‘−1’’
to ‘‘1’’ so that most of this change occurs over the
range [−ε, ε]. In particular, as discussed in detail in [14], for a
continuous stationary signal x(t) with a constant mean and a
positive IQR, the outputs Q[1](t) (for q = 1/4) and Q[3](t)
(for q = 3/4) of QTFs with a sufficiently small rate
parameter µ will approximate the 1st and the 3rd quartiles,
respectively, of the signal obtained in a moving boxcar time
window with the width 1T of order 2 × IQR/µ ≫ ⟨f ⟩−1,
where ⟨f ⟩ is the average crossing rate of x(t) with the 1st
and the 3rd quartiles of x(t). In numerical implementations,
the sign function can be used as the comparator function,
as illustrated in Appendix C.

Hence the robust fence α′[k] can be obtained as the upper
Tukey’s fence [22] constructed as a linear combination of the
outputs Q[1][k] and Q[3][k] for the MPA input:

α′[k] = Q[3][k] + β
(
Q[3][k] − Q[1][k]

)
, (23)

where β is a positive scaling parameter of order unity (e.g.,
β ∈ [1, 3]). The overall behavior of such QTF fencing for
a stationary constant-mean signal with a given IQR would
be similar to the fencing with the ‘‘exact’’ quartile filters
in a moving boxcar window of length 1T = 2 × IQR/µ.
However, numerical computations of such exact quartiles
become prohibitively expensive for Fs1T ≫ 1. This
would be the case when the time interval 1T spans multiple
interpulse intervals. On the other hand, the computational
cost of QTF remains O(1) per output value in both time and
storage, and the contribution of the QTF fencing in the overall
computational burden would be negligible.

Note that (see Fig. 18) increasing K ′ in the MPA filtering
quickly reduces the kurtosis of the noise, and thus the rate of

noise outliers, down to that of Gaussian distribution. Thus,
for larger β in (23) and/or K ′, the rate of occurrence R
of the p̄′[k] peaks that are above the fence and are due to
the noise can be made negligibly small. At the same time,
the rate of peaks above α′[k] in the leading pulse sequence
approaches Fs/N ′

p when the signal becomes sufficiently
strong. Therefore, as illustrated in Fig. 19, the increase in
rate R of peaks that are above α′[k] in the MPA output can
reliably indicate onset of the leading pulse sequence even at
low SNRs. Hence, for detection of the leading sequence in
this prototype algorithm, we require a relatively large group
of p̄′[k] peaks with IpIs N ′

p to protrude above α′[k].

FIGURE 19. Increase in rate RRR of peaks that are above α′[k]α′[k]α′[k] in MPA
output can reliably indicate onset of leading pulse sequence.

D. PACKET DETECTION COMBINED WITH CFO
MEASUREMENTS AT LOW SNR
One of the main objectives in the development of the
packet detection and CFO measurement algorithm is that
its performance is appropriately ‘‘matched’’ with that of the
synchronization and decoding of the payload. Indeed, there
is limited utility in the correct detection of the packets,
and obtaining the CFO, if the subsequent payload cannot
be reliably synchronized and decoded. Similarly, it would
be wasteful to ‘‘miss’’ high-quality payloads by failing
to correctly detect the leading pulse sequence and obtain
the CFO. Let us now examine if, and how, such a match
can be achieved in practice, and what are the available
tradeoffs. Then the particular algorithm parameters can be
appropriately chosen.

First, Figs. 20 and 21 illustrate the waveforms and the
performance of the algorithm described in Section VII-B
(for the same algorithm parameters and the CFO values)
in the presence of noise with the same level as in Fig. 5
(0 = −10 dB). In this example, even in the presence of
dominant noise, we still correctly detect the arrival of the
M-ASPM packets and accurately determine their CFOs.

In Fig. 20, we also show the MTF output q[k], which is
effectively the same for both y′2nc[k] and y

2
nc[k]. Thus q[k] can

be ‘‘handed over’’ to the execution of the basic algorithm,
and used for the initialization of the MPA output p̄[k] (e.g.,
by setting its initial Np values to 1.4 q[k]).
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FIGURE 20. Example of waveforms in prototype algorithm with same
noise level as in Fig. 5 (0 = −100 = −100 = −10 dB).

Further, Fig. 22 illustrates the general relation between
the fence scaling parameter β and the value of K ′ in the
MPA filtering, in their impact on the probability Pd of
packet detection with correct (to within ±Fs/(58 jmax)) CFO
measurement. Specifically, for the simulated results shown
in this figure, we maintain Np = 29, N1f = 6K ′, jmax =

4K ′, and use 2K ′ as the length of the group of p̄′[k] peaks
above α′[k]. The values of the CFO are generated, with
uniform probability, in the interval [−Fs/60,Fs/60].

As can be seen in Fig. 18, the noise variance is inversely
proportional to K ′ for large K ′. If we define the ‘‘detection
sensitivity’’ for a given Pd as 1/0′(Pd), then, for a given β,
this sensitivity generally increases roughly proportional
to

√
K ′, 0′(Pd) ∝

∼
1/

√
K ′. In addition, for larger values of K ′

we can also ‘‘tighten’’ the fence α′[k] (i.e., reduce β), further
enhancing the sensitivity. Such supplementary sensitivity
increase from 4.4 dB to 6 dB is emphasized in Fig. 22 for
{β,K ′

} = {2, 10}, {2, 90}, and {1.2, 90}. Consequently,
0′(Pd) ∝

∼
1/K ′~ , 1/2<~ < 1, where we can use ~ ≈ 2/3 for

rough estimates.
Further, note that the pulse duty cycle in the leading

sequence is unity, and the power of the leading sequence is
always higher than the average power of the payload (hence
0′

= 0/D in Fig. 22). This is a simple consequence of
PAPR = 1/D for the M-ASPM TX signal. Thus, for a given
payload SNR 0, the desired detection probability Pd can be
achieved by adjusting either K ′ or the payload pulse duty
cycle D, or both. In particular, for a given 0 in Fig. 22,
approximately the same detection probability is achieved for
{D,K ′

} = {D0, 90} and {D,K ′
} = {0.25D0, 10}:

Pd(0;D = D0,K ′
= 90) ≈ Pd(0;D = 0.25D0,K ′

= 10).

(24)

According to (24), for increasing the detection probability,
a 4-fold reduction in the payload pulse duty cycle is roughly
equivalent to a 9-fold extension of the leading pulse sequence.

Therefore, as a rule of thumb, and subject to the particular
technical and/or regulatory constraints (such as, for example,
the maximum available or allowed peak transmit power),
we may want to use the smallest possible pulse duty cycle
for the timing and payload sequences. A smaller duty cycle
allows us to use a shorter leading sequence, offering clear
benefits in terms of the latency of the detection (which is
proportional to K ′), and reducing the computational cost of
both the detection and the subsequent signal processing for
synchronization and payload decoding.

FIGURE 21. Measured CFOs for noisy waveforms (k ′

j = j N ′
pk ′

j = j N ′
pk ′

j = j N ′
p).

FIGURE 22. Probability of packet detection with correct CFO
measurement.

Also, for a given average transmit power of the payload,
the total energy of the timing pulse sequence and the payload
is not affected by the pulse duty cycle. On the other hand, the
energy of the leading sequence with the same peak amplitude
is proportional to K ′/D, E1f ∝ K ′/D. Consequently, for a
given detection probability, both the latency and the energy
of the leading sequence can be related to the pulse duty cycle
as

K ′ ∝
∼
D

1
~ ≈ D1.5 ,

E1f ∝
∼
D

1−~
~ ≈

√
D , (25)

where we use ~ = 2/3 for rough estimates. This is illustrated
in Fig. 23. Note that 0 = −13 dB used in this example
approximately corresponds to BER = 10−4 in noncoherent
LoRa with SF = 9 (see Fig. 3).
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FIGURE 23. Impact of pulse duty cycle on detection latency and transmit
energy of leading sequence.

VIII. DISCUSSION
In the development of the implementation framework pre-
sented in this paper, we have implicitly assumed anM-ASPM
network configuration where the packets are transmitted by
multiple uplink nodes, and received by a single stationary
gateway.

For a single packet, the digital modulating signal z[k]
generated in a TX can be expressed, for example, as

z[k] =
√
L ′

∑
i

ζ̂ ′[k−k ′
i ] (−1)i +

√
L

∑
j

ζ̂ [k−kj] (−1)j ,

(26)

where ζ̂ ′[k] is the PSF for the leading pulse sequence, ζ̂ [k] is
the PSF for the timing and the payload sequences, and the
information is encoded in the pulse-position offsets of the
kj values corresponding to the payload. (In (26) all k ′

i values
are smaller than any of kj.) No other signal processing,
beyond summing such time-delayedwaveforms, is performed
in the TX. After the D/A conversion (z[k] → z(t)), the real
and imaginary parts of z(t) are used for quadrature amplitude
modulation of a carrier with frequency f ′

c , amplified, and
transmitted. The alternating signs of the waveforms in (26)
simply ensure that z(t) is a zero-mean signal even when the
individual PSFs are not.

For better TX efficiency, we require that the pulses in (26)
do not overlap, and a packet consists of constant-envelope
pulses with the same amplitude. Then, if the ‘‘idle’’ (i.e.,
for the zero-amplitude intervals between pulses) power
consumption during the transmission of such a signal
is negligible, the efficiency of this transmission will be
effectively the same as the efficiency of transmitting a
continuous constant-envelope waveform.

In the RX (with the LO frequency fc), we assume that
the bandwidths of the bandpass and the lowpass/anti-aliasing
filters are sufficiently large to accommodate the CFO 1fc =

f ′
c − fc in the desired range without attenuation.

Since a single gateway can receive and process packets
from a large number (e.g., thousands) of TXs with different
CFOs, any hardware adjustments in the RX (e.g., in the
LO frequency or sampling time offsets) to compensate
for the CFO differences would be undesirable. Such hard-
ware changes are especially unwelcome for simultaneous
processing of colliding packets in different PSF channels.
Consequently, the CFO compensation is performed entirely
in the RX software.

We use the leading pulse sequence in a packet to detect the
packet, and to obtain the CFO value for this packet.

In general, for maximum detection sensitivity, we want the
length L ′

= N ′
p of the PSF ζ̂ ′[k] to be as large as possible,

while still providing the CFO measurements in the desired
range, for the given bandwidth and the carrier frequency.
For example, for the ±30 ppm CFO and the bandwidth B =

500 kHz, we can use L ′
= 29 for fc = 915MHz, and increase

it to L ′
= 61 for fc = 434MHz.

The other parameters of the prototype algorithm described
in Section VII should be chosen to appropriately match its
performance with that of the synchronization and decoding
of the payload. That is, the values of K ′ and β (as well
as N1f , jmax, and the length of the group of p̄′[k] peaks
above α′[k]) would be based on the values of the IpI Np,
the length L of the PSF ζ̂ [k] (or, equivalently, the pulse duty
cycleD), and the numberM of the pulse-position states in the
encoding.

Once the CFO 1f for the detected packet is measured,
we can modify the matched filter ζ [k] in the RX according
to (16) (i.e., ζ [k] → ζ1[k]), and obtain the value
of δk1 from (17). We can then use ζ1[k] in the basic
algorithm of Section III for the synchronization (as wells as
for measuring the signal quality), while implementing the
cumulative STO compensation described in Section VI for
the payload sampling.

A. SIMULATED PERFORMANCE OF FULL ALGORITHM
Let us now illustrate performance of a full prototype
algorithm with the example shown in Fig. 24. In this illus-
tration, we use 64-ASPM with the processing gain 32.3 dB
which, for negligible CFO and STO, provides the uncoded
BER = 10−4 at the SNR 0 ≈ −15.6 dB. Note that this
BER performance effectively matches LoRa with SF = 10,
as shown by the solid and dashed black lines in Fig. 24 (also
see Fig. 3).

In the simulations, we use 120 pulses (i.e., 90 bytes)
for the payload, and 9 pulses for the timing sequence. For
B = 500 kHz bandwidth, the time duration of the TX packet
shown at the top of Fig. 24 is about 222ms. For the timing
and the payload sequences we use a relatively short PSF
with L = 600, and thus the pulse duty cycle is D ≈ 22%.
Then, with fc = 915MHz carrier frequency (that is, fc/B =

915MHz/500 kHz = 1, 830), 1fc ≈ ±Fs/L for the ±3 ppm
CFO, and1fc ≈ ±10Fs/L for the±30 ppmCFO.As one can
see in the left panel of Fig. 9 (see Section V), the reduction
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in the peak magnitude of the received pulses is less than 1 dB
for ±3 ppm, and more than 6 dB for ±30 ppm.
Further, the values of δk1 are approximately

∓8.2 × 10−3 and ∓0.082, for the ±3 ppm and ±30 ppm
CFOs, respectively. In the first case the magnitude of
the difference in cumulative CTO remains below approxi-
mately ∓1 for the duration of the packet, while in the second
case the deterioration in the RX signal quality is about 37%
faster than shown in the upper panels of Figs. 11, 12. and 14
(see Section VI).
For the leading sequence we employ 180 pulses with L ′

=

N ′
p = 29. As such, with these parameter values, the leading

sequence spans less than 2 IpIs Np, and its time duration
is about 3.3ms (≈ 1.5% of the packet length). Further,
we use K ′

= 60, jmax = 120, and β = 2 in the detection
algorithm.

In the simulations, the CFO values are generated with
uniform probability in three different intervals: ±3 ppm,
±10 ppm, and ±30 ppm. For each CFO range, we generate
60,000 packets with initial STO values randomly chosen in
the ±0.5 interval.

In the right axis of Fig. 24, we plot the ‘‘raw’’ packet
detection probability. That is, we do not check if the CFO
value was obtained correctly. Note that this raw probability is
different from the joint probabilities of detection with correct
CFO measurements shown in Figs. 22 and 23.

After a packet is detected and the measured CFO value
is obtained, we modify the RX matched filter and attempt
to acquire the synchronization and decode the payload.
To account for the impact of false-negative synchronizations,
if, after the packet detection, we do not obtain the synchro-
nization during the combined duration of the leading and
the timing sequences, we assign a random value (within
this interval) for the synchronization time. Then, for the
detected packets, we decode the payload and obtain the BER
values. For the payload sampling, we use a simple STO
compensation to within ±1 according to (18).

For comparison, in Fig. 24 we also provide the BER values
when using unmodified RX matched filter and sampling
without cumulative STO compensation.

B. MULTIPLE PSF CHANNELS
The detection sensitivity of the prototype algorithm described
in Section VII is high enough to enable the use of
relatively sensitive M-ASPM configurations with large IpIs,
for example, matching LoRa with SF = 10 in terms of
the path loss and the range (see Fig. 24). At the same time,
such large-IpI configurations offer proportionately large SIR
margins. Then we can employ several different PSF channels,
respectively increasing the network capacity (e.g., to several
times that of LoRa with SF = 10) and/or its effective
range [2], [3]. Within the framework of this paper, such
multiple PSF channels can be enabled, for example, in the
following manner.

First, we can construct two different leading pulse
sequences using ‘‘flip’’ PSFs ζ̂ ′

1[k] and ζ̂ ′

2[k], such that the

FIGURE 24. Example of simulated BER performance of full algorithm for
different ranges of CFO values. Right axis: ‘‘Raw’’ probability of packet
detection with leading sequence.

2nd PSF is the complex conjugate of the matched filter for
the 1st PSF, ζ̂ ′

2[k] = ζ ′∗

1 [k] [2], [3]. Consequently, these two
different leading sequences can be used for two different PSF
channels (i.e., with different PSFs ζ̂1[k] and ζ̂2[k]).
In addition (or as an alternative), different M-ASPM

packets can share the same leading and timing sequences,
and use the same PSFs for short (e.g., shorter than the timing
sequence) headers that include the PSF channel information.
Then much longer payloads, that use different PSFs specified
in the respective headers, can be used for the rest of the
packets.

C. FILTERING AND SAMPLING
The M-ASPM presentation in Section II, as well as the
description of the basic algorithm in Section III, suggest
that we need to perform continuous FIR filtering at full
sampling rate in order to detect and synchronize the incoming
signal. Since the length L of the ‘‘main’’ matched filter ζ [k]
in the receiver may be quite large (e.g., hundreds or
thousands of samples), such continuous filtering would be a
computationally expensive operation, especially wasteful for
low packet rates.

Favorably, such continuous filtering only needs to be
performed for detection of the leading pulse sequence,
specifically, for detection of the p̄′[k] onset. This uses
significantly shorter FIR filters, of the length L ′

= N ′
p ≪ Np,

and is much less computationally intensive. Further, the MPA
filter for obtaining p̄′[k] is effectively just a 1st order IIR filter
(albeit with O(N ′

p) per output value in the storage cost), and
the quantile tracking filters used for constructing the robust
fence α′[k] are also numerically inexpensive.
Only after the packet has been detected and the CFO has

been measured, we begin filtering with the modified matched
filter ζ1[k] of length L, and obtaining the MPA output p̄[k].
Initially, until the onset of p̄[k] is detected (e.g., as two
consecutive peaks of p̄[k] that are above the fence α[k] and
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are IpI Np apart), we would need to obtain the filtered output
at full sampling rate. However, after detecting the onset
of p̄[k], we no longer need to continue the MPA filtering, and
only need to obtain a decimated output of ync[k]. Initially,
until the last peak in the timing sequence is detected, we need
to acquire M + 1 samples per IpI Np. For the payload,
we obtainM samples per IpI.

IX. CONCLUSION
Among appealing features of M-ASPM is its extensive
versatility in tailoring multiple PHY parameters to reconcile
often conflicting LPWAN technical concerns. Since carrier
synchronization at low SNRs is not trivial, a major such
concern is maintaining the M-ASPM signal quality, for
a wide range of data rates and payload sizes, under
rather significant (e.g., ±30 ppm) carrier frequency offsets.
Further, it is desirable to achieved this without any feedback
communications between the TX and RX, any hardware or
software changes in the TX, and any hardware adjustments in
the RX (e.g., in the LO frequency or sampling time offsets).
In this paper, we outline a practical framework for combining
the detection, synchronization, and decoding of M-ASPM
packets in the presence of such CFOs, and suggest a prototype
algorithm for its implementation.

In our descriptions and illustrations of the algorithm
steps, we aim to provide sufficient reasoning and details
for (i) enabling a working SDR prototype of an M-ASPM
system, and (ii) facilitating the subsequent adaptations of
the algorithm, under given technical constraints, to specific
practical challenges. These challenges can include, for
example, significant delay spreads, external technogenic
interference, and co-PSF and inter-PSF collisions.

APPENDIX A
ACRONYMS
ACF: autocorrelation function; A/D: Analog-to-Digital;
ASPM: Aggregate Spread Pulse Modulation; AWGN: Addi-
tive White Gaussian Noise; BER: Bit Error Rate; CFO: Car-
rier Frequency Offset; D/A: Digital-to-Analog; FIR: Finite
Impulse Response; IIR: Infinite Impulse Response; IQR:
Interquartile Range; IpI: Interpulse Interval; LoRa: Long
Range (modulation technique for LPWANs based on chirp
spread spectrum); LO: Local Oscillator; LPWAN: Low-
Power Wide Area Network; M-ASPM: M-ary ASPM; mph:
miles per hour; MPA: Modulo Power Averaging; MTF:
Median Tracking Filter; PAPR: Peak-to-Average Power
Ratio; PHY: physical layer; ppm: parts per million; PSD:
Power Spectral Density; PSF: Pulse Shaping Filter; QTF:
Quantile Tracking Filter; RC: Raised-Cosine; RX: receiver;
SDR: Software-Defined Radio; SF: Spreading Factor (for
LoRa); SFO: Sampling Frequency Offset; STO: Sampling
TimeOffset; SIR: Signal-to-Interference Ratio; SINR: Signal-
to-Interference-plus-Noise Ratio; SNR: Signal-to-Noise
Ratio; SQI: Signal Quality Indicator; STO: Sampling Time
Offset; TBP: Time-Bandwidth Product; ToA: Time-on-
Air; TX: transmitter.

APPENDIX B
COMMENTS ON NOTATIONS
Whenever a particular notation is introduced in the paper,
it is immediately defined. Some notations are confined to the
specific sections. The notations that are used multiple times
throughout the paper include:

α upper fence/threshold
B bandwidth
β RC roll-off factor or scaling parameter in QTF

fencing
D pulse duty cycle
1fc CFO value
η spectral efficiency
fb bit rate
fc carrier/LO frequency
Fs sample rate
0 SNR
k sample index (in digital signal representations)
K MPA filter parameter
L PSF length
λ signal quality indicator
M number of states in M-ary encoding
µ rate parameter in QTFs
Np average interpulse interval
Npl number of pulses in payload
Ns oversampling factor
p̄ output of MPA filter
Pb bit error probability
Pd probability of packet detection
q MTF output
ync received pulse train (noncoherent detection)

In the mathematical notations we reserve the letters ‘‘ζ ’’,
‘‘g’’, and ‘‘h’’ for pulse shaping filters, with g and h
being the real and imaginary parts of ζ . For example,
we denote the finite impulse response of a PSF applied
to a designed pulse train as ζ̂ [k], where k is the sample
index. Since in this paper we assume the single-sideband
M-ASPM, the PSF components g and h are related
through the Hilbert transform, e.g., h(t) = ±H (g)(t)
(in analog domain) or h[k] = ±H{g[k]} (in digital
representation).

Further, we find it convenient to use the ‘‘hat’’ operator for
ζ̂ [k], ĝ[k], and ĥ[k] to distinguish them from their respective
matched filters ζ [k] = ζ̂ ∗[−k], g[k] = ĝ[−k], and h[k] =

−ĥ[−k]. We also use the hat symbol in Sections II and VII to
denote the designed pulse train x̂[k], as opposed to the shaped
train z[k] obtained by applying ζ̂ [k] to the designed pulse
sequence.

To distinguish between the respective quantities for LoRa
andM-ASPM, those for LoRa are marked by overhead tildes.

We use primes to denote the quantities related specifically
to the leading pulse sequence, as opposed to the same
quantities for the timing and the payload sequences. We also
use primes to distinguish the carrier and the sampling
frequencies in the TX from those in the RX.
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APPENDIX C
NUMERICAL IMPLEMENTATION OF QTFS
Since outputs of analog QTFs are piecewise-linear signals
consisting of alternating segments with positive and negative
slopes, care should be taken in finite difference implementa-
tions of QTFs to avoid the ‘‘overshoots’’ around the crossings
ofQq(t) with x(t). In particular, when x[k]−Qq[k−1] is outside
the interval hµ [2(q− 1), 2q], where h is the time step, one
may set Qq[k]=x[k], as illustrated in the MATLAB function
below:
%-------------------------------------------------
function y = QTFs(x,dt,mu,q)
%-------------------------------------------------
lx = length(x); lq = length(q);
q = q(:); y = zeros(lx,lq); gamma = mu*dt;
y(1,:) = x(1)*ones(1,lq);
%-------------------------------------------------
for i = 2:lx
dX = x(i)*ones(1,lq)-y(i-1,:);
for j = 1:lq
if dX(j)>2*gamma*(q(j)-1) & dX(j)<2*gamma*q(j)

y(i,j) = x(i);
else
y(i,j)=y(i-1,j)+gamma*(sign(dX(j))+2*q(j)-1);

end
end

end
return
%-------------------------------------------------
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