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ABSTRACT Fifth-generation (5G) networks consist of relatively smaller cells compared to legacy networks.
Therefore, a user will take a shorter time toward the cell edge. This exposes the mobile station (MS) to
frequent handovers, which are bottlenecks affecting the quality of service and user experience. In this study,
we introduce a self-optimization method for three pivotal handover control parameters (HCPs): Threshold,
Hysteresis and Time-To-Trigger. The proposed approach considers a holistic range of factors to determine
the optimal values for these HCPs. These factors include the received power of reference signals (channel
conditions), the speed and direction of the user (mobility profile), and the synchronization signal periodicity
and handover procedure latency (representing system parameters). Through analytical deliberations, the
study establishes a framework for achieving optimal HCPs tominimize the handovers, mitigate the ping-pong
effects, reduce handover failures, and sustain a good throughput performance. Furthermore, considering the
channel, user, and system parameters allowed cell-specific HCP optimization, enabling the implementation
of this method with any of the measurement events outlined in the 3rd Generation Partnership Project (3GPP)
release 16 for 5G. This study shows that concurrent self-optimization of Threshold, Hysteresis, and Time-
To-Trigger can yield remarkable enhancement of handover performance.

INDEX TERMS Handover control parameters, self-optimization, handover threshold, handover hysteresis
margin, handover time-to-trigger, 5G, small cell network.

NOMENCLATURE
Threshdynamic Mobility-Aware Dynamic Self-Optimizing

Signal Level Threshold.
Hystdynamic Mobility-Aware Dynamic Self-Optimizing

Hysteresis Margin.
TTT dynamic Mobility-Aware Dynamic Self-Optimizing

Time-To-Trigger.
Qrxlevmin Minimum Reference Received Power.
ρ Reference Signal Received Power.
pRS Effective Transmitted Power of the Refer-

ence Signal.
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t Time.
l Distance Travelled by a Mobile Station.
d 3-D Separation Distance Between a

Mobile Station and a Base Station.
d0 Close-In Free-Space Reference Distance.
c Speed of Light.
v Speed of a Mobile Station.
φ Direction of a Mobile Station.
f Carrier Frequency.
n Environmental Path Loss Factor.
χσ Gaussian Noise Factor.
τ RRC Signalling Delay During Handover

(Handover Latency).
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a Handover Window Time Coefficient.
ϵ Cell Type Factor.
x Percentile of Hysteresis Margin.
ψ Mobile Station Measurement Periodicity.
T Running Time.
k,K Trajectory Number.
T Average Throughput.

I. INTRODUCTION
The fifth-generation cellular networks (5G) and beyond
are designed to provide higher system capacity to meet
the huge growth in global mobile data and demand for
ubiquitous access to communication services. One of the
effective approaches is to use smaller cells. The support of
smaller cells has been a key feature of the 4G Long-Term
Evolution-Advanced (LTE-A) systems, enabling flexible net-
work deployment, improved cost-effectiveness, spectral effi-
ciency, and user experience. In the 5G, system capacity has
improved tremendously, due to the use of higher frequency
bands (sub-6GHz to millimeter wave) and other enabling
technologies, making 5G a type of small cell network [1].
Small cells have a coverage range from ten meters to several
hundred meters; femtocells and picocells with less than 100m
are deployed indoors, while microcells with coverage of a few
hundred meters are typically deployed outdoors in rural and
urban environments.

Nowadays, 5G outdoor base stations (BS) are being
deployed in different cities around the world. However, opti-
mization of handover control parameters (HCP) remains
a challenging task for network operators. The 3rd Gener-
ation Partnership Project (3GPP) Radio Resource Control
(RRC) protocol specifications for 5G, specifies mainly four
HCPs, namely signal level Threshold, Hysteresis margin,
Time-To-Trigger and Offsets [2]. Many optimization studies
have been conducted mainly for Hysteresis and Time-To-
Trigger [3]. Some authors have proposed using soft HCPs
such as dwell time or distance [4], [5], [6], which has been
implemented mostly for indoor access points, with dwell
time accuracy concerns [7]. The current industrial practice
of optimizing HCPs involves manual tuning of HCPs by
leveraging human experience based on trials and sometimes
using vendor-predefined values (fixed HCPs values). How-
ever, this manual approach is based on one-solution-fits-all
scenarios without considering varying channel conditions and
user mobility; hence, it is often suboptimal [8]. Moreover, the
large number of small cells required for ubiquitous access
in 5G and beyond makes the optimization problem more
complex.

Two main factors that make the optimization of HCPs par-
ticularly challenging in small cell networks are user mobility
and wireless channel conditions. Primarily, handover is a
time-sensitive event, more so when user mobility is rapidly
changing, e.g., from pedestrian to vehicular. Due to small
coverage, the MS will take a shorter time to reach the cell-
edge [9]. Therefore, for fast-moving MS, it is imperative to

initiate and execute handover early and in a timely manner.
This will ensure that handover is completed before the user
exits the serving cell and therefore minimizing handover
failures which affect the quality of service (QoS). In other sit-
uations, such asMSmoving at pedestrian speed, it is preferred
to delay the handover to avoid unnecessary or ping-pong han-
dovers, which would render the usage of network resources
inefficient. The ping-pong handovers cause signaling over-
head, resulting in network congestion [10]. Therefore, using
fixed HCP values could impose severe penalties in some
situations, leading to sub-optimal overall performance.

Additionally, the optimization of HCPs is challenging due
to rapid changes in the wireless channel conditions [11]. This
is caused by radio frequency (RF) interference from neigh-
bour cells, penetration loss and multipath effects, which are
more prominent in urban environments. Therefore, in certain
scenarios when MS is around the mid-cell region of the serv-
ing BS, it may suddenly receive a degraded channel quality.
In this case, it might be more advantageous to impose higher
HCP values that lead to a delay in handover and minimize
the ping-pong effect. On the other hand, when the same HCP
policy is applied at cell-edge, it could potentially lead to
handover failures and, hence, poor quality of service.

Therefore, in this work, we propose self-optimization of
three main HCPs, namely Threshold, Hysteresis and Time-
To-Trigger by considering user speed and direction, channel
conditions, and system parameters to determine the opti-
mal values of HCPs for optimal handover performance. The
proposed approach addresses the timing challenges of han-
dovers (i.e., when to initiate handover) and the dynamic
nature of the wireless channel (i.e., where to initiate han-
dover). This is achieved by leveraging user mobility profile
(speed and direction), channel condition through received
signal power of the reference signal (RSRP), and system
parameters such as the synchronization signal block (SSB)
based measurement timing configuration (SMTC) and RRC
delays during handover (handover latency)) in optimization
of the HCPs. This makes the proposed method cell-specific,
where the HCPs can be self-optimized based on the type of
cell and its associated radio link and system configuration.
This in turn should lead to optimal handover performance
where handover frequency, ping-pong, and handover fail-
ures rates are minimized and hence improving the quality of
service.

We propose three closed-form analytical expressions for
each HCP where all input parameters to the proposed method
are taken from current measurements performed by the MS.
Each formula optimizes the HCP based on measurement
from a specific cell, leading to two classifications of the
self-optimization as either serving cell-based HCP optimiza-
tion or target cell-based HCP optimization. To this end,
we re-classified 3GPP handovermeasurement events as either
serving cell-based (event A1, A2), target cell-based (A3, A4,
B1 and A6), or both (A5 and B2). The proposed solution is
in line with the current 3GPP standards, such as handover
call flows, SMTC and 3GPP measurement events. Therefore,
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the proposed solution would not require new standardization
efforts.

The rest of the paper is organized as follows: Section II
presents relevant works in literature and the contributions
of this paper. Section III describes the handover procedure
in 5G systems. Section IV presents a detailed description
of the proposed method. Section V presents the proposed
self-optimizations of three HCPs i.e., Threshold, Hystere-
sis, and Time-To-Trigger. In this section, mathematical
formulations are presented. Section VI presents the per-
formance evaluation of the proposed solution. This section
presents simulation environment and parameters, handover
key performance indicators (KPIs), numerical analysis of the
self-optimizing HCPs, and the handover performance anal-
ysis of the proposed methodology in 5G networks. Finally,
Section VII concludes this paper with recommendations for
future works.

II. RELATED WORK AND CONTRIBUTIONS
A. RELATED WORK
Self-optimization in cellular networks attracted significant
interest in research communities since the introduction of a
Self-organizing network (SON) in 3GPP release 8 for LTE,
which was enhanced for 5G systems in 3GPP release 17 in
2022 [12]. The SON functions play a key role in network
automation by enabling self-configuration, self-optimization
and self-healing using data collected from mobile stations
(MS). Two SON functions responsible for HCP optimiza-
tion are Load Balancing Optimization (LBO) and Mobility
Robustness Optimization (MRO); they are designed for
automatic configuration and update of HCPs to improve
the handover performance. A conflict which is yet to be
addressed. Authors in [13] provide an extensive survey on
handover parameters self-optimization challenges in emerg-
ing networks and give insights on possible solutions. In recent
years, several handover parameters optimization strategies
have been proposed for 5G and beyond.

In [14], a fuzzy logic approach to adaptively optimize
Hysteresis and Time-To-Trigger using MS speed, signal-
to-interference-plus-noise ratio (SINR), and network load
is introduced. Fuzzy logic is the simplest artificial intelli-
gence method based on reasoning, which emulates human
decision-making more closely, making it suitable for sys-
tem control automation. However, fuzzy rules classify inputs
into a limited set of linguistic variables leading to a rather
‘‘discrete-time adaptive’’ optimization that may not fully
address continuously changing wireless environments. Addi-
tionally, increasing the number of fuzzy rules might increase
delay in optimizing HCPs. Authors in [15] proposed a
fuzzy-like method to adapt Hysteresis and Time-To-Trigger
based on RSRP and user speed class. Three speed classes are
used: low,medium and high. Like in fuzzy systems, this leads
to a discrete-time adaptive optimization which is limited to
the number of speed classes. Fewer classes lead to subopti-
mal HCPs. The main drawback of the fuzzy and fuzzy-like

approach is that there is no standard to classify inputs, making
the classification subjective that may not apply to a different
scenario.

In [16], authors proposed a machine learning based
approach to automatically optimize Threshold and Time-To-
Trigger for inter-frequency handover based on RSRP, SINR,
and handover success rate. This approach jointly optimizes
mean values of handover key performance indicators (KPIs)
as a function of expected values of HCPs using Genetic
Algorithm and XBoost machine learning model, where train-
ing data sampling is based on important ranges of Thresholds
and Time-To-Trigger, a technique which has shown faster
convergence time compared to regular sampling. However,
one of the main challenges of the joint HCP-KPI optimiza-
tion is handover failures must occur before the algorithm
adjusts HCPs to optimal values, leading to slow response
and late optimization. Additionally, parameters related to user
mobility are not clearly addressed despite having a direct
impact on handover performance. To overcome the weak-
ness of previous studies, authors in [17] proposed online
Q-learning-based optimization of the Hysteresis and Time-
To-Trigger based on RSRP predictions using Karman filter.
The Karman filter takes current RSRPmeasurements as input
and it estimates the posteriori of the RSRP which is then used
in the reinforcement learning module to adaptively choose
the optimal Hysteresis and Time-To-Trigger values. Although
the online reinforcement learning took into accounts RSRP
and user mobility, the accuracy of this approach is limited
to the prediction accuracy of future RSRP measurements.
In high interference and highly mobile scenarios, prediction
becomes less accurate, leading to suboptimal handover per-
formance. Moreover, for denser network of 5G small cells,
the Q-learning might increase handover delay due to the
query of larger Q-table [10]. Some authors have proposed
using network slicing to reduce action space [18], [19], [20].
Nonetheless, machine learning techniques require sufficient
and reliable data for training purposes, where the accuracy
and reliability of the model is based on the quality (represen-
tativeness) and size of the training data. An extensive survey
on machine learning solutions to handover parameters opti-
mization is presented in [21]. In summary, existing machine
learning approaches for HCP optimization use subjective and
limited training data, which may not be sufficient to train
robust models. Additionally, service providers may not afford
to try larger data sets on a live network due to the inherent risk
of performance loss during the learning processes [8].

Other researchers followed a different approach compared
to the previously discussed literature by proposing new HCP
optimization methods using an analytical approach. An initial
attempt at an analytical approach to optimize the handover
process was introduced in [22]. The authors derive probability
models for cell coverage and handover KPIs as functions of
Time-To-Trigger, user density and speed. A similar approach
is presented in [23], where the probability models were ana-
lyzed in both fading and no fading scenarios. The probability
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approach gives insight into a better HCP setting for a given
scenario, hence providing guidance for actual network plan-
ning. This minimizes the time-consuming trial-based manual
tunning. However, it does not directly and automatically opti-
mize the HCP; therefore, it still requires manual intervention
by operators to update to the optimal HCP setting upon
numerical simulation of the probability models. To overcome
this, authors in [24] introduced analytical expressions to
acquire Hysteresis optimal range for a particular user speed
and predefined Time-To-Trigger value. The analytical models
consider both channel and system parameters and utilize a
generic fading model at the cell-edge where too-late, too-
early or ping-pong handovers are anticipated. The optimal
Hysteresis value is selected from the acquired optimal range;
this has improved performance compared to selecting from a
default 3GPP range. However, it is not clear how the optimal
value is selected from the optimal range. With a large range,
choosing an optimal value becomes challenging. Moreover,
only one HCP was optimized in this study. Additionally,
the approach requires operators to obtain optimal Hysteresis
range for each user speed and Time-To-Trigger, which is
impractical in dynamic environments. In addressing the issue
of selecting an optimal value from the range, authors in [25]
used the ratio of serving and target cell RSRPs to determine
the optimal Hysteresis value bounded by the default 3GPP
range in LTE-A. They used a regression model to determine
optimal Time-To-Trigger based on Hysteresis and user speed.
The regression model is generated based on a set of 10 values
of Hysteresis, Time-To-Trigger and user speed with intervals
of 0.5 dB, 160 ms, and 15 km/h, respectively, using 3GPP
default range. The approach has outperformed the classi-
cal fixed HCP approach. In [26], the authors presented a
regression model that correlates Hysteresis and Event A3
offset with inter-site distance and user direction (angle of MS
movement). The regression model is generated using 3GPP
default range for Hysteresis and Event A3 offset with the
interval of 5 dB, where a model with better goodness-of-fit
was achieved with a fourth-degree polynomial. The model is
then used to obtain optimal Hysteresis and Event A3 offset
at the current inter-site distance and user direction (angle
of MS movement). One of the limitations of this study is
with higher-degree polynomials, the amount of computation
increases. Additionally, in both studies, the regressionmodels
are obtained from limited discrete data set from 3GPP default
set; low granularity of the data set may result to a sub-
optimal regression model. Moreover, the regression models
did not include channel and system-related parameters such
as signal quality, measurement timing and receiver sensitiv-
ity, which affects measurements directly. This lack of direct
correlation to system behaviours can degrade the handover
performance.

To the best of the authors’ knowledge, no study exists in
the literature that proposes the optimization of all three main
HCPs: Threshold, Hysteresis, and Time-To-Trigger. More-
over, existing works deal with optimization in one handover
measurement event of choice. Optimization performed for

a particular measurement event may not be applicable to
another. In addition, in some studies, optimization is based on
previous performance history therefore may not be suitable
in live network due to rapidly changing network conditions
and time sensitive nature of handovers in 5G small cells. This
motivates a mobility-aware dynamic self-optimization of key
HCPs based on the current channel conditions, user mobility,
and system parameters such that a low handover rate and high
throughput performance can be achieved.

B. CONTRIBUTION
The contributions and novelties of this paper are summarized
as follows:

1) It is the first study to investigate the impact of user
mobility, channel condition and system timing configu-
ration on three key HCPs namely Threshold, Hysteresis
and Time-To-Trigger: in both relative and absolute
handover measurement strategies re-classified as serv-
ing cell-based optimization (event A1, A2), target
cell-based optimization (A3, A4, B1 and A6), or both
(A5 and B2). The analysis showed that there exists
correlation for each of the three key HCPs with user
mobility, channel condition and system parameters.
Furthermore, the analysis reveals that the optimal val-
ues are not constrained to the cell-edge where handover
is mostly anticipated. It is possible to obtain optimal
combination of HCP values in any location within cell,
this is useful in maintaining good handover perfor-
mance during severe signal fluctuations.

2) We have formulated the analytical closed-form expres-
sion to dynamically and automatically determine the
optimal values of Threshold, Hysteresis and Time-To-
Trigger based on current measurement of user mobility
(speed and direction), channel condition (RSRP), and
system timing configuration (measurement timing con-
figuration based on SMTC and RRC delays during
handover). The measurement of RSRP, SMTC, and
RRC signalling delay is cell-specific. Therefore, the
self-optimization is cell-specific, allowing this method
to be applied with any handover measurements event
specified in 3GPP TS 38.331. The analytical models,
therefore, can be applied to optimize HCP in either
inter-RAT (homogeneous network) or intra-RAT (het-
erogeneous network).

3) The proposed model takes input directly from current
measurement performed by MS. The proposed solu-
tion does not require new standardization efforts. This
allows for direct implementation in real networks.

III. HANDOVER PROCEDURE IN 5G SYSTEMS
Handover enables user’s session transfer between cells for
better service continuity. In cellular networks, handover is
based on measurement report (MR) from MS to BS. The MS
periodically measure the RSRP of available BSs, and even-
tually or periodically sends MRs to the serving BS, where
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FIGURE 1. Handover procedure in 5G systems.

handover decision is performed to determine the best target
cell. Fig. 1 depicts the basic handover scenario in 5G systems
where neither the Access andMobilityManagement Function
(AMF) nor the User Plane Function (UPF) changes [27].
The handover process in 5G systems is divided into three
phases namely handover preparation, handover execution and
handover completion, comprised of mainly 12 steps [27].

A. HANDOVER PREPARATION PHASE
It is comprised of five steps. Step 1: The serving BS con-
figures the MS measurement procedures, and the MS sends
MRs to serving BS according to measurement configura-
tions. Step 2: The serving BS perform handover decision
to determine the best target based on received MRs and
radio resource management (RRM) information. Step 3: The
serving BS issues a Handover Request message to the tar-
get BS passing a transparent RRC container with necessary
information to prepare the handover at the target BS. Step 4:
The target BS performsAdmission Control. Step 5: The target
BS prepares the handover with Layer 1 and Layer 2 and
sends the Handover Request Acknowledge to the serving BS
including transparent container as RRC message to perform
the handover (Handover Command).

B. HANDOVER EXECUTION PHASE
Starts off at Steps 6 where the target BS triggers the Uu inter-
face handover by sending an RRC Reconfiguration message

TABLE 1. Handover measurement events.

to the MS. The message contains information required to
access the target BS such as target cell ID, new RRC connec-
tion and scheduling identifier C-RNTI (Cell Radio Network
Temporary Identifier), security algorithm identifiers, random
access channel (RACH) resources and its association. Step 7:
The serving BS sends the Early Status Transfer message for
Dual Active Protocol Stack (DAPS) handovers (when Data
Radio Bearer (DRB) is configured with DAPS), also known
as make-before-break or soft-handover; where the serving BS
does not stop transmitting downlink packets until it receives
the Handover Success message from the target BS. Mean-
while, for DRBs not configured with DAPS, the serving BS
sends the SN Status Transfer message to the target BS.

C. HANDOVER COMPLETION PHASE
Starts off at Step 8 where the MS synchronizes to the target
BS and completes the RRC handover procedure by sending
RRC Reconfiguration Complete message to the target BS.
In the case of DAPS handover, the MS does not detach
from the serving BS upon receiving the RRC Reconfigura-
tion message except until the target BS sends the Handover
Success message to the serving BS to inform that the MS
has successfully accessed the target cell. Finally, the serving
BS sends the SN Status Transfer message where normal data
forwarding begins. Step 9: The target BS sends a Path Switch
Request message to AMF to trigger the 5G core (5GC) to
switch the downlink data path towards the target BS and to
establish a control plane (C-Plane) interface instance towards
the target BS. Step 10: The 5GC switches the downlink
data path towards the target BS, and the UPF sends ‘‘end
marker’’ packets on the old path to release any user plane
(U-Plane) resources. Step 11: The AMF confirms the Path
Switch Request message with the Path Switch Request
Acknowledge message. Step 12: Upon reception of the Path
Switch Request Acknowledge message from the AMF, the
target BS sends theMSContext Release to inform the serving
BS about the success of the handover.
Step 1 and Step 2 have gained more attention in the

research community, especially on the optimization of HCPs
and handover decision making algorithms. The handover
measurement checks whether handover should be performed
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FIGURE 2. Block diagram of the proposed methodology.

based on certain conditions of the downlink channel of either
the serving cell, target cell or both. The HCPs are combined
with downlink channel measurement items such as RSRP to
form handover measurement events condition to determine
when handover is necessary and report the event to the serving
BS through MRs. The 3GPP RRC Protocol for 5G has pro-
posed six set of handover measurement events conditions [2],
as shown in Table 1.

The handover events can be classified based on measure-
ment strategy as either Relative Measurement where serving
cell and target cell measurements are compared directly,
orAbsoluteMeasurement strategywhere serving cell or target
cell measurements are compared against threshold.

IV. DESCRIPTION OF METHODOLOGY
This section describes the methodology to optimize han-
dover for 5G and beyond networks. The methodology can be
divided into three stages, as shown in Fig 2.
The first stage consists of the collection of measurements

that are user, channel and system-related. User-related mea-
surements include mobility profile such as user speed, direc-
tion and estimated distance fromBS. These can be assisted by
high-precision location and speed sensors. Channel-related
measurements include RSRP and SINR. System-related mea-
surements include transmit power, bandwidth, frequency, and
SMTC periodicity which is used to configure MS measure-
ment periodicity. These measurements are communicated
back and forth between MS and BS via uplink and downlink
channels. In the downlink channel, the BS sends the systems

FIGURE 3. Mobile Station (MS) traversing in a network cell.

information. In the uplink channel, theMS typically compiles
channel and device measurements into a measurement report
to send to serving BS based on certain periodicity for periodic
measurement or based on event for event-based measure-
ment. The currently acquired measurements are then used to
optimize the HCPs.

The second stage of the methodology is the self-
optimization stage, where the currently acquired measure-
ments are used to obtain optimal values of Threshold,
Hysteresis, and Time-To-Trigger. The optimal HCP values
are then used in the handover event of choice to facilitate
optimal handover performance. The proposed closed-form
expression for self-optimization of HCPs is presented in
section V.

The third stage of the methodology is the application of
optimized HCPs in a handover process. The optimal HCP
values are applied to determine the necessity of handover
using handover event of choice. Handover is qualified when a
handover event qualifies, and Time-To-Trigger expires. Once
the handover qualifies, the system proceeds with handover
procedures to the best target cell. The best target cell is
selected from candidate cells using any selection and ranking
method of choice.

V. SELF-OPTIMIZATION OF HANDOVER CONTROL
PARAMETERS
This section describes the approach to optimize three
main HCPs for 5G and beyond networks. We propose a
mobility-aware dynamic self-optimizing HCPs based on a
user’s mobility profile, channel measurement, and system
behavior.

Consider aMobile Station (MS)moving from position A to
B in a cell, travelling a small distance1l along the trajectory
for a small duration 1t , as shown in Fig. 3. Let ρt and ρt−1t
be RSRP of cell imeasured by the MS at time t (point B) and
time t − 1t (point A), respectively, where dt and dt−1t are
the corresponding separation distance from MS to BS (d) at
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time t and time t − 1t , respectively, forming a small region
of size 1d .
The relationship between ρ and d is given by channel prop-

agation models. Various propagation models are presented
and discussed in [28]. Modelling of channel propagation
can be categorized into two types: close-in model where a
physical anchor that captures the path loss near the transmitter
is used. Another type is the floating-intercept model, which
has no physical reference, but merely fits the best line to
the measured data (via a least-square regression) to create
a floating-intercept linear equation model. In this paper, the
close-in model is used because of its standard usage, fre-
quency dependence, and the ease by which measurements
across different bands and scenarios can be compared [29].
The propagation path loss over frequency and distance, in dB,
using close-in model is shown in (1).

PL (f , d) = FSPL (f , d0)+ 10n log10

(
d
d0

)
+ χσ , d ≥ d0

(1)

where FSPL (f , d0) is the close-in free space path loss in

dB given by 10 log10
(
4π fd0
c

)2
and is a function of carrier

frequency f , d0 is the close-in free-space reference distance
and c is the speed of light, n denotes the best fit minimum
mean square error path loss factor over all measurements
from a particular measurement campaign. χσ is a zero-mean
Gaussian random variable with a standard deviation σ in
dB, also known as the shadow fading factor, representing
large-scale signal fluctuations resulting from shadowing by
large obstructions in the wireless channel. The propagation
path loss (PL) is the difference between transmitted power
and received power; it is given as PL = pRS − ρ in decibel
scale, where pRS is the effective transmitted power of the
reference signal and ρ is RSRP. We use reference distance,
d0 = 1 m, which is typical for both line-of-sight (LOS) and
non-line-of-sight (NLOS) environments [29]. Therefore, ρ in
dBm relates to the 3-D separation distance d according to (2).

ρ = pRS − 10 log10

[(
4π f
c

)2

(d)n
]

− χσ (2)

From (2), dt and dt−1t can be expressed as shown in (3)
and (4) respectively.

dt = 10

(
pRS−ρt−20log10

( 4π f
c

)
−χσ,t

10n

)
(3)

dt−1t = 10

(
pRS−ρt−1t−20log10

( 4π f
c

)
−χσ,t−1t

10n

)
(4)

Consider the small displacement1d in Cell 0 as shown in
Fig 3, for a much smaller time difference 1t:

dt−1t = dt +1d (5)

Substitute (4) and (5) into (3).

10

(
pRS−ρt−1t−20log10

( 4π f
c

)
−χσ,t−1t

10n

)

FIGURE 4. Illustration of MS tangent angle φ formed by MS trajectory
segment 1l and Tangent line at current MS location.

= 10

(
pRS−ρt−20log10

( 4π f
c

)
−χσ,t

10n

)
+1d

Let K = 10

(
pRS−20log10

( 4π f
c

)
10n

)
, therefore,

K ∗ 10
−

(
ρt−1t+χσ,t−1t

10n

)
= K ∗ 10

−

(
ρt+χσ,t

10n

)
+1d (6)

Multiply by 10

(
ρt+χσ,t

10n

)
on both sides of (6), we obtain1d

given as:

1d =
K

10

(
ρt+χσ,t

10n

) (10( ρt+χσ,t−ρt−1t−χσ,t−1t10n

)
− 1

)
(7)

By substituting K into (7), the term K

10

(
ρt+χσ,t

10n

) becomes

equal 10

(
pRS−20log10

( 4π f
c

)
−ρt−χσ,t

10n

)
which is dt as given in (3).

Therefore,

1d = dt

(
10

(
ρt−ρt−1t+(χσ,t−χσ,t−1t )

10n

)
− 1

)
(8)

We assume that the difference of the shadow fading factors
at a smaller time difference 1t is insignificant i.e., χσ,t −

χσ,t−1t ≈ 0. Therefore: -

1d = dt

(
10

(
ρt−ρt−1t

10n

)
− 1

)
(9)

where dt is the separation distance between BS and MS at
current time t , and ρt−ρt−1t is the difference between the
RSRP at current MS location at time t and previous MS
location with time difference1t . Equation (9) is for all three
cases of MS directivities:
Case I: When the MS moves for a duration 1t such that

ρt= ρt−1t (travels along the line of equal received
power or field strength), then the 1d will be zero
(1d = 0).

Case II: When the MS moves for a duration 1t such that
ρt> ρt−1t (travels closer to the cell center), then
the 1d will be positive (1d > 0).
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Case III: When the MS moves for a duration 1t such that
ρt< ρt−1t (travels away from the cell center), the
1d will be negative (1d < 0).

To obtain the relationship between RSRP difference in
time duration 1t and user mobility within a particular cell,
we derived 1d in terms of user speed and direction.
In Fig. 4, it is shown that when the MS is at location

B(xMS,t , yMS,t ), at time t , it has a tangent line perpendicu-
lar to a line (or plane) connecting the BS and MS current
location B.

Let m0,t and mBS,t be slope of the tangent line and slope
of the line connecting BS and MS at location B, respectively.
Due to the perpendicular property of the two lines; m0,t ∗

mBS,t = −1. The BSs are static; therefore, their position
is fixed. We assume that the Cell ith BS is positioned at
(xBS,i, yBS,i). Therefore, the slope of the tangent line is given
by m0,t = −

1
mBS,t

= −(xBS,i − xMS,t )/(yBS,i − yMS,t ).
Given the location A(xMS,t−1t , yMS,t−1t ), the slope of the
MS route segment 1l, is given by m1l,1t = (yMS,t −

yMS,t−1t )/(xMS,t−xMS,t−1t ). TheMS tangent angle φ at time
t is therefore given by (10).

φt = arctan
(

m1l,1t − m0,t
1 + m1l,1t ∗ m0,t

)
(10)

By using trigonometric rule:

Cos (π/2 − φt) ≈ 1d/1l = Sinφt (11)

Since 1t is the time taken to travel 1l, we consider 1t
is much smaller in order of MS measurement periodicity,
and such that the change in MS speed on 1l is negligible.
Therefore, the average MS speed at t − 1t to t becomes
approximately equals to MS speed at time t i.e., vt . Therefore
1l = vt1t . By substituting 1l into (11), 1d can then be
expressed using user speed (vt ) and direction (φt ) as shown
in (12).

1d = vt1tSinφt (12)

It is important to note that, 1d = 0 when φt = 0. This
occurs when the MS moves along the tangent line such that
m1l,1t = mT ,t . For a small duration1t, this resembleCase I
of MS directivity where ρt= ρt−1t . Similarly,1d > 0 when
φt > 0 i.e., m1l,1t > m0,t ; and 1d < 0 when φt < 0 i.e.,
m1l,1t < m0,t ; which resembleCase II andCase III, respec-
tively. Without losing generality, we consider only magnitude
of the displacement by taking |φt |. Solving (9) and (12),
yields (13). This is the guiding equation in our optimization.

ρt−ρt−1t = 10nlog10

(
vt1tSin |φt |

dt
+ 1

)
(13)

Equation (13) gives an analytical model that relates the
receive power difference (ρt−ρt−1t ), time difference 1t ,
path loss factor n, user speed vt and direction φt , and sep-
aration distance dt from current user location to Cell’s BS.
The path loss factor n is the environmental parameter ranging
from 2.1 to 3.5 for urban microcell [30]. We use the guiding
equation in (13) to obtain self-optimizing handover control
parameters (HCPs) formulas.

TABLE 2. Handover events classification based on cell specific HCP
optimization.

A. SELF-OPTIMIZING THRESHOLD
The self-optimizing Threshold, also known asmobility-aware
dynamic Threshold (Threshdynamic) is obtained by offsetting
the minimum reference received power by 1ρ. The mini-
mum reference received power of a certain cell is known
to the MS through System Information Base (SIB) as min-
imum required received level (Qrxlevmin) [31]. Therefore,
Threshdynamic can be derived as follows:

Threshdynamic = Qrxlevmin +1ρ (14)

The 1ρ is derived from (13),

1ρ = ρt−ρt−1t

1ρ = 10nlog10

(
vt1tSin |φt |

dt
+ 1

)
(15)

The MS speed vt , tangent angle φt and separation dis-
tance are measured by the MS at given time t . The 1t is
a time control parameter, it is selected in such a manner
that will offer enough time for MS at a particular speed to
complete handover. Therefore, the1t must be higher than the
RRC signalling delay during handover procedures (handover
latency) and time-to-trigger combined. This is to ensure that
optimizations are constrained within system properties. For
instance, for a given a systemwith handover latency τ ,1t can
be amultiple of handover latency i.e.,1t = aτ . Equation (14)
becomes:

Threshdynamic = Qrxlevmin + 10nlog10

(
vtaτSin |φt |

dt
+ 1

)
(16)

where Qrxlevmin is minimum reference received power, n is
path loss factor, vt is MS speed at time t , φt is MS direction
angle at time t , dt is MS to BS separation distance at time t ,
τ is RRC signalling delay during handover and a is handover
window time coefficient.

The handover window time coefficient a offers some con-
figurability and scalability since different system may offer
different time configurations. We have considered a ≥ 2,
for handover window that accommodates at least inbound
and outbound handover at each time. A smaller or larger
a increases the risk of a too-late or too-early handover
respectively. Therefore, for a particular MS speed, the cell
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minimum received level Qrxlevmin is offset by a region that
can accommodate both inbound and outbound handovers,
given that inbound and outbound handovers exhibit approx-
imately equal latency; otherwise, a maximum of the two is
used.

Parameters Qrxlevmin, τ , and dt are cell-dependent.
Since (16) is based on serving cell, we extend our method
further by considering cell type (target cell or serving cell)
and the handover measurement strategy involved (either rel-
ative or absolute). For clarity, we classified handover events
into serving cell-based HCP optimization, target cell-based
HCP optimization, and both serving and target cell-based
HCP optimization as shown in Table 2.

In the serving cell-based HCP optimization, the HCPs
are obtained using parameters related to serving cell. Events
that fall into this category are A1 and A2; both are based
on absolute measurement strategy. For the target cell-based
HCP optimization, the HCPs uses parameters from target cell,
and it includes A4 and B1 both use absolute measurement
strategy; and A3 and A6 which use relative measurement
strategy. Lastly, serving and target cell-based HCP optimiza-
tion, the HCPs use parameters related to both serving and
target cells and it includes A5 and B2 which use absolute
measurement strategy.

To further understand the serving and target cell spe-
cific optimization, consider the guiding equation in (13).
From this equation, the power margin (ρt−ρt−1t ) increases
when user speed vt increases and vice versa (assuming other
factors remain constant). This power margin is added to
Qrxlevmin for the case of Threshdynamic in (16). Therefore, the
Threshdynamic will increase as user speed vt increases and vice
versa.

This will be advantageous for the serving cell-based HCP
optimization, because by increasing the serving threshold and
margin for a fast-moving user will allow handover to be
performed before MS exits serving cell therefore minimizing
too-late handovers and handover failures. Similarly, decreas-
ing the serving threshold and margin for a slow-moving
user will minimize too-early handovers and hence minimize
unnecessary handovers and ping pong effect.

However, it will be disadvantageous for the target
cell-based HCP optimization, as increasing the targets thresh-
old and margin for a fast-moving user will result to MS
exiting serving cell before handover is performed, there-
fore maximizing too-late handovers and handover failures.
Decreasing the target threshold andmargin for a slow-moving
user will maximize too-early handovers and hence, unneces-
sary handovers and the ping-pong effect.

To address this disadvantage, we applied multiplicative
inverse to the target cell-based HCP optimization case to
reverse the behaviour. Therefore, increasing user speed vt will
result in a decrease in the target threshold and margin, and
vice versa.

Let ϵ be cell type factor; ϵ = 1 for serving cell-based HCP
optimization and ϵ = −1 for target cell-based HCP opti-
mization. Therefore, the self-optimizing Threshold is given

FIGURE 5. Illustration of the timing scenario in serving cell.

by (17).

Threshdynamic

= Qrxlevmin +

(
10nlog10

(
vtaτSin |φt |

dt
+ 1

))ϵ
(17)

By considering cell type (serving, target) dependency
on HCP optimization, it makes this optimization solution
applicable to both inter-RAT and intra-RAT handovers,
as measurement from different RAT can lead to different
system response.

B. SELF-OPTIMIZING HYSTERESIS
The self-optimizing Hysteresis margin, also known as
mobility-aware dynamic Hysteresis (Hystdynamic) is derived
from (13) by considering parameter 1t as the measurement
periodicity at the MS. The measurement periodicity at MS
is based on SMTC. In 5G systems, SMTC periodicity are
in the range of 5, 10, 20, 40, 80 or 160 ms [32]. Let ψ be
MS measurement periodicity; therefore 1t = aψ , where
a is a handover window time coefficient as established in
subsection A, it is important to note that, aψ is much less
than the maximum handover window aτ i.e., aψ ≪ aτ . The
self-optimizing Hysteresis is given by (18).

Hystdynamic = 10nlog10

(
vtaψSin |φt |

dt
+ 1

)
(18)

By considering cell type as established in subsection A,
the self-optimizing Hysteresis Hystdynamic is given by (19),
where cell type factor ϵ = 1 for serving cell-based HCP
optimization and ϵ = −1 (multiplicative inverse) for target
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cell-based HCP optimization.

Hystdynamic =

(
10nlog10

(
vtaψSin |φt |

dt
+ 1

))ϵ
(19)

C. SELF-OPTIMIZING TIME-TO-TRIGGER
The self-optimizing Time-To-Trigger, also known as
mobility-aware dynamic Time-To-Trigger (TTT dynamic) is
derived from (13) by making the 1t the subject of the for-
mular. We consider ρt−ρt−1t as a fraction x of a hysteresis
margin Hystdynamic. The TTT dynamic is estimated as follows:

TTT dynamic =
dt

vtSin |φt |

10

(
x(Hystdynamic)

10n

)
− 1

 (20)

By substituting Hystdynamic in (20) with (18), we get

TTT dynamic =
dt

vtSin |φt |

(
10

(
x log10

(
vt aψSin|φt |+dt

dt

))
− 1

)
TTT dynamic =

dt
vtSin |φt |

((
vtaψSin |φt | + dt

dt

)x
− 1

)
(21)

Consider Fig. 5, when x = 1 i.e., 100 percentile of hystere-
sis margin, then maximum TTT dynamic i.e., x(aψ) becomes
equal to the maximum time taken by theMS to cross the max-
imum hysteresis margin (aψ) i.e., x(aψ) = aψ . The x(aψ)
becomes less than aψ when x <1 and vice-versa. The guiding
principle is that the sum of the aψ and x(aψ) should be
much less than maximum handover window aτ as shown in
Fig. 5. Smaller value of x is desirable to ensure enough time
is reserved for handover to complete before MS exits cell’s
Qrxlevmin.
To minimize mathematical complexity, we assume x is 0.5

(50 percentile), which means the maximum time that MS
could take as Time-To-Trigger is half the maximum time
incurred on the Hysteresis margin. In this case, at maximum,
the Hysteresis margin and Time-To-Trigger will consume
ψ(1 + x)/τ ∗100 percentile of the maximum handover win-
dow aτ . Suppose a system with handover latency τ = 1 s
andMSmeasurement period ofψ = 160ms, if x = 0.5, Hys-
teresis margin and Time-To-Trigger will at maximum occupy
24% of maximum time window aτ , while reserving 76% for
handover procedures. Since a ≥ 2, 76% of aτ is higher
than the handover latency τ . With this assumption, the self-
optimizing Time-To-Trigger (TTT dynamic) can be computed
by (22).

TTT dynamic =
dt

vtSin |φt |

(√
vtaψSin |φt | + dt

dt
− 1

)
(22)

By considering cell type as established in subsection A,
the self-optimizing Time-To-Trigger (TTT dynamic) is given
by (23), where the cell type factor c is introduced, where
ϵ = 1 for serving cell-based HCP optimization and
ϵ = −1 (multiplicative inverse) for target cell-based HCP

FIGURE 6. Deployment of 5G cells.

TABLE 3. System and environmental parameters.

optimization.

TTT dynamic =

(
dt

vtSin |φt |

(√
vtaψSin |φt | + dt

dt
− 1

))ϵ
(23)

VI. PERFORMANCE EVALUATION
This section evaluates the proposed self-optimizing HCPs.
The effect of various parameters on the proposed self-
optimizing Threshdynamic, Hystdynamic, and TTT dynamic are
analyzed using numerical simulation. Then, the performance
of the proposed self-optimizing HCPs is analyzed and com-
pared with the existing HCPs optimization methods. All
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methods and parameters are implemented using MATLAB®

R2021b with the assistance of Communications Toolbox,
Antenna Toolbox, and 5G Toolbox. For handover perfor-
mance analysis, Event A2 and Event A3 are used. Event A2
represents the serving cell-based HCP optimization and abso-
lute handovermeasurement strategy; and Event A3 represents
the target cell-based HCP optimization and relative handover
measurement strategy.

A. SIMULATION SETUP AND PARAMETER
The proposed self-optimizing HCPs are tested in a 5G envi-
ronment for FR1 (Sub-6 5G frequency band). We assume a
single tier 5G network consisting of small (micro) cells with a
cell radius of 200 m. The small cells have an omnidirectional
antenna operating at 3.5 GHz (n78 5G band). The small cells
are deployed on an area of size of 0.6 km × 0.6 km with
significant coverage overlapping between adjacent cells to
ensure theMS can discovermultiple small cells while camped
on a serving cell. Fig. 6 depicts the deployment scenario,
and Table 3 shows the system and environmental parameter
settings. The starting point of MS route/trajectory and MS
location in the network follows a random distribution.

A directional mobility model is used which is com-
mon in vehicular speed scenarios. A mobile system
(MS) will traverse the trajectory from beginning to end
(source/destination) with various speeds up to 120 km/h.
Simulation is repeated for K number of trajectories; each
randomly generated with a random MS starting point. The
environmental and system parameters used are summarized
in Table 2 [10], [16], [33].

B. HANDOVER KEY PERFORMANCE INDICATORS (KPI)
To evaluate the performance of the proposed method,
four standard performance metrics, namely Handover Rate
(HOR), Ping-PongHandover Rate (PPHR), Handover Failure
Rate (HFR) and Mean Throughput (T) are measured, as here
defined.

1) HANDOVER RATE (HOR)
The HOR describes the frequency at which handover occurs.
It is given by the ratio of number of handovers and running
time per user. The higher HOR decreases system perfor-
mance. The HOR is given by (24).

HOR =

∑K
k=1 N

HO
k∑K

k=1 Tk
(24)

whereNHO
k and Tk are number of handovers and user running

time on route k .

2) PING-PONG HANDOVER RATE (PPHR)
The PPHR describes the frequency at which ping-pong han-
dover occurs. Ping-pong handover refers to a phenomenon
when theMS handovers back and forth between a serving and
target cell pair several times before it settles the attachment
to the target cell. The ping-pong effect is common at the

overlapping area of the cell pair due to high signal fluctuation
and a too-early handover decision is being made. The higher
PPHRmay result in poor user experience. The PPHR is given
by the ratio of number of handover ping-pong and running
time per user as shown in (25).

PPHR =

∑K
k=1 N

PP
k∑K

k=1 Tk
(25)

where NPP
k is number of ping-pong handovers on route k .

3) HANDOVER FAILURE RATE (HFR)
The HFR describes the frequency at which handover failure
occurs. Handover failures refer to a phenomenon when the
MS initiates the handover but fails to complete the handover
process. Typically, this might happen when (a) MS experi-
ences poor coverage and triggers a handover procedure to a
target cell then subsequently moves to a better coverage or
target before the previous handover procedure is completed.
For example, Event A1 can be used to cancel the ongoing
handover. (b) MS exists serving cell before the handover is
completed due to the handover decision being made either
too-late, or to the wrong-cell. This is a common problem
in small cells, especially for MS moving at high speed. The
higher HFR is more severe to system performance. The HFR
is given by the ratio of number of handover failures and
running time per user as shown in (26).

HFR =

∑K
k=1 N

HF
k∑K

k=1 Tk
(26)

where NHF
k is number of handover failures on route k .

4) AVERAGE THROUGHPUT
Throughput refers to the amount of data that can be trans-
ferred per unit time, measured in Mbps. The higher value
indicates higher system performance. The 5G NR throughput
can be estimated theoretically using 3GPP formula (27) [34].

T = 10−6
∗

∑J

j=1

(
LmMQβ(

R

1024
)(

N
µ
PRB ∗ 12

µ
s

)(1 − )

)
(27)

where J is the number of aggregated Component Carriers
(CCs), Lm is number of MIMO layers, MQ is Modula-
tion order, R is Code rate, β is Scaling factor given as 1,
0.8, 0.75, or 0.4 depending on CCs (it is 1 for 1 CC),
N
µ
PRB is number of Physical Resource Blocks per given

numerology µ, µ
s is symbol duration in a subframe for

numerology µ given by µ
s =1/(2µ ∗ symbols per slot)

milliseconds, and is Overhead from control channels esti-
mated at 0.14 for downlink (DL) and 0.08 for uplink (UL)
for FR1 [34].

We used n78 5G band in numerology 1 (µ = 1) with
normal cyclic prefix, without carrier aggregation. The modu-
lation order MQ and code rate R are obtained using SINR.
The SINR is used to compute spectral efficiency which is
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FIGURE 7. Serving cell-based (ϵ = 1) self-optimizing Handover Control Parameters (HCPs) with respect to the MS moving speed and the MS angle of
direction, at the MS to BS separation distance 25%, 50%, and 75% of cell radius (CR), for the handover window time coefficient a of 2, 4 and 6.

given by ln(1 + SINR) in nats/s/Hz where 1 nat = 1/ln(2) =

1.4427 bits) [35], [36]. The spectral efficiency is then used to
determine Modulation and Coding Scheme (MCS), MQ and
R using 3GPP lookup table [37].

In Section VI-C, we analyze the proposed Threshdynamic,
Hystdynamic, and TTT dynamic using numerical simulations;
whereas the performance of the proposed Threshdynamic,
Hystdynamic, and TTT dynamic in terms of handover is presented
in Section VI-D using the 4 KPIs discussed in this section.

C. SELF-OPTIMIZING HCPs NUMERICAL ANALYSIS
Based on the proposed self-optimizing HCPs in Section V,
the effect of various parameters on the Threshdynamic,
Hystdynamic, and TTT dynamic as presented in (17), (19),
and (23), respectively, have been analyzed and compared by
numerical simulation for serving cell-based HCP optimiza-
tion (ϵ = 1) and for target cell-based HCP optimization
(ϵ = −1). In what follows, some parameters are configured
as: the system and environmental parameters, namely the
minimum reference received powerQrxlevmin is −101.5 dBm,
the handover RRC signalling delay (handover latency) τ is
1 s, the MS measurement periodicity ψ is 160 ms and the
propagation path loss factor n is 3.5 (for urban environment);
the handover window time coefficients a is 2, 4 and 6; the
MS moving speed v is ranging from 0 to 120 km/h with an
increment of 10 km/h; the MS direction angle φ is ranging
from 0◦ to 90◦; the MS to BS separation distance d is 50 m,
100m and 150mwhich are 25%, 50% and 75% of cell radius.

Fig. 7 shows the serving cell-based HCP optimization
(ϵ = 1) for different values of handover window coefficient
a. Fig. 7(a)-(c) for a = 2; Fig. 7(d)-(f) for a = 4; and
Fig. 7(g)-(i) for a = 6. Larger values of a means a wider

handover window with higher dynamic range and higher
peak values for Threshdynamic, Hystdynamic, and TTT dynamic
compared to smaller values of a. The a = 2 is a baseline value
as established in Section V-A. It gives a narrow handover
window that accommodates inbound and outbound handover.
The a = 2 will be used for handover simulation. The
advantage of a narrow handover window in serving cell-based
handovermeasurements is that a lesser chance of unnecessary
handover and ping pong handover exist with narrow han-
dover than with a wider window. For example, if we recall
the timing analysis in Section V-C as illustrated in Fig. 5.,
Hysteresis margin and Time-To-Trigger at maximum occupy
24% of the maximum time window aτ (when x = 0.5)
while reserving 76% for handover procedures. With a narrow
handover window such as a = 2, 76% of aτ will mean
1.52 s is reserved for handover, which is higher than handover
latency τ of 1 s and time remainder of 520ms before MS exits
cell Qrxlevmin exposing MS to less unnecessary handover and
ping pong handover. With a wider handover window such as
a = 4, the a = 2a = 4a = 6 76% of aτ will mean 3.04 s is
reserved for handover (much higher than handover latency τ
of 1 s) with time remainder of 2.04 s before MS exits cell
Qrxlevmin, exposing MS to more unnecessary handover and
ping pong handover. This explains why the industrial prac-
tice of vendor-predefined fixed HCPs underperforms. When
small values of Thresholds and Hysteresis (narrow window)
are used, the user moving at a fast speed is anticipated to exit
the cell sooner and, therefore, exposed to a higher probability
of handover failure and vice versa.

The proposed dynamic self-optimizing HCPs for serv-
ing cell-based HCP optimization (ϵ = 1) presented in
Fig. 7, shows the trends for Threshdynamic,Hystdynamic and

6128 VOLUME 12, 2024



A. I. Mbulwa et al.: Self-Optimization of HCPs for 5G Wireless Networks and Beyond

FIGURE 8. Target cell-based (ϵ = −1) self-optimizing Handover Control Parameters (HCPs) with respect to the MS moving speed and the MS angle of
direction, at the MS to BS separation distance 25%, 50%, and 75% of cell radius (CR), for the handover window time coefficient a of 2, 4, and 6.

TTT dynamic, which are similar from narrow window (a =

2) to wider window (a = 6). The trend indicates that at
higher MS speed, larger region and smaller trigger time are
reserved for handover to be performed successfully, while at
lower MS speed, smaller region and longer trigger time are
reserved for handovers as slow-moving user will take rela-
tively longer time to cross a small region than a fast-moving
user.

Additionally, it is observed in Fig. 7 that Threshdynamic
and Hystdynamic increase while the TTT dynamic decreases
as: MS speed increases, MS direction angle increases, and
MS-BS separation distance decreases. This means near the
BS (e.g., at 25% cell radius or less) higher Threshdynamic
and Hystdynamic; and lower TTT dynamic are yielded, while
at the cell edge (e.g., at 75% cell radius or higher) lower
Threshdynamic and Hystdynamic; and higher TTT dynamic are
produced. The Threshdynamic, Hystdynamic and TTT dynamic are
complementary.

Regarding the MS angle of direction, 0◦ means the
MS is moving around the serving BS, neither towards
the serving BS nor away, hence the HCPs {Threshdynamic,
Hystdynamic,TTT dynamic} are at {minimum, minimum, maxi-
mum} i.e., {Qrxlevmin, 0, xaψ}. As observed in Fig. 7, similar
HCPs values are achieved when MS is stationary. These can
be regarded as baseline HCP values for any handover window
time coefficients a. As the MS angle of direction increases
from 0◦ to maximum, it means that theMS is moving towards
the serving BS where signal strength increases substantially,
reaching a maximum increase at the perpendicular direction
(90◦). These substantial increase in the MS angle of direction
for a given nonzero MS speed yields a substantial increase of
Threshdynamic and Hystdynamic; and decrease of TTT dynamic.

Generally, the Threshdynamic, Hystdynamic and TTT dynamic
complements each other when Threshdynamic, andHystdynamic
increase, TTT dynamic decrease. To further understand the
inverted nature of TTT dynamic as shown in say Fig. 7(c); given
MS measurement periodicity ψ = 160 ms and handover
latency τ = 1 s; the handover window time coefficient a =

2 yields a maximum limit handover window aτ of 2 s and
a maximum limit of Time-To-Trigger xaψ of 160 ms for
any MS speed (refer to Fig. 5 where x is 50 percentile),
which is the highest bound of TTT dynamic for all variations
of parameters within the given range for a = 2. It can be
noted that, with a = 2, the maximum limit of Time-To-
Trigger becomes equal to MS measurement periodicity ψ .
Since MS measurement periodicity is higher than the SSB
burst periodicity, then MS will be capable of monitoring
a certain number of measurements before Time-To-Trigger
expires. This result provides a basic guideline to evaluate the
Time-To-Trigger for any choice of the handover window time
coefficient a.

Lastly Fig. 7 illustrates the dynamic self-optimized HCPs
reaching their peak values at maximumMS speed (120 km/h)
for Threshdynamic andHystdynamic, and at minimumMS speed
(0 km/h) for TTT dynamic. The trend presented in Fig. 7 applies
only in serving cell-based HCP optimization which includes
events A1 and A2; and event A5 and B2 as shown in Table 2.

Fig. 8 shows the target cell-based HCP optimization (ϵ =

−1) for different values of a where Fig. 8(a)-(c) are obtained
when a = 2; Fig. 8(d)-(f) when a = 4; and Fig. 8(g)-(i) when
a = 6. The trends are opposite to the serving cell-based HCP
optimization (ϵ = 1) presented in Fig. 7, and they apply only
in handover measurement strategy based on events A3, A4,
B1, and A6; and events A5 and B2 as shown in Table 2.
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In target cell-based HCP optimization, the HCPs are
obtained based on the system parameters of target cells, and
they are applied to signal measurements from target cells
using the handover event of choice. It can be observed in
Fig. 8 that Threshdynamic and Hystdynamic decrease while the
TTT dynamic increase when: MS speed increases, MS direction
angle increases, and MS-BS separation distance decreases.
This means near target cell BS (e.g., at 25% cell radius), lower
values of Threshdynamic and Hystdynamic and higher values
TTT dynamic are produced. Considering two overlapping cells,
the ‘near target cell BS’ situation is mostly encountered at
the edge of the serving cell. By lowering the target cell’s
Threshold and Hysteresis increases the chance of success-
ful handovers. In the contrary, near the edge of target cell
(e.g., 75% cell radius), higher values of Threshdynamic and
Hystdynamic and lower values of TTT dynamic are produced.
For overlapping cells, the ‘near edge of target cell’ situ-
ation is encountered at region near the serving BS than
cell edge. Therefore, increasing the target cell Threshold
and Hysteresis reduces the chance of unnecessary han-
dovers and ping-pong handovers. Similar to Fig. 7, the
self-optimizing Threshdynamic, Hystdynamic and TTT dynamic in
target cell-based HCP optimization are also complementary
as shown in Fig. 8. It is also important to note that the target
cell-based HCP optimization in Fig. 8 shows higher peak
values for a = 2 and the peak values reduce as a increases
to a = 6. This is due to the multiplicative inverse. Therefore,
the narrow handover window for the target cell-based HCP
optimization will be a ≫ 2. With a = 6 as shown in
Fig. 8(g)-(i), the Threshdynamic, Hystdynamic and TTT dynamic
ranges are [Qrxlevmin, −98] dBm, [0, 20] dB, and [2.1, 2.4] s
respectively, while for larger a = 8 showed [Qrxlevmin, −99]
dBm, [0, 15] dB, and [1.5, 1.8] s. Therefore, the choice to
which value of handover window coefficient to use for target
cell-based measurement events such as A3, A4, B1 and A6;
and event A5 and B2, as shown in Table 2 is left to the
network operator. This is because the target cell-based HCP
optimization is not bound to a serving cell. However, the type
of cell deployment can give insight into how to select the
handover window coefficient for the case. For example, in an
ultra-dense network (UDN)wheremultiple cells are available
even very close to serving cell BS, stringent HCP policy such
as in Fig. 8(a)-(c) where a = 2 can be applied, while in much
less dense deployment a much less stringent HCP policy such
as in Fig. 8(g)-(i) where a = 6 or higher can be applied.

Fig. 8 also illustrates the dynamic self-optimized HCPs
reaching their peak values with respect to MS speed
and MS angle of direction at ∼0 km/h and ∼0◦ for
Threshdynamic and Hystdynamic; and at 120 km/h and 90◦

for TTT dynamic. stricter HCP policy is obtained for slow-
moving users, that is, {maximum, maximum, minimum}
for {Threshdynamic,Hystdynamic,TTT dynamic} is obtained for
application to target-based handover measurements. This
implies that maximizing the target Threshold and Hys-
teresis margin for a slow-moving user will minimize
too-early handovers and hence unnecessary handovers

FIGURE 9. Handover performance of self-optimizing HCPs based on
serving cell-based HCP optimization using Event A2, in comparison with
adaptive HCP method using speed classification and dynamic HCP
method using regression model. (a) Handover Rate (HOR), (b) Ping-pong
Handover Rate (PPHR), and (c) Handover Failure Rate (HFR).

and ping pong effect. Meanwhile, for fast-moving users,
the {minimum, minimum, maximum} HCP policy for
{Threshdynamic,Hystdynamic,TTT dynamic} is obtained, which
implies that minimizing the target Threshold and Hysteresis
margin for a fast-moving user will minimize too-late han-
dovers and handover failures.

D. HANDOVER PERFORMANCE ANALYSIS
We analyzed the performance of self-optimizing HCPs by
implementing it in MATLAB® R2021b. The network layout
is in a 0.6 km × 0.6 km size as shown in Fig. 6. The
5G urban micro-cell test environment was constructed using
Antenna Toolbox functions such as RF transmitter site txsite;
RF receiver site rxsite; received signal strength sigstrength;
propagation model propagationModel; path loss of radio
wave propagation pathloss and signal-to-interference-plus-
noise ratio (SINR) sinr. The antenna is modelled using
PhasedArray SystemToolboxwith isotropic antenna element
phased.IsotropicAntennaElement. The close-in propagation
model [30] is used. The transmitter site (BS) and receiver
site (MS) locations are defined using a cartesian coordinate
system. The number of BS is 4, and thus 4 cells are formed in
the network with substantial overlapped coverage, as shown
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FIGURE 10. Handover performance of self-optimizing HCPs based on
target cell-based HCP optimization using Event A3, in comparison with
adaptive HCP method using speed classification and dynamic HCP
method using regression model. (a) Handover Rate (HOR), (b) Ping-pong
Handover Rate (PPHR), and (c) Handover Failure Rate (HFR).

in Fig. 6. The number of MS is 1, which is placed randomly
along the y-coordinate axis of the network layout. The MS
traverses the network with different speeds ranging from 0 to
120 km/h using directional mobility. The MS acquires RSSI
and SINR at its current location for all available BS whereby
RSRP and RSRQ are estimated using a number of physical
resource block (PRB) [38]. The SINR is used to estimate
average throughput as (27) using properties of RF transmitter,
RF receiver, and antenna elements defined in the test environ-
ment. Other systems and environmental parameters used are
defined in Table 3.
At the beginning of the simulation, 200 MS trajectories’

starting points are generated by using a homogeneous Poisson
point process on a 0.03 km × 0.6 km of the network layout.
The MS is placed at the starting point of each trajectory
and traverses the network to the end of the network layout
for all 200 trajectories with MS speed ranging 0 – 120 km/h.
Handover is evaluated by applying self-optimizing HCPs
accordingly, as shown in Fig. 2 for both serving cell-based
HCP optimization(ϵ = 1) and target cell-based HCP
optimization(ϵ = −1) using Event A2 and Event A3
respectively.

A handover is countedwhen the handover event is qualified
and the corresponding TTT dynamic is expired. The handover

FIGURE 11. Average 3GPP uplink (UP) and downlink (DL) throughput of
proposed self-optimizing HCPs based on (a) serving cell-based HCP
optimization using Event A2, and (b) target cell-based HCP optimization
using Event A3, in comparison with adaptive HCP method using speed
classification and dynamic HCP method using regression model.

procedure consumes time equivalent to RRC signaling delays
from Step 2 to Step 8 shown in Fig. 1. This is referred as
handover latency τ , τ = 1s is used for simulation. Handover
failure is counted when: A handover request to a new target
is sent, and ongoing handover is cancelled; or when serving
cell’s radio link quality falls below the minimum (out of
reach) before a handover is completed; when each occur
before timer τ of an ongoing handover expires. Meanwhile,
ping-pong handover is counted when back-and-forth han-
dover between two cells occurs within a certain time, a time
threshold of 1 s is used [22].

The handover performance of the proposed self-optimizing
HCPs is evaluated in terms of four KPIs, namely Handover
Rate (HOR), Ping-pong Handover Rate (PPHR), Handover
Failure Rate (HFR), and Average Throughput (T) defined in
Section VI-B. Results are compared with adaptive HCP using
speed classification [15] and dynamic HCP using a regression
model [26].

Fig. 9 shows the handover performance result of the
proposed self-optimizing HCPs method based on serving
cell-based HCP optimization using Event A2, in comparison
with the adaptive HCP method using speed classification and
dynamic HCP method using regression model.

As shown in Fig. 9, the proposed method outperforms
both the dynamic HCP (regression model) and the adaptive
HCP (speed classification) approaches in terms of HOR,
PPHR, and HFR for MS speed of approximately 70 km/h
and lower. At this MS speed range, the average HOR of
0.3200, 0.0637 and 0.0455; PPHR of 0.2913, 0.0268 and
0.0150; andHFR of 0.2890, 0.0225 and 0.0130were achieved
for the adaptive HCP (speed classification), the dynamic
HCP (regression model) and the proposed self-optimizing
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HCP methods, respectively. This indicates that the proposed
method has improved handover performance by 85.75%,
94.85% and 95.50% for HOR, PPHR and HFR, respectively,
in comparison with the adaptive HCP (speed classifica-
tion) approach; and by 28.57%, 44.03% and 42.22% for
HOR, PPHR and HFR, respectively, in comparison with the
dynamic HCP (regression model) approach for MS speed of
70 km/h and lower.

Overall performance indicates the average HOR of 0.2861,
0.0894 and 0.0909; PPHR of 0.2337, 0.0282 and 0.0345;
and HFR of 0.2317, 0.0234 and 0.0317 were achieved
for the adaptive HCP (speed classification), the dynamic
HCP (regression model) and the proposed self-optimizing
HCP methods, respectively. This indicates that the pro-
posed method has improved overall performance by 68.23%,
85.24% and 86.32% for HOR, PPHR and HFR, respectively,
in comparison with the adaptive HCP (speed classification)
approach. Meanwhile, it shows reduced overall performance
by 1.68%, 22.34% and 35.47% for HOR, PPHR and HFR,
respectively, in comparison with the dynamic HCP (regres-
sion model) approach. This is due to the increase of HOR,
PPHR, and HFR for MS speeds above 70 km/h. In the-
ory, similar performance is anticipated for other serving
cell-based HCP optimization related events such as A1 and
part of A5 and B2.

The decrease in handover performance of proposedmethod
for serving cell-based HCP optimization for MS speed above
70 km/h could be caused by the assumption of x = 0.5 in (23)
which is discussed in Section V-C. As illustrated in Fig. 5,
x = 0.5 will bound TTT dynamic at xaψ/2, which will be
slightly reduced at higher MS speed, as shown in Fig. 7(c).
The smaller upper bound of TTT dynamic will result in high
PPHR and HFR at the overlapping region of serving and
target cells. To mitigate this, further improvement can be
made for the serving cell-based HCP optimization case such
as making x dynamic so that to scale the upper bound of
TTT dynamic with say MS speed.

In Fig. 10, we provide the handover performance for target
cell-based HCP optimization using Event A3, the proposed
self-optimizing HCP approach has outperformed both the
adaptive HCP method using speed classification and the
dynamic HCP method using regression model methods for
all MS speed tested.

Overall performance indicates that the average HOR of
0.0617, 0.1500 and 0.0524; PPHR of 0.0088, 0.0866 and
0.0001; andHFR of 0.0086, 0.0784 and 0.0001were achieved
for the adaptive HCP (speed classification), the dynamic HCP
(regression model), and the proposed self-optimizing HCP
methods, respectively.

This indicates an overall performance gain of the pro-
posed method by 15.07%, 98.86% and 98.84% for HOR,
PPHR and HFR, respectively, in comparison with the adap-
tive HCP (speed classification) approach; and a performance
gain by 66.92%, 99.89% and 99.87% for HOR, PPHR and
HFR, respectively, in comparison with the dynamic HCP

(regression model) approach. The higher gain in PPHR and
HFR indicates the proposed method can highly minimize
unnecessary handovers and failures. Worst performances are
shown by the dynamicHCPmethod using a regressionmodel,
this could be due to the fact that the regression model did not
take into account sufficient parameters to cope with system
dynamic, only inter-site distance and angle of MS move-
ments were used. This risk worsens handover performance,
especially in target cell-based events such as A3, where
serving cell condition doesn’t control the handover necessity
estimation. Therefore, risking MS leaving serving cell before
handover is completed.

In Fig. 11 we provide overall average throughput (uplink
(UP) and downlink (DL)) based on 3GPP throughput estima-
tion formular in (27), for the proposed self-optimizing HCPs
based on serving cell-based HCP optimization using Event
A2, and target cell-based HCP optimization using Event A3.
The results are compared with the adaptive HCP method
using speed classification and the dynamic HCP method
using regression model.

In terms of average achievable throughput based on serv-
ing cell-based HCP optimization using Event A2, as shown
in Fig. 11 (a), the proposed method achieved approxi-
mately 793 Mbps uplink throughput, while the adaptive
HCP method using speed classification achieved 792 Mbps
and the dynamic HCP method using regression model
achieved 785 Mbps, respectively. In terms of the downlink
throughput, 741 Mbps is achieved by the proposed method,
while the adaptive HCP method using speed classification
achieved 740 Mbps and the dynamic HCP method using
regression model achieved 734 Mbps respectively. For the
case of target cell-based HCP optimization using Event
A3, the proposed method achieved approximately 788 Mbps
uplink and 735 Mbps downlink, respectively, with marginal
performance differences in comparison to other methods,
as shown in Fig. 11 (b).

Although the throughput improvement is marginal, this
is an important result, since it indicates that the proposed
method can provide higher data rates for both serving
cell-based HCP optimization and target cell-based HCP
optimization related events without the need for network
operators to perform manual tuning.

VII. CONCLUSION AND FUTURE WORK
In this paper, we proposed a self-optimization method for
three main handover control parameters (HCPs), namely
Threshold, Hysteresis, and Time-To-Trigger that considers
the channel conditions, user mobility, and system parameters
to determine the optimal values of HCPs to improve han-
dover performance in 5G wireless networks. We proposed
closed-form analytical expressions which provide relation-
ship between user mobility, channel conditions, and system
parameters to each of the three HCP. This allowed the pro-
posed method to be cell-specific, where the HCPs can be
self-optimized based on the type of cell and its associated

6132 VOLUME 12, 2024



A. I. Mbulwa et al.: Self-Optimization of HCPs for 5G Wireless Networks and Beyond

radio link and system configuration. To this end, we classi-
fied 3GPP handover measurement events as either serving
cell-based (event A1, A2), target cell-based (A3, A4, B1
and A6), or both (A5 and B2) based on a cell’s measure-
ments to be used to acquire self-optimized HCPs. All input
parameters to the proposed method are taken from current
measurements performed by the MS, and manual tuning
is not required which is a popular technique in the litera-
ture. For evaluation purposes, we selected events A2 and
A3 to represent serving cell-based and target cell-based,
respectively.

The results show significant improvements in handover
performance in terms of Handover Rate (HOR), Ping-Pong
Handover Rate (PPHR), and Handover Failure Rate (HFR)
compared to existing HCP optimization approaches based
on speed classification and regression model. In serving
cell-based events (A2), the method demonstrates enhanced
handover efficiency at speeds below 70 km/h, making it
well-suited for low-mobility scenarios and urban vehicu-
lar mobility. Similarly, in target cell-based events (A3), the
proposed approach exhibits improved handover performance
across a wide range of MS speeds, up to 120 km/h. This
suggests its adaptability and effectiveness in diverse scenar-
ios. Notably, the proposed self-optimizing HCP approach
maintains a stable throughput performance for both serving
and target cell-based events, reinforcing its viability as an
automatic optimization solution for fifth-generation wireless
communication.

From the analysis, future work of the proposed method
will be to improve performance for the serving cell-based
HCP optimization case, which has shown a decline for the
MS speed of above 70 km/h. In general, handover parameter
automatic self-optimization is significant for Load Balancing
Optimization (LBO) and Mobility Robustness Optimization
(MRO), which are functions designed for automatic con-
figuration and update of HCPs to improve the handover
performance in 5G networks and beyond 5G. There are sev-
eral further research directions that can be taken such as the
implementation of automatic self-optimization of HCPs in
millimeter wave, massive MIMO, dual connectivity, ultra-
densification and moving networks.

APPENDIX A
LIST OF ABBREVIATIONS
Abbreviation Full Form
3GPP 3rd Generation Partnership Project
4G Fourth Generation Cellular Networks
5G Fifth Generation Cellular Networks
AMF Access and Mobility Management

Function
BS Base Stations
CC Component Carrier
C-RNTI Cell Radio Network Temporary Identifier
DAPS Dual Active Protocol Stack
DL Downlink
DRB Data Radio Bearer

HCP Handover Control Parameters
HFR Handover Failure Rate
HOR Handover Rate
KPI Key Performance Indicators
LBO Load Balancing Optimization
LOS Line-of-Sight
LTE-A Long-Term Evolution-Advanced
MCS Modulation and Coding Scheme
MR Measurement Report
MRO Mobility Robustness Optimization
MS Mobile Station
MIMO Multiple-Input Multiple-Output
NLOS Non-Line-of-Sight
NR New Radio
PPHR Ping-Pong Handover Rate
PRB Physical Resource Block
QoS Quality of Service
RACH Random Access Channel
RF Radio Frequency
RRC Radio Resource Control
RRM Radio Resource Management
RSRP Reference Signal Received Power
RSRQ Reference Signal Received Quality
RSSI Received Signal Strength Indicator
SIB System Information Block
SMTC Synchronization Signal Block (SSB) based

Measurement Timing Configuration
SON Self-Organizing Network
SSB Synchronization Signal Block
SINR Signal-to-Interference-plus-Noise Ratio
UDN Ultra-Dense Network
UL Uplink
UPF User Plane Function
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