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ABSTRACT To reduce traffic congestion, it is particularly important to use advanced technology to
predict urban traffic flow. Therefore, a dynamic traffic pattern prediction model is proposed, which includes
convolutional neural network, long and short term memory network and attention mechanism. The validity
of the prediction model is verified by the loss function and the average absolute percentage error. In addition,
the study also constructs a model for user travel pattern and parking point recognition based on deep learning
and mobile signaling data. The performance of the recognition model is verified by the accuracy and other
indicators. The research outcomes demonstrated that the max average absolute percentage error of the
dynamic traffic mode prediction model was 7.8%, and the mini value was 2.9%. The average accuracy of
the user travel pattern recognition model was 83.34%, and that of the parking point recognition model was
88.56%.The dynamic traffic model recognition and prediction model designed by the research institute has
better results, and has practical guiding significance in smart city traffic management.

INDEX TERMS Traffic mode, recognition, prediction, mobile signaling data, attention mechanism.

I. INTRODUCTION
With the acceleration of urbanization, the choice of residents’
travel modes has also become an important concern factor
in urban traffic governance [1], [2], [3]. The prediction of
traditional transportation modes mostly uses Global Position-
ing System (GPS) data as the data source. Although results
of this method are relatively rich, there are also issues with
high acquisition costs and limited data coverage [4], [5], [6].
With the development of technology, the application value of
mobile signaling data (MSD) and deep learning (DL) meth-
ods in traffic pattern recognition and prediction is gradually
becoming prominent. However, these methods also have cer-
tain problems, such as not considering the impact of resident
data on prediction results, having a relatively single influenc-
ing factor variable, and not considering the loss of sequence
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information caused by excessively long sequences [7], [8],
[9]. Li et al. and other researchers proposed a new graph
convolutional network model for accurate and real-time pre-
diction of traffic flow. This model involved multiple sensor
data, which can eliminate differences between periodic data
and enhance the quality of input data [10]. Lin et al. and other
experts designed a gradient-based regression tree method
to study the dynamic spatiotemporal correlation of traffic
flow, and used electronic registration recognition technology.
This method could analyze the dynamic spatiotemporal cor-
relation between prediction points and upstream correlation
points, and accurately and timely predict rapidly changing
traffic conditions [11]. Xiao et al. and other scholars designed
a car following inertia gray model based on differential gray
system information difference to predict short-term traffic
flow. The prediction performance of this model on short-term
traffic flow was superior to existing gray models [12]. How-
ever, these studies also have certain problems, such as less
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TABLE 1. Formula abbreviation table. TABLE 1. (Continued.) Formula abbreviation table.

consideration of pre-identification of user stopping points,
significant errors in link trajectories, and failure to consider
the impact of multiple factors on traffic flow. Based on these
problems, the research innovatively proposed a dynamic
traffic pattern recognition and prediction (DTPRP) model
combining convolutional neural network (CNN), long and
short-term memory network (LSTM) and attention mecha-
nism (AM), and established parking point recognition (PPR)
model and user travel mode recognitionmodel based onMSD
and eXtreme Gradient Boosting (XGBoost) algorithm. The
first part of the study introduces the relevant research on
DTPRP, and the second part constructs a DL-based DTPRP
model. The third part of the study analyzes the recognition
and prediction results of the model, while the fourth part
presents the conclusions and shortcomings of the study.

There are three main contributions to the research. Firstly,
the research aims to analyze the dynamic traffic patterns of
smart cities, identify different user travel modes, and ana-
lyze the impact of combined features on user travel modes.
Secondly, the research aims to provide technical and infor-
mation support for urban traffic management and guidance in
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smart cities based on the analysis of dynamic traffic patterns,
enhance the scientific and rational nature of intelligent urban
traffic management, promote the prosperity and development
of urban traffic, and establish a traffic governance system.
Thirdly, the research aims to alleviate traffic congestion in
smart cities through scientific and reasonable urban traffic
management, improve user travel efficiency, and reduce user
congestion time on the road.

There are two innovative points in the research. The first
is the use of XGBoost algorithm and K-means clustering
algorithm in identifying user travel patterns. The second is the
integration of CNNs, LSTMs, and AMs in the construction of
DTPRP models. The study uses a large number of formulas,
and for the convenience of querying, a table of formula
abbreviations is created, as shown in Table 1.

II. RELATED WORKS
With the increasing severity of random traffic congestion and
the advancement of science and technology, more researchers
have conducted research on the DTPRP. To avoid the short-
comings of traditional methods for traffic arrival patterns,
researchers such as C. An proposed a method to estimate
lane-based traffic arrival patterns with license plate recogni-
tion data. This method used a probability model and assumed
the upstream merging motion as a two-stage segmented
arrival process. The research results showed that this method
could describe traffic arrival models under different traf-
fic scenarios [13]. To detect outlier in traffic flow (TF),
Wang et al. and other scholars proposed an efficient traffic
anomaly detection framework. The framework used the non
negative matrix decomposition algorithm to pre-process the
data, used the fuzzy C-means clustering algorithm with the
optimal K-cluster center to extract the road TF patterns, and
used kernel density estimation to fit the probability density of
the road TFmatrix. The laboratory findings expressed that the
mean accuracy and recall of this method were 95% and 96.%,
respectively [14]. To better detect unauthorized wireless cam-
eras, experts such as Cheng et al. proposed a lightweight and
effective detection mechanism based on smartphones and a
human assisted recognition model, which utilized the inher-
ent traffic patterns of wireless camera traffic. The research
findings illustrated that the model’s accuracy was as high as
98% [15]. Ramkumar et al. and other researchers have pro-
posed an advanced driving assistance system to better ensure
the safety of humans while driving vehicles. This system
could effectively recognize road signs and transmit informa-
tion to drivers in a timely manner. The experimental results
showed that the system could classify more than 40 types of
traffic signs with high accuracy [16]. He et al. and other schol-
ars put forward a new semi supervised learning method to
utilize a small amount of labeled traffic sign data to establish
an efficient and high-quality traffic sign recognition model.
Thismethod combined global and local features of traffic sign
recognition on transportation systems based on the Internet
of Things. It was validated that this method’s effectiveness
was superior to that of traditional methods [17]. To reduce the

error of estimating annual average daily traffic from sample
data, experts such as G. Grande proposed a method to quan-
tify the error range, and used a new data-driven allocation
method to lessen the error, which could reduce the average
absolute error by 2.46% [18].

Liu et al. and other researchers proposed a pattern recog-
nition method based on image processing to reduce the
incidence of highway traffic accidents. This method used
the fuzzy C-means clustering algorithm in the clustering
algorithm, and used the Relief and particle swarm opti-
mization algorithms to optimize it. The research findings
indicated that the optimized algorithm had better real-time
performance and accuracy [19]. Xiao et al. and other experts
put forward a hybrid model that combined integrated empir-
ical mode decomposition, deep belief networks, and Google
Trends to accurately predict tourism transportation demand.
This model used integrated empirical mode decomposition
to de-noise the data. The laboratory findings denoted that
the model had lower prediction error and higher predic-
tion accuracy [20]. Sun et al. such as Sun put forward a
multi-component attention model to predict TF. The model
involved one-dimensional CNNs and bidirectional LSTM.
It was proved that compared with artificial neural networks,
the proposed model had good accuracy and effectiveness in
predicting urban TF [21]. Shi et al. proposed an end-to-end
attention-based periodic time neural network to predict traf-
fic. This network simulated spatial and periodic dependencies
through an encoder AM. The research findings expressed
that the proposed model could better capture dependencies
and avoid over-fitting of nodes [22]. Sun et al. such as Du
raised a dynamic transfer CNN to improve the effectiveness
of traffic demand prediction. This network could be used
for precise prediction of traffic demand. The experimental
results demonstrated that this method had good performance
in predicting traffic demand [23]. Chen et al. and other experts
proposed a DL based framework for forecasting urban road
TF. This framework used feature engineering for feature
extraction. The laboratory outcomes denoted that the average
prediction accuracy of this method was close to 98% [24].

In summary, there are currently many studies on DTPRP,
and the methods involved are also diverse. However, these
studies also have certain problems, such as the relatively
single influencing factor variable and the failure to consider
the loss of sequence information caused by excessively long
sequences. Based on these problems, the research innova-
tively proposed a DTPRP model combining CNN, LSTM
and AM, and established PPR model and user travel mode
recognition model based on MSD and XGBoost algorithm.
There are other strategies and methods that can improve the
prediction results of TF parameters. Firstly, it needs to select
input data, that is, select and filter data from the input model
to improve data quality. This not only improves the predic-
tion accuracy of the model, accelerates the training speed
of the model, but also reduces the risk of over-fitting in the
model. Secondly, it also needs to improve the generalization
performance of the model, select appropriate optimization
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TABLE 2. Detailed information on literature review. TABLE 2. (Continued.) Detailed information on literature review.
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TABLE 2. (Continued.) Detailed information on literature review.

methods, and perform multi model fusion. Thirdly, it needs
to avoid gradient disappearance or explosion. Fourthly, the
parameters of themodel should bemoderate and not too large.
The detailed information of the literature review is shown in
Table 2.

III. CONSTRUCTION OF DTPRP MODEL BASED ON DL
To identify and predict dynamic traffic patterns and alleviate
urban congestion, different DL algorithms are used to iden-
tify users’ parking points and travel patterns using MSD as
the entry point, and their respective recognition models are
established. In addition, the study combines DLmethods such
as MSD and CNNs to generate a DTPRP model.

A. DESIGN OF USER TRAVEL PATTERNS
RECOGNITIONBASED ON DL
Resident travel information is an important basis for urban
transportation planning, so it is necessary to identify and ana-
lyze user travel patterns, and stopping point recognition is an
important foundation for analyzing user travel patterns [25],
[26]. Traffic mode refers to the methods or means of
transportation used by residents for travel. Therefore, by iden-
tifying users’ travel modes and stopping points, it is possible
to understand the commonly used means of transportation by
residents, which is also an important component of dynamic
traffic mode prediction. The current dynamic traffic pattern
prediction model has certain shortcomings in identifying user
travel patterns, as it does not consider the impact of combined
features on user travel patterns [27]. Before identifying and
designing user travel patterns, to reduce prediction errors, the
XGBoost algorithm is introduced in the study. This algorithm
belongs to the classification regression algorithm and can
fit the previous tree’s residual by continuously iterating to
generate a new tree [28], [29]. The tree model of XGBoost
algorithm adopts a classification regression tree, and uses the
weighted values of K trees as the prediction results of the
sample. The prediction function is shown in equation (1).

ŷi =

k∑
t=1

ft (xi), ft ∈ F

ft (x) = wq(x)

(1)

In equation (1), i is the ith vehicle. ŷi means the predicted
value of i. F denotes the set of all regression trees. ft is the
expression expressed by the tree t . wq(x) indicates the weight
of every leaf node, and q (x) expresses the serial amount of the
output leaf node. The objective expression of the XGBoost

algorithm is shown in equation (2).
Obj(t) =

t∑
i=1

l
(
yi, ŷ(t)

)
+

t∑
i=1

� (ft)

� (ft) = γA+
1
2

λ

A∑
j=1

w2
j

(2)

In equation (2), l
(
yi, ŷ(t)

)
means the loss function. � (ft)

indicates the regularization term. A denotes the total number
of leaf nodes. γ and λ are the penalty coefficient, and j refers
to the jth leaf node. Taking the total of the complexity of the
previous t−1 trees as a constant, equation (3) can be obtained.

Obj(t) =

n∑
i=1

l
(
yi, ŷ(t−1)

+ ft (xi)
)

+ � (ft) + cons (3)

In equation (3), cons is the sum of the complexity of the
previous t − 1 trees, and ŷ(t−1) denotes the value of the
t − 1 tree of i. By solving the mini value of the objective
function at ft = 0 using Taylor’s quadratic expansion, the
objective function is approximated as equation (4).

Obj(t) ≈

n∑
i=1

l
(
yi, ŷ(t−1)

+ gift (xi) +
1
2
hif 2t (xi)

)
+� (ft) + cons

gi = ∂̂y(t−1) l
(
yi, ŷ(t−1)

)
hi = ∂2

ŷ(t−1)
l
(
yi, ŷ(t−1)

)
(4)

In equation (4), l
(
yi, ŷ(t−1)

)
means the loss function of the

learning model formed by the previous t − 1 decision tree,
and gi, hi are the first and the second derivative of the loss
function of the model respectively. Substituting equation (2)
into equation (4) yields equation (5).

Obj(t) =

A∑
j

[
Gjwj +

1
2

(
Hj + λ

)
w2
j

]
+ γA (5)

In equation (5), Gj =
∑

i∈Ij gi,Hj =
∑

i∈Ij hi, Ij =

{i|q (xi) = j} refer to the sample set on the leaf node with
sequence number j. After taking the derivative of wj in
equation (2), equation (6) can be obtained.

w∗
j = −

Gj
Hj + λ

(6)

After substituting the optimal solution of equation (6) into
equation (5), the mini objective function of the XGBoost
model can be obtained, as shown in equation (7).

obj = −
1
2

A∑
j=1

Gj
Hj + λ

+ γA (7)

Due to the fact that the structure of the tree cannot be fully
enumerated, the XGBoost algorithm needs to use greedy
algorithms to partition the sub-trees of the current node.
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When adding or listing segmentation points, it is gener-
ally recommended to select the partition with the smallest
objective function and the most significant gain. The gain
expression is shown in equation (8) [30].

Gain = −
1
2

[
G2
L

HL + λ
+

G2
R

HR + λ
−
GL + GR
HR + λ

]
− γ (8)

In equation (8), GL =
∑

i∈IL gi, GR =
∑

i∈IR gi, HL =∑
i∈IL hi, HR =

∑
i∈IR hi, IL and IR mean the sample groups

of the left and right sub-trees, respectively. For user travel pat-
terns recognition, the research mainly utilizes the XGBoost
model. The algorithm framework for user travel patterns
recognition is shown in Figure 1.

FIGURE 1. User travel patterns recognitionframework.

In Figure 1, the user travel patterns recognition is mainly
composed of four stages, namely travel data acquisition and
special effects extraction, XGBoost algorithm construction,
and travel pattern classification. In the stage of obtaining
travel data, signaling data can be divided into travel and
dwell data through the identification of dwell points. In the
feature extraction stage of travel data, the study extracts mul-
tidimensional spatiotemporal features such as average speed
and acceleration, navigation data, clustering and membership
features, and fuses them with peak and off peak periods to
establish a multi-dimensional spatiotemporal optimal feature
matrix. In the construction phase of XGBoost algorithm,
a multi-dimensional spatiotemporal optimal feature matrix is
added to complete the design of a user travel patterns recogni-
tionmodel. Finally, in the travel mode classification stage, the
XGBoost algorithm outputs four user travel modes. For the
extraction of average velocity and acceleration features,
the Euclidean distance between base stations is calculated,

and the calculation expression is shown in equation (9).

harver sin (θ) =
1 − cos θ

2
ς = cos

(
αie_lat

)
× cos

(
αis_lat

)
×harver sin

(
αie_ ln g − αis_ ln g

2

)
+harver sin

(
αie_lat − αis_lat

)
d = 2 × R× arcsin

(√
ς
)

(9)

In equation (9), harver sin means the haversine equation, and
θ stands for the plane angle between the point connecting the
sphere and the radius R of the sphere center. αie_lat and αis_lat
represent the latitude of the starting and ending base stations
in the ith data. d means the distance between base stations.
αie_ ln g and αis_ ln g express the longitude of the starting and
ending base stations in the ith data, and ς denotes the spatial
distance between base stations. The duration calculation of
MSD is shown in equation (10)

T = T ie_time − T is_time (10)

In equation (10), T is_time refers to the start time of the ith data,
and T ie_time indicates the end time of the ith data. The average
speed and acceleration of MSD are calculated as shown in
equation (11). 

D = 2 × di × 2

S iv =
Di
Ti

Aia =

∣∣S i+1
v − S iv

∣∣
Ti

(11)

In equation (11), 2 is the non-linear coefficient of the road,
and the default value is 1.3. Aia represents the acceleration
of the ith data user, and Aia stands for the average speed
of the ith data user. Ti means the travel time of the user in
data i, and Di indicates the travel distance of the user in
data i. For the extraction of clustering features, the k-means
clustering algorithm is used in the study [31]. To normalize
traffic data, the Z-score method [32] is used in the study, and
its calculation is shown in equation (12).

Z =
X − X
S

(12)

In equation (12), S expresses the standard deviation. X refers
to a certain sample, and X stands for the average of this set
of data. To get better clustering results, the optimal number
of clusters K value for k-means clustering is determined
using the elbow method [33]. The calculation of the sum of
squares of the core indicator error of this method is shown in
equation (13).

SSE =

k∑
i=1

∑
p∈Ci

|p− mi|
2

(13)

In equation (13), SSE means the clustering error of all sam-
ples. Ci stands for the ith cluster. p indicates the sample point
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FIGURE 2. Flow chart of stop point recognition model.

of Ci, and mi denotes the centroid of Ci, which is the mean of
all samples inCi. The expression of theGaussianmembership
is shown in equation (14).

g (x, µ, z) = e

(
(x−z)2

2µ2

)
(14)

In equation (14), x indicates the absolute value of aver-
age velocity or acceleration, while µ and z are represented
as shape parameters and position parameters, respectively.
By using the Gaussian membership function, the membership
values corresponding to average velocity and acceleration can
be obtained, and their calculation is shown in equation (15).

Uj = sj × aj (j = 1, 2, 3, 4) (15)

In equation (15), Uj expresses the joint membership value of
travel mode j. sj means the average speed membership value
of travel mode j, and aj denotes the acceleration membership
value of travel mode j. The calculation of the travel mode
label corresponding to the maximum membership value is
shown in equation (16).

Ui = MAX
(
Uj
)
(j = 1, 2, 3, 4) (16)

In equation (16), Ui is the travel mode label correspond-
ing to the maximum membership value of the ith data. The
extraction of navigation data features is mainly achieved by
calculating the similarity between MSD and corresponding
navigation data, as shown in equation (17).

dj =
1√(

s− sj
)2

+
(
t − tj

)2 (j = 1, 2, 3, 4)

Rj = MAX
(
dj
)
(j = 1, 2, 3, 4)

(17)

In equation (17), dj means the similarity value between the
mobile signaling trajectory data and the jth navigation data,
and Rj indicates the maximum similarity value between the
j navigation data and the mobile signaling trajectory data. s
denotes the travel distance of the mobile signaling trajectory
data, and t refers to the travel time consumption of the mobile
signaling trajectory data. sj stands to the travel distance of
type j navigation data, and tj denotes the travel time consump-
tion of type j navigation data. By extracting different features
and using the XGBoost algorithm, the user travel patterns
recognition during peak and off peak hours is studied and
achieved.

B. DESIGN OF STOP POINT RECOGNITION AND
CONSTRUCTION OF DTPRP MODEL BASED ON MSD
PPR is the foundation of user travel mode analysis, and
to alleviate urban traffic congestion, research has designed
it. However, the current dynamic traffic mode prediction
models also have certain shortcomings in identifying stop-
ping points, as they do not consider the impact of stopping
data on the prediction results [34], [35]. A spatiotemporal
grid clustering algorithm for PPR has been proposed. This
algorithm performs feature analysis onMSD in both temporal
and spatial dimensions, and uses PPR algorithm to identify
parking points. This algorithm is not affected by the unstable
sampling interval of signaling data, and its PPR model
flowchart is shown in Figure 2.

In Figure 2, the PPR model mainly includes four parts,
namely obtaining MSD, trajectory point meshing, data pre-
processing, and PPR. The identification of parking points
mainly falls into two situations: parking data and travel
data.Based on the positioning function of mobile phone sig-
naling data, trajectory point meshing can map the user’s
trajectory points in the grid and store them in the signal-
ing database. Data preparation mainly involves processing
error data in mobile phone signaling data. The recognition
of stopping points is mainly achieved through a time-space
grid clustering stopping point recognition algorithm.The col-
lection of MSD is shown in Figure 3.
As shown in Figure 3, the collection of MSD is mainly

divided into three layers: the collection layer, the sharing
layer, and the application layer. At collection layer, data from
different network scenarios will be collected and transmitted
to the shared layer.The signaling data involved in the collec-
tion layer includes mobile phone signaling data under the
second, third, fourth, and fifth generation mobile commu-
nication technologies. Among them, the second generation
mobile communication technology will go through processes
such as signaling gateways and aggregation and diversion,
while the third, fourth, and fifth generation mobile commu-
nication technology will go through deep detection of traffic
aggregation adapters, aggregation and diversion, and data
packets.The MSD under the second-generation mobile com-
munication technology will enter the signaling monitoring of
the shared layer after being processed by the client/server pro-
tocol and analyzed by Gb/Iu-Ps collection. The MSD under
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FIGURE 3. The collection of MSD.

the third, fourth, and fifth generation mobile communication
technologies will be transmitted to the shared layer after Deep
Packet Inspection (DPI). DPI is a network security technol-
ogy that checks the content of network packets to determine
their purpose and source, ensuring network security. In the
sharing layer, data from the 5th generation (5G) mobile com-
munication technology scenario will be synthesized into 5G
signaling data and 5G internet logs will be generated on sub-
sequent application layers. The data in other scenarios will go
through three steps under the shared layer, namely synthesis
association, cleaning calculation, and storage sharing. Subse-
quently, these data will generate corresponding online logs at
the application layer. In addition, to protect user privacy, the
signaling collection system will anonymously process MSD
before uploading it to the cloud server. The specific steps of
meshing trajectory points are generally composed of three
steps. First is to treat the location of the base station as the
center of the grid and the coverage of the base station as edge
length of the grid. The second step is to map the trajectory
points to the grid of the studied traffic area through their
latitude and longitude position information. The third step
is to store the trajectory data and its corresponding grid data
together in the signaling database.

The error data in MSD can generally be divided into two
categories: intrinsic error and systematic error [36]. There
are four main types of system errors, namely table tennis
switching, missing, repeated positioning and drift data [37].
For inherent errors, it is currently difficult to completely
correct them in offline state and can only be approximated
as much as possible. For missing data, i.e. data with both
longitude and latitude of 0, it needs to simply remove it.
For duplicate positioning data, it merges them using a rule-
based approach. For table tennis switching data, a filtered
table tennis switching data algorithm is used in the study. This
algorithm utilizes grid processing methods and the feature of
data quickly jumping between adjacent base stations, and sets
the time threshold TM . For drift data, the study uses a filtered
drift data algorithm. For the parking points recognition, after
the spatiotemporal grid clustering, PPR algorithm gridizes

the traffic area, calculates the continuous dwell time of users
in each grid and sets the time threshold. If the continuous
residence time of a user in a certain grid is less than the time
threshold TM , then the data in that grid is the travel trajectory
data, otherwise it is the residence trajectory data. TF pre-
diction is also an important component of dynamic traffic
mode prediction [38]. TF refers to the number of vehicles in
the road network, so predicting TF is the prediction of the
number of vehicles in the road network. Traffic mode refers
to the methods or means of transportation used by residents
for travel. By predicting TF, the situation of residents using
vehicles for travel can be understood. The current dynamic
traffic mode prediction model still has certain shortcomings,
as it also considers less about the spatiotemporal properties
and external environment of TF [39].In the construction of
DTPRP model, CNN, LSTM and AM in the DL method are
all applied. The main function of the CNNmodel is to collect
features from data, and it mainly includes convolutional, acti-
vated, pooling and fully connected layers [40], [41]. Common
activation function of CNN models include Sigmoid [42],
ReLU [43] and tanh functions [44], and their calculations are
shown in equation (18).

Sigmoid (ϕ) =
1

1 + e−ϕ

tanh (ϕ) =
eϕ − e−ϕ

eϕ + e−ϕ

ReLU (ϕ) = max (0, ϕ)

(18)

Equation (18), ϕ is the input variable. LSTM network is
a variant of recurrent neural network (RNN), which has
the features of long term memory [45], [46]. The temporal
features of dynamic traffic mode TF data can be extracted
using LSTM networks, while spatial features can be extracted
using CNN networks. Based on the collected spatiotem-
poral features, the matrix of TF data can be constructed.
Through inputting the spatiotemporal characteristics of TF
into the regression prediction layer, the corresponding predic-
tion results can be calculated. AM is a type of DL theory that
can improve the predictive ability of models [47], [48]. The
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construction of a DTPRP model mainly includes two steps.
First is to pre-process the data, and the second is to build a
prediction model. Data pre-processing includes four stages:
PPR, dataset partitioning and time feature transformation,
user travel patterns recognition, and data standardization.
In the stage of PPR, different error data have different data
processing methods. The data with latitude and longitude of
0 are directly removed, and the overlapping data are merged
using rule-based methods. The ping-pong switching data and
drift data are filtered through a grid spatiotemporal con-
nection algorithm. Finally, the parking points are identified
using the spatiotemporal grid clustering PPR algorithm. The
recognition of travel models is mainly achieved by inputting
the XGBoost model with the optimal feature matrix of multi-
dimensional spatiotemporal trajectories. Dataset partitioning
and temporal feature transformation include converting the
MSD into a TF dataset, and partitioning the dataset with a 5-
minute time interval. There are 288 samples generated every
day, and each sample has a corresponding label. Data stan-
dardization can eliminate the impact of dimensional and value
range differences among various styles of data. By using
the minimum maximum normalization method, the values
of the raw data are mapped to the range [0,1]. Traffic flow
prediction (TFP) includes short and long-term ones, and the
former is the key to alleviating traffic congestion [49], [50].
The short-term TFP model based on AM and CNN-LSTM is
shown in Figure 4.

FIGURE 4. A short-term TFP model based on AM and CNN-LSTM.

As shown in Figure 4, the short-term TFP contains CNN,
LSTM, and AMs. The prediction steps of this model gener-
ally include five steps. The first is to first get road TF and
weather data, and then pre-process these data to construct
the matrix dataset. The dataset contains training and testing
sets. The second is to extract the spatial features of TF data
with a CNN network. The third is to use the spatial features
extracted from the CNN model as input to the LSTM net-
work and output the temporal features of TF. The fourth is
to dynamically fit the weight distribution through the AM,
giving more weight to important features. The fifth step is to
input spatiotemporal features into the regression prediction

layer and calculate the corresponding prediction outcomes.
In addition, by defining the loss function, the model parame-
ters are continuously optimized.

IV. ANALYSIS OF THE RESULTS OF DTPRP MODEL
CONSTRUCTION BASED ON DL
To evidence the performance of the PPR algorithm, this
chapter selected four indicators: accuracy, recall, precision,
and F1 value. In addition, this chapter also analyzed the
data pre-processing results of the PPR algorithm. To verify
the performance of user travel recognition algorithms, this
chapter compared and analyzed the accuracy of features of
various travel modes in the XGBoost model, and also com-
pared the recall and accuracy of different models in signaling
data. In addition, this chapter also evaluated the prediction
accuracy of DTPRP models using absolute percentage error
(APE) [51].

A. ANALYSIS OF PPR AND USER TRAVELPATTERNS
RECOGNITION RESULTS BASED ON MSD
The data pre-processing stage of the PPR algorithm involved
a variety of error data types, among which the most typical
error data was ping-pong switching data. In data pre-
processing, if the value of the time threshold TM was too
small, it would lead to incomplete data filtering during ping
pong switching. The filtering effect of ping-pong switching
data for different users under different time thresholds is
shown in Figure 5.

FIGURE 5. The filtering effect of Ping-pong switching data for different
users under different time thresholds.

From Figure 5, the maximum number of ping-pong switch-
ing data for the five users was 15, 14, 12, 10, and 8,
respectively, and these maximum values corresponded to
a time threshold of 2 seconds. The minimum number of
ping-pong switching data for five users was 0, and the time
threshold at this time was 18 seconds. From this, when the
time threshold was 18s, the filtering effect of ping pong
switching data was the best. To ensure the scientific nature of
the time threshold, the study increased the number of users.
In addition, to reduce unnecessary losses, the initial value
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FIGURE 6. The filtering effect of Ping-pong switching data for different
users at a time threshold of 17s to 19s.

of the time threshold was set to 17 seconds. The filtering
effect of ping-pong switching data for different users at a time
threshold of 17s to 19s is shown in Figure 6.
From Figure 6 (a), when the time threshold was 17s, the

maximum number of ping-pong switching data was 2 and the
minimum value was 0. The number of ping-pong switching
data with 0 and 1 was roughly the same. In Figure 6 (b), if the
time threshold was 18s, the biggest value of the number of
ping-pong switching data was 1 and the minimum value was
0. There were more ping-pong switching data with 0 than
ping-pong switching data with 1. From Figure 6 (c), when the
time threshold was 19s, the biggest and lowest values of the
amount of ping pong switching data were both 0, and that for
all users was 0.When the time threshold was 19s, the filtering

FIGURE 7. Comparison of stop point recognition results.

effect of ping-pong switching data was the best. To better
reflect the effectiveness of the PPR algorithm proposed by
the research institute, ST was selected for the study. The
ST_DBSCAN algorithm [52] was used to compare the PPR
results with the PPR algorithm proposed in the research. The
specific comparison results are shown in Figure 7.
As shown in Figure 7 (a), the ST_DBSCAN algorithm

identified 3 parking points and 6 travel points. From
Figure 7 (b), the PPR algorithm proposed by the research
institute identified 4 parking points and 5 travel points. Due
to the fact that there were four actual parking points, the
PPR algorithm proposed by the research institute had better
performance in PPR. To evidence the performance of the
PPR algorithm proposed by the research institute, the study
compared and analyzed it and ST_DBSCAN algorithm from
four perspectives: recall rate, F1 value, accuracy, and preci-
sion. The algorithms’ comparison outcomes are expressed in
Figure 8.
From Figure 8 (a), the biggest accuracy, recall rate, F1

value and precision of the PPR algorithm proposed by the
research institute were89.4%, 85.2%, 83.5%, and 82.1%,
respectively.The lowest valueswere 87.8%, 83.7%, 81.6%,
and 80.2%, respectively.The average valueswere 88.56%,
84.82%, 82.72%, and 80.9%, respectively. From Figure 8 (b),
the biggest accuracy recall rate, F1 value and precision of
the ST_DBSCAN algorithm were 86.5%, 78.9%, 78.2%, and
78.2%, respectively.The lowest valueswere 84.6%, 77.8%,
76.5%, and 76.4%, respectively.The average valueswere
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FIGURE 8. Algorithm performance comparison results.

85.74%, 78.24%, 77.63%, and 77.36%, respectively. From
this, the PPR algorithm proposed by the research institute
performed better than ST_DBSCAN algorithm in accuracy,
recall, F1 value, and precision. To verify the effectiveness of
user travel data features, the study inputted all eight features
of user travel data into the XGBoost model. The accuracy of
different travel modes with different features in the XGBoost
model is shown in Figure 9.
From Figure 9 (a), the biggest value of time feature

accuracy was 55.5% for cars, the lowest value was 53% for
walking, and the average value was 54.18%. The biggest
value of distance feature accuracy was 59.2% for public
transportation, the lowest value was 55% for electric vehicles,
and the average valuewas 56.63%. The biggest value of speed
75 quantile feature accuracy rate was 69% of public transport,
the lowest value was 63% of walking, and the average value
was 65.8%. The biggest accuracy of average speed charac-
teristics was 68.5% for public transportation, the lowest was
62.5% for electric vehicles, and the average was 65.03%.
From Figure 9 (b), the biggest value of acceleration feature
accuracy was 67.1% for public transportation, the lowest
value was 62.3% for electric vehicles, and the average value
was 64.75%. The biggest accuracy of membership feature
was 69% for walking, the lowest was 64.9% for public trans-
portation, and the average was 67.03%. The biggest accuracy
of clustering features was 71.5% for small cars, 67.1% for

FIGURE 9. Accuracy of different travel modes with different features in
XGBoost model.

electric cars, and the average was 69.95%. The biggest value
of navigation feature accuracy was 74% for small cars, the
lowest value was 67.1% for electric cars, and the average
value was 71.28%. From this, all 8 features of user travel data
were valid features. To prove the function of the XGBoost
model, some classic machine learning models were selected
for comparison. The selected comparison models included
multi-layer perceptron (MLP) model [53], K-Nearest
Neighbor (KNN)model [54], Decision Tree (DT)model [55],
Random Forest (RF) model [56] and Back Propagation (BP)
model [57]. The comparison results of recall and precision of
different models are shown in Figure 10.
From Figure 10 (a), the max recall rate of the MLP, KNN,

DT, RF, BP and XGBoost models was 78.5%, 79%, 80.5%,
80.7%, 81.9% and 82.3%, respectively. The mini values were
76.7%, 77.4%, 76.6%, 79%, 80.6%, and 80.7%, respectively.
The average values were 77.5%, 78.08%, 79.04%, 81.04%,
and 81.62%, respectively. In Figure 10 (b), the max precision
of the MLP, KNN, DT, RF, BP and XGBoost models was
76%, 77.2%, 77%, 77.6%, 81.3%, and 81.2%, respectively.
The mini values were 74.8%,75.8%, 76.1%, 77.1%, 78.5%,
and 80%, respectively. The average values were75.42%,
76.34%, 77.26%, 79.68%, and 80.5%, respectively. The com-
parison results of F1 values and accuracy of different models
are shown in Figure 11.

From Figure 11 (a), the max F1 value of the MLP,KNN,
DT, RF, BP and XGBoost models was 76.5%, 77.8%, 78.7%,
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FIGURE 10. Comparison results of recall and precision of different
models.

FIGURE 11. Comparison results of F1 values and accuracy among
different models.

79.6%, 80.7%, and 82.2%, respectively. Themini values were
75.5%, 77%, 77.6%, 78.1%, 80%, and 81%, respectively.
The average values were 76.06%, 77.26%, 78.12%, 78.92%,

FIGURE 12. Sample feature importance results and prediction results at
different time periods.

80.26%, and 81.44%, respectively. From Figure 11 (b), the
max accuracy of the MLP, KNN, DT, RF, BP and XGBoost
models was 79.1%, 80%, 80.3%, 81.5%, 81.6%, and 83.7%,
respectively. The mini values were 78.2%, 78.4%, 80%,
80.7%, 80.8%, and 82.9%, respectively. The average values
were 78.58%, 79.22%, 80.14%, 81.16%, 81.3%, and 83.34%,
respectively. From this, the performance of the XGBoost
model was superior to that of the comparative model. To eval-
uate the impact of multidimensional features on the accuracy
of user travel patterns recognition, the importance of sample
features was ranked in the study. In addition, to verify the
impact of peak and off peak periods on prediction results,
the accuracy of the optimal combination of multidimen-
sional spatiotemporal features at different time periods was
compared and analyzed. The importance results of sample
features and the prediction results at different time periods
are displayed in Figure 12.

From Figure 12 (a), the maximum value of feature
importance was 72% of the navigation feature, and the
minimum value was 26% of the time feature. Navigation
features had the greatest impact on the accuracy of user
travel recognition. As shown in Figure 12 (b), the max-
imum accuracy during peak hours was 92%, while the
minimum accuracy was 72.5%. The maximum accuracy dur-
ing off peak hours was 90.5%, and the minimum accuracy
was 71%. The maximum and minimum accuracy values
for undifferentiated time periods were 87% and 70.3%,
respectively. From this, the XGBoost model had a pre-
diction accuracy of over 90% during peak and off peak
periods.
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FIGURE 13. The loss function of the CNN-LSTM attention model and the
predicted and true values of TF.

B. ANALYSIS OF THE RESULTS OF CONSTRUCTING A
DTPRP MODEL BASED ON DL
To validate the function of the CNN-LSTM Attention model,
the study trained and evaluated the model, and did com-
parison and analysis of predicted and true values, and APE
values of TF. The operating system used in the experiment
was Windows 10, and MSD from a certain section of Tianfu
Third Street in Chengdu provided by a mobile operator was
selected, and the converted data capacity was KB. In addition,
Python was used for coding experiments, as well as the
Keras framework and Baidu Map application programming
interface tool library. The loss function of the CNN-LSTM
Attention model and the predicted and true values of TF are
shown in Figure 13.
From Figure 13 (a), at the beginning of the iteration,

the loss function value of the CNN-LSTM Attention model
showed a rapid decline trend. After the loss function contin-
ued to iterate several times, the model’s loss function value
presented a gentle trend and gradually realized convergence.
From Figure 13 (b), the max predicted value was 800 and
the mini value was 49. The max value of the true value was
850, and the mini value was 51. The distinguish between the
predicted and the actual values was not significant, and there
was a basically consistent trend of change. The APE perfor-
mance analysis for daily TF and monthly TFP is expressed in
Figure 14.
APE can evaluate the predictive accuracy of the model.

From Figure 14 (a), within the time range of a day, the maxi-
mum value of APE was 39%, appearing around 1am, and the
minimum value was 0%. It occurred at multiple time points,
such as 0am, 5:40am, and 9pm.The values with higher APE

FIGURE 14. APE performance analysis of daily TFP and monthly TFP.

values were mainly distributed between the early morning
and 6 am, while the values with lower APE were mainly
distributed between 6 am and before the earlymorning. As the
time approached 12pm, there was a significant increase in
APE values. From Figure 14 (b), the distribution of the max
APE value was mainly concentrated between early morning
and 6 am, especially between 4am and 5am, over a period
of one month, while APE values were relatively small at
other times, especially between 8am and 4pm. From this,
the CNN-LSTM Attention model had good feasibility and
effectiveness. To verify the feasibility of adding weather con-
dition input variables and further evaluate the effectiveness
of the CNN-LSTM Attention model, the study compared
and analyzed the average APE function of the model under
different environments, and also compared and analyzed the
MAPE values of different predictionmodels. The comparison
outcomes are shown in Figure 15.
Figure 15 (a) depicts the comparison of the average APE

between the CNN-LSTM Attention model with and without
weather factors, with a sampling frequency of 5 minutes.
Figure 15 (b) shows the average APE comparison of different
prediction models. From Figure 15 (a), under the same sam-
pling interval, the max average APE value of the CNN LSTM
Attention model with and without considering weather fac-
tors was 7.8% and 8%, respectively. and the mini values were
4% and 2.8%, respectively. From this, the prediction error of
the CNN-LSTMAttentionmodel consideringweather factors
was smaller. From Figure 15 (b), the max average APE value
of the CNN-LSTMAttention, CNN, LSTM and CNN-LSTM
models was respectively 7.8%, 12%, 10.75% and 8.1%. And
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FIGURE 15. Comparison of average APE values under different
environments and prediction models.

the mini values were 2.9%, 8.2%, 6.9% and 4%. From this,
the CNN-LSTM Attention model had smaller prediction
errors and better prediction performance. To better reflect the
performance of the dynamic traffic mode prediction model
designed by the research institute, the accuracy of the model
predictions was compared. The comparison models include
CNN, LSTM, CNN-LSTM, Auto-regressive IntegratedMov-
ing Average (ARIMA) model and ARIMA-LSTM model of
LSTM [58], SARIMA-AR model combining seasonal dif-
ference Auto-regressive moving average (SARIMA) model
and Auto-regressive (AR) model [59], GRU-CNN-Attention
model combining Gated Recurrent Unit (GRU), CNN and
AM [60].

In Table 3, the maximum prediction accuracy of the
CNN-LSTM Attention model was 99.4%, and the minimum
value was 98.6%. The maximum prediction accuracy of the
CNN model was 91.8%, and the minimum value was 89.6%.

TABLE 3. Comparison of accuracy between different models.

The maximum prediction accuracy of the LSTM model was
93.6%, and the minimum value was 91.2%. The maximum
prediction accuracy of the CNN-LSTM model was 95.5%,
and the minimum value was 93.2%. The maximum predic-
tion accuracy of the ARIMA-LSTM model was 97.2%, and
the minimum value was 95.8%. The maximum prediction
accuracy of the SARIMA-AR model was 97.9%, and the
minimum value was 96.3%. The maximum prediction accu-
racy of the GRU-CNN Attention model was 97.7%, and the
minimum value was 95.1%. The accuracy of the CNN-LSTM
Attention model was higher than that of the comparative
model, which also indicated that the performance of the
model was better.

V. CONCLUSION
To address the issue of urban road congestion in the envi-
ronment, a DTPRP model combining CNN, LSTM, and AM
has been innovatively proposed. A PPR model and a user
travel patterns recognitionmodel have been established based
on MSD and XGBoost algorithm. The research outcomes
expressed that the average accuracy, recall, F1 value, and
precision of the PPR model used by the research institute
were 88.56%, 84.82%, 82.72%, and 80.9%, respectively,
which were 2.82%, 6.58%, 5.09%, and 3.54% higher than
the average accuracy, recall, F1 value, and precision of the
comparison algorithm. From this, the effectiveness and supe-
riority of the PPR algorithm used by the research institute
could be validated. The accuracy and average F1 value of
the user travel patterns recognition model based on XGBoost
algorithm used by the research institute were 83.34% and
81.44%, respectively, and both were higher than the accuracy
and average F1 value of the comparative model. The max
and mini average APE values of the CNN-LSTM-Attention
model used by the research institute were 7.8% and 2.9%,
respectively, and the average APE values of the comparative
model were generally higher than those of the CNN-LSTM-
Attention model. From this, the model used by the research
institute had smaller prediction errors and better prediction
performance. Although various influencing factors have been
considered in the identification and DTPRP models, there
are also certain shortcomings, such as the generalization of
signaling user trajectories and the lack of fine-grained stop
point recognition for signaling users, which can be promoted
in future research.
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