
INNOVATIVE TRENDS IN 6G ECOSYSTEMS

Received 11 December 2023, accepted 19 December 2023, date of publication 22 December 2023,
date of current version 10 January 2024.

Digital Object Identifier 10.1109/ACCESS.2023.3346187

An Autonomous Deployment Mechanism
for AI Security Services
WEILIN WANG , HUACHUN ZHOU , MAN LI, AND JINGFU YAN
School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing 100044, China

Corresponding author: Huachun Zhou (hchzhou@bjtu.edu.cn)

This work was supported in part by the National Key Research and Development Program of China under Grant 2018YFA0701604, in part
by NSFC under Grant 62341102, and in part by the Fundamental Research Funds for the Central Universities under Grant 2022YJS130.

ABSTRACT Future network architectures are expected to be autonomous, intelligent, and service-based,
posing new security challenges. To address these challenges, the Artificial Intelligence (AI) security
service emerges as a promising solution. However, the complex service configurations and performance
guarantees hinder the autonomous deployment of theAI security service. This paper proposes an autonomous
deployment mechanism in Software-Defined Networking/Network Function Virtualization (SDN/NFV)
enabled networks. First, our mechanism introduces user and decision planes on top of the control plane,
enabling hierarchical intent expression and translation from user security intent to security policies. Then,
we analyze the embedding problem of the AI-based Security Function Chain (AISFC) during security
policy generation. We formulate the AISFC embedding problem as an Integer Linear Programming
(ILP) task to minimize the total response delay. By decomposing it into AISF placement and routing,
we design a heuristic algorithm with polynomial time complexity. Finally, we validate the proposed
mechanism through a prototype system and numerical simulations, demonstrating its ability to autonomously
translate, implement, and guarantee the user security intent. Comparative analysis shows that our approach
considering the relationship between available computing resources and delay achieves smaller response
delays than the baseline. Furthermore, our algorithm achieves a gap from optimality approximately 28.57%
smaller than the greedy algorithm and supports networks that are 4.34 times larger in scale than the exact
solution within a 2-second execution time.

INDEX TERMS Artificial intelligence, network function virtualization, service function chain, intent-based
network, security management.

I. INTRODUCTION
Future networks are expected to support diverse and differ-
entiated service scenarios [1], including autonomous driving,
telemedicine, and smart cities. To achieve adaptability across
various scenarios, Service-Based Architecture (SBA) [2]
leveraging software and virtualization technology is crucial.
In the forthcoming 6G era, the integration of Artificial
Intelligence (AI) technology will enable an autonomous
and intelligent SBA, facilitating ubiquitous AI as a Service
by autonomously managing and allocating resources and
functions in cloud-edge-end networks [3], [4], [5], [6].

The associate editor coordinating the review of this manuscript and

approving it for publication was Zaharias D. Zaharis .

The evolution of network architecture brings forth new
security challenges. The emergence of human-computer-
object interaction scenarios in 6G systems blurs network
boundaries, increasing the severity of security threats [7], [8].
Traditional protection methods at network boundaries, such
as access control and attack detection, face limitations, neces-
sitating new end-to-end security detection and monitoring
mechanisms. Moreover, under the SBA, on-demand security
services are crucial, as different application scenarios require
the network to dynamically provide customized security
capabilities to users.

Service Function Chain (SFC) [9] based on Software-
Defined Networking (SDN) and Network Function Virtu-
alization (NFV) technology offers logically independent
network function paths within a shared virtualized

4048

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0002-3333-7043
https://orcid.org/0000-0003-3514-0321
https://orcid.org/0000-0002-4548-282X

W. Wang et al.: Autonomous Deployment Mechanism for AI Security Services

FIGURE 1. An example of implementing AI security services in the
SDN/NFV-enabled network.

infrastructure, making it an excellent candidate for imple-
menting end-to-end security services. The integration of AI
technology in network security has given rise to AI-based
Security Functions (AISFs) [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20], [21]. These security functions
utilize AI techniques to analyze network data, model normal
and attack behaviors, and perform user authentication, attack
detection, mitigation, source tracing, traffic classification,
etc. AISFs can be deployed and orchestrated through SFC,
enabling traffic to traverse different security paths and
providing customized security services to users. In the
subsequent description, we refer to the SFC comprising
AISFs as the AI-based Security Function Chain (AISFC),
and the security service enabled by AISFC as the AI security
service.

To illustrate the implementation of AI security ser-
vices in an SDN/NFV-enabled network, FIGURE 1
depicts a representative example. The data plane includes
ingress/egress nodes (green nodes) and function nodes
(white nodes). Ingress/egress nodes are responsible for
traffic encapsulation/decapsulation and forwarding based on
the Network Service Header (NSH) [22] protocol, while
AISF instances can be deployed on the function nodes.
The control plane consists of the NFV manager and SDN
controller, responsible for the instantiation, deployment, and
orchestration of AISFs within the data plane.

Despite advancements, realizing the autonomous deploy-
ment of AI security services still poses unresolved challenges.
This paper focuses on two specific issues in this regard.
• Firstly, the complexity of service configuration and

the lack of user-friendliness hinder efficient deployment.
Users often lack understanding of the technical details
underlying the infrastructure and articulate their intent solely
in terms of desired outcomes, rather than the necessary
actions. This necessitates the network’s ability to comprehend
user intent, convert it into network-executable policies, and
autonomously deploy and implement functions that align
with the user’s intent. Intent-Based Networking (IBN) has
emerged as a promising approach to address this problem.
Intent-driven security management [23], [24], [25], [26],
[27], [28], [29] has received considerable attention from
researchers. However, existing research primarily focuses on
configuring specific security functions or operational security

during service orchestration, overlooking the application of
SFC-enabled security services.
• Secondly, there is a lack of suitable methods to

ensure optimal performance of AISFs within the SFC. The
performance of AISFs, which can be evaluated using security
metrics such as detection rate, response delay, accuracy,
and authentication efficiency, depends on the quality and
complexity of the AISF model as well as the allocated
network resources. Once the AISF model is determined, the
allocation of network resources to each AISF within the
AISFC becomes the key to influencing its response delay
or efficiency. To ensure prompt response to security events,
minimizing the response delay of AISF is crucial. The AISF
with higher quality tends to have greater complexity and
workload [30]. In resource-constrained environments such
as edge computing [31], the varying computing resources
across nodes significantly impact the computing delay of
AISFs with heavier workloads. Existing research [32],
[33], [34], [35], [36], [37] on SFC embedding problems
often neglects the relationship between available computing
resources and the computing delay of Virtualized Network
Functions (VNF), which poses challenges in deploying
AISFs in resource-constrained environments. To address
these challenges and ensure optimal AISF performance, it is
imperative to re-model the AISFC embedding problem and
devise an effective resource scheduling method.

In this paper, we present an autonomous deploymentmech-
anism for AI security services based on IBN. The proposed
mechanism translates user security intent into the security
capability requirement, generates network-executable AISFC
and AISFC embedding policies, and ensures the autonomous
implementation of AI security services that meet the user’s
security level requirement.

The main contributions of this paper are as follows:
• We design an autonomous deployment mechanism that

introduces user and decision planes on top of the control
plane. This mechanism establishes a scalable security capa-
bility model, security intent mapping graph, and knowledge
base in the user and decision planes. It enables hierarchical
expression and translation of the user’s security intent,
and security capability requirement into security policies.
Through the collaboration of modules in the user plane,
decision plane, and control plane, this mechanism provides
AI security services that meet the user’s security level
requirement.
• We analyze the AISFC embedding problem in the

process of generating the AISFC embedding policy. (i) We
formulate the AISFC embedding problem as an Integer
Linear Programming (ILP) task to minimize the total
response delay. (ii) We propose the ILPCAISFC and baseline
ILPC−assuAISFC . ILPCAISFC considers the relationship between
available computing resources and computing delay, while
baseline ILPC−assuAISFC assumes the computing resource require-
ment for AISFs and considers any deployment meeting the
requirement as acceptable in terms of computing delay.

VOLUME 12, 2024 4049

W. Wang et al.: Autonomous Deployment Mechanism for AI Security Services

(iii) We decompose the AISFC embedding problem into
AISF placement and routing, design an AISF Placement
and Routing with Rank and Fallback (APR2F) algorithm,
and prove its polynomial time complexity. The above
model and algorithm optimize resource allocation in the
AISFC embedding process, ensuring optimal AISF perfor-
mance within the AISFC.
•We verify and evaluate the proposed mechanism, model,

and algorithm through a prototype system and numerical
simulations. Experimental results demonstrate that our mech-
anism achieves autonomous translation, implementation,
and guarantee of user security intent. Compared to the
baseline ILPC−assuAISFC , ILPCAISFC achieves smaller response
delays especially in environments with significant differences
in computing resources. The APR2F algorithm provides
solutions closer to optimality compared to the greedy
algorithm and supports significantly larger-scale networks
than the exact solution while maintaining the same execution
time.

The rest of this paper is organized as follows: Section II
summarizes related work; Section III designs the autonomous
deployment mechanism for AI security services; Section IV
analyzes the AISFC embedding problem; Section V shows
the experimental results and analysis; Section VI summarizes
the work of this paper.

II. RELATED WORK
This section summarizes related work from two aspects:
security service automation and AISFC embedding.

A. SECURITY SERVICE AUTOMATION
Researchers have designed various AISFs for network
applications, demonstrating their effectiveness and accuracy.
For example, Zolanvari et al. [10] proposed intrusion
detection functions based on machine learning techniques
like random forests and decision trees, effectively detecting
attacks such as Backdoor, Command Injection, and SQL
Injection. Bhardwaj et al. [11] combined autoencoders and
Deep Neural Networks (DNN) for flexible and accurate
DDoS attack detection. Li et al. [12] used statistical
methods andConvolutional Neural Networks (CNN) to tackle
different types of DDoS attacks. Li et al. [13] designed a
DDoS attack mitigation function based on federated learning
for the industrial Internet of Things to effectively reduce
the mitigation time. Access control functions have also
received attention, with Picard and Pierre [14] developing a
risk-based assessment system that dynamically authenticates
users using deep reinforcement learning. Fu et al. [15]
proposed a neural support decision tree-based approach
to proactively evaluate and authenticate access requests.
Fang et al. [16] designed amethod to dynamically update trust
relationships, providing access authorization that adheres to
the zero-trust principle. Yang et al. [17] employed a relation
network and behavior library to develop a security control
function using deep learning techniques. They utilized spe-
cific information for control identification, ensuring privacy

and security. Sinha et al. [18] introduced a low-overhead
machine learning method for accurate DDoS attack path
tracking. Li et al. [19]introduced a graph convolutional
network-based multi-domain DDoS path tracing function.
By leveraging graph structures, their approach accurately
reconstructs DDoS attack paths. Additionally, scholars [20],
[21] have studied AI-based encrypted traffic classification
to ensure service quality. These diverse AISFs hold promise
for building a more trustworthy network.

However, existing research primarily focuses on designing
and evaluating individual security functions, without consid-
ering their deployment in real-world networks. Customized
security services often necessitate the integration of multiple
AISFs, resulting in complex and challenging deployment pro-
cesses. Intent-driven autonomous network configuration has
emerged as a relevant topic among scholars. User intent refers
to operational goals and outcomes defined declaratively,
without specifying implementation details [23]. The objective
is to convert abstract user intents into network-executable
policies and automate the network policy configuration
process [24]. While some solutions have been proposed,
such as the work by Chowdhary et al. [25] for efficient
security policy management. However, this solution still
requires users to possess prior knowledge of network security
services. Szyrkowiec et al. [26] focused on intent-based
security service automation but only considered encryption
services at different network levels. Murcia et al. [27]
utilized intent-based orchestration to tackle heterogeneity in
distributed computing. However, their focus lies primarily on
security aspects during the service request process rather than
the request for a security service. Kim et al. [28] designed
a security service automation provision system based
on the Interface to Network Security Functions (I2NSF)
architecture. Furthermore, Nguyen et al. [29] developed a
conflict detection mechanism for I2NSF, effectively enhanc-
ing the architecture’s robustness. However, they primarily
addressed the configuration of specific security functions
without considering the orchestration of security function
paths.

Analyzing the existing research reveals a gap in the
availability of an efficient and user-friendly autonomous
platform/framework/mechanism for deploying customized
AI security services.

B. AISFC EMBEDDING
In Section I, we discussed the importance of response delay
in evaluating the impact of network resources on AISF
performance. This subsection provides a summary of related
work from SFC embedding with a delay guarantee and AI
inference resource scheduling.

Several studies have addressed the SFC embedding prob-
lem with a delay guarantee. Yuan and Ren [32] proposed a
multi-layer network design using a greedy heuristic algorithm
to solve the SFC embedding problem with end-to-end delay
constraints. Sasabe and Hara [33] introduced an enhanced
network model and formulated the SFC embedding problem

4050 VOLUME 12, 2024

W. Wang et al.: Autonomous Deployment Mechanism for AI Security Services

as a capable ILP problem based on the shortest path roaming
problem, proposing a heuristic algorithm for its solution.
Li et al. [34] proposed a reinforcement learning-basedmethod
to address the SFC path selection problem without prior
knowledge. Horimoto and Oki [35] tackle the limitation
of existing methods, which solely focus on maximum
latency, by introducing service delay probability protection.
Varasteh et al. [36] and Wang et al. [37] both decomposed
the SFC embedding problem into the VNF placement
and routing problem. Paper [36] utilized a centrality-based
ranking method for VNF-to-physical node mapping and an
aggregation cost algorithm based on Lagrangian relaxation
to find solutions satisfying the delay constraints. Paper [37]
employed a multi-agent deep reinforcement learning frame-
work for VNF placement and routing subtasks. It addressed
the dynamic network topology by utilizing parameter transfer
model retraining. However, these studies did not consider the
relationship between available computing resources andVNF
computing delay, rendering the proposed models or methods
potentially unsuitable for AISFC deployment at the network
edge.

AISFs can be categorized as AI inference tasks. The
problem of AI inference resource scheduling has gained
significant attention from researchers. Zhang et al. [30]
proposed an edge AI model deployment framework that
allows joint configuration of data quality ratio and model
complexity ratio by analyzing the relationship between
model quality, data, and model complexity. She et al. [38]
addressed the on-demand scheduling of edge Deep Neural
Network (DNN) inference tasks with guaranteed accuracy
and delay, proposing an online heuristic algorithm to tackle
the problem. Zhang et al. [39] employed a deep deterministic
policy gradient-based learning algorithm to solve the task
and resource allocation problem of DNN inference in the
industrial Internet of Things (IoT) context. Ma et al. [40]
devised a bandit learning-based scheduling scheme to ensure
the reliability of DNN inference tasks. However, AISFs in
the AISFC differ from the AI inference tasks discussed
in the previous studies. Unlike those tasks, AISFs process
traffic without relying on a pre-prepared dataset. Therefore,
determining the response delay of AISFs requires considering
the relationship between the processed samples and the traffic
(or data packets).

Therefore, we aim to address the shortcomings of AISFC
embedding in the aforementioned research. We propose an
AISFC embedding model and method specifically tailored
for resource-constrained environments.

III. AUTONOMOUS DEPLOYMENT MECHANISM
In this section, we propose an autonomous deployment
mechanism for AI security services in SDN/NFV-enabled
networks. It aims to autonomously translate user security
intents into network executable policies and ensure the
implementation of AI security services alignedwith the user’s
security level requirement.

FIGURE 2. The autonomous deployment mechanism for AI security
services.

A. OVERVIEW
The autonomous deployment mechanism for AI security
services, depicted in FIGURE 2, extends the control plane
in the SDN/NFV-enabled network by adding a user plane and
a decision plane.

In the user plane, the user security intent is obtained
through the Graphical User Interface (GUI) or Natural
Language Processing (NLP) [41] system. It is then translated
into the security capability requirement by the user intent
translation system, using the security intent mapping graph
and security capability model. The translated requirement is
forwarded to the decision plane.

The decision plane consists of the security policy generator
and the AISFmanager. The security policy generator receives
the security capability requirements and generates an AISFC
policy based on the Security Capability Information (SCI)
and AISF Information (AISFI) stored in the knowledge
base. It also utilizes the AISFC embedding algorithm to
create an AISFC embedding policy, considering the Substrate
Network Information (SNI) in the knowledge base. The AISF
manager evaluates AISF models provided by developers,
saves qualified models, and updates the knowledge base with
AISFI. The monitoring interface collects SNI periodically,
monitors the inference results and running status of AISF
instances, and makes timely adjustments to security policies
to ensure continuous fulfillment of user intent.

To facilitate the transfer and configuration of informa-
tion and policies between planes or function modules,
we employ the YANG model to define the northbound
interfaces between planes and the monitoring interface.

VOLUME 12, 2024 4051

W. Wang et al.: Autonomous Deployment Mechanism for AI Security Services

FIGURE 3. The security capability model.

For more details, refer to the documentation available at
https://github.com/wwl0220/AISSADM.

The following sections provide a detailed explanation of
the function modules in the user plane and decision plane,
as well as the hierarchical expression and translation process
of user security intent between planes.

B. USER PLANE
1) USER SECURITY INTENT
User security intent encompasses two aspects. Firstly,
it defines the required security capabilities, and secondly,
it specifies the level of requirement for those capabilities.
However, users often lack an understanding of the network’s
available security capabilities. User security intent typically
represents a task that the network should perform, such as
user identity authentication, attack detection, or protection
of private information. We express a user security intent as
follows:

UserSecurityIntent ⇒

(Iid,Conditions,Object,Action, SLR). (1)

where Iid denotes the identification assigned by the transla-
tion system to the user security intent. Conditions denotes
the execution conditions, such as network device range and
time information. Object refers to the intent’s target, Action
represents the intended action, and SLR indicates the security
level requirement. Based on the Action, user security intent
can be categorized into actions like authenticating, authoriz-
ing, detecting, blocking, mitigating, analyzing, guaranteeing,
tracing, and countering. SLR reflects the extent to which the
user requires security capabilities.

2) SECURITY CAPABILITY MODEL AND SECURITY INTENT
MAPPING GRAPH
Security capabilities, classified according to the Sliding
Scale of Cyber Security’s five stages [42], encompass basic
security, passive defense, active defense, intelligent analysis,
and attack counter. These capabilities are composed of
various sub-capabilities, as depicted in FIGURE 3. The
sub-capabilities can be further categorized based on the

FIGURE 4. The security intent mapping graph.

Object . For instance, attack detection can be subdivided into
DDoS attack detection and Web attack detection.

FIGURE 4 depicts the security intent mapping graph.
Intents such as authenticating, authorizing, detecting, block-
ing, mitigating, and analyzing typically rely on one or
two security capabilities, each with a well-defined Object .
Conversely, complex security intents like guaranteeing,
tracing, and countering require the coordination of multiple
security capabilities to be effectively carried out.

Our security capability model and security intent mapping
graph are designed based on existing security knowledge
and AISFs. However, this model and graph are scalable.
By adding and modifying security capabilities and actions for
security tasks, our proposed intent translation method can be
adapted to a wider range of security scenarios.

3) SECURITY CAPABILITY REQUIREMENT
The user intent translation system converts user security
intent into a security capability requirement, which we
represent as follows:

SecurityCapabilityRequirement ⇒

(Iid,Conditions, SLR, SCs). (2)

where Iid , Conditions, and SLR inherit the content associated
with the user security intent, while SCs denotes the required
security capabilities.

4) INTENT TRANSLATION PROCESS
The intent translation process consists of three steps. (i) The
user intent translation system extracts theConditions,Object ,
Action, and SLR from the user intent and assigns the
identification Iid to the intent. (ii) The Action in the user
intent is mapped to security capabilities using the security
intent mapping graph. The required security capabilities are
refined into various security sub-capabilities (SCs) based
on the security capability model and Object . (iii) The
components Iid , Conditions, SLR, and SCs combine to form
the security capability requirement, which is then transmitted
to the decision plane.

4052 VOLUME 12, 2024

W. Wang et al.: Autonomous Deployment Mechanism for AI Security Services

C. DECISION PLANE
1) KNOWLEDGE BASE
The knowledge base comprises SCI, AISFI, and SNI.

SCI is defined as follows:

SCI 1
= {SCn, SCf , SCr }. (3)

where SCn represents the name of the security capability, SCf
denotes AISFs associated with the security capability, and
SCr captures the relationships between the security capability
and other security capabilities. SCr includes subordination,
dependency, and combination relationships. Subordination
refers to the relationship between sub-capabilities and
superior security capabilities in the security capability model.
For example, attack detection belongs to passive defense.
Dependency signifies that a certain security capability is a
prerequisite for realizing another security capability, such
as attack source tracing relying on attack detection. The
combination relationship indicates that a certain security
capability is realized through a combination of multiple
security capabilities, such as DDoS attack detection, Web
attack detection, and other capabilities that jointly implement
attack detection.

AISFs are provided by developers who register with
the AISF manager and submit their AISF models. The
AISF manager evaluates the workload and quality of each
AISF model. Workload is measured as the computation
required by the model to perform inference on a batch of
samples, assuming the batch size is α. Quality is assessed
through performance indicators on the unified test set.
For example, classification models can be evaluated using
accuracy, precision, and recall, while regression models can
be evaluated using mean absolute error and mean squared
error. If the AISF model quality does not meet the security
level, it is returned by the AISF manager. If the quality meets
the security level, the AISF manager accepts the model and
stores relevant information in the knowledge base. AISFI is
defined as follows:

AISFI 1
= {AISFid ,AISFa,AISFp,AISFs,AISFw}. (4)

where AISFid represents the AISF identification assigned
by the AISF manager, AISFa denotes the attribute, AISFp
indicates the prerequisite (a set of other AISFs that need
to be pre-deployed before deploying the AISF), AISFs
represents the security level set of all AISF models, and
AISFw denotes the workload set of all AISF models. The
attribute AISFa can be categorized as packet-based or flow-
based, depending on the feature extraction method. Packet-
based AISF extracts feature vectors from an individual data
packet, where each packet corresponds to one sample. Flow-
based AISF aggregates packets with the same five-tuple
(source/destination IP, source/destination port, and protocol)
within a specific period into flows and extracts feature vectors
from the aggregated flows. Multiple packets aggregated into
one flow correspond to one sample.

The same AISF can have multiple models with differ-
ent security levels and workloads. The security level set

AISFs = {(Modelid , s)} and the workload set AISFw =
{(Modelid ,ws)}, where Modelid represents the model iden-
tification, s represents the security level of the model, and
ws represents the workload of the model. Security levels are
classified by the AISF manager based on the quality of the
models. For example, a classificationmodel may be classified
as level 1, 2, or 3 based on its accuracy falling within specific
intervals, such as (80,90], (90,95], or (95,100]. The SLR of
the user security intent indicates that the security levels of
all AISF models implementing the security intent meet the
required values.

SNI is defined as follows:

SNI 1
= {SNt , SNr , SNs}. (5)

where SNt represents the substrate network topology, includ-
ing nodes (ingress/egress nodes and function nodes) and
links between nodes. SNr indicates the substrate network
resources, encompassing available computing resources of
function nodes, and available bandwidth of links. SNs
represents the substrate network status, including the devices
connected to the network and statistics of the communication
process of each device, such as average packet length, peak
traffic rate, and average number of packets corresponding to
each flow. The SNI is periodically updated through network
data collected by the monitoring interface.

2) AISFC POLICY
The security policy generator leverages the SCI and AISFI
from the knowledge base to translate the security capability
requirement into an AISFC policy. The AISFC policy is
expressed as:

AISFCPolicy⇒ (Iid,Conditions,Chain). (6)

where Iid andConditions inherit the relevant content from the
security capability requirement. Chain represents an AISFC
that fulfills the security capability requirement. Each AISF
in Chain includes the AISF identification, attribute, model
identification, model workload, and sequence information.
The security policy generator determines the sequence
information of the AISF based on the AISF’s prerequisite
AISFp.

3) AISFC EMBEDDING POLICY
The security policy generator utilizes the AISFC embedding
algorithm to translate the AISFC policy into an AISFC
embedding policy, leveraging the SNI from the knowledge
base. The details of the AISFC embedding algorithm can
be found in Section IV. The AISFC embedding policy is
expressed as:

AISFCEmbeddingPolicy⇒

(Iid,Conditions,NEmbedding,LEmbedding). (7)

where Iid and the time information in Conditions inherit
the content of the corresponding AISFC policy. The net-
work device range in Conditions is mapped to the IP

VOLUME 12, 2024 4053

W. Wang et al.: Autonomous Deployment Mechanism for AI Security Services

address of the corresponding device based on the SNI.
NEmbedding represents the node embedding information,
while LEmbedding represents the link embedding informa-
tion. For the ingress/egress node, the embedding information
is the IP address of the corresponding substrate network
ingress/egress node. For the AISF, the embedding informa-
tion includes the AISF identification, model identification,
sequence information, and the IP address of the correspond-
ing substrate network function node. For virtual links, the
embedding information consists of the set of IP addresses of
the substrate nodes through which the link passes.

4) POLICY GENERATION PROCESS
The policy generation process consists of six steps. (i) The
security policy generator extracts the Iid , Conditions, SLR,
and SCs from the security capability requirement. (ii) The
security policy generator queries the SCI from the knowledge
base to retrieve other security capabilities that are dependent
on or combined with the required security capabilities, along
with the corresponding AISF identifications. It also queries
the AISFI to obtain model identifications, model workloads,
and prerequisites that comply with the SLR. It determines the
sequence information between AISFs based on AISFp. These
details collectively form the Chain. (iii) Iid , Conditions, and
Chain together constitute the AISFC policy. (iv) The security
policy generator queries the SNI to convert the network
device range specified in the AISFC policy’s Conditions
into the corresponding IP addresses of the devices. (v) The
security policy generator queries the SNI, invokes the
AISFC embedding algorithm, and generates NEmbedding
and LEmbedding. (vi) Iid , Conditions, NEmbedding, and
LEmbedding combine to form the AISFC embedding policy,
which is then delivered to the control plane.

Based on the AISFC embedding policy, the NFV manager
within the control plane generates and deploys AISF
instances. The controller generates and applies flow tables to
implement the AISFC on the data plane.

IV. AISFC EMBEDDING
In this section, we address the AISFC embedding problem,
which involves generating the AISFC embedding policy.
To tackle this problem, we formulate it as an ILP task and
propose a heuristic solution.

A. SYSTEM MODEL
The AISFC policy and SNI can be described using the
following mathematical language.

1) AISFC POLICY
The Chain in the policy can be represented as an ordered set
of virtual nodes, denoted as F = {0, 1, 2, . . . ,F,F + 1}.
In this set, 0 and F+1 represent the ingress and egress nodes,
respectively, while the remaining nodes represent AISFs. The
virtual link between two adjacent nodes, u and v, is denoted
as uv. Each AISF processes a batch of samples, with the batch
size α. The set of optional security levels for all AISF models

is denoted as S (|S| = S). A model of AISF u with security
level s has a workload wus . An AISFC represents a user’s
security intent (SLR = sth), where the security level of each
AISF model is required to be sth.

2) SNI
The SNt can be represented as a directed graph, G =

(N ,L), where N = {1, 2, . . . ,N } is the set of substrate
nodes and L (L| = L) is the set of substrate links.
If there is a link connecting substrate nodes i and j, it is
denoted as link ij. The substrate nodes are divided into
ingress/egress nodes, denoted as Nt (|Nt | = Nt), and
function nodes, denoted as Nf (|Nf | = Nf). Ingress/egress
nodes are responsible solely for traffic classification and
forwarding and cannot deploy AISFs. SNr includes the
available computing resources Ci for an AISF on the function
node i, as well as the available bandwidth resources Bij for
the substrate link ij. We assume that the available computing
resources on the function nodes of the substrate network
follow a truncated Gaussian distribution with upper and
lower limits, denoted as C ∼ N(µ, σ 2,Cmin,Cmax). Where
µ represents the mean value, σ represents the standard
deviation, and Cmin and Cmax represent the minimum and
maximum computing resources available to function nodes,
respectively. A higher standard deviation σ indicates a greater
disparity in computing resources across function nodes. SNs
includes parameters such as the average length of data packets
P, the peak traffic rate, and the average number of data
packets per flow. The security policy generator considers the
total traffic peak rate of all devices within Conditions as the
bandwidth requirement b of the AISFC.
Next, we model the response delay of AISFs within the

AISFC. When AISFs are deployed as VNFs, they typically
utilize port mirroring to duplicate traffic. The inference
process of AISFs for samples does not impact the forwarding
of corresponding packets or flows on subsequent nodes.
Given these characteristics, the response delay of an AISF in
anAISFC is the duration between the packets’ departure from
the ingress node and the AISF’s completion of generating
inference results for all samples in the associated batch.
The response delay encompasses both computing delay and
communication delay.

The computing delay of AISF u can be defined as

dcu =
∑
s∈S

∑
i∈Nf

xui
musw

u
s

Ci
. (8)

where the decision variable xui ∈ {0, 1} denotes whether AISF
u is mapped to the substrate node i, and mus ∈ {0, 1} denotes
whether AISF u selects a model with the security level s.

Similarly, the communication delay of AISF u can be
described as

d lu =
u∑
v=1

∑
ij∈L

y(v−1)vij
αβP
Bij

. (9)

4054 VOLUME 12, 2024

W. Wang et al.: Autonomous Deployment Mechanism for AI Security Services

where the decision variable yuvij ∈ {0, 1} indicates whether
the substrate path, mapped by the virtual link uv, includes the
substrate link ij. The variable β denotes the number of data
packets associated with a sample. When the AISF attribute is
packet-based, β equals 1. If the AISF attribute is flow-based,
β equals the average number of packets per flow.
Consequently, the response delay of AISF u can be

calculated as

du = dcu + d
l
u. (10)

B. PROBLEM FORMULATION
To ensure timely response to security incidents, the total
response delay of AISFs must be as short as possible.
Therefore, our optimization objective is to minimize the total
response delay of AISFs within the AISFC. We model this as
an ILP problem. The following constraints are considered:∑

i∈Nf

xui = 1,∀u ∈ F − {0,F + 1}, (11)

∑
i∈Nt

xui = 1,∀u ∈ {0,F + 1}, (12)

∑
u∈F

xui ≤ 1,∀i ∈ N , (13)∑
ij∈L

y(u−1)uij −

∑
ji∈L

y(u−1)uji = xu−1i − xui ,

∀i ∈ N , u ∈ [1,F + 1], (14)∑
n∈N

msu = 1,∀u ∈ F − {0,F + 1}, (15)

msus = sth,∀u ∈ F − {0,F + 1}, (16)
F+1∑
u=1

y(u−1)uij b ≤ Bij,∀ij ∈ L. (17)

Constraint (11) and (12) ensure the mapping of an AISF
or ingress/egress to a substrate network function node or
ingress/egress node, respectively. To prevent single points
of failure, constraint (13) restricts each substrate node to
carry only one virtual node within the AISFC. The flow
continuity constraint, denoted by constraint (14), guarantees
that the virtual link is mapped to a continuous substrate
path. Constraint (15) and (16) enforce the condition that the
security level of each selected model for an AISF matches
the user’s security level requirement. Lastly, constraint (17)
represents the bandwidth constraint.

To summarize, the model ILPCAISFC of the AISFC embed-
ding problem is

min
x,y

∑
u∈F−{0,F+1}

dcu + d
l
u

s.t. (10)− (16). (18)

Existing research on the SFC embedding problem often
assumes that any VNF deployment meeting the computing
resource requirement is acceptable in terms of computing
delay. Building upon this assumption, we introduce the

baseline model ILPC−assuAISFC , which incorporates computing
resource constraints as follows:∑

∀u∈F−{0,F+1}
xui c ≤ Ci, i ∈ N . (19)

where c represents the computing resource requirement.
With constraint (19), the computing delay of an AISF

deployed on any node meeting the computing resource
requirement c is deemed acceptable. Consequently, the
optimization objective of minimizing the total response delay
is equivalent to minimizing the total communication delay
within ILPC−assuAISFC , as shown below.

min
x,y

∑
u∈F−{0,F+1}

d lu

s.t. (11)− (17), (19). (20)

C. HEURISTIC SOLUTION
The above ILP is known to have NP-Hard properties.
To address the AISFC embedding problem more efficiently,
we decompose it into two sub-problems: AISF placement and
routing. This decomposition allows us to devise a heuristic
algorithm called AISF Placement and Routing with Ranking
and Fallback (APR2F).
The APR2F algorithm begins by solving the AISF

placement problem. The objective is to minimize the total
response delay of AISFs. Given that AISFs with larger
workloads require more network communication and com-
puting resources, we introduce a ranking strategy. AISFs and
function nodes are ranked based on their workload and avail-
able resources, respectively. The ranking of function nodes
considers both communication and computing resources.

The algorithm scores function nodes using a combination
of their computing resource score and centrality score,
as shown below.

γi = νi + ρi. (21)

where νi indicates the node computing resource score and ρi
indicates the node centrality score.

The computing resource score νi represents the ratio of
available computing resources of a function node to the
maximum available computing resources among all nodes.
It ranges between 0 and 1. The centrality score ρi reflects
the node’s importance in the network and is calculated
using normalized Closeness Centrality (CC) [43]. After
obtaining scores for function nodes, the algorithm sorts them
in descending order. AISFs with heavy workloads are then
placed on function nodes with high scores to form the initial
AISF embedding scheme.

Next, the algorithm addresses the routing problem between
AISFs and the ingress/egress nodes. Routing between embed-
ded AISFs is performed in the order specified in the AISFC.
The algorithm uses a shortest path algorithm weighted
by inverse bandwidth to embed virtual links between
AISFs. If the remaining bandwidth of a selected NFV
link is insufficient, a fallback mechanism is employed. The

VOLUME 12, 2024 4055

W. Wang et al.: Autonomous Deployment Mechanism for AI Security Services

algorithm adjusts the placement position of the subsequent
AISF connected to the virtual link, prioritizing the function
node with the highest score, and then re-routes. If the link
bandwidth still does not meet the requirement and no function
nodes are available for adjustment, the embedding fails.

Regarding ingress and egress, APR2F employs the shortest
path algorithm weighted by inverse bandwidth to select
ingress/egress nodes and links with sufficient bandwidth
and shortest paths. If no ingress/egress node meets the
requirements, the embedding process fails.

Algorithm 1 presents the pseudocode for the APR2F
algorithm. In Line 2, the node_ranking() function is called to
calculate function node scores and sort them in descending
order. Line 3 invokes the aisf_ranking() function to rank
AISFs based on their workload, from large to small. Line 4
utilizes the get_initial_placement() function to obtain the
initial embedding scheme FAISF

E for AISFs. Lines 6-15
involve the routing() function, which establishes the virtual
link embedding scheme Lu,u+1 between two AISFs while
ensuring bandwidth constraints are met. If Lu,u+1 = ∅
and function nodes are available for adjustment N rank

f ̸=

∅, the algorithm calls the fallback() function to modify
the AISF embedding scheme and re-route. Line 20 calls
the routing() function to obtain the ingress/egress node
embedding scheme Fgress

E , as well as the connected virtual
link embedding scheme LgressE , that satisfy the bandwidth
requirements. Finally, if the embedding process is successful,
the algorithm returns the node embedding scheme, FE , and
the link embedding scheme, LE . The AISFC embedding
policy’s security policy generator generates node embedding
information (NEmbedding) and link embedding information
(LEmbedding) based on FE and LE obtained through the
APR2F algorithm.
Complexity Analysis: The APR2F algorithm consists

of AISF placement and routing. In the AISF placement
stage, function node scores are calculated and sorted.
The complexity of calculating the resource score for each
function node is O(Nf). The centrality score of function
nodes is determined using the Dijkstra algorithm, with a
complexity of O(N logN + L) when employing a Fibonacci
heap [35] as a priority queue. Therefore, the overall
complexity of calculating centrality scores for function nodes
is O(Nf (N logN + L)). Sorting function nodes using the
bisection method has a complexity of O(N 2

f). Similarly,
sorting AISFs using the bisection method has a complexity
of O(F2). Finally, obtaining the initial placement of AISFs
has a complexity of O(F).In the routing stage, Dijkstra’s
algorithm is again utilized. In the best-case scenario, where
the fallback mechanism is not required, the complexity is
O((F − 1)(N logN + L)). In the worst-case scenario, where
the fallback mechanism needs to traverse all function nodes,
the complexity is O(Nf (N logN + L)). Additionally, routing
between AISFs and the ingress/egress nodes occurs with a
O(2(N logN + L)) complexity. In summary, the minimum
complexity of the APR2F algorithm is O(F + F2

+ Nf +
N 2
f + (Nf + F + 1)(N logN + L)), while the maximum

Algorithm 1 APR2F
Input: AISFC Policy and SCI;
Output: FE and LE ;
1: FE ← ∅, LE ← ∅;
2: N rank

f = node_ranking(Nf ,G,Ci,Bij);
3: F rank

AISF = aisf_ranking(F, sth,Q);
4: FAISF

E ← get_initial_placement(N rank
f ,F rank

AISF);
5: N rank

f ← N rank
f − FAISF

E , u← 1;
6: while u < F do
7: Lu,u+1← routing(G,FAISF

E ,LE , b);
8: if Lu,u+1 = ∅ then
9: if N rank

f ̸= ∅ then
10: FAISF

E ← fallback(N rank
f , u+ 1);

11: N rank
f ← N rank

f − FAISF
E ;

12: else
13: return Embedding Failed;
14: end if
15: else
16: LE ← LE ∪ Lu,u+1, u← u+ 1;
17: end if
18: end while
19: FE ← FE ∪ FAISF

E ;
20: Fgress

E ,LgressE ← routing(G,FE ,LE , b);
21: if Fgress

E = ∅orLgressE = ∅ then
22: return Embedding Failed;
23: else
24: FE ← FE ∪ Fgress

E , LE ← LE ∪ LgressE ;
25: end if
26: return FE , LE .

complexity isO(F+F2
+2Nf +N 2

f +(2Nf +2)(N logN+L)),

which can be simplified to O((Nf + F)(N logN + L)) and
O(2Nf (N logN + L)) respectively.

V. EXPERIMENTS
The proposed mechanism, models, and algorithms are eval-
uated through a prototype system and numerical simulations
in this section.

A. SYSTEM AND PARAMETER SETTINGS
We implement the prototype system on DELL PowerEdge
R720 servers, which have an Intel Xeon E5-2609 CPU
(1.70 GHz), 32GB memory, and 1TB hard disk storage. The
user plane and decision plane are implemented in Python
3.7, while the NFV manager of the control plane is based
on Docker Swarm, and the controller uses OpenDaylight.
For the data plane, we create virtual machines with the
Ubuntu 15.04 operating system on the VMware VSphere2
virtualization platform. These virtual machines serve as the
ingress/egress and function nodes, running OVS-2.6.1 with
Yiyang’s NSH patch [44]. The AISFmodels are implemented
using TensorFlow 2.2, and AISF instances are deployed using
Docker technology.

4056 VOLUME 12, 2024

W. Wang et al.: Autonomous Deployment Mechanism for AI Security Services

TABLE 1. The hyperparameters of AISF models.

TABLE 2. Security capability information and AISF information.

The User Security Intent, SCI, AISFI and SNI settings in
the prototype system are as follows.

1) USER SECURITY INTENT
In the prototype system, the User Security Intent is set
to detect DDoS attacks in communication traffic with the
edge server, based on our team’s previous research [12].
We evaluate the translation and implementation results of the
user security intent, as well as the performance of models and
algorithms for SLR values sth of 1, 2, and 3.

2) SCI AND AISFI
The security capability involved in the experiment is DDoS
attack detection, which falls under attack detection of passive

FIGURE 5. The substrate network topology.

defense. Three AISFs (AISF-1, AISF-2, and AISF-3) are
designed based on DNN [11] and CNN [12] models (the
model hyperparameters of AISF models are shown in the
TABLE 1), eachwith different security levels. Themodels are
trained and verified on a DDoS attack dataset collected by our
team [12]. The dataset is divided into a training set and two
test sets (test set 1 and test set 2). Test set 1 serves as a unified
test set in AISFManager to evaluate the quality and workload
of AISF models, while test set 2 is used to evaluate the
performance of deployed AISF models. The AISFs integrate
CICFlowMeter [45] as feature extraction tools, making their
attributes flow-based. AISF-1 is a prerequisite for AISF-2,
and both AISF-1 and AISF-2 are prerequisites for AISF-3.

The AISF models discussed here are classification models,
and their quality can be assessed by the AISF manager using
accuracy metrics. The AISF manager determines the security
level of a model based on its performance on test set 1.
Models with accuracy within the range (80, 90] are assigned
security level 1, accuracywithin (90, 95] are assigned security
level 2, and accuracy within (95, 100] are assigned security
level 3. The workload of the AISF models is measured by the
average inference time per batch of samples, multiplied by
the available computing resources of the running node.

In summary, the SCI and AISFI settings are shown in
TABLE 2.

3) SNI
Regarding the substrate network topology (shown in
FIGURE 5), there are 12 function nodes (white nodes)
and 4 ingress/egress nodes (green nodes). CPU Limit [46]
is used to set maximum CPU usage for function node
processes, reflecting different available computing resources
per node (available computing resources = CPU cycles per
second × CPU usage). The CPU usage distribution of nodes
follows a truncated Gaussian distribution, ranging from a
minimum value Cmin of 20% to a maximum value Cmax of
100%. The mean CPU usage µ is 70%, and the standard
deviation is σ . Substrate link bandwidth is set using Linux
Traffic Control, with randomly selected values from [100,
200, 300, 400] Mbit/s. The test set 2 was used to simulate
communication with the edge server, with measurements
indicating an average packet length P of 5442 bits, an average
packet number per flow β of 1.47, and a total traffic peak rate

VOLUME 12, 2024 4057

W. Wang et al.: Autonomous Deployment Mechanism for AI Security Services

of 100 Mbit/s. Therefore, the bandwidth requirement b for
AISFC is set to 100 Mbit/s.

The comparison and numerical simulation settings are as
follows.

4) COMPARISION SETTINGS
(i) In the model comparison, we utilize Gurobi to solve
ILPC−assuAISFC and ILPCAISFC, analyzing the performance of these
two ILP formulations under different SLRs and computing
resource distributions. (ii) In the algorithm comparison,
we employ the APR2F algorithm along with two other solu-
tions, namely Gurobi and the multi-layer graph-based greedy
algorithm (Greedy), to address the problem. We evaluate
the performance of these three solutions considering various
SLRs, computing resource distributions, and network scales
(through numerical simulation). Gurobi [47] employs an
exact solution framework, providing optimal solutions. The
Greedy algorithm, proposed in [32], selects the path and node
with the minimum cost to connect two adjacent layers on
a multi-layer graph. We modified the algorithm to suit the
AISFC embedding problem, selecting the path and node that
satisfy the constraints while minimizing the response delay.
Greedy serves as the baseline algorithm.

5) NUMERICAL SIMULATION SETTINGS
The Numerical simulation settings are designed to evaluate
the time complexity of the algorithms. Execution times
of APR2F, Greedy, and Gurobi are tested under different
substrate network scales. In the simulation experiments,
APR2F and Greedy are implemented in C++ to match the
underlying C++ programming language used by Gurobi.
The substrate network scale ranges from a minimum of
100 nodes to a maximum of 1600 nodes, with a step size of
100. The ratio of function nodes to ingress/egress nodes was
set at 3:1. Link bandwidth is randomly selected from [0, 100,
200, 300, 400], where 0 indicates no link between the two
nodes. The test host configuration consists of an Intel Core
i7-8700 CPU (6 cores and 3.20GHz) and 16GB memory.

B. RESULTS AND DISCUSSION
1) USER SECURITY INTENT TRANSLATION AND
IMPLEMENTATION RESULTS
FIGURE 6 illustrates the hierarchical translation process and
results of the user security intent when the SLR is set to 1. For
SLR 2 and 3, the translation process follows a similar pattern
as depicted in FIGURE 6.
The user intent translation process in the user plane

involves the following steps: (i) The user intent transla-
tion system extracts Conditions ⇒ (Source = ‘‘any’’,
Destination = ‘‘Edge server’’), Object ⇒ (Object =
‘‘DDoS Attack’’), Action ⇒ (Action = ‘‘Detect’’), and
SLR ⇒ (SLR = 1) from the user security intent and
assigns an identification Iid ⇒ (Iid = ‘‘IntentID’’) to
the intent. (ii) Using the security intent mapping graph,
the Action=‘‘Detect’’ is mapped to passive defense in the

TABLE 3. User security intent implementation results.

security capability model. Based on the Object=‘‘DDoS
Attack’’ and the security capability model, passive defense
is further refined into DDoS detection in attack detection.
(iii) Iid , Conditions, SLR, and SCs ⇒ (SC = ‘‘DDoS
detection’’) form the security capability requirement, which
is then forwarded to the decision plane.

The policy generation process in the decision plane
consists of the following steps: (i) The security policy
generator extracts Iid , Conditions, SLR, and SCs from the
security capability requirement. (ii) The security policy
generator queries the knowledge base for the SCI and the
AISFI to obtain the AISFC Chain ⇒ (Ingress =‘‘ingress’’,
(AISFid =‘‘AISF-1’’, AISFa=‘‘flow-based’’, Modelid=
‘‘M-1-1’’, Workload = 81, Order=1),. . . , Egress=‘‘egress’’)
that meets the requirement. (iii) Iid , Conditions, and
Chain form the AISFC policy. (iv) The security policy
generator queries the SNI in the knowledge base and
converts Conditions into Conditions ⇒ (Source = ‘‘any’’,
Destination = ‘‘27.0.4.3’’). (v) The security policy generator
queries the SNI. It employs the AISFC embedding algorithm
to generate NEmbedding ⇒ (Ingress = ‘‘27.0.1.2’’,
(AISFid = ‘‘AISF-1’’, Modelid = ‘‘M-1-1’’, Order =
1, IPv4 = ‘‘27.0.1.6’’),. . . ., Egress = ‘‘27.0.4.2’’) and
LEmbedding ⇒ ((IPv4 = ‘‘27.0.1.2’’, IPv4 = ‘‘27.0.1.6’’,
Order = 1),. . .). (vi) Iid , Conditions, NEmbedding, and
LEmbedding form the AISFC embedding policy, which is
then sent to the control plane.

Note that FIGURE 6 displays a partial representation
of the user security intent, security capability requirement,
AISFC policy, and AISFC embedding policy. For complete
information, see https://github.com/wwl0220/AISSADM.

Based on the AISFC embedding policy, the NFV manager
in the control plane generates and deploys AISF instances,
while the controller generates and delivers flow tables.
Subsequently, we evaluate the implementation of the user
security intent using test set 2. The evaluation results are
presented in TABLE 3.

From the evaluation results in TABLE 3, we observe that
the accuracy rates of the deployed AISF model instances
(M-1-1, M-2-1, and M-3-1) are all above 80%. Moreover,
the deployed AISF model instances (M-1-2, M-2-2, and
M-3-2) achieve accuracy rates exceeding 90%. Additionally,
the deployed AISF model instances (M-1-3, M-2-3, and
M-3-3) exhibit accuracy rates surpassing 95%. Consequently,

4058 VOLUME 12, 2024

W. Wang et al.: Autonomous Deployment Mechanism for AI Security Services

FIGURE 6. The hierarchical translation process and results of the user security intent.

FIGURE 7. The average total response delay calculated by Gurobi while solving ILPC
AISFC and ILPC−assu

AISFC for security level requirements 1, 2, and 3. The
computing resource standard deviations considered are (a) 2, (b) 10, and (c) 20.

all deployed AISF model instances meet the user’s security
level requirement.

2) MODEL EVALUATION RESULTS
In FIGURE 7, we present the average total response delay
calculated by Gurobi while solving ILPCAISFC and ILPC−assuAISFC
for security level requirements 1, 2, and 3. The computing
resource standard deviations σ considered are 2, 10, and
20, respectively. For ILPC−assuAISFC , the computing resource
requirements c are set to 30%, 50%, and 70% (CPU usage),
respectively.

Analyzing the results in FIGURE 7, we observe the
following conclusions:
• Under the same conditions (computing resource distri-

bution and security level requirements), ILPCAISFC achieves

smaller total response delays compared to ILPC−assuAISFC . When

σ is 2, ILPCAISFC has a slight advantage over ILPC−assuAISFC . As σ

increases to 10, the advantages of ILPCAISFC over ILPC−assuAISFC
gradually become more pronounced. With σ at 20 and a
security level requirement of 3, ILPCAISFC achieves response
delays that are 12.33ms, 53.88ms, and 75.41ms shorter than
ILPC−assuAISFC (C=70%), ILPC−assuAISFC (C=50%), and ILPC−assuAISFC
(C=30%), respectively. This is because ILPCAISFC considers
the impact of both computing resources and communication
resources in the entire network, while ILPC−assuAISFC only focuses
on the communication resources in the network subgraph
that meets the computing resource requirements. When σ

is small, the difference in available computing resources
between nodes is minimal, and communication resources
have a dominant impact on response delay. Consequently, the
disparity between ILPC−assuAISFC and ILPCAISFC is reduced. How-
ever, as σ increases, the difference in available computing

VOLUME 12, 2024 4059

W. Wang et al.: Autonomous Deployment Mechanism for AI Security Services

FIGURE 8. The response delay differences between the heuristic algorithms (APR2F and Greedy) and Gurobi for solving ILPC
AISFC vary with the standard

deviation of computing resources under security level requirements of (a) 1, (b) 2, and (c) 3.

FIGURE 9. The execution time of Gurobi, APR2F, and Greedy algorithm
vary with the substrate network size.

resources between nodes becomes more significant, and the
influence of computing resources on response delay becomes
crucial. Hence, ILPCAISFC, which considers the relationship
between available computing resources and delay, holds a
greater advantage over ILPC−assuAISFC .
• The difference in response delays obtained by ILPCAISFC

and ILPC−assuAISFC becomes greater as the security level require-
ment increases, especially when there is a significant differ-
ence in computing resources between nodes. For instance,
in FIGURE 7(c), when the security level requirement is 1,
ILPCAISFC achieves an average response delay that is 6.22ms
smaller than ILPC−assuAISFC (C=70%). When the security level
requirement is 2, ILPCAISFC achieves an average response

delay that is 9.99ms smaller than ILPC−assuAISFC (C=70%).

When the security level requirement is 3, ILPCAISFC achieves
an average response delay that is 12.33ms smaller than
ILPC−assuAISFC (C=70%). This is because higher security levels
increase the workload of the AISF model, making it more
sensitive to the available computing resources.

In summary, ILPCAISFC comprehensively considers the
impact of computing resources and communication resources
in the entire network, resulting in smaller response delays
compared to ILPC−assuAISFC . ILPCAISFC is particularly suitable for
resource allocation for AISF models with larger workloads.

3) ALGORITHM EVALUATION RESULTS
FIGURE 8 illustrates the response delay differences between
the heuristic algorithms (APR2F and Greedy) and Gurobi

for solving ILPCAISFC. These differences vary with the
standard deviation σ of computing resources and are
evaluated under security level requirements of 1, 2, and 3,
respectively.

FIGURE 8 indicates that the AISFC embedding scheme
obtained by the APR2F algorithm is closer to the optimal
solution compared to the Greedy algorithm. Across differ-
ent security levels and computing resource scenarios, the
response delay difference between the APR2F algorithm and
Gurobi remainswithin 250ms, which is approximately 100ms
(28.57%) shorter on average than the Greedy algorithm.
This improvement can be attributed to the ranking strategy
employed by the APR2F algorithm, which prioritizes the
deployment of AISF models with larger workloads on
function nodes possessing more available computing and
communication resources. By giving preference to AISF
models with higher workloads, the APR2F algorithm outper-
forms the Greedy algorithm.

FIGURE 9 presents the execution time of Gurobi, APR2F,
and the Greedy algorithm varying with the substrate network
size in numerical simulation experiments.

Based on FIGURE 9, it can be observed that the execution
time of APR2F and Greedy increases at a much slower rate
with network size compared to Gurobi. Additionally, the
execution time of the APR2F algorithm is slightly higher than
that of the Greedy algorithm. Significantly, Gurobi supports
less than 300 substrate network nodes within a 2-second
execution time, while the APR2F algorithm supports over
1,300 nodes (approximately 4.34 times larger than Gurobi)
and the Greedy algorithm supports well beyond 1,600 nodes
(approximately 5.34 times larger than Gurobi) within the
same time frame. This discrepancy arises because heuristic
algorithms provide approximate optimal solutions to the
AISFC embedding problem, resulting in lower algorithm
complexity compared to exact calculations. However, the
APR2F algorithm exhibits a slightly longer execution time
than the Greedy algorithm due to increased complexity in
function node centrality calculation, ranking, and fallback
processes.

In summary, the APR2F algorithm achieves a solution
closer to optimality than the Greedy algorithm and supports
significantly larger-scale networks than the exact solution
within the same execution time.

4060 VOLUME 12, 2024

W. Wang et al.: Autonomous Deployment Mechanism for AI Security Services

VI. CONCLUSION
This paper addresses the challenges of complex service
configuration and ensuring AI security service performance
during autonomous deployment. We propose an autonomous
deployment mechanism for AI security services that achieves
the translation of user security intent and guarantees service
implementation aligned with the user’s security level require-
ment. Our approach involves an autonomous deployment
mechanism with user and decision planes integrated into
the control plane. By hierarchically translating user secu-
rity intent into network executable policies, the proposed
mechanism converts abstract intent into concrete actions.
Additionally, we tackle the AISFC embedding problem by
introducing the model ILPCAISFC, optimizing response delay
by considering computing resource relationships. Further-
more, we propose the APR2F algorithm, which decomposes
the embedding problem and demonstrates polynomial time
complexity. Through a prototype system and numerical
simulations, we validate the effectiveness of our mechanism
in realizing autonomous translation, implementation, and
guaranteeing the user security intent. By considering the
relationship between available computing resources and
delay, our approach outperforms the baseline in terms
of response delay. Additionally, our algorithm achieves
approximately 28.57% greater proximity to the optimal
solution compared to the Greedy algorithm. Furthermore,
it supports a network scale 4.34 times larger than Gurobi
within a 2-second execution time.

REFERENCES
[1] G. Liu, N. Li, J. Deng, Y. Wang, J. Sun, and Y. Huang, ‘‘The SOLIDS

6G mobile network architecture: Driving forces, features, and functional
topology,’’ Engineering, vol. 8, pp. 42–59, Jan. 2022.

[2] 5G System; Technical Realization of Service Based Architecture, 3rd
Generation Partnership Project (3GPP), Technical Specification (TS)
document 29.500, 6 2023, Version 18.2.0, Nov. 2020.

[3] Zero-Touch Network and Service Management (ZSM); Enablers for
Artificial Intelligence-Based Network and Service Automation, ETSI
Group Specification (GS) document 12 2022, ETSI GS ZSM 012
Version 1.1.1, Dec. 2022.

[4] Y. Yang et al., ‘‘6G network ai architecture for everyone-centric customized
services,’’ 2022, arXiv:2205.09944.

[5] J. Wu, R. Li, X. An, C. Peng, Z. Liu, J. Crowcroft, and H. Zhang, ‘‘Toward
native artificial intelligence in 6G networks: System design, architectures,
and paradigms,’’ 2021, arXiv:2103.02823.

[6] 6G AI as a Service Requirement Research, document IMT-2030,
(6G) Promotion Group Report, Apr. 2023. [Online]. Available: https://
www.imt2030.org.cn

[7] Y. Siriwardhana, P. Porambage, M. Liyanage, and M. Ylianttila, ‘‘AI and
6G security: Opportunities and challenges,’’ in Proc. Joint Eur. Conf. Netw.
Commun. 6G Summit (EuCNC/6G Summit), Jun. 2021, pp. 616–621.

[8] V.-L. Nguyen, P.-C. Lin, B.-C. Cheng, R.-H. Hwang, and Y.-D. Lin,
‘‘Security and privacy for 6G: A survey on prospective technologies and
challenges,’’ IEEE Commun. Surveys Tuts., vol. 23, no. 4, pp. 2384–2428,
4th Quart., 2021.

[9] J. Halpern and C. Pignataro, Service Function Chaining (SFC) Architec-
ture, document IETF RFC7665, Oct. 2015.

[10] M. Zolanvari,M. A. Teixeira, L. Gupta, K.M. Khan, and R. Jain, ‘‘Machine
learning-based network vulnerability analysis of Industrial Internet of
Things,’’ IEEE Internet Things J., vol. 6, no. 4, pp. 6822–6834, Aug. 2019.

[11] A. Bhardwaj, V. Mangat, and R. Vig, ‘‘Hyperband tuned deep neural
network with well posed stacked sparse AutoEncoder for detection of
DDoS attacks in cloud,’’ IEEE Access, vol. 8, pp. 181916–181929, 2020.

[12] M. Li, H. Zhou, and Y. Qin, ‘‘Two-stage intelligent model for detecting
malicious DDoS behavior,’’ Sensors, vol. 22, no. 7, p. 2532, Mar. 2022.

[13] J. Li, L. Lyu, X. Liu, X. Zhang, andX. Lyu, ‘‘FLEAM:A federated learning
empowered architecture to mitigate DDoS in industrial IoT,’’ IEEE Trans.
Ind. Informat., vol. 18, no. 6, pp. 4059–4068, Jun. 2022.

[14] C. Picard and S. Pierre, ‘‘RLAuth: A risk-based authentication
system using reinforcement learning,’’ IEEE Access, vol. 11,
pp. 61129–61143, 2023.

[15] P. Fu, J. Wu, X. Lin, and A. Shen, ‘‘ZTEI: Zero-trust and edge intelligence
empowered continuous authentication for satellite networks,’’ in Proc.
IEEE Global Commun. Conf. (GLOBECOM), Dec. 2022, pp. 2376–2381.

[16] H. Fang, A. Qi, and X. Wang, ‘‘Fast authentication and progressive
authorization in large-scale IoT: How to leverage AI for security
enhancement,’’ IEEE Netw., vol. 34, no. 3, pp. 24–29, May/Jun. 2020.

[17] H. Yang, K. Zhan, M. Kadoch, Y. Liang, and M. Cheriet, ‘‘BLCS: Brain-
like distributed control security in cyber physical systems,’’ IEEE Netw.,
vol. 34, no. 3, pp. 8–15, May 2020.

[18] M. Sinha, S. Gupta, S. S. Rout, and S. Deb, ‘‘Sniffer: A machine learning
approach for DoS attack localization in NoC-based SoCs,’’ IEEE J. Emerg.
Sel. Topics Circuits Syst., vol. 11, no. 2, pp. 278–291, Jun. 2021.

[19] K. Li, H. Zhou, Z. Tu, O. Liu, and H. Zhang, ‘‘AT-GCN: A DDoS
attack path tracing system based on attack traceability knowledge base
and GCN,’’ Comput. Netw., vol. 236, Nov. 2023, Art. no. 110036.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1389128623004814

[20] T. Mahboob, J. W. Lim, S. T. Shah, and M. Y. Chung, ‘‘A novel
deep-learning-enabled QoS management scheme for encrypted traffic
in software-defined cellular networks,’’ IEEE Syst. J., vol. 16, no. 2,
pp. 2844–2855, Jun. 2022.

[21] X. Yun, Y. Wang, Y. Zhang, C. Zhao, and Z. Zhao, ‘‘Encrypted TLS traffic
classification on cloud platforms,’’ IEEE/ACM Trans. Netw., vol. 31, no. 1,
pp. 164–177, Feb. 2023.

[22] P. Quinn andU. Elzur,Network Service Header, document IETFRFC8300,
Feb. 2018.

[23] A. Clemm, L. Ciavaglia, L. Granville, and J. Tantsura, Intent-Based
Networking-Concepts and Definitions, document IETF RFC 9315, 2021.

[24] K. Abbas, T. A. Khan, M. Afaq, and W.-C. Song, ‘‘Network slice lifecycle
management for 5G mobile networks: An intent-based networking
approach,’’ IEEE Access, vol. 9, pp. 80128–80146, 2021.

[25] A. Chowdhary, A. Sabur, N. Vadnere, and D. Huang, ‘‘Intent-driven
security policy management for software-defined systems,’’ IEEE Trans.
Netw. Service Manage., vol. 19, no. 4, pp. 5208–5223, Dec. 2022.

[26] T. Szyrkowiec, M. Santuari, M. Chamania, D. Siracusa, A. Autenrieth,
V. Lopez, J. Cho, and W. Kellerer, ‘‘Automatic intent-based secure service
creation through a multilayer SDN network orchestration,’’ J. Opt.
Commun. Netw., vol. 10, no. 4, pp. 289–297, Apr. 2018.

[27] J. M. B. Murcia, J. F. P. Zarca, A. M. Zarca, and A. Skármeta, ‘‘By-default
security orchestration on distributed edge/cloud computing framework,’’
in Proc. IEEE 9th Int. Conf. Netw. Softwarization (NetSoft), Jun. 2023,
pp. 504–509.

[28] J. Kim, E. Kim, J. Yang, J. Jeong, H. Kim, S. Hyun, H. Yang, J. Oh, Y. Kim,
S. Hares, and L. Dunbar, ‘‘IBCS: Intent-based cloud services for security
applications,’’ IEEE Commun. Mag., vol. 58, no. 4, pp. 45–51, 2020.

[29] D. D. A. Nguyen, F. Autrel, A. Bouabdallah, and G. Doyen, ‘‘A robust
approach for the detection and prevention of conflicts in I2NSF security
policies,’’ in Proc. IEEE/IFIP Netw. Operations Manage. Symp. (NOMS),
May 2023, pp. 1–7.

[30] W. Zhang, S. Zeadally, W. Li, H. Zhang, J. Hou, and V. C. M. Leung,
‘‘Edge AI as a service: Configurable model deployment and delay-
energy optimization with result quality constraints,’’ IEEE Trans. Cloud
Comput., vol. 11, no. 2, pp. 1954–1969, Apr./Jun. 2023.

[31] P. Patel, M. I. Ali, and A. Sheth, ‘‘On using the intelligent edge for IoT
analytics,’’ IEEE Intell. Syst., vol. 32, no. 5, pp. 64–69, Sep. 2017.

[32] B. Yuan and B. Ren, ‘‘Embedding the minimum cost SFC with end-to-
end delay constraint,’’ in Proc. 5th Int. Conf. Mech., Control Comput. Eng.
(ICMCCE), Dec. 2020, pp. 2299–2303.

[33] M. Sasabe and T. Hara, ‘‘Capacitated shortest path tour problem-based
integer linear programming for service chaining and function placement
in NFV networks,’’ IEEE Trans. Netw. Service Manage., vol. 18, no. 1,
pp. 104–117, Mar. 2021.

[34] G. Li, H. Zhou, B. Feng, Y. Zhang, and S. Yu, ‘‘Efficient provision of
service function chains in overlay networks using reinforcement learning,’’
IEEE Trans. Cloud Comput., vol. 10, no. 1, pp. 383–395, Jan. 2022.

VOLUME 12, 2024 4061

W. Wang et al.: Autonomous Deployment Mechanism for AI Security Services

[35] S. Horimoto and E. Oki, ‘‘Virtual network function placement model
considering both service delay and availability,’’ inProc. 23rd Asia–Pacific
Netw. Oper. Manage. Symp. (APNOMS), Sep. 2022, pp. 1–6.

[36] A. Varasteh, B. Madiwalar, A. V. Bemten, W. Kellerer, and
C. Mas-Machuca, ‘‘Holu: Power-aware and delay-constrained VNF
placement and chaining,’’ IEEE Trans. Netw. Service Manag., vol. 18,
no. 2, pp. 1524–1539, Jun. 2021.

[37] S. Wang, C. Yuen, W. Ni, Y. L. Guan, and T. Lv, ‘‘Multiagent deep
reinforcement learning for cost- and delay-sensitive virtual network
function placement and routing,’’ IEEE Trans. Commun., vol. 70, no. 8,
pp. 5208–5224, Aug. 2022.

[38] Y. She, M. Li, Y. Jin, M. Xu, J. Wang, and B. Liu, ‘‘On-demand edge
inference scheduling with accuracy and deadline guarantee,’’ in Proc.
IEEE/ACM 31st Int. Symp. Quality Service (IWQoS), Jun. 2023, pp. 1–10.

[39] W. Zhang, D. Yang, H. Peng, W. Wu, W. Quan, H. Zhang, and X. S. Shen,
‘‘Deep reinforcement learning based resource management for DNN
inference in IIoT,’’ in Proc. IEEE Global Commun. Conf. (GLOBECOM),
Dec. 2020, pp. 1–6.

[40] H. Ma, R. Li, X. Zhang, Z. Zhou, and X. Chen, ‘‘Reliability-aware online
scheduling for DNN inference tasks in mobile edge computing,’’ IEEE
Internet Things J., vol. 10, no. 13, pp. 11453–11464, Jul. 2023.

[41] D. W. Otter, J. R. Medina, and J. K. Kalita, ‘‘A survey of the usages of
deep learning for natural language processing,’’ IEEE Trans. Neural Netw.
Learn. Syst., vol. 32, no. 2, pp. 604–624, Apr. 2020.

[42] R. M. Lee. (2015). The Sliding Scale of Cyber Security. [Online].
Available: https://www.sans.org/white-papers/36240/

[43] B. Korte and J. Vygen, Combinatorial Optimization: Theory and
Algorithms, 3rd ed. Berlin, Germany: Springer, 2005.

[44] Y. Yi. (2017). OVS NSH Pathes. [Online]. Available: https://github.
com/yyang13/ovs_nsh_patches

[45] (2020). Cicflowmeter. [Online]. Available: https://github.com/Canadian
InstituteForCybersecurity/CICFlowMeter

[46] (2015). Cpulimit. [Online]. Available: https://github.com/opsengine
/cpulimit

[47] Gurobi. Gurobi Optimizer 9.5. Accessed: 2021. [Online]. Available:
https://www.gurobi.com

WEILIN WANG received the B.S. degree in
telecommunications engineering from Beijing
JiaotongUniversity (BJTU), China, in 2020. She is
currently pursuing the Ph.D. degree in information
and telecommunications engineering. She joined
the National Engineering Research Center for
Advanced Network Technologies, BJTU. Her
research interests include the architecture of next-
generation internet, network security, and artificial
intelligence.

HUACHUN ZHOU received the B.S. degree from
the Peoples Police Officer University of China,
in 1986, and theM.S. degree in telecommunication
automation and the Ph.D. degree in telecommu-
nications and information systems from Beijing
Jiaotong University (BJTU), in 1989 and 2008,
respectively. He is currently a Professor with
the National Engineering Research Center for
Advanced Network Technologies, BJTU. He has
authored more than 40 peer-reviewed articles and

he is the holder of 17 patents. His research interests include mobility
management, mobile and secure computing, routing protocols, network
management, and satellite networks.

MAN LI received the B.S. degree in communica-
tion engineering from Henan University, Kaifeng,
China, in 2018. She is currently pursuing the Ph.D.
degree with the School of Electronic Information
Engineering, Beijing Jiaotong University, Beijing,
China, with a focus on cyber security, service
function chain, and machine learning.

JINGFU YAN received the B.S. degree fromAnhui
University, in June 2018, and the M.S. degree
from Beijing Jiaotong University, Beijing, China,
in June 2022, where he is currently pursuing
the Ph.D. degree with the National Engineering
Research Center for Advanced Network Tech-
nologies. His research interests include network
security, next-generation internet, and intelligent
networks.

4062 VOLUME 12, 2024

