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ABSTRACT A limited number of electroencephalography (EEG) channels are useful for neonatal sleep
classification, particularly in the Internet of Medical Things (IoMT) field, where compact and lightweight
devices are essential to monitoring health effectively. A streamlined and cost-effective IoMT solution can
be achieved by utilizing fewer EEG channels, thereby reducing data transmission and device processing
requirements. Using only two channels of an EEG device, this study presents a binary and multistage
classification of neonatal sleep. The binary classification (sleep vs awake) achieved an accuracy of 87.56%,
and a Cohen’s kappa of 74.13%. The quiet sleep (QS ) detection accuracy was 95.63%, with a Cohen’s kappa
of 83.87%. For the three-stage classification, accuracy was 83.72%, and Cohen’s kappa was 69.73%. With
only two channels, these are the highest performance parameters. The focus is on the fusion of features
extracted through flexible analytical wavelet transform (FAWT) & discrete wavelet transform (DWT),
ensemble-based voting models, and fewer channels. To feed crucial features into the ensemble-based voting
model, feature importance, feature selection, and validation mechanisms were used. To design the voting
classifier, several machine learning models were used, compared, and optimized. With SelectKBest feature
selection, the proposed methodology was found to be the most effective. By using only two channels, this
study shows the practicality of classifying neonatal sleep stages.

INDEX TERMS Dual channels, ensemble voting model, neonate sleep staging, EEG, internet of medical
things, FAWT, DWT.

I. INTRODUCTION
The Internet of Medical Things (IoMT) offers the potential to
improve neonatal health outcomes effectively and affordably

The associate editor coordinating the review of this manuscript and

approving it for publication was Md. Kafiul Islam .

through remote monitoring and diagnosis [1]. Using IoMT
for health monitoring can improve accuracy, reliability, and
convenience while reducing hospitalization and visitation
costs [2], [3]. Additionally, this approach enhances data
collection for research, resulting in a better understanding
of neonatal sleep patterns and disorders [4]. It is important,
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however, to optimize multiple domains when monitoring
neonatal sleep patterns using Electroencephalography (EEG)
devices to fully realize the potential benefits of IoMT
devices. A high-quality EEG device with fewer channels
can reduce physical and financial burdens in neonates due
to their physiology and size. Because IoMT devices are
small and low-power, they are well suited for neonatal sleep
monitoring in remote areas where multi-channel and costly
devices are not easily available. They can be developed more
efficiently and cost-effectively by using fewer EEG channels.
Further, by reducing the amount of data to be processed and
transmitted to the cloud, the solution becomes more cost-
effective [3], [5].

The proper assessment of neonatal sleep patterns is crucial
for the early detection of health issues like sleep apnea
and neurological disorders. EEG devices provide detailed
information on different sleep stages, which play a vital
role in healthy brain development and physical growth [6].
By categorizing EEG signals, abnormal sleep patterns can
be detected accurately, allowing for timely interventions to
improve neonatal health outcomes. Additionally, understand-
ing a neonate’s sleep staging can aid parents and caregivers in
predictingwhen an infant will be awake or sleepy. Negligence
in this area can lead to serious sleep-related issues like sudden
infant death syndrome (SIDS) and accidental suffocation, and
strangulation in bed (ASSB). Overall, research on neonatal
sleep staging can provide valuable insights into early brain
and body development [7], [8], [9].
Researchers are employing advanced signal processing

techniques, machine learning (ML), and deep learning
(DL) algorithms [10], [11], [12], [13]. These methods
can help in extracting relevant features from the EEG
signals, removing artifacts, and learning patterns that can
distinguish between different sleep stages. Moreover, the
development of standardized protocols for recording and
analyzing neonatal EEG signals can also contribute to
improving the accuracy and reliability of sleep stage
classification.

However, neonatal EEG signals have different character-
istics compared to adult EEG signals [14], [15]. Neonatal
EEG signals typically exhibit lower frequency content,
higher amplitude, and slow wave activity, making them
challenging to classify accurately for sleep monitoring [16],
[17]. Secondly, the brain development of neonates is rapid
and dynamic, which results in changes in EEG patterns over
a short period of time. This makes it difficult to establish
consistent and reliable features for classification. Thirdly, the
presence of various artifacts [18], such as muscle movements,
eye blinks, and equipment noise, further complicates the
analysis and interpretation of neonatal EEG signals. These
artifacts can interfere with the underlying EEG patterns
and lead to incorrect classification. Fourthly, sleep stages
in neonates are not as well defined as in adults. Neonatal
sleep is often divided into active sleep (AS ), quiet sleep
(QS ), and awake. However, these stages are not as clearly
distinguishable as in adults, and transitions between stages

may be more subtle, making it harder to identify and classify
sleep stages accurately. Fifthly, the lack of standardized
recording and analysis techniques for neonatal EEG signals
is another factor that complicates classification. There is no
universally agreed-upon method for recording or processing
neonatal EEG, leading to variations in data quality and
interpretability [19].

Keeping in mind all of the obstacles in neonatal research
for sleep monitoring, our study introduces a multidomain
approach to analyzing neonatal EEG data, surpassing existing
methods. This advancement is primarily due to our com-
prehensive feature extraction strategy, which integrates dis-
crete wavelet transform (DWT), flexible analytical wavelet
transform (FAWT), and features from frequency bands and
temporal characteristics. This method is specifically tailored
to address the unique properties of neonatal EEG data, which
differ markedly from adult EEG signals. To determine the
optimal combination for classifying neonatal sleep stages,
we also assessed the effectiveness of several classifiers based
on different ML techniques:

1. Extra Trees Classifier with Grid Search CV (ETCG)
2. Quadratic Discriminant Analysis (QDA)
3. Ensemble Random Forest Classifier (ERFC)
4. K Neighbors Classifier (KNN)
5. Artificial Neural Network (ANN)
6. Bagging Ensemble Model (BEM)
7. Extra Trees Classifier (ETC)
8. Gaussian NB (GNB)
9. Voting Classifier with Estimators:

• Logistic Regression (LR)
• Decision Tree Classifier
• Support Vector Classifier

10. Voting Classifier with Estimators:
• LR
• GNB
• Random Forest Classifier (RFC)

11. Stacking Classifier with Estimators:
• KNN
• Multi-layer Perceptron (MLP)
• RFC

12. Gradient Boosting Classifier (GBC)
13. Ada Boost Classifier (ABC)
14. Multi-layer Perceptron (MLP)
15. Linear Discriminant Analysis (LDA)
16. Support Vector Classifier (SVM)
Main Contributions of Our Work Are as Follows:
Access to basic medical services is crucial for neonatal

health, and the lack of such services can lead to preventable
illnesses and complications. Addressing health facility dis-
parities is important to improve neonatal outcomes, regard-
less of geographic location. The article’s main contributions
are:

1) This study has utilized a thorough multi-domain feature
extraction methodology that includes DWT, FAWT,
frequency band features, and temporal features. The
FAWT along with the DWT framework, is a key
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component of this methodology. FAWT is adept at
breaking down signals into low-pass (LP) and high-pass
(HP) channels, which is useful for adjusting important
model parameters. The FAWT framework’s capability
to delve deeply into the signal characteristics makes it
a vital tool in the analysis of non-stationary signals.
This diverse feature extraction fusion improves the depth
and breadth of signal analysis and serves as a solid
foundation for the research.

2) To stratify neonatal sleep states, we developed an
ensemble voting classifier using five basemodels, which
were selected based on their superior performance
across ten EEG channels as evidenced in experimental
results. The algorithm was validated using datasets from
a variety of participants and showed good classification
accuracy for neonatal sleep states.

3) This study identifies neonatal sleep classification’s two
most effective EEG channels. Combining two channels
further improves classification accuracy. The proposed
model allows neonatal sleep monitoring with single and
dual-channel settings since not all intensive care units
have multi-channel EEG devices, and it could be very
effective for remote areas.

4) The proposed stratification scheme efficacy is estab-
lished across both binary and multiclass scenarios,
employing the dataset outlined in [20]. To ensure
robustness and reliability, a k-fold cross-validation
methodology is used.

The paper is structured as follows: Section II reviews the
relevant literature, while Section III elaborates on multi-
domain feature extraction, feature selection, normalization,
and employment of classifiers. Section IV provides the
ablation study, illustrating how the proposed method is
designed based on experimental results. The results, dis-
cussion, challenges, and comparisons to existing work are
presented in Section V. Finally, the paper concludes in
Section VI by summarizing the study’s observations and
outlining future research directions.

II. RELATED WORK
ML-based neonatal sleep staging automates the classification
of sleep stages from EEG recordings, providing a more
objective and reliablemethod thanmanual scoring by experts.
ML models can quickly analyze large volumes of EEG data
and detect subtle changes in sleep patterns that may be
missed by human experts. This leads to increased consistency
in sleep stage classification and improved diagnosis and
treatment of underlying neurological or developmental issues
in neonates [21]. Using large datasets and correctly annotated
EEG recordings from neonates in various sleep states,
ML and DL algorithms can be trained to become more
accurate and generalizable.

Awais et al. achieved high accuracy in neonatal sleep
classification for sleep and wake using a diffusion convolu-
tional neural networks (DCNN) model for feature extraction
and SVM for classification, with an accuracy of 93.8 ±

2.2% and an F1-score of 0.93 ± 0.3 [10]. However, their
use of video EEG data raises privacy concerns due to the
identifiable information it contains, such as neonates’ faces
and voices [22], [23]. In contrast, another study utilized an
optimized Sinc-basedDLmodel for classifying (QS ) based on
EEG data alone [24]. This approach is advantageous because
neonates in the AS stage have EEG signals with a voltage
amplitude similar to those in the awake stage, making it
difficult to distinguish between them. However, DL models
are typically more complex and require more parameters
than ensemble ML models, resulting in higher computational
demands [25]. Therefore, their applicability in the IoMT field
may be limited due to high computational requirements.

Ansari et al. developed an 18-layer convolutional neural
network (CNN) for automatic neonatal sleep state classi-
fication by separating (QS ) from non − (QS ) [26]. They
used multi-channel EEG recordings of 26 preterm neonates
and later introduced a multi-scale deep convolutional neural
network for the same purpose [24]. By using a novel Sinc
block, they were able to extract temporal features across
multiple timescales.

Yu et al. performed automatic neonatal sleep state
classification using publicly available single-channel EEG
datasets [27]. They classified neonate’s sleep patterns into W,
N1, N2, N3, and REM based on the MRASleepNet module,
which comprised a feature extraction module, a multi-
resolution analysis (MRA) module, and a gated multi-layer
perceptron (gMLP) module. Abbas et al. utilized single-
channel EEG data for neonatal sleep-wake classification,
employing a SVM algorithm. The results demonstrated an
accuracy of 77.5% in sleep-wake classification, with a mean
kappa of 55% [28].

Fraiwan and Alkhodari used the long short-term memory
(LSTM) learning technique to perform neonatal three-
stage sleep classification by using EEG recordings of
16 full-term neonates [11]. Zhu et al. designed a novel
multi-scale hierarchical neural network (MS-HNN) for
the automatic classification of neonates’ sleep with one,
two, and eight channels [29]. They incorporated multi-
scale convolutional neural networks (MSCNN), squeeze-and-
excitation (SE) blocks, and temporal information learning
(TIL) to extract more features that involve temporal infor-
mation in sleep signals. With single and eight EEG chan-
nels, they achieved around 76.5% accuracy for three-stage
classification.

In 2020, Abbasi et al. designed a deep MLP for (sleep vs
awake) neonate sleep using multi-channel EEG recordings
from 19 neonates [30]. They extracted a total of 12 features,
including four frequency domains and eight time-domain
features, from nine channels. Later, in 2021, they performed
three-state neonatal sleep classification using the same EEG
dataset [20] and CNN, SVM, and MLP classifiers, two
ensemble algorithms for bagging and stackingwere used. The
study demonstrated that by using 9 channels, the classifica-
tion accuracy for (sleep vs awake) was 82.53% while for QS
v AS v awake stage, it was around 81.99%. A single channel,
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however, reduced the test accuracy to 71.7% for binary and
64.72% for three stages. The researchers also presented that
by increasing the number of channels to four, classification
accuracy improved to 73.15%. Another point to notice is
that during the post-processing of EEG data, they applied a
smoothing filter that halted the signal for a few minutes. This
means the system cannot be used for real-time applications,
especially for IoMT devices.

However, in this study, we have used only two channels,
proposing a simplified data acquisition process for an EEG
device, resulting in a reduction in data transfer to the cloud
and making the solutions more cost-effective as discussed in
our prior studies [3], [5].

III. MATERIALS AND METHODS
A. STUDY FLOWCHART
The flowchart depicted in Fig. 1 provides a simplified
overview of the study methodology, illustrating the progres-
sion from the initial level to the final stage.

B. DATASET
Nineteen neonates were included in a study conducted at
the NICU of the Children’s Hospital of Fudan University,
Shanghai, China. The study was approved by the Research
Ethics Committee of the Children’s Hospital (approval No.
(2017) 89). The neonates underwent Video EEG (VEEG)
recordings, and an average of 120 minutes of data was
collected for each neonate, during which at least one sleep
cycle was observed. A full 10-20 system for electrode
placement, which included 17 electrodes, was used to acquire
the EEG recordings. However, in this study, we have utilized
10 channels: F3-C3, C3-P3, F4-C4, C4-P4, F3-T3, T3-P3,
F4-T4, T4-P4, T3-C3, C4-T4. Out of the 10 channels we
tested, we selected the two that performed the best and
analyzed their results. Further details of the dataset and data
annotation are provided in previous studies [10], [20], [30].

C. PREPARATION AND PRE-PROCESSING OF DATA
EEG may contaminate with noise and artifacts, which could
compromise its accuracy and reliability. EEG recordings
were originally sampled at 500Hz, and unwanted signals
needed to be removed before further processing. A three-
step pre-processing method was employed to remove noise
and artifacts from EEG recordings. Firstly, we used a
Finite Impulse Response (FIR) filter (high-pass (HP) =

0.3Hz and low-pass (LP) = 35Hz) from EEGLAB to
filter the EEG signals. EEGLAB offers more advanced
EEG filtering capabilities than other packages [31]. During
this step, the unwanted frequency range was removed.
Second, we segmented the multichannel EEG into epochs
of 30 seconds and labeled them accordingly. Segmentation
made it easier to analyze the EEG data since it divided it
into manageable segments. In the final step, we removed
artifacts that constituted around 20% of the EEG data post-
segmentation, and only noise-free recordings were used to

TABLE 1. The frequencies related to the various levels of decomposition
for a db-4 filter wavelet with a 500 Hz sampling frequency.

train and test the model. To validate the result, 7-fold cross-
validation is used.

D. MULTI-DOMAIN FEATURE EXTRACTION
Neonatal EEG signals vary distinctly from adult signals
due to intra-class differences based on brain structure and
function. Automatic sleep stage detection in the neonatal
domain faces challenges such as limited datasets [32], vague
data descriptions, and low-precision detection methods.
Hence, it is crucial to improve feature extraction techniques
to enable accurate and precise sleep stage detection. A total
of 173 features were extracted from each epoch: 12 from the
spectral statistics of four bands (α, β, θ , δ), 11 from temporal
statistics, 55 from DWT, and 95 from FAWT.

1) DISCRETE WAVELET TRANSFORM
The DWT is a commonly used technique for the time-
frequency analysis of signals [33], [34]. It decomposes a
signal into a linear combination of translations and dilations
of a basis function called the ‘‘Mother Wavelet,’’ as well
as a scaling function. During the DWT process, the signal
is filtered using an LP filter and a HP filter, resulting in
approximate coefficients Ai and detailed coefficients Di.
These coefficients are then downsampled, and the process
is repeated to obtain the next level of approximate and
detailed coefficients. This iterative process establishes time-
scale regions, rather than time-frequency regions, for the
signal.

In this study, we concentrated on EEG signals, which
generally lack useful frequencies above 30Hz. As a result,
we opted for 7 decomposition levels enabling us to maintain
the signal segments that strongly correlate with the frequen-
cies necessary for classification. This led to the EEG signals
being decomposed into seven detail coefficients (D1-D7)
and one final approximation coefficient (A7). Furthermore,
we chose the Daubechies wavelet of order 4 (db4) for
detecting changes in EEG signals as it offers a higher
accuracy score at the cost of computation.
Features Derived from DWT:
The wavelet coefficients obtained offer a concise represen-

tation that illustrates the energy distribution of the EEG signal
in both time and frequency domains. Table 1 displays the
frequencies corresponding to various decomposition levels
for the db4 wavelet, given a sampling frequency of 500Hz.
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FIGURE 1. Flowchart and methodological overview. (The neonate picture is from freepik.com and we have a premium plan).

To represent the time-frequency distribution of EEG
signals, the study used the following statistical features:
1) The mean of the absolute values of coefficients in each

sub-band;
2) The median of coefficients in each sub-band;
3) The root mean square values of each sub-band;
4) The standard deviation of coefficients in each sub-band;
5) The ratio of absolute mean values of adjacent sub-bands;
6) The skewness of each sub-band;
7) The kurtosis of each sub-band.

2) FLEXIBLE ANALYTIC WAVELET TRANSFORM
A more comprehensive view of time-frequency attributes
of signals is offered by FAWT, as described in [35].
This method is particularly suitable for analyzing oscil-
latory signals since it includes Hilbert transform atom
pairs. FAWT is governed by three parameters: the
Quality Factor Q, the Number of Decompositions J , and
the Redundancy Factor r . The objective of Q is to control
oscillations in the mother wavelet, which is defined as
a function of frequency variables and a constant β as
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follows:

Q =
ω0

1ω
, β =

2
Q+ 1

(1)

where, ω0 and 1ω represent the central frequency and
bandwidth of the signal, respectively. The redundancy factor
r deals with the time-localization aspect of the wavelet.
An iterative filter bank of HP and LP channels is employed
in FAWT. This configuration allows custom tuning of the
dilation factor, Q, and r through parameter adjustments
in constants β and e, f , g, h. The parameters e and f are
set for up and down-sampling of the HP filter, and g and
h are configured for up and down-sampling of the LP
channel. The process computes J decomposition levels in
an iterative manner, and each level is comprised of LP
and HP channels that differentiate the negative and positive
frequencies, respectively. The frequency responses H (ω) and
G(ω) of the HP and LP filters are as follows:

H (ω) =



√
ef for |ω| < ωp,√
ef θ

(
ω − ωp

ωs − ωp

)
for ωp ≤ ω ≤ ωs,√

ef θ
(

π − (ω + ωp)
ωs + ωp

)
for − ωs ≤ ω ≤ −ωp

0 for |ω| ≥ ωs.

G(ω) =



√
ghθ

(
π − ω − ω0

ω1 − ω0

)
for ω0 ≤ ω < ω1,√

gh for ω1 < ω < ω2,√
ghθ

(
ω − ω2

ω3 − ω2

)
for ω2 ≤ ω ≤ ω3,

0 for ω ∈ [(0, ω0)
∩(ω3, 2π )].

Parameters associated with the above-mentioned filter
banks are as follows:

ωp = (1 − β)π + ee, (2)

ωs = π f , (3)

ω0 = (1 − β)π + eg, (4)

ω1 = eπ fg, (5)

ω2 = π − eg, (6)

ω3 = π + eg, (7)

ϵ ≤ e−f+βfe+f π . (8)

where r indicates the ratio of input to output samples, which
should be greater than one to avoid information loss. It is
defined as:

r =

(g
h

) 1
1 −

e
f

(9)

For a precise reconstruction, β should be less than one, and
it is defined as:

1 −
e
f

≤ β ≤
g
h

(10)

The shift-invariance, tunable oscillatory conditions, and
flexible time-frequency localization of FAWT make it useful
for a variety of practical applications [36].
Features Derived from FAWT:
The FAWT implementation entails choosing parameters

for seven decomposition levels. For dual-state EEG signals,
the subband signals are subsequently reconstructed in
descending frequency order. The e/f value is set at 3/4, and
the values of r and Q are pre-specified as discussed in our
previous study [35]. Furthermore, g/h is set at 1/2 to maintain
constraints on r for information preservation, as dictated
in (9). Since FAWT offers a high dimensional feature space
for searching features, compact statistics such as mean,
standard deviation, skewness, and kurtosis are evaluated for
each signal subband. The use of such statistical measures is
promising for capturing inherent signal information [37]. Six
such features are listed below:
1) Mean absolute value of coefficients within each

subband;
2) Average power within each subband;
3) Standard deviation within each subband;
4) Ratio of mean absolute values of adjacent subbands;
5) Skewness within each subband;
6) Kurtosis within each subband.

3) SPECTRAL STATISTICS OF FOUR BANDS
Different frequencies of waves in EEG signals, such as α,
β, θ , and δ, are linked with different stages of sleep and
cognitive and emotional states. The statistical features that
we calculated for each EEG frequency band are the mean,
median, and standard deviation. From the spectral statistics
of four bands, in total, twelve features were calculated to
analyze the relationship between EEG frequency bands and
sleep states. These statistical features provide information
about the amplitude and variability of each frequency range.

4) TEMPORAL FEATURES OF EEG SIGNALS
Time-domain statistical features are a critical tool for ana-
lyzing neonatal sleep patterns as derived from EEG signals.
Specifically, eleven features were calculated, including mean
amplitude, standard deviation, peak-to-peak amplitude, vari-
ance, square root, minimum amplitude, maximum amplitude,
root mean square, and absolute mean change in amplitude,
skewness, and kurtosis

These features have been shown to provide critical
information about the underlying neural processes in an
efficient and effective manner. Additionally, the analysis
also incorporated spectral statistics of four bands and
FAWT-DWT-derived features. Overall, the combined use of
these features offers a promising approach for developing
automated sleep staging schemes that could lead to improved
diagnosis and treatment of neonatal sleep-related issues.

E. FEATURE NORMALIZATION
We processed the data in two ways for normalization to
reduce overfitting. As a first step, normalize the data by
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scaling each row to a unit norm. We used the L2 norm,
or Euclidean norm, for this. L2 norms are calculated by
in (11).

x_normalized = x/sqrt(sum(x2)) (11)

where x is a vector and x_normalized the normalized vector.
Min-Max scaling is the next step. In this method,

the features in the data are scaled to a given range
between 0 and 1.

x_scaled = (x − min(x))/(max(x) − min(x)) (12)

where x is a vector, min(x) the minimum value of x, max(x)
the maximum value of x, and x_scaled is the scaled vector.

By improving data consistency and limiting the impact of
extreme values, these methods can help reduce overfitting.
These can also improve model performance on data that has
yet to be analyzed and promote more model generalization.

F. FEATURE IMPORTANCE AND SELECTION
The SelectKBest method was used to select the features.
Feature selection is used to identify and select the most
relevant features in a dataset and exclude the less relevant
ones. The SelectKBest (SelectKBest(score_func=f_classif,
k=max_features)) uses a scoring function, such as f_classif,
to calculate the significance of each feature with respect
to the target variable. The scoring function is based on the
ANOVA F-value, which measures the difference between the
means of two groups. The k parameter specifies how many
top features should be selected. Lastly, only the selected
features are returned from the transformed input data [38].
In high-dimensional datasets, feature selection is particularly
important because it reduces the dimensionality of the dataset
and can improve the performance of ML models.

G. CLASSIFIERS
In this study, we evaluated and compared several differ-
ent classifiers using various ML techniques to design an
optimal voting classifier. The voting classifier combines the
predictions of multiple base classifiers to generate a more
robust and generalized model. Essentially, it’s like seeking
a ‘‘second opinion’’ from other models to make a more
informed decision. In this study, we have utilized hard voting.
Each model in the ensemble ‘‘votes’’ for a class, and the class
that receives the majority of votes is the chosen prediction.
The ensemble approach outperforms the individual models
in this study because it takes into account each classifier’s
strengths and mitigates its weaknesses.
Overview of Base Classifiers:
Each model’s performance metrics on each channel

determine the most appropriate base classifier. Additionally,
the results of applying the models to the two most effective
channels are considered in this decision-making process.
The performance outcomes for the individual and combined
channel applications are detailed in Table 2 and Table 3. The
tables provide information about the effectiveness of each

model, making it easier to choose the best classifier based
on data. It ensures that the choice is based on empirical
data and highlights the advantages and disadvantages of each
model in terms of channel-specific and integrated channel
performance.

1) EXTRATREESCLASSIFIER
The Extra Trees classifier is an ensemble approach. Splits
are selected randomly rather than based on best splits, so it
introduces more randomness. A reduction in variance may
be achieved by this randomness at the expense of a slight
increase in bias.

H (T ) = −

∑
i

pi log pi (13)

where H (T ) represents the entropy of the target variable
T , and pi represents the proportion of the target variable’s
category i in the dataset.

2) DECISIONTREECLASSIFIER
In decision trees, data is split recursively based on attribute
values, and subsets are measured by metrics like Gini
impurity in order to achieve pure or nearly pure subsets.

Gini(T ) = 1 −

∑
i

p2i (14)

3) RANDOMFORESTCLASSIFIER
A Random Forest classifier is an ensemble of decision trees
that are trained on different subsets of data and features.
Predictions are averaged to improve generalization and
robustness.

ORF =
1
N

N∑
i=1

Oi (15)

4) MLPCLASSIFIER
MLP classifiers are artificial neural networks that have three
layers: an input layer, a hidden layer, and an output layer.
In particular, MLPs excel at capturing complex relationships
in data. This study, however, used a single hidden layer with
1000 neurons.

5) BAGGINGCLASSIFIER
The Bagging (Bootstrap Aggregating) classifier is an ensem-
ble model, which trains multiple instances of a base classifier
(in our case, a Decision Tree), each on a random subset of
training data.

H. HYBRID ENSEMBLE VOTING MODEL
This study presents a hybrid ensemble voting model to
optimize the reliability and accuracy of neonatal sleep
stage classification. It consists of a DecisionTreeClassifier,
four configurations of ExtraTreesClassifier, RandomForest-
Classifier, MLPClassifier, and a BaggingClassifier with a
DecisionTree base estimator. The hybrid ensemble approach
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integrates the strengths of different base models, including
decision trees for their interpretability, Extra Trees and
Random Forests for their randomness and generalizability,
and neural networks for capturing complex relationships in
neonatal EEG data. A voting mechanism is used to aggregate
predictions from these base models, thereby producing a
final classification that integrates the strengths and mitigates
the weaknesses of each model. Based on our extensive
experimental evaluations, the approach is robust and accurate.
The model pseudo code is provided in algorithm 1.

Algorithm 1 Ensemble Voting Classifier With Multiple Base
Classifiers and K-Fold Cross-Validation
1: Define various base classifiers:

multiple ExtraTreesClassifiers (e.g., 540, 900, 470,
300 estimators),
a DecisionTreeClassifier,
a RandomForestClassifier (e.g., 400 estimators),
a MLPClassifier (e.g., single hidden layer with
1000 neurons),
a BaggingClassifier usingDecisionTree as base estima-
tor (e.g., 1000 estimators).

2: Combine these classifiers into a voting classifier,
voting=hard.

3: Set the number of folds 7 for k-fold cross-validation
and create a k-fold cross-validator kf.

4: Initialize empty lists to store evaluation metrics (accu-
racies, precisions, recalls, f1_scores, cohen_kappas).

5: for each fold in the k-fold cross-validation do
6: Split the data into training and validation sets.
7: Train the voting classifier using the training data.
8: Predict the labels for the validation data.
9: Calculate evaluation metrics for the current fold

and append them to the respective lists.
10: Print themetrics for the current fold.
11: end for
12: Calculate the average of the evaluation metrics across

all folds.
13: Print the average evaluation metrics.

I. EVALUATION METRICS FOR CLASSIFICATION MODELS
We have used five key metrics to evaluate classification
models, each providing insights into a different aspect of
performance. In general, accuracy measures correctness,
while precision and recall measure positive predictions’
accuracy. To provide a balanced view, the F1 score har-
monizes precision and recall. Additionally, Cohen’s Kappa
provides a robust measure of model accuracy that accounts
for chance agreement. A classification model’s assessment
and improvement are guided by these metrics.

Accuracy =
(TP+ TN )

(TP+ TN + FP+ FN )
(16)

where TP (True Positive) and TN (True Negative) represent
correct positive and negative predictions, respectively. FP

(False Positive) and FN (False Negative) signify incorrect
positive and negative predictions, respectively.

Precision =
TP

(TP+ FP)
(17)

Recall =
TP

(TP+ FN )
(18)

F1 − score =
2 ∗ (precision ∗ recall)
(precision+ recall)

(19)

k =
(Po − Pe)
(1 − Pe)

(20)

where k denotes Cohen’s kappa, Po observed agreement
between raters (proportion of cases where the raters agreed),
and Pe expected agreement between raters by chance based
on the distribution of ratings.

IV. ABLATION STUDY
This ablation study presents a comprehensive analysis of six-
teenMLmodels (names are given in section I), encompassing
ensemble methods, stacking, and voting classifiers. The
objective is to categorize neonatal sleeping stages accurately.
We examined various feature selection techniques, focusing
particularly on the SelectKBest method, within both binary
and multiclass classification frameworks.

A. SINGLE CHANNEL ANALYSIS USING MULTIDOMAIN
FEATURE
1) BINARY CLASSIFICATION: SLEEP VS AWAKE
The fusion of FAWT, DWT, spectral, temporal features
(FDSTF) method outperformed the combination of DWT,
spectral, temporal features (DSTF) method in the binary
classification of neonatal EEG data (sleep vs awake),
as shown in Fig. 2. In the EEG channel F3-T3, the
ensemble voting model with FDSTF achieved an accuracy
of 84.20%, surpassing DSTF’s 80.69%. Similarly, in the
C4-T4 channel, the ensemble voting model with FDSTF
achieved 85.80% accuracy, outperforming DSTF’s 82.21%.
Nevertheless, Kappa scores for both methods showed a
decline in classification consistency.

2) THREE-STAGE CLASSIFICATION: QS VS AS VS AWAKE
FDSTF outperformed DSTF in the more complex three-
stage classification, as depicted in Fig. 3. F3-T3 and C4-
T4 achieved accuracies of 80.71% and 80.57%, respectively,
for FDSTF, whereas DSTF achieved 80.28% and 77.66%,
respectively. In terms of Kappa scores, DSTF scored 62.22%
and 56.96%, while FDSTF achieved 63.91% and 63.83% for
F3-T3 and C4-T4, respectively.

B. COMPARATIVE ANALYSIS OF FEATURE SELECTION
TECHNIQUES
A detailed comparative analysis is presented, evaluating
three feature selection techniques—Principal Component
Analysis (PCA), SelectKBest, and SelectPercentile—for two
classification tasks: (sleep vs awake) and (QS vs AS vs
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TABLE 2. Model performance for binary classification on two best channels.

TABLE 3. Models performance for three stage classification on two best channels.

FIGURE 2. DSTF vs FDSTF: sleep vs awake.

awake). Fig. 4 elucidates the performance scores for each
method within these contexts, thereby guiding the selection
of the most effective feature selection technique.

In the (sleep vs awake) task, SelectKBest demonstrates
superior performance, achieving a score of 0.8756, closely
trailed by SelectPercentile with a score of 0.8741. PCA, while
effective, scores a lower 0.8085. For the (QS vs AS vs awake)
classification, SelectKBest leads again, with a score of
0.8384, followed by SelectPercentile at 0.8367. PCA shows
a more distinct performance gap, scoring 0.7358. These
findings, as depicted in Fig. 4, are crucial for identifying the
most suitable feature selection method for each task based on
empirical performance data.

FIGURE 3. DSTF vs FDSTF: QS vs AS vs awake.

C. SELECTION OF BEST CHANNELS
This segment involved a thorough analysis of individual
EEG channels in binary and multi-stage classifications
using multi-domain features, feature selection, and ensemble
modeling techniques. The evaluation focused on accuracy
and Kappa value. In binary classification, the C4-T4 channel
showed notable effectiveness, while in three-stage classifica-
tion, the F3-T3 channel stood out, indicating its utility inmore
nuanced EEG applications.

D. SELECTION OF BEST ML MODELS
The performance of various ML models was evaluated in
both binary (sleep vs awake) and three-stage (QS vs AS
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FIGURE 4. Comparison of feature selection techniques across different
scenarios.

TABLE 4. Cross-validation results for each fold: sleep vs awake.

vs awake) classifications using channels C4-T4 and F3-T3,
as well as dual-channel setup. Tables 2 and 3 detail these
models’ effectiveness in differentiating neonatal sleep stages.

V. RESULT AND DISCUSSION
A. CROSS-VALIDATION RESULTS FOR SLEEP VS AWAKE:
DUAL CHANNEL (F3-T3, C4-T4 ANALYSIS)
In Table 4, we present the 7-fold cross-validation results
for (sleep vs awake) classification using dual channels.
An ensemble-based voting classifier using FDSTF was
used to obtain the results. For each fold, the table shows
performance metrics such as accuracy, precision, recall,
F1 score, and the kappa statistic. All folds achieved an
average accuracy of 87.56%, and the mean kappa value
was 74.13%.

B. CROSS-VALIDATION RESULTS FOR QS DETECTION:
DUAL CHANNEL (F3-T3, C4-T4 ANALYSIS)
ForQS detection, we demonstrate the results of a 7-fold cross-
validation in Table 5. The results were achieved using an
ensemble-based voting classifier utilizing FDSTF. For each
fold of the validation process, accuracy, precision, recall,
F1 score, and Cohen’s kappa statistic are reported. Overall,
the proposed methodology achieved an impressive average
accuracy of 95.63% and a mean kappa statistic of 83.87%,
reflecting good agreement between predictions and actual
labels.

TABLE 5. Cross-validation results for each fold: QS detection.

TABLE 6. Cross-validation results for each fold: (QS vs AS vs Awake).

TABLE 7. Performance comparison of proposed method and existing
work for sleep vs awake detection.

C. CROSS-VALIDATION RESULTS FOR QS VS AS VS AWAKE
STATE: DUAL CHANNEL (F3-T3, C4-T4 ANALYSIS)
Table 6 provides the results of a 7-fold cross-validation to
distinguish between (QS vs AS vs awake). An ensemble-
based voting classifier with FDSTF was designed to achieve
these outcomes. Each fold of the validation process includes
metrics such as accuracy and Cohen’s kappa. In the proposed
methodology, an average accuracy of 83.72% was achieved
and a kappa statistic of 69.73% was reached.

D. COMPARISON OF PROPOSED METHOD WITH
EXISTING WORK
Table 7 shows that our methodology for (sleep vs awake),
which utilizes data from two channels, an ensemble-
based voting classifier, and FDSTF outperforms existing
approaches with an accuracy of 87.56% and a Kappa value
of 74.13%. Moreover, Abbasi et al. [20], [30], used nine
channels and reached 82.53% accuracy score.

In Table 8, we show that our proposedQS detectionmethod
has a higher accuracy 95.63% as well as a high Kappa value
(83.87%), which implies a higher level of reliability than
existing models by Abbasi et al. [20], Moghadam et al. [18]
and other studies mentioned in the Table 8.

For the three-stage classification of neonatal sleep, our
method achieves 83.72% accuracy and 69.73% Kappa value,
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TABLE 8. Performance comparison of proposed method and existing
work for QS detection.

TABLE 9. Performance comparison of proposed method and existing
work for three stage classification (QS vs AS vs awake).

compared with other methods that utilize more channels as
shown in Table 9. Overall, our proposed approach utilizes
fewer channels and ML techniques while exhibiting superior
or comparable performance.

E. DISCUSSION
Our research represents an advance in the field of neonatal
sleep stratification, which has long struggled with the
intricacies and irregularities present in neonatal data, which
are frequently exacerbated by outside interferences like
feeding and movement. Specifically, our work introduces
novel methodologies designed for the analysis of neonatal
EEG data, which distinguishes it from typical methods that
are primarily focused on adult EEG data.

One of the main focuses of our research is dealing
with the peculiarities of neonatal EEG signals, which are
characterized by a higher amplitude and a lower frequency
in comparison to adult EEG, which poses special analytical
challenges. Our approach, which is carefully tailored to
these particular characteristics, has proven to be successful
in accurately classifying neonatal sleep states, which is
especially important considering the rapidity of neonatal
brain development and the resulting evolution of their EEG
patterns.

The most significant of our contributions is the devel-
opment of a novel, all-encompassing multi-domain feature
extraction methodology. This methodology combines meth-
ods like DWT, FAWT, and spectral and temporal features.
The use of the FAWT framework is very important since
it can intricately break down non-stationary signals, which
are commonly observed in newborn EEG, and allow for
a thorough examination of signal complexities, enhancing
our understanding and analytical precision. Another note-
worthy aspect of our research is the development of an
ensemble voting classifier and the optimized feature selection
process. SelectKbest was found to be the most efficient

method for processing neonatal EEG data through extensive
experimentation. We further refined our methodology by
using an ensemble of the top five ML models, which were
selected based on how well they performed across ten EEG
channels. The base classifiers in this voting ensemble model
are included based on how well they perform across different
channels. The selection of base models was grounded in
an extensive, empirical study of model performance across
multiple EEG channels. This practical approach highlights
the usefulness of our method in real-world neonatal care
settings, where accuracy and precision are crucial, as well as
its dependability.

In the future, while our current methodology adeptly
addresses binary to three neonatal sleep stages, it is essential
to recognize that neonates exhibit five distinct sleep stages.
Consequently, future endeavors will aim to extend the
applicability of our model to encompass all these stages.
Moreover, our research trajectory includes exploring novel
feature extraction methods, integrating with IoT devices
for real-time monitoring, and employing advanced ML
architectures like recurrent neural networks and transformers.

VI. CONCLUSION
In this research, we demonstrate that a fusion of features
extracted from FAWT and DWT, along with temporal and
spectral features, is highly reliable for classifying neonatal
sleep stages. In particular, our ensemble-based voting model
yielded an accuracy of 87.56% for (sleep vs awake),
95.63% for QS , and 83.72% for differentiating between
(QS , AS , and awake). Our approach requires only two EEG
channels, making it a cost-effective and efficient solution
for the Internet of Medical Things (IoMT). Through the
implementation of a voting model and thorough validation
techniques, we have developed an accurate and practical
approach to neonatal sleep stage classification.
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