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ABSTRACT Traffic congestion has become an increasingly severe problem and needs to be solved urgently.
Reinforcement learning (RL) is an advanced data-driven approach for large-scale adaptive traffic signal
control (ATSC) in the complex urban traffic network. The decentralized multi-agent RL (MARL) framework
is feasible for multi-intersection scenarios. However, the environment becomes partially observable and
nonstationary without effective communication among agents from the perspective of each local agent.
Previous studies solve this problem by improving the observation of each local agent and using a spatial
discount factor. In this paper, we are motivated by achieving coordination among intersections in the
RL settings and better performance in ATSC and solve the problem of traffic signal control at multiple
intersections in large-scale networks based on RL techniques. Pressure is used as an indicator to represent
the traffic conditions of an intersection considering its neighbor intersections. A new reward function with
pressure and vehicle waiting time is designed to achieve coordination among intersections. The above
three control policies are innovatively applied to a multi-agent Q-learning method for ATSC at multiple
intersections. Experiments are carried out on a large synthetic traffic grid under simulated peak-hour traffic
dynamics. Results demonstrate that our approach outperforms the state-of-the-art decentralized MARL
algorithms in average queue length and intersection delay.

INDEX TERMS Adaptive traffic signal control, multi-agent reinforcement learning, max pressure control,
Q-learning.

I. INTRODUCTION
In recent years, the number of vehicles has risen dramati-
cally, and traffic congestion has become a severe problem in
urban areas. In addition to its negative effects on travel effi-
ciency and economic growth, traffic congestion also causes
increased safety risks and environmental pollution. Alleviat-
ing traffic congestion is a long-standing hot research topic in
urban traffic control. As one of themost widely usedmethods,
traffic signal control (TSC) [1] can effectively control traffic,
ensure safety at road intersection, and alleviate congestion in
urban areas. According to the scope of intersections to be con-
trolled, TSCmethods can be divided into ‘‘spot’’ control for a
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single intersection [2], ‘‘line’’ control for an arterial road [3],
and ‘‘plane’’ control for a large-scale network [4]. Due to the
complexity and uncertainty of urban traffic, ‘‘plane’’ control
is the most challenging problem.

Classical TSC methods can be divided into fixed-time
control and dynamic control. Fixed-time control [5] performs
the signal phase with a fixed duration in a specific sequence.
It can adapt to all types of intersections but cannot dynami-
cally adjust signal phases according to the traffic conditions at
an intersection. Dynamic control, such as the self-organizing
traffic lights [6], maintains or changes the current phase
according to the vehicle queue length and waiting time at an
intersection. Varaiya [7] introduces the concept of pressure at
an intersection, which describes the difference between the
queuing vehicles in the incoming lanes and outgoing lanes
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and represents the imbalance of vehicles among intersections.
By calculating the pressure at each phase, this approach
selects one with the maximum pressure as the next serving
phase. However, these methods mainly focus on a single
intersection. Large-scale cooperative control of traffic signals
cannot be achieved.

Recently, reinforcement learning (RL) has become an
essential technique for TSC [8]. One significant advantage
of RL is its ability to fit a parametric model directly, learn
from interactions with a complex environment, and achieve
optimal control without relying on heuristic assumptions
or equations. Neural networks are used to realize these
functions [25]. Previous research has shown that RL per-
forms better than traditional traffic control methods in TSC.
Wei et al. [9] introduce IntelliLight, a novel controller based
on Deep Q-Network (DQN), and conduct experiments on a
real-world, and large-scale traffic scenario. They also pro-
vide an interpretation of the reward function, which includes
multiple components such as queue length and average
waiting time. Tan et al. [10] propose a cooperative deep
RL framework to tackle traffic congestion reduction prob-
lem. It contains multiple regional agents and a centralized
global agent. Each regional agent learns its policy and value
function in a small region. The centralized global agent
then hierarchically aggregates the RL results from differ-
ent regional agents and forms the final Q-function over the
entire large-scale traffic grid. Chen et al. [11] address the
challenge of multi-intersection TSC using RL techniques.
They overcome scalability, signal coordination, and data fea-
sibility challenges by utilizing a pressure to achieve signal
coordination, implementing individual control agents with a
thoughtfully designed reward system, and conducting exten-
sive experiments on multiple scenarios.

The most popular decentralized multi-agent RL (MARL)
algorithm is independent Q-learning (IQL) [12]. Each agent
trains independently and dynamically updates its policy.
Since each agent treats the other agents as part of the environ-
ment, achieving global convergence is complicated. From the
perspective of each agent, the environment is partially observ-
able and nonstationary. To solve this problem, Tesauro [13]
directly takes the parameter of Q networks of other agents
into account, and the work [14] contains a low dimension of
fingerprints, i.e., the exploration rate of the behavior policy
and the number of iterations. Some research [26], [27] on
event-triggered multi-agent communication utilizes a fully
distributed way with intermittent communication. A recent
study [4] stabilizes the training process by improving the
observation of each agent and using a spatial discount factor.
Specifically, the states and policies of the neighbor agents are
incorporated into the local agent. A spatial discount factor
is introduced to reduce the impact of the remote agent on
the local agent. These two control strategies are applied to
the independent advantage actor-critic (IA2C) algorithm and
achieve great performance in adaptive traffic signal control
(ATSC).

Motivated by achieving coordination among intersections
in the RL settings and better performance in ATSC, these
two control strategies in [4] are applied to the IQL algorithm,
which improves the robustness and stationary state of the
algorithm. Meanwhile, a well-designed reward function is
significant for RL performance. Pressure is used as an
indicator to represent an intersection’s traffic conditions con-
sidering its neighbor intersections. Inspired by [3], a new
reward function that includes both the pressure at the intersec-
tion and the waiting time of the vehicle is designed to instruct
the agent to maximize the traffic throughout and achieve
coordination among intersections. We refer to the improved
IQL as the multi-agent Q-learning (MAQL). Experiments are
carried out in a large synthetic traffic grid with high traffic
flow density. Simulation results indicate that the proposed
algorithm can achieve optimal performance with the new
reward function. Compared with other state-of-the-art decen-
tralized MARL algorithms, our algorithm shows superior
performance in average queue length and intersection delay.
Ablation experiments show that the new reward function can
indeed improve the RL performance in ATSC.

The main contributions of this work are as follows:
1) In the multi-intersection scenario, two control policies

in [4] are applied to the IQL algorithm, which stabilizes the
training process and improves the robustness and stationary
state of the algorithm.

2) A new reward functionwith pressure and vehicle waiting
time is proposed in the RL settings to achieve coordina-
tion among intersections. Ablation experiments illustrate the
effectiveness of introducing pressure into the reward function
for large-scale ATSC problems.

3) Experiments on a large-scale synthetic traffic grid
demonstrate that our proposed method outperforms other
state-of-the-art decentralized MARL algorithms in average
queue length and intersection delay.

The organization of the paper is as follows. Section II
shows the basic knowledge of RL and the concept of pres-
sure. Section III describes the details of the proposed MAQL
algorithm. Section IV introduces the RL settings for ATSC.
Experiment results are represented in Section V. Section VI
concludes the paper.

II. PRELIMINARIES
A. REINFORCEMENT LEARNING
RL is based on Markov decision process (MDP) and learns
to maximize long-term returns. In a fully observable envi-
ronment, an agent i observes a state st ∈ S at time t and
performs an action at ∈ A according to a policy function
π (a |s ). Then the next state of the agent is st+1 according
to a state transition probability function pt (st+1 |st , at ), and
the environment gives a reward rt = r (st , at , st+1). Suppose
that an episode has n steps, the agent obtains a return Ut =∑n

τ=t γ
τ−trτ at time t , where γ ∈ [0, 1) is a discount

factor. An action-value function, i.e., Q function Qπ (st , at),
is the expectations of returnUt for future states and actions at
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all times,

Qπ (st , at) = ESt+1,At+1,...,Sn,An [Ut |St = st ,At = at ] (1)

where St and At are random variables and denote the state and
action of the future moment, respectively. From (2) - (4), the
optimal action-value functionQ∗ (st , at) generates an optimal
policy function π∗ to obtain the optimal action at at time t .
The optimal Bellman equation calculated by (5) is solved
iteratively by dynamic programming operation to obtain the
optimal action-value function.

Q∗ (st , at) = max
π

Qπ (st , at) (2)

π∗ = argmax
π

Qπ (st , at) (3)

at = argmax
a∈A

Q∗ (st , a) (4)

Q∗ (st , at)=Rt + γ
∑

S∈S
pt (St+1 |st , at )max

A∈A
Q∗ (St+1,A)

(5)

In practice, the agent does not know Rt and St+1 and can only
obtain the optimal Q function by estimation and Monte Carlo
approximation. RL training is based on the experience et =
(st , at , rt , st+1) in a data-driven way.
The Q-learning algorithm is one of the most basic RL

methods. Q function is fitted by the model Qθ with param-
eters, such as Q table [28], linear regression (LR) [15], and
deep neural network (DNN) [16]. According to the behavior
policy, the agent collects the training data and stores it in
the experience replay buffer in the quadruple form of et =
(st , at , rt , st+1). We use a common behavior policy named
ϵ-greedy policy (6). It has the probability of ϵ for uniform
sampling an action fromA and probability of 1-ϵ for choosing
an action with maximum Q value.

at =

{
argmax

a
Qπ (st , a),with probability1− ϵ

a random action,with probability ϵ
(6)

In the DQN algorithm, a target network is used to mitigate
the bias caused by bootstrapping, and the temporal difference
(TD) algorithm trains the agent, calculates the TD target yt =
rt + γ max

a
Q
(
st+1, a; θ−

)
and TD error δt = Q (st , at ; θ)−

yt . The loss function is

L (θ) =
1

2 |B|

∑
et∈B

(Qπ (st , at ; θ)− yt)2 (7)

where each minibatch B = {(st , at , rt , st+1)} contains the
empirical trajectory of the agent. The return is estimated by
R̂t =

∑tB−1
τ=t γ τ−trτ , where tB is the last step in minibatches.

Other techniques can better estimate the Q function, such
as double DQN [17], dueling DQN [18], and prioritized
experience replay [19].

B. PRESSURE
The concept of pressure is explained as follows. In an inter-
section, a traffic movement is defined as the process of
a vehicle entering the intersection from an incoming lane

FIGURE 1. Illustration of pressure.

to exiting the intersection from an outgoing lane. We use
(l,m) to represent a traffic movement, where l represents the
incoming lane and m denotes the outgoing lane. The signal
phase of a traffic light is composed of a set of allowed traffic
movements. We use Pi to represent the set of all phases of
intersection i. For each signal phase , several traffic move-
ments are allowed. For traffic movement (l,m) in a signal
phase, we use x (l,m) to represent the difference between the
number of vehicles in lane l and lane m. The pressure of a
signal phase is the total sum of the pressure of the allowed
traffic movement, i.e., pressure ( ) =

∑
(l,m)∈p x (l,m).

The pressure of an intersection is denoted as the difference
between the queuing vehicles in all incoming lanes and out-
going lanes. The pressure of an intersection [3] is denoted
as the absolute value of difference between all the queuing
vehicles in the incoming lanes and outgoing lanes. As shown
in Fig. 1, yellow vehicles indicate all the queuing vehicles in
the incoming lanes, and red vehicles represent all the queuing
vehicles in the outgoing lanes. The pressure of the middle
intersection is 4.

III. MULTI-AGENT Q-LEARNING
In this section, we first introduce the basic concepts and
formulas of IQL. Then, the formulaic expression of MAQL is
presented. Two control strategies are used to stabilize MAQL
training. The first strategy uses the policy for stabilizing IQL
in [14], i.e., to inform the local agent of the current policies of
other agents. The second one considers the spatial distance of
traffic lights and introduces a spatial discount factor to reduce
the influence of remote traffic signals on local traffic lights
so that local agent can concentrate more on improving local
traffic conditions. Therefore, global TSC can converge more
stably.

A. INDEPENDENT Q-LEARNING
In a multi-agent network G = (V, E), agents i and j are
neighbor if there is an edge connecting them. The set of all
neighbors of agent i is denoted by Ni, and a local region is
denoted byVi = Ni∪ i. The distance d (i, j) between i and j is
calculated by the sum of edges on the shortest path between
i and j. As shown in Fig. 2, the neighborhood of agent i is
Ni = {a, j, x} and the local region is Vi = {a, i, j, x}.
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FIGURE 2. Neighbor node diagram.

In IQL, each local agent independently learns its own Q
function and policy function. Assuming that agents share
global rewards and full states, IQL updates the local Q
function by estimating the TD target of the local agent and
optimizing the loss function. TD target and loss function are
as follows.

ȳt,i = R̂t + γ tB−tQ
(
stB , atB,i; θ

−

i

)
(8)

L̄ (θi) =
1

2 |B|

∑
et∈B

(
Q
(
st , at,i; θi

)
− ȳt,i

)2 (9)

where ȳt,i denotes the TD target of agent i at time t and atB,i
represents the action of agent i at time tB.
In the real-time ATSC system, global information sharing

is not feasible due to the high communication delay and
computational complexity. Therefore, communication among
agents is limited to each local region. Specifically, we con-
sider the states of neighborhood and take the states of the
whole local region as DNN input.We can obtain the TD target
and loss function on the condition of local region states.

ŷt,i = R̂t + γ tB−tQ
(
stB,Vi , atB,i; θ

−

i

)
(10)

L̂ (θi) =
1

2 |B|

∑
et∈B

(
Q
(
st,Vi , at,i; θi

)
− ŷt,i

)2 (11)

The agents are suffered from partially observations of the
environment after the global state is replaced by the local
region state. At the same time, the training updating of the
agent still has the problem of nonstationary state, and the
updating Q function is also affected by other agent policies.

B. MULTI-AGENT Q-LEARNING
In IQL, independent learning and training of agents lead to
difficult convergence and a nonstationary state. Therefore,
two improved methods are applied to solve the above prob-
lems. The first method is to inform the local agent of the states
and the policies of the neighbor agents to improve the obser-
vation of the local agent. The second method considers the
spatial distance of intersections and introduces a spatial dis-
count factor to reduce the influence of the states and rewards
of other agents on local agent. For IQL, the behavior policies
of other agents are added to the training of the local agent.
The work [16] directly takes the parameter of Q networks

of other agents into account, and the work [13] contains a
low dimension of fingerprints, i.e., ϵ-greedy behavior policy
of the exploration rate and a training iteration count. Here,
we include Q values of neighbor agents, and transform them
into probability values by mapping functions, representing
the probability of the action choice of an agent, and then
include the policy functions of other agents. Sigmoid func-
tion [8] is used to achieve the transformation by (12).

p
(
at,i|st,Vi

)
=

sigmoid
(
Q
(
st,Vi , at,i

))∑
at,i∈Ai

sigmoid
(
Q
(
st,Vi , at,i

)) (12)

where Ai denotes the action space of agent i. Compared with
the direct use of Q values, such transformation can make the
local agent learn the policy information of the neighbor agents
better. It is worth noting that as the training progresses, the
agent gradually increases the probability of good actions and
decreases the probability of bad actions. Since communica-
tion among agents is limited in the local region, we add the
latest policies of the neighbor agents into the input of DNN.
The policy function of the local agent is calculated by (13).
It takes the local region state at time t and the policy functions
of the neighbor agents at time t − 1 as the input of the neural
network.

πt,i = πθ−i

(
·
∣∣st,Vi , πt−1,Ni

)
(13)

In an ATSC system, the latest policies of the neighbor
agents are notified to the local agent in real-time, and the
behaviors of the neighbor agents are obtained to implement
the cooperative control of multi-intersection traffic signals.
Traffic conditions at local intersection change very little in a
short period, and traffic dynamics are Markov chains, only
related to the state and policy of the previous moment.

From the global perspective, a global reward is defined as
the sum of rewards for all local agents, i.e., rt =

∑
i∈V rt,i,

which is reasonable for large-scale ATSC. Although the local
agent already knows the states and policies of the neighbor
agents, the global reward is still tricky to fit. Therefore,
a spatial discount factor α is introduced to alter the global
reward for each local agent i,

r̃t,i =
Di∑
d=0

 ∑
j∈V|d(i,j)=d

αd rt,j

 (14)

where Di represents the maximum distance between agent
i and other agents on the network. For the spatial distance
of intersections in the road network, the influence of other
agents on local agent are reduced in a spatial order. In contrast
to utilizing the identical global reward among agents, the
spatially discounted global reward is more adaptive in ATSC,
which is a trade-off between completely independent con-
trol and fully collaborative control among agents. Similarly,
we use the spatial discount factor α on the states of the
neighbor agents.

s̃t,Vi =

[
st,i, α

(
st,j
)
j∈Ni

]
(15)
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Algorithm 1 Multi-Agent Q-Learning for ATSC
Input: α, γ , T , |B|, ηθ .
Output: {θi}i∈V.

1 initialize s0, π0, t ← 0, k ← 0, B = ∅;
2 while stop condition is not reached do
3 for i ∈ V do
4 perform at,i from πt,i;
5 receive r̃t,i and s̃t,i;
6 end for
7 B← B ∪

{(
s̃t,i, at,i, r̃t,i, s̃t+1,i, πt,i

)}
i∈V;

8 t ← t + 1, k ← k + 1;
9 if t = T then
10 initialize s0, π0, t ← 0;
11 end if
12 if k = |B| then
13 for i ∈ V do
14 estimate R̂τ,i, ∀τ ∈ B;
15 estimate R̃τ,i, ∀τ ∈ B;
16 calculate ỹt,i and L̃(θi);
17 update θi with ηθ · ∇L̃ (θi);
18 end for
19 B← ∅, k ← 0;
20 end if
21 end while

(15) indicates that the state consists of the state of the
local agent and the spatially discounted states of the neighbor
agents. Given the above discounted global reward, we have
R̃t,i =

∑tB−1
τ=t γ τ−t r̃t,i. Consequently, TD target and loss

function under the local region are as follows.

ỹt,i = R̃t,i + γ tB−tQ
(
s̃tB,Vi , atB,i; θ

−

i , πt−1,Ni

)
(16)

L̃ (θi) =
1

2 |B|

∑
et∈B

(
Q
(
s̃t,Vi , at,i; θi, πt−1,Ni

)
− ỹt,i

)2 (17)

In this way, the training update is more stable: first, the
policies of the neighbor agents are added and input into the Q
function, improving the fitting ability; the second is the use
of spatial discounted reward, which is more consistent with
the observation of the local region.

Algorithm 1 presents the MAQL algorithm. α is the spatial
discount factor, γ is the discount factor, T is the planning
horizon per episode, |B| is the minibatch size, and ηθ is the
learning rate for Q network. First, each local agent performs
the action from the current policy, and the environment feed-
backs the reward to the local agent. The experience is then
collected and stored in the minibatch until there are enough
samples for the minibatch to update. We reset the state and
policy to restart a new episode if the episode is finished during
the training process. Next, each Q network is updated by
applying theminibatch gradient. Gradient optimizers are used
to optimize the algorithm. At last, the learning procedure is
terminated until the stop condition is reached.

IV. MAQL FOR TRAFFIC SIGNAL CONTROL
This section describes the implementation details of the
MAQL algorithm for ATSC based on the Simulation of Urban
MObility (SUMO [23]). Specifically, we define action, state,

reward, neural network architecture, standardization meth-
ods, and training hyperparameter of the algorithm.

In the simulated environment over a period of Ts seconds,
1t denotes the time an agent interacts with the environment.
Consequently, the environment is simulated for 1t seconds
after each MDP steps [4]. For safety considerations, a yellow
time ty < 1t is added after each traffic signal changes. In this
paper, 1t= 5s and ty= 2s, which leads to a planning horizon
T = Ts

/
1t steps.

A. ACTION
There are many action settings, such as the duration of the
current signal [20], the next phase of the traffic light [4],
and holding or changing the current phase [22]. We choose
the second set and define each local action as a possible
phase or a combination of the red and green phases at the
intersection. This setting is more flexible and suitable for
ATSC. According to the current intersection traffic, an agent
performs the best phase from all possible phase set Ai.

B. STATE
The setting of a state is significant to describe the traffic
condition at an intersection. We define the local state as
follows:

st,i = {waitt [li] ,wavet [li]}li∈Li (18)

where li is an incoming lane of intersection i and Li denotes
all the incoming lanes of intersection i. wait describes the
waiting time for the first vehicle in the lane, and wave
represents the total number of vehicles in each incoming lane
within 50m of the intersection. A laneAreaDetector in SUMO
is used to capture state information, which ensures the real-
time ATSC.

C. REWARD
The definition of reward is vital in RL performance. The goal
of an agent is to maximize long-term returns. Combined with
the definition of reward in [3] and [4], a new reward function
is defined as

rt,i = −
∑
li∈Li

(
pressuret+1t [li]+ a · waitt+1t [li]

)
(19)

where a [veh/s] is a trade-off coefficient, and pressure is
the evaluation metric based on the vehicle queue length and
can be simply measured. The reward is post-decision, and
bothpressure andwait are calculated at time t+1t . This
kind of reward setting is closely related to state and action,
which can directly reflect the degree of traffic congestion and
vehicle delay time at the intersection.

D. NETWORK ARCHITECTURE
In a large-scale ATSC problem, traffic flow is a complex
spatiotemporal data. The MDP of global TSC causes the
nonstationary state if each agent only captures the state cur-
rently. DQN uses experience replay buffers to store historical
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FIGURE 3. Deep reinforcement learning framework diagram.

experience data and utilizes the data to improve algorithm
performance. Fig. 3 shows the architecture of deep reinforce-
ment learning. Each intersection in the environment is treated
as an agent to independently obtain the state of intersection.
Then, we implement communication among agents under the
local region. In addition to the wave and wait for states of
the local agent itself, the neighbor policies are also added to
the state of local agent. The state and reward of the neighbor
agents processed by the spatial discount factor are input into
the training process of the local agent. All of these enable
local region communication. The local agent obtains the Q
value of each action and selects an optimal action as the next
phase of the intersection according to the behavior policy.
Fig. 4 shows the DNN architecture of MAQL, where wave
states, wait states, and neighbor policies are first handled by
independent fully connected (FC) layers. Then, all hidden
layer units are consolidated and input into a FC layer. A linear
function is used to process the output layer. In the training
process of DNN, we use advanced orthogonal initialization
and RMSprop as the gradient optimizer. All standard states
are clipped to [0, 2] to prevent gradient explosion, with an
upper limit of 40 for each gradient. The standardization of
the reward is set to clip to [-2, 2], which is used to stabi-
lize minibatch updates. The MAQL algorithm is based on a
decentralized framework and communication with neighbor
agents. Only its state and policy and that of its neighbors need

FIGURE 4. DNN architectures of MAQL in ATSC. Hidden layer size is
denoted in parenthesis.

to be considered for each local agent. The MAQL algorithm
is simply scalable to a new environment.

V. NUMERICAL EXPERIMENTS
ATSC based onMAQL is simulated in a 5×5 synthetic traffic
grid. In this section, we intend to develop a challenging sim-
ulation environment to conduct fair comparison experiments
among the state-of-the-art algorithms.
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A. GENERAL SETTINGS
To demonstrate the effectiveness and robustness of the
MAQL algorithm, we compare it with several advanced con-
trollers. IQL-DNN [22] is an algorithm that uses DNN to fit
the Q function, and its network architecture is consistent with
the MAQL. IQL-LR [22] is an IQL algorithm based on LR.
IA2C algorithm [4] extends the idea of the IQL to the A2C
algorithm. MA2C algorithm [4] is a stable approach based on
the IA2C, and its performance is greatly improved compared
with the IA2C. MA2C applies the long-short term memory
layer as the last hidden layer to extract features from different
data types. Greedy is a fully decentralized algorithm that
chooses the phase related to the maximum overall green wave
on total incoming lanes. Each controller has identical settings
in terms of action, state, and interaction with the environment.

For IQL-DNN and IQL-LR, Q function is fitted differently.
IQL-DNNuses DNN to fit the Q function, while IQL-LR uses
LR to fit the Q function. IA2C is an independent advantage
actor-critic algorithm and trains each agent independently
using the A2C algorithm. The difference between IQL and
IA2C is that the agent is trained using a different algorithm.
MA2C is based on IA2C and introduces two control strate-
gies to the training process. MAQL is based on IQL and
applies communication among neighbor agents, spatial dis-
count factor and a new reward function with pressure and
vehicle waiting time, significantly improving the evaluation
performance in ATSC.

All MARL algorithms are trained in 1million steps,
which contains nearly 1400 episodes under episode horizon
T = 720 steps. Then all controllers are evaluated over ten
episodes. Random seeds can generate a set of random num-
bers and play an essential role in the training and evaluation.
For MDP, we set γ = 0.99 and α = 0.9. For MAQL,
we set the learning rate ηθ = 1e− 4, the minibatch size
|B| = 120, and the replay buffer size 1000. Due to the partial
observability of environment, the size of replay buffer is set
relatively small. The behavior policy ϵ-greedy is used and ϵ

linearly decays from 1.0 to 0.01 during the training process.
For IA2C andMA2C, the parameter setting is the same as [4].
For MAQL, the parameters are consistent with the IQL for a
fair comparison.

B. SYNTHETIC TRAFFIC GRID
The experimental scenario is a large 5 × 5 synthetic traffic
grid, as shown in Fig. 5, an arterial street consisting of two
lanes with a speed limit of 20m/s, and a one-lane street with
a speed limit of 11m/s. The action space at each intersection
includes five potential phases: east-west straight phase, east-
west left turn phase, east straight and left turn phase, west
straight and left turn phase, and north-south straight and left
turn phase. Right turning is allowed by default. Obviously, the
centralized RL framework is infeasible due to the size of the
joint action space is 525.We set up four time-dependent traffic
flow groups as shown in Fig. 6 [4]. At the outset, the three
main traffic flow F1 generate (x10, x4), (x11, x5) and (x12, x6)

FIGURE 5. Synthetic traffic grid with 25 intersections and time-dependent
traffic flow.

FIGURE 6. Time-variant traffic flow in synthetic traffic grid.

in an origination-destination pair. Meanwhile, three minor
traffic flow f1 generate (x1, x7), (x2, x8) and (x3, x9). After
15 minutes, traffic flow F1 and f1 start to decrease, and traffic
flow in the opposite direction F2 and f2, i.e., the origination
and the destination switch, begin to generate traffic flow. It is
worth noting that traffic flow only represents a high level of
traffic demand, while the route of each vehicle is randomly
generated. Taking into account the setting of MDP, we set
the reward factor at 0.2veh/s, and the standardization factor
of the wave, wait, and reward at 5veh, 100s, and 3000veh
respectively.

R̄ =
1
T

T−1∑
t=0

(∑
i∈V

rt,i

)
(20)

Here, we use five evaluation metrics to comprehensively
evaluate the performance of various MARL algorithms on
large-scale ATSC.
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FIGURE 7. Average queue length in synthetic traffic grid.

Average queue length: Average queue length is the average
number of stopped vehicles in each lane and is often used to
measure the performance of traffic signals. A vehicle with a
speed of less than 0.1m/s is considered a stopped vehicle.
Average intersection delay: Average intersection delay is

the average waiting time for all vehicles in the entire traffic
network at the intersection.
Average vehicle speed: The average vehicle speed is the

average speed of all vehicles in the whole traffic network.
Trip completion flow: Trip completion flow is the average

number of vehicles completing trips per second across the
entire traffic network, i.e., the average number of vehicles per
second that have reached their destination.
Trip delay: Trip delay is the average waiting time for all

vehicles in the entire road network.
It needs to be emphasized that average intersection

delay differ from trip delay. The average intersection delay
describes the average waiting time at the intersection, while
the trip delay measures the average waiting time of vehicles
during travel.
Evaluation results: In (20), the average reward per evalu-

ation episode R̄ are −221.69, −412.06, −898.32, −1152.01,
−1763.55 and−2850.74, for MAQL, MA2C, IA2C, Greedy,
IQL-LR, and IQL-DNN. Apparently, MAQL outperforms
other approaches for the given objective. As shown in Fig. 7,
the average queue length of the traffic network is plotted at
each simulation step, where the lane shows the average across
evaluation episodes. IQL-DNN, IQL-LR, and IA2C may not
learn a stable strategy for solving the traffic congestion in
the end. On the contrary, the Greedy policy performs well in
reducing vehicle queue length due to maximizing the traffic
flow at each step. MA2C is a steadier strategy that further
reduces traffic congestion. MAQL generally maintains the
lowest queue length and has acceptable robustness and a
steady state.

The curve of average intersection delay of the networkwith
simulation time is plotted in Fig. 8. IQL-DNN, IQL-LR, and
Greedy fail to perform well in the traffic congestion. IA2C
maintains a low growth trend in traffic delays. MA2C keeps
the traffic delay at a low level. At last, MAQL outperforms

FIGURE 8. Average intersection delay in synthetic traffic grid.

other controllers in average traffic delay at intersections even
under the peak-hour traffic dynamics.

Table 1 uses several significant metrics to evaluate ATSC
performance. These metrics are calculated and integrated
during each evaluation episode. Apparently, MAQL outper-
forms other controllers in reward, average queue length, and
average intersection delay. Regarding other metrics, Greedy
performs better than other MARL controllers. This may be
caused by the low-density traffic flow in the first 15 minutes.
Since Greedy does not consider the upstream and down-
stream intersections, its performance variance is high under
the high-density traffic flow.

C. ABLATION EXPERIMENTS
We test the performance of different RL-based methods in the
presence and absence of pressure. It is worth noting that since
MAQL method already uses pressure in the reward function,
we use queue length instead of pressure design in the reward
function. As can be seen from Table 2, pressure design can
significantly improve the performance of RL model in terms
of average queue length and intersection delay.

Fig. 9 illustrates the performance of several RL-based
methods in the synthetic traffic grid scenario with or without
pressure on the average queue length. The upper left corner
of Fig. 9 respectively shows that the first four RL methods
add pressure, and the MAQL algorithm removes pressure.
The comparison between Fig. 7 and Fig. 9 shows that MA2C,
IA2C, IQL-DNN and IQL-LR algorithms reduce the average
queue length after adding pressure. The performance of the
MAQL algorithm on the average queue length increases after
removing pressure.

Fig. 10 plots the performance of several RL-based meth-
ods in the synthetic traffic grid scenario with or without
pressure on the average intersection delay. As can be seen
from the comparison between Fig. 8 and Fig. 10, MA2C,
IA2C, IQL-DNN, and IQL-LR algorithms reduce the aver-
age intersection delay after introducing pressure. After
the pressure is removed, the performance of the MAQL
algorithm on average intersection delay decreases. Results
of ablation experiments further demonstrate that pressure
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TABLE 1. ATSC performance in synthetic traffic grid best values are in bold.

TABLE 2. Performance of different RL-based methods with and without
pressure in synthetic traffic grid best values are in bold.

FIGURE 9. Average queue length of the conducted ablation experiments:
Effect of the presence and absence of pressure in synthetic traffic grid.

can significantly improve the performance of RL-based algo-
rithms in the ATSC scenario by introducing pressure into the
reward function of RL.

We test the performance of the MAQL algorithm on ATSC
under eleven groups of α value with other conditions being
constant as shown in Table 3. It shows that the MAQL
algorithm obtains the highest reward and the best perfor-
mance in terms of average queue length and intersection delay
when α = 0.9. It is worth noting that the MAQL algorithm
ignores the states and rewards of the neighbor agents when
α = 0, and the agents are in a fully independent control
state. The state and reward weights of the local agent and the
neighbor agents are the same when α = 1, and the agents are
in a completely cooperative control state. The introduction of

FIGURE 10. Average queue length of the conducted ablation experiments:
Effect of the presence and absence of pressure in synthetic traffic grid.

TABLE 3. Performance of main metrics with different spatial discount
factor value.

spatial discount factor α is a compromise of these two control
approaches.

VI. CONCLUSION
In this paper, a decentralized multi-agent Q-learning frame-
work with local region communication among agents is
proposed for ATSC. Specifically, the states and policies of
neighbor agents are notified to improve the observability
of each local agent. The spatial discount factor is used to
scale down the influence of other agents, which can reduce
the difficulty of learning procedure. Motivated by achiev-
ing coordination among intersections in the RL settings and
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better performance in ATSC, these two control strategies
are applied to the MAQL algorithm. A new reward function
with pressure and vehicle waiting time is designed to achieve
coordination among intersections. Experiments conducted
on a large synthetic traffic grid demonstrate the optimal-
ity, robustness and effectiveness of MAQL compared to the
state-of-the-art decentralized MARL algorithms. Ablation
experiments show that the reward function with pressure and
vehicle waiting time can indeed improve the RL performance
in ATSC. Future work will study ingenious designs for coor-
dination among agents to improve performance. We will also
verify the feasibility and scalability of MAQL in a real-world
scenario.
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