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ABSTRACT Currently, there is an emerging requirement for applications related to the Internet of Things
(IoT). Though the capability of IoT applications is huge, there are frequent limitations namely energy
optimization, heterogeneity of devices, memory, security, privacy, and load balancing (LB) that should be
solved. Such constraints must be optimised to enhance the network’s efficiency. Hence, the core objective
of this study was to formulate the intelligent-related cluster head (CH) selection method to establish
green communication in IoT. Therefore, this study develops a chaotic equilibrium optimizer-based green
communication with deep learning-enabled load prediction (CEOGC-DLLP) in the IoT environment. The
study recognizes the emerging need for IoT applications and acknowledges the critical challenges, such
as energy optimization, device heterogeneity, memory constraints, security, privacy, and load balancing,
which are essential to enhancing the efficiency of IoT networks. The presented CEOGC-DLLP technique
mainly accomplishes green communication via clustering and future load prediction processes. To do so,
the presented CEOGC-DLLP model derives the CEOGC technique with a fitness function encompassing
multiple parameters. In addition, the presented CEOGC-DLLP technique follows the deep belief network
(DBN) model for the load prediction process, which helps to balance the load among the IoT devices for
effective green communication. The experimental assessment of the CEOGC-DLLP technique is performed
and the outcomes are investigated under different aspects. The comparison study represents the supremacy of
the CEOGC-DLLP method compared to existing techniques with a maximum throughput of 64662 packets
and minimum MSE of 0.2956.

INDEX TERMS Internet of Things, green communication, load prediction, clustering process, equilibrium
optimizer.

I. INTRODUCTION
In recent times, revolutionary growth in IoT gadgets has
opened the pattern for dynamic sensing technologies which

The associate editor coordinating the review of this manuscript and

approving it for publication was Giovanni Pau .

render transmission across the Internet seamlessly [1]. Wire-
less sensor networks (WSNs) can be mostly utilized for
collecting data and transmitting them over the 5G and
beyond the 5G IoT network envisaged as 6G technology.
Furthermore, the integration of IoT into WSNs will have sev-
eral potentialities in numerous applications namely military,
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precision agriculture, health care, environment anomalies,
smart cities, environment intelligent transport systems, and
human intrusion detection and habitat monitoring [2]. But
with all such noteworthy properties, the fallout in the lower
lifespan of battery-enabled IoT gadgets and the unbalanced
power consumption will limit the seamless interaction of
intellectual gadgets across IoT networks [3]. Thus, energy-
efficient transmission over 5G and beyond 5G (6G) assisted
IoT gadgets is the primary consideration in IoT systems.
Clustering can be referred to as a strong and scalable
method to lesser power consumption having superior net-
work throughput. It can be broadly learned as heuristic-based,
probability-based, and weight-based techniques for con-
serving network energy [4]. Also, uncertainties and local
decisions of the network dynamics have a massive effect on
power utilization in the optimal selection of cluster head (CH)
as nominated data forwarder [5]. Additionally, the issue of
CH selection was non-deterministic polynomial hard (NP) as
optimum data aggregation is not proficiently resolved in the
polynomial period for ensuring balanced power utilization in
each round by making use of weight- and probability-based
techniques [6].
The ideas of hierarchical routing were enforced to achieve

energy efficiency in WSNs. Conversely, lower power nodes
will be employed for sensor-based work in regions which
were closer to the target. So, allocating specific jobs to CHs
could prominently contribute to the system’s scalability, its
power efficiency, and its lifetime [7]. Scalability will be
considered to be a serious aspect of WSNs and it is not
accomplished well in several protocols because of initial
assumptions. For instance, cluster-related protocol usually
takes a single sink with CHs into account inside the sink
coverage [8]. Under such considerations, WSNs lack scal-
ability and lead to transmissions that are disproportionate
to their power necessities. Later, slightly raising the width
of the network or the number of device nodes would result
in overloading that progresses aggressively, and a difficulty
that has just one sink; these could hamper the network.
Hierarchical routing was a potential means to reduce power
utility within the cluster and execute data accumulation [9].
Along with this, this method would allow the integration
of tasks for decreasing the count of transported packets to
sink. Every perception of the nodes, from hardware gadgets
to their established process, would be helpful in dispensing
power load. However numerous communication modes, like
normal sensors and CHS, will be beneficial if enforced in
every layer [10].

This study develops a chaotic equilibrium optimizer-based
green communication with deep learning-enabled load pre-
diction (CEOGC-DLLP) in the IoT environment. The pre-
sented CEOGC-DLLP technique mainly accomplishes green
communication via clustering and future load prediction
processes. To do so, the presented CEOGC-DLLP model
derives the CEOGC technique with a fitness function (FF)
encompassing multiple parameters. In addition, the presented

CEOGC-DLLP technique follows the deep belief network
(DBN) model for the load prediction process, which helps
to balance the load among the IoT devices for effective
green communication. The experimental assessment of the
CEOGC-DLLP technique was executed and the outcomes
were examined under several aspects.

II. RELATED WORKS
In [11], the author endeavours to maximize the energy
consumption in the IoT network by selecting optimal CH
utilizing a recently advanced nature-inspired technique called
the Harris Hawks Optimization algorithm (HHO). The
HHO-oriented CH method’s performance can be scrutinized
with the help of numerous metrics like load, delay, tem-
perature, count of alive nodes, and residual energy. In [12],
the authors solve the concern of green transmission in
6G-assisted enormous IoT gadgets through cluster-related
data distribution in the network. The authors devise a
new hybrid whale spotted hyena optimization (HWSHO)
technique through the production of the WOA exploiting
abilities of spotted hyena optimizer (SHO). Akhtar et al. [13]
formulate the intelligent-related CH selection method to
accomplish green transmission in IoT. The two well-known
techniques such as sunflower optimization (SFO) and spot-
ted hyena optimization (SHO) were compiled for making
sunflower-spotted hyena optimization (SF-SHO) by using the
hybrid meta-heuristic idea for selecting optimal CH.

Singh et al. [14] devise an optimized GA-related sus-
tainable and secure green data transmission or collection
technique for IoT-assistedWSN in the medical sector through
optimization of intra-cluster distance, reducing hop count,
and systematic use of node’s energy. For secure communi-
cation of data, transmitting data was encoded with the help
of a stream cipher and pseudo-randomly generated secu-
rity key. Furthermore, the devised movable sink and data
transmission or collection techniques curtail transmission
distance between the sink and CHwould diminish the hotspot
problems. Rehman et al. [15] intend to devise a method of
security measures utilizing the Green IoT including Cloud
Integrated Data Management (M-SMDM) for Smart City.
Initially, it would form energy-efficient and long-run connec-
tivity by utilizing distributing load factors and self-balancing
trees homogeneously in a green transmission mechanism.
Then, it solves the issue of secret key distribution among peer
nodes and achieves trust for both direct and partial interaction.
Eventually, it secures transmission mechanisms from mobile
gateways to users contrary to menaces with enhanced data
latency and overheads.

Kumar et al. [16] modelled a quantum-based green com-
munication structure for Energy Balancing in sensor-assisted
IoT networks (Q-EBIoT). Firstly, an energy-optimized tech-
nique for sensor-assisted IoT atmospheres was offered,
whereas power utilization was extracted as the cost of
energy-based paths. Secondly, quantum computing-based
solutions were formulated for optimized issues concentrating
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on energy-centric solution representation, rotation angle, and
measurement. Kaur et al. [17] presented a green hybrid con-
gestion control system for IoT-assisted WSNs. It employs
an unequal clustering system which would save power of
battery-limited SNs and solve energy hole problems. Besides,
an innovative 2-class priority-related congestion avoidance
system was modelled which suggestively decreases transmis-
sion delay.

Zhang et al. [18] intend to improve small and
medium-sized enterprises (SMEs) core competitiveness and
financing attainability using the DL algorithm by economic
globalization. Consequently, the study presents a supply
chain symbiosis technique by using DL, economics, and
Stackelberg game theory following a status quo analysis of
the financing status of SMEs. Emroozi et al. [19] illustrate
the capability of four dissimilar combinatorial multi-criteria
decision-making (CMCDM) methods to determine the good
supplier in the rubber GSC. In [20], an intelligent dynamic
subarray RIS architecture is based on deep reinforcement
learning (DRL). The main concept is to split RIS electromag-
netic elements into different groups and power basic amplifier
factors, and independent phase shifts to optimize and improve
the system energy competence with the assumption of the
user’s requirement. Alandjani [21] introduces a review of
patients’ healthcare services., we first provide a summary
of the crucial parameters of patients’ healthcare services
via Green-IoT-enabled sensor technology under the use case
scenario.

A notable research gap in the context of green commu-
nication in the IoT environment lies in the incorporation of
metaheuristic-based clustering and DL-based load prediction
techniques. While metaheuristics and DL have individually
illustrated their efficiency in enhancing IoT networks, there is
a lack of research that explores their synergistic application in
tandem. The incorporation of these techniques could provide
a holistic method to address the energy efficacy and load
balancing challenges in IoT systems. Research is needed
to examine how these two paradigms can complement one
another to accomplish better sustainability, resource alloca-
tion, and network performance in IoT, filling the present void
in the literature and contributing to the development of green
communication solutions in IoT.

III. THE PROPOSED MODEL
In this study, a new CEOGC-DLLPmethod was projected for
green communication and load prediction in the IoT envi-
ronment. The presented CEOGC-DLLP technique mainly
accomplishes green communication via clustering and future
load prediction processes. It encompasses a two-stage pro-
cess namely cluster-based green communication and load
prediction. Fig. 1 showcases the block diagram of the
CEOGC-DLLP system.

A. DESIGN OF CEOGC TECHNIQUE
Primarily, the clustering of the IoT devices is performed using
the CEOGC technique. The EO was presented in 2019 by

Faramaezi et al. [22]. The motivation for the presented
methodology is a modest mixed thoroughly dynamic mass
balance on controller volume, wherein a mass balance for-
mula is utilized for describing the application of non-reactive
constituents in a controller volume as a task of numerous sink
and source models and it can be explained in the subsequent
equation.

V
dC
dt

= QCeq − QC + G (1)

In Eq. (20), V signifies the controller volume, C signifies
the application of particles, V dC

dt denotes the rate of changeQ
signifies the volumetric flow rate,Ceq denotes the application
of particles at equilibrium state without generation and G
denotes mass generative rate.

If V dC
dt = 0, a steady equilibrium state was accomplished.

λ =
Q
y described the turnover rate, whereas Q

y shows the
inverse of the residence duration:

dC

λCeq − λC +
G
y

= dt (2)

The below formula demonstrates the incorporation of
Eq. (2) over time.∫ C

C0

dC

λCeq − λC +
G
y

=

∫ t

t0
dt. (3)

The outcome is shown below

C = Ceq +
(
C0 − Ceq

)
F +

G
λV

(1 − F) (4)

In Eq. (4), F is evaluated as follows

F = exp
(
−λ (t − t0)

)
(5)

In Eq. (5), t0 and C0 characterize the primary time and
concentration.

The EO approach creates the vector named equilibrium
pool that gives equilibrium candidate particles. Five can-
didate particles of the equilibrium pool are defined using
the study, the optimum particle recognized in the entire
optimization technique, and the arithmeticmean of the above-
mentioned four particles [23]. Four ideal particle helps to
better examine the solution whereas the average assist in
exploitation:

C⃗eq,pool =

{
C⃗eq(1), C⃗eq(2), C⃗eq(3), C⃗eq(4), C⃗eq(ave)

}
. (6)

Exponential term F
Exponential term F aim is to balance the exploitation and

exploration of the presented approach and it is calculated in
the following:

F = e(−λ (t−t0)) (7)

In Eq. (7), λ indicates an arbitrary value within [0,1], and t
denotes an iteration function that minimizes the iteration
count:

t = (1 −
Iter

Maxiter
)α2

Itr
Maxiter (8)
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FIGURE 1. Block diagram of CEOGC-DLLP system.

In Eq. (8), Iter and Maxiter represent the present and the
maxima amount of iterations, correspondingly:

t⃗0 = 1λ⃗ ln(−α1sign(⃗r − 0.5)[1 − e−λ t ])+t (9)

whereas α1 and α2 indicate constant, and they control
exploitation and exploration abilities, correspondingly. The
high value of α1, the strong exploration ability, and the
worsening exploitation ability. The higher the value of α2,
the stronger the exploitation ability was and the worse the
exploration ability. α1 and α2 are equivalent to 2 and 1,
correspondingly. sign(r − O.5) specifies the direction of
exploitation and exploration.

F⃗ = α1sign(⃗r − 0.5)[e−λτ
→ −1]. (10)

Generation rate G assurances the EO approach for provid-
ing precise solutions by enhancing the exploitation ability.
Assume a first-order exponential decay procedure to deter-
mine the generative rate.

G⃗ = G⃗0e−k(t⃗−t0) (11)

In Eq. (11), G⃗0 denotes the primary value; k represents a
decay constant equivalent to λ . Consequently, the concluding
expression of generative rate G⃗ is equivalent to λ .

G⃗ = G⃗0e−k⃗⟨t−t0) = G⃗0F⃗ (12)

whereas

G⃗ = GCP⃗
(
C⃗eq − λ⃗ C⃗

)
(13)

GC̃P =

{
0.5r1, r2 ≥ GF
0, r2 < GF

(14)

Now, r1 and r2 indicate random numbers within [0,1],
and GC⃗P represents the likelihood that the generative term
contributed to the updating procedure that is named the gen-
erative rate controller variable parameter; the probability of
these contributions represents how much the particle uses
generative terms to upgrade the state. GC⃗F can be achieved
based on Eq. (14), which is named the generative possibility,
and its part is to accomplish a better balance between explo-
ration and exploitation:

C⃗ = C⃗eq + (C⃗0 − C⃗eq)F⃗ + G⃗

λ⃗V (1 − F⃗)
(15)

whereas V denoted the considered a unit.
The CEO algorithm was derived by the use of the chaotic

concept. During the iteration process, the range and size
of the early population have a substantial influence on the
convergence speed and the solution quality. Meanwhile,
the concentration and location of the optimum solution are
unidentified initially, when the individual of the early popula-
tion could be distributed consistently in the problem, it might
efficiently increase the search efficacy. To get the best pri-
mary values of diversity, a chaotic mapping approach was
applied for initializing the population.
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Logistic mapping will be a direct chaotic mapping in an
arithmetical format. This scheme has tremendously compli-
cated dynamics and extensive application.

xk+1
i = |1 − 2(xki )

2
| (16)

whereas xki ∈ [0, 1] indicates the chaotic series: k =

1, 2, . . . ,L,L represents the original population: i =

1, 2 . . . ,N ,N represents the early population number. Carry-
ing out themapping function to xki attains the early population
yki of the problem, and it was evaluated in the following
expression.

yki = Li + (Ui − Li) xki (17)

In Eq. (17), Li and Ui represent the boundary of parameter
values.

The presented CEOGC-DLLP model derives the CEOGC
technique with an FF encompassing multiple parameters.
It is simply intuited that once the cluster is balanced in the
cluster network, it may contain an approximately equivalent
amount of member nodes and an equivalent level of RE [24].
Using these concepts, to satisfy the major goal of the network
dividing into a few balanced clusters, nodes’ RE and the size
of the cluster are considered as decision parameters. Fur-
thermore, nodes’ proximity was considered, which ensures
decreased energy consumption in intra-cluster transmission.
An appropriate FF often contributes to differential evolution.
Therefore, FF was derived so that it symbolizes the above-
mentioned requirement in the following:

1) STANDARD DEVIATION (SD) OF AVERAGE CLUSTER
ENERGY
If the cluster is optimally formed, ensuring that the whole net-
work energy is evenly dispersed over the cluster in a network,
all the clusters should have an approximately equivalent level
of RE. In other words, it is demonstrated that concerning
average cluster energy (ACE), every cluster must have an
almost similar quantity of energy, and therefore, SD is shown
below:

σCE=

√√√√1
k
∗

k∑
i=1

(ACE − Cluster iRE )
2 (18)

In Eq. (18), k represents the cluster count. It is rather
noticeable that low the value of σCE , the high value of fitness,
is shown below

FitnessValue ∝
1

σCE
. (19)

2) SD OF AVERAGE CLUSTER SIZE
The balanced cluster should have an almost equivalent
amount of members. In other words, it is demonstrated that
the average cluster size (AvgCS) of all the clusters is approxi-
mately a similar amount of clustermembers. The fitness value
and SD are shown as follows.

σ
cs=

√
1
k ∗

∑k
i=1(AvgCS−CSi)2

, (20)

In Eq. (20), k represents the cluster count. It is perceived
again that the lower the value of σcs, the higher the value of
fitness as

Fitness Value ∝
1

σcs
. (21)

3) NODES’ PROXIMITY WITHIN A CLUSTER
This was a metric that guarantees that while deciding on
the node that part of clusters, the one positioned at a short
distance from another member gets priority.

Fitness Value ∝
1∑k

m=1 distm (i, j)
. (22)

From Eqs. (19), (21), and (22), it is written as:

Fitness Value ∝
1

σCE
∗

1
σcs

∗
1∑k

m=1 distm (i, j)
, (23)

viz.,

Fitness Value =
K

σCE ∗ σcs ∗
∑k

m=1 distm(i, j)
, (24)

From the expression, K ’’ is apropor tionality constant that
is set to K = 1 without losing generality.

Thus, (25), as shown at the bottom of the next page, or (26),
as shown at the bottom of the next page.

B. LOAD PREDICTION USING DBN MODEL
In this work, the presented CEOGC-DLLP technique follows
the DBN model for the load prediction process, which helps
to balance the load among the IoT devices for effective green
communication [25]. The DBN model training can be classi-
fied as follows: unsupervised pre-training procedure depends
onRBMand supervised parameter adjustment technique. The
primary input layer was the visible layer (VL), and the input
dataset was the text feature vector. The vector data of VL ν

integrated to weightw1 is utilized for inferring the data vector
of the hidden layer (HL) h1 which is the training procedure
of RBM1. Next, the vector data of the HL h1 is integrated to
weight w2 for inferring the vector data of HL h2 which is the
training procedure of RBM2, etc. The pretraining procedure
of DBN is accomplished:

Step 1. Arbitrarily initializing the weight (W , a, b), where
W indicates the weight vector matrixes, a = [a1, a2, . . . ,an]
denotes the offset coefficient of VL, and b = [b1, b2, . . . ,bn]
shows the offset coefficient of HL. ν = [ν1, ν2, . . . ,νn]
represent visible neuron, number is n;h = [h1, h2, . . . ,hn]
denotes hidden neuron, number is m. Fig. 2 illustrates the
infrastructure of DBN.

Step 2. Allocate X value to VL ν(0) and evaluate the
probability that the hidden neuron is activated:

p
(
h(0)
j = 1 | ν(0)

)
= σ

(
Wj ∗ ν(0)

+ bj
)

. (27)

Step 3. Execute a Gibbs sampling to achieve the values of
all the neurons in HL:

h(0) ∼ p
(
h(0)

| ν(0)
)

. (28)
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FIGURE 2. Architecture of DBN.

Step 4. Recreate the VL ν with gained h(0) in Eq. (28) and
evaluate the likelihood density:

p
(
ν

(0)
i = 1 | h(0)

)
= σ

(
Wi ∗ h(0)

+ ai
)

. (29)

Step 5. Implement Gibbs sampling again and recreate the
value of all the neurons in the VL. Let ri ∈ random of zero
and one:

νi =

{
1, p

(
ν

(0)
i = 1. | h(0)

)
> ri,

0, otherwise
(30)

Step 6. Evaluate the activation probability of HL neurons
again with recreated VLs:

p
(
h(1)
j = 1 | ν(1)

)
= σ

(
Wj ∗ ν(1)

+ bj
)

, (31)

In Eq. (31), σ adopted the sigmoid activation function.
Sigmoid is utilized for activating the function since it is
description field is R and it is value field is (0, 1). Conse-
quently, the input data of neurons in VL was the activation
likelihood of node attained using a sigmoid function.

Step 7. Attain the novel weighted vector matrixes W ,
VL offset co-efficient a, and HL offset co-efficient b:

a = a+ ε[ν(0) − ν(1)],

b = b+ ε[p(h(0) = 1|ν(0))−p(h(1) = 1|ν(1))],

TABLE 1. NOAN analysis of CEOGC-DLLP algorithm with recent systems
under 300 nodes.

W = W + ε
[
p

(
h(0)

= 1 | ν(0)
)

ν(0)T

−p
(
h(1)

= 1 | ν(1)
)

ν(1)T
]
, (32)

whereas ε indicates the learning rate.
To add, pre-training requires iteratively evaluating RBM1,

RBM2, and RBM3 variables sequentially and lastly getting a
better weight (W , a, b).

The supervised parameter optimization training of DBN
firstly makes use of the forwarding propagation technique
for determining whether the HLs are activated through the
parameters W and b attained. Consider l indicates the layer
count of the NN and evaluate the excitation value of all the
HLs:

h(l) = W (l)
∗ν + b(l). (33)

Next, disseminate upward layer-wise, compute the excita-
tion value of neurons in HL, normalize them with activation
function, and lastly evaluate excitation values h(l) and output
vector X̂ of output layer:

h(l) = W (l)
∗h(l−1)

+ b(l),

X̂ = f (h(l)). (34)

Next, the backpropagation model is utilized for updating
the parameters of the entire DBN network. The backprop-
agation model adopts the reconstructed errors, and the cost
function is given below:

E =
1
N
(X̂ (W (l), b(l)) − Xi)2, (35)

In Eq. (35), E refers to the reconstructed error, X̂ indicates
the actual outcome of the resultant layer, Xi represents the
theoretical output belonging to the output layer, and (W (l), bl)

Fitness Value =
1√

1/k ∗
∑k

i=1(ACE − Cluster iRE )
2 ∗

√
1/k ∗

∑k
i=1(AvgCS − CSi)2 ∗

∑k
m=1 distm(i, j)

(25)

Fitness Value =
k√∑k

i=1(ACE − Cluster iRE )
2 ∗

√∑k
i=1(AvgCS − CSi)2 ∗

∑k
m=1 distm(i, j)

(26)
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FIGURE 3. NOAN analysis of CEOGC-DLLP algorithm under 300 nodes.

TABLE 2. NOAN analysis of CEOGC-DLLP algorithm with recent systems
under 1000 nodes.

signifies the weighted and offset co-efficient of layer l. The
reconstructed error reflects the probability of the trained
dataset to a specific range.(

W (l), b(l)
)

=

(
W (l), b(l)

)
− ε

∂E

∂
(
W (l), b(l)

) . (36)

The training objective of DBN was to exploit the fitting of
the input dataset, and the output was the reconstructed error
of the trained dataset. The VL neuron transfers its features
to HLs. The HLs capture the high-level feature demonstrated
using the VLs via iterative training, for improving the capa-
bility of feature extraction.

IV. RESULTS AND DISCUSSION
In this section, the green communication and load predic-
tion outcomes of the CEOGC-DLLP model are investigated
briefly. Table 1 and Fig. 3 offer a NOAN inspection
of the CEOGC-DLLP model with recent models under
300 nodes. These results inferred the enhanced outcomes
of the CEOGC-DLLP model with increased NOAN values.
For instance, on 1000 rounds, the CEOGC-DLLP model has
attained an increased NOAN of 299 whereas the F-LEACH,
EE-FUC, UDCH, and GEQCC-FLP models have reached
reduced NOAN of 223, 262, 287, and 295 respectively.
Besides, on 3000 rounds, the CEOGC-DLLP method has
achieved an increased NOAN of 201 whereas the F-LEACH,

FIGURE 4. NOAN analysis of CEOGC-DLLP algorithm under 1000 nodes.

TABLE 3. ECOM analysis of CEOGC-DLLP algorithm with recent systems
under varying rounds.

EE-FUC,UDCH, andGEQCC-FLP approaches have reached
reduced NOAN of 15, 33, 53, and 92 respectively.

Table 2 and Fig. 4 render a NOAN review of the
CEOGC-DLLP approach with recent techniques under
1000 nodes. These results denoted the enhanced outcomes of
the CEOGC-DLLP approach with increased NOAN values.
For example, on 1000 rounds, the CEOGC-DLLP tech-
nique has achieved an increased NOAN of 987 whereas the
F-LEACH, EE-FUC, UDCH, and GEQCC-FLP approaches
have reached reduced NOAN of 778, 875, 962, and 968 cor-
respondingly. Also, on 3000 rounds, the CEOGC-DLLP
technique has obtained an increased NOAN of 506 whereas
the F-LEACH, EE-FUC, UDCH, and GEQCC-FLP mod-
els have reached reduced NOAN of 22, 44, 106, and 160
correspondingly.

Table 3 and Fig. 5 inspect the ECOM examination of
the CEOGC-DLLP model with existing techniques. The
results represented that the CEOGC-DLLP model obtained
reduced ECOM values under all rounds. For instance,
on 1000 rounds, the CEOGC-DLLP model has reached
a minimal ECOM of 21J whereas the F-LEACHEE-
FUC, UDCH, and GEQCC-FLP models have attained
maximum ECOM values of 55J, 45J, 40J, and 24J respec-
tively. Besides, on 3000 rounds, the CEOGC-DLLP tech-
nique has reached a minimal ECOM of 84J whereas the
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FIGURE 5. ECOM analysis of CEOGC-DLLP algorithm under varying rounds.

TABLE 4. ETED analysis of CEOGC-DLLP algorithm with recent systems
under varying rounds.

FIGURE 6. ETED analysis of CEOGC-DLLP algorithm under varying rounds.

F-LEACHEE-FUC, UDCH, and GEQCC-FLP approaches
have reached maximum ECOM values of 100J, 99J, 98J, and
93J correspondingly.

Table 4 and Fig. 6 review the ETED inspection of
the CEOGC-DLLP method with existing methods. The
results signified the CEOGC-DLLP approach procured
reduced ETED values under all rounds. For example, on
1000 rounds, the CEOGC-DLLP technique has attained a
minimal ETED of 9ms whereas the F-LEACHEE-FUC,

TABLE 5. Throughput analysis of CEOGC-DLLP algorithm with recent
systems under varying rounds.

FIGURE 7. Throughput analysis of the CEOGC-DLLP algorithm under
varying rounds.

TABLE 6. Comparative analysis of CEOGC-DLLP algorithm with recent
systems.

UDCH, and GEQCC-FLP approaches have obtained max-
imum ETED values of 37ms, 31ms, 25ms, and 16ms
correspondingly. Also, on 3000 rounds, the CEOGC-DLLP
technique has attained a minimal ETED of 19ms whereas the
F-LEACHEE-FUC, UDCH, and GEQCC-FLP algorithms
have reached maximum ETED values of 49ms, 39ms, 33ms,
and 26ms correspondingly.

Table 5 and Fig. 7 offer a throughput (THRO) examination
of the CEOGC-DLLP technique with recent models under
1000 nodes. These results inferred the enhanced outcomes
of the CEOGC-DLLP methodology with increased THRO
values. For example, on 1000 rounds, the CEOGC-DLLP
technique has reached an increased THRO of 34216Pkts
whereas the F-LEACH, EE-FUC, UDCH, and GEQCC-FLP
techniques have reached a reduced THRO of 18512Pkts,
20756Pkts, 23480Pkts, and 29569Pkts correspondingly.
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FIGURE 8. MSE and MAE analysis of CEOGC-DLLP algorithm with recent
systems.

FIGURE 9. RMSE and MAPE analysis of CEOGC-DLLP algorithm with
recent systems.

Also, on 3000 rounds, the CEOGC-DLLP algorithm
has attained increased THRO of 64662Pkts whereas the
F-LEACH, EE-FUC, UDCH, and GEQCC-FLP approaches
have attained reduced THRO of 36940Pkts, 44632Pkts,
51362Pkts, and 64662Pkts correspondingly.

Table 6 provides comparative load prediction results of the
CEOGC-DLLP model [2]. Fig. 8 shows the MSE and MAE
assessment of the CEOGC-DLLP with existing models. The
figure reported that the CEOGC-DLLP model outperformed
the other models with minimal values of MSE and MAE.
Based on MSE, the CEOGC-DLLP model has reached a
minimal MSE of 0.2956 whereas the LR, LSTM, CNN-
LSTM, and GEQCC-FLP models have attained maximum
MSE of 0.3240, 0.6080, 0.3940, 0.3430, and 0.3210 respec-
tively. At the same time, based on MAE, the CEOGC-DLLP
method has reached a minimal MAE of 0.1028 whereas the
LR, LSTM, CNN-LSTM, and GEQCC-FLP techniques have
reached a maximumMAE of 0.4774, 0.6538, 0.4932, 0.4535,
and 0.4413 correspondingly.

Fig. 9 displays the RMSE and MAPE valuation of the
CEOGC-DLLP with existing techniques. The figure reported
that the CEOGC-DLLP method outperformed the other mod-
els with minimal values of RMSE and MAPE. Based on
RMSE, the CEOGC-DLLP technique has reached a mini-
mal RMSE of 0.5437 whereas the LR, LSTM, CNN-LSTM,
and GEQCC-FLP methodologies have obtained a maxi-
mum RMSE of 0.5692, 0.7797, 0.6277, 0.5857, and 0.5666
correspondingly.

Simultaneously, based onMAPE, the CEOGC-DLLP tech-
nique has reached a minimal MAPE of 0.1163 whereas
the LR, LSTM, CNN-LSTM, and GEQCC-FLP approaches
have gained a maximum MAPE of 0.1545, 0.2377, 0.2106,
0.1946, and 0.1356 correspondingly. These results assured
the promising performance of the CEOGC-DLLP model.

V. CONCLUSION
In this study, a new CEOGC-DLLP technique has been devel-
oped for green communication and load prediction in the
IoT environment. The presented CEOGC-DLLP technique
mainly accomplishes green communication via clustering
and future load prediction processes. The CEOGC-DLLP
technique has shown remarkable promise in addressing the
critical challenges of energy optimization, load balancing,
and overall network efficiency in the IoT environment.
By combining the power of metaheuristic-based cluster-
ing with DL-based load prediction, this approach offers
a comprehensive solution to enhance sustainability and
resource allocation. The experimental assessment of the
CEOGC-DLLP technique is performed and the results are
investigated under several aspects. The comparison study
represents the supremacy of the CEOGC-DLLP technique
compared to existing techniques with a maximum throughput
of 64662packets and minimum MSE of 0.2956. In future,
the proposed load prediction can be extended to long-term
forecasting for supporting strategic planning, capacity man-
agement, and infrastructure development in the IoT envi-
ronments. In future work, the CEOGC-DLLP approach
could benefit from exploring adaptive learning mechanisms,
enabling the system to dynamically adjust its parameters in
response to changing IoT network conditions. Additionally,
the integration of edge computing and blockchain technology
could enhance security and further optimize resource allo-
cation in the context of green communication. Finally, the
scalability and applicability of the CEOGC-DLLP model to
diverse IoT use cases and network architectures should be
thoroughly investigated to ensure its effectiveness in various
real-world scenarios.
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