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ABSTRACT Analyzing keystroke dynamics (KD) for biometric verification has several advantages: it is
among the most discriminative behavioral traits; keyboards are among the most common human-computer
interfaces, being the primary means for users to enter textual data; its acquisition does not require additional
hardware, and its processing is relatively lightweight; and it allows for transparently recognizing subjects.
However, the heterogeneity of experimental protocols and metrics, and the limited size of the databases
adopted in the literature impede direct comparisons between different systems, thus representing an obstacle
in the advancement of keystroke biometrics. To alleviate this aspect, we present a new experimental
framework to benchmark KD-based biometric verification performance and fairness based on tweet-long
sequences of variable transcript text from over 185,000 subjects, acquired through desktop and mobile
keyboards, extracted from theAalto KeystrokeDatabases. The framework runs on CodaLab in the form of the
Keystroke Verification Challenge (KVC). Moreover, we also introduce a novel fairness metric, the Skewed
Impostor Ratio (SIR), to capture inter- and intra-demographic group bias patterns in the verification scores.
We demonstrate the usefulness of the proposed framework by employing two state-of-the-art keystroke
verification systems, TypeNet and TypeFormer, to compare different sets of input features, achieving a less
privacy-invasive system, by discarding the analysis of text content (ASCII codes of the keys pressed) in
favor of extended features in the time domain. Our experiments show that this approach allows to maintain
satisfactory performance.

INDEX TERMS Keystroke dynamics, behavioral biometrics, biometric verification, KVC, challenge.

I. INTRODUCTION
A. KEYSTROKE DYNAMICS FOR BIOMETRIC
RECOGNITION
Keystroke Dynamics (KD) refers to the typing behavior of
human subjects. It is commonly regarded as a behavioral
biometric trait, similarly to voice [1], signature [2], [3],
gait [4], [5], [6], touch gestures [7], [8], etc. In comparison
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with its physiological counterparts such as face or fingerprint,
behavioral biometrics represent a more challenging technical
problem in terms of recognition performance as they are in
general characterized by a higher intra-user variability, and
lower inter-user variability. These challenges are magnified
when dealing with real-life applications that have up to
millions of subjects. Nevertheless, they offer the advantage
of verifying identities transparently, improving security,
as well as usability [9], since they spare users from
having to actively carry out a specific verification procedure
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(such as having their fingerprint scanned, or typing a
password).

In particular, the deployment of keystroke dynamics
verification systems is also economic, as there is no need
for additional hardware. Potential applications span from
verifying the subject identity while they write an email or
they take a test in online educational platforms (free-text
format) [10], to identifying malicious users across multiple
accounts based on their typing style (free-text format) [11],
or as an additional biometric security layer on top of a
traditional knowledge-based password (fixed-text format)
[12], etc. These aspects have prompted several companies to
develop commercial solutions to enhance the security of users
through KD [11].

A coarse classification of KD can take place according to
two criteria: (i) the typology of acquisition device (keyboard):
desktop or mobile. Due to differences in the pose or activity
of typing subjects, more variability is commonly associated to
mobile touchscreens in comparison with desktop keyboards;
and (ii) regarding the text format, which can be free, fixed,
or transcript. In the first case, the text typed is not the
same across different samples: consequently, data are much
sparser, more unstructured, and they present a higher rate of
typing errors, compared to the fixed-text case, which aims
to represent for instance the case of an intruder typing the
password of the victim. Finally, the transcript text could
be defined as a hybrid format as the subjects are asked
to read, memorize, and type a text that is presented to
them.

In its simplest form, keystroke dynamics are captured as
discrete time instants: the time instants a key is pressed and
released (for instance in Unix time format), accompanied
by the code (ASCII) of the key pressed. More complex
features can be extracted from these raw data. In par-
ticular, the ASCII codes are useful for learning relations
between time and spatial distributions over the keyboard
layout. Nevertheless, although handled in compliance with
sensitive data protection regulations [13], they inevitably
reveal the content of the text, putting at risk the privacy
of the subjects [14], [15]. Other information such as the
amount of pressure on the key or the size of the fingertip
might be available depending on the specific hardware
capabilities.

B. LIMITATIONS OF EXISTING EVALUATION
METHODOLOGIES
In the field of keystroke biometrics, a typical obstacle for
research advancement is represented by the heterogeneity of
databases, experimental protocols, and metrics. In Table 1,
some of the most important public keystroke dynamics
databases are reported in chronological order. Although
the literature on keystroke biometrics is extensive, to the
best of our knowledge, except very few cases [11], [16],
previous systems have mostly been only evaluated with
up to several hundred subjects not representing well the

TABLE 1. Some of the most important public keystroke dynamics
databases in chronological order.

recent challenges that massive usage applications can face.
In addition, most research works are mainly focused only
on desktop and fixed-text scenarios. Therefore, keystroke
dynamics can still be considered a biometric modality at
the early stages, especially for mobile devices. In fact,
for mechanical keyboards of desktop computers, more
in-depth evaluations have been conducted and commercial
applications have been proposed [17]. Moreover, even if
using the same databases, different systems proposed in the
literature over the years have often been developed based on
different subsets of users for development and evaluation,
number of enrolment sessions, and metrics, hindering direct
comparisons. In contrast, we propose a clearly defined
experimental protocol based on same realistic use cases
(Sec. VI), that can be easily adopted by researchers and
practitioners of the field using the provided comparison files
(Sec. II).

C. FAIRNESS CONSIDERATIONS
Moreover, in the context of decision-making, algorithms are
vulnerable to biases that render their decisions ‘‘unfair’’
[28], [29]. Consequently, in this context, fairness is defined
as the absence of any prejudice or favoritism toward an
individual or group based on their inherent or acquired
characteristics. In the last years, innumerable studies have
highlighted the existence of biases in biometric systems with
regard to categories such as age, gender, and ethnicity [30],
leading to worse decisions that affect specific demographic
groups. In addition, these aspects are also relevant from
the point of view of the privacy of users, as the existence
of bias due to sensitive attributes often implies that the
sensitive attributes themselves might be embedded in the
learned representations [31], [32]. Therefore, the risk of
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leakage of some soft-biometric1 information about the
subjects should be assessed as well. In general terms, the
existence of bias or privacy leakage in biometric systems
presupposes specific patterns in the input data associated
with different demographic groups. For instance, in face
biometrics, the existence of biological differences between
different genders, ages, or ethnic groups is a trivial hypothesis
that does not need a formal demonstration. However,
for many biometric modalities including KD, it is not
straightforward to make similar assumptions. Nevertheless,
for KD, several studies have evaluated the predictability
of gender [35], [36], age [37], [38], both [39], [40], and
even emotions [41] and mother tongue [42]. In light of
this, in this article we propose an experimental framework
designed to highlight potential gender and age biases in
the scores, which are still mainly unexplored aspects for
KD on such a large scale. Within the current work, the
focus is limited to age and gender because other potential
sources of bias (such as the subject mother tongue, the
device used, or the degree of familiarity of the subjects with
keyboards) were not reported for most subjects in the raw
databases.

D. CONTRIBUTIONS
In brief, the main contributions of this article can be
summarized as follows:

• We propose a novel experimental framework to bench-
mark KD for biometric verification, which, to the best
of our knowledge, is still lacking in this field. The
framework is provided in the form of the Keystroke
Verification Challenge (KVC),2 hosted on CodaLab.3

The CodaLab platform returns several metrics (Sec.
III) that quantify the recognition performance as well
as the fairness of biometric systems. To create the
framework, we consider two of the largest public
databases of keystroke dynamics up to date, the Aalto
Desktop [25] and Mobile [26] Keystroke Databases,
extracting datasets that guarantee a minimum amount
of data per subject, age and gender annotations, absence
of corrupted data, and that avoid too unbalanced subject
distributions with respect to the considered demographic
attributes.

• We illustrate the main aspects of the proposed
framework by considering two recent state-of-the-
art keystroke biometric systems, TypeNet [11], and
TypeFormer [16], [43]. To this end, we propose a
thorough analysis considering four different sets of
features (Sec. VI-A) towards more privacy-preserving

1Soft biometrics are physical or behavioral biometrics, or material
accesories, associated with an individual, useful for recognizing an
individual [33]. Examples include age, gender, ethnicity, etc. [34].

2The challenge is held within the 2023 IEEE International Conference
on Big Data (IEEE Big Data), Sorrento, Italy, December 15th-18th, 2023.
After such term, the challenge will be made ongoing so that the proposed
framework can become a useful resource for all researchers and practitioners
of the field. Website: https://sites.google.com/view/bida-kvc/

3https://codalab.lisn.upsaclay.fr/competitions/14063/

biometric systems not requiring the ASCII code, which
would reveal the text content, as an input feature. Our
experiments show that by removing spatial information
of the key location on the keyboard layout (ASCII
code) in favor of additional features in the time domain,
an acceptable level of performance is maintained.

• A comparative analysis of keystroke dynamics verifica-
tion systems in desktop andmobile scenarios is provided
(Sec. VII-A.

• We propose a new metric, the Skewed Impostor Ratio
(SIR), useful to quantify how harder is for the classifier a
pairwise comparison between subjects belonging to the
same demographic group in relation with comparisons
of subject belonging to different groups.

The remainder of the article is organized as follows:
first, the resources provided within the proposed experi-
mental framework are described (Sec. II). Then, Sec. III
includes a detailed presentation of the evaluation protocol
of the experimental framework and challenge, whereas
Sec. IV presents the metrics adopted, including the def-
inition of SIR, a novel metric proposed in this article.
Sec. V provides an overview of the two biometric systems,
TypeNet [11] and TypeFormer [16], utilized to validate
the framework, followed by Sec. VI, in which the set of
experiments for privacy-enhancement is illustrated. Finally,
Sec. VII and Sec. VIII respectively contain the analysis of the
results obtained and the article conclusive remarks.

II. RESOURCES PROVIDED
The proposed experimental framework is based on the
two most complete and large-scale public databases of
free-text keystroke dynamics up to date, collected by the
User Interfaces4 group of the Aalto University (Finland).
The two databases are collected respectively in a desktop5

[25] and mobile6 [26] acquisition environment, including
respectively around 168,000 and 60,000 subjects, thus
representing well the typical challenges related to mas-
sive application usage. Each of the acquisition sessions
contains a sentence of transcript text (variable content,
but not fully free-text). The data were captured through
a web application in an unsupervised way under realistic
scenarios. Subjects were asked to read, memorize, and
type in their device English sentences that were randomly
selected from a set of 1,525 sentences. Subject metadata
such as age and gender are self-reported during the data
acquisition.

The two databases have been processed to arrange the data
in a convenient format for the analysis of KD. The raw data
acquired consist of the timestamp of the instant a key is
pressed, the timestamp of the instant the key is released, and
the key ASCII code. After discarding some of the subject data
due to insufficient acquisition sessions per subject (less than

4https://userinterfaces.aalto.fi/
5https://userinterfaces.aalto.fi/136Mkeystrokes/
6https://userinterfaces.aalto.fi/typing37k/
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15 per subject), the two databases as downloaded have been
rearranged to form four datasets:

• Desktop Dataset:
1) Development set: 115,120 subjects provided in

a single.npy file that contains a Python nested
dictionary (subject IDs: session IDs: data).
Average session length: 48.65 (σ = 18.50)
characters typed.

2) Evaluation set: data from 15,000 subjects, pro-
vided in a single.npy file that contains a shallow
Python dictionary (sessions IDs: data). Average
session length: 48.77 (σ = 18.64) characters typed.

• Mobile Dataset:
1) Development set: 40,639 subjects provided in a

single.npy file that contains a Python nested dic-
tionary (subject IDs: session IDs: data). Average
session length: 48.59 (σ = 21.84) characters typed.

2) Evaluation set: data from 5,000 subjects, provided
in a single.npy file that contains a shallow Python
dictionary (sessions IDs: data). Average session
length: 47.98 (σ = 20.93) characters typed.

The proposed experimental framework follows an open-set
learning protocol, in other words, the subjects in the develop-
ment and evaluation sets are different7III) in 10 subsets. Then,
we computed the global EER (Sec. IV) for each of the random
subsets, to provide mean and standard deviation. As an
example, we report the following values for TypeFormer 5F
(Sec. VI-A): µ = 12.949%, σ = 0.090%for desktop, µ =

10.164%, σ = 0.073% for mobile. Please refer to Sec. IV
and VII for details about the metrics and results. A validation
set is not explicitly provided, but it can be obtained from the
development set according to different training approaches.

Table 2 shows the demographic distribution of the datasets
provided in the KVC. The subjects have been divided into six
age groups (10 - 13, 14 - 17, 18 - 26, 27 - 35, 36 - 44, 45 - 79).
The evaluation sets are balanced with respect to gender. The
gender and age labels of the development set are released
together with the data.

The evaluation sets are separated by scenario (desktop
and mobile), and they are provided in the form of two
shallow Python dictionaries containing independent ses-
sions. Such data are accompanied by the respective lists
of pairwise comparisons to be carried out. Two Python
script files are provided to load the data, and run the
comparisons, generating a text file with the scores of
each comparison, ready to be submitted to CodaLab for
scoring. To push forward the state of the art and deepen the
knowledge on the topic, the proposed protocol is designed
for researchers working on KD as a novel tool to evaluate
different approaches (pre-processing of input features, clas-
sifier architectures, learning approaches, etc.) for different
goals (biometric recognition and fairness improvement)

7As the datasets are fixed with a single choice of subjects, the conclusions
obtained from the reported results can be impacted. To verify that the score
fluctuations are not significant, we randomly split the evaluation score lists
(Sec.

TABLE 2. Demographic distributions of the provided datasets. The rows
represent different age groups, while the columns represent genders. The
evaluation sets are balanced with respect to gender.

FIGURE 1. Each one of the verification sessions is compared with each of
the enrolment sessions. For an easier comprehension, examples of faces
showing gender and age are included instead of keystroke examples.
Then, the scores generated are averaged over the enrolment session,
leading to three distributions: genuine (green), similar impostor (orange),
and dissimilar impostors (red).

under the same experimental conditions, considering various
metrics.

III. EVALUATION DESCRIPTION
The design and the implementation of the evaluation protocol
described in this section represents a significant novelty
aspect proposed in the current work.

The two tasks (desktop and mobile) are structured
similarly, and they are designed for a biometric verification
protocol. In other words, a score between 0 and 1 related to a
single comparison of two biometric samples will be produced
(1: same identity, 0: different identities). It is a binary
classification problem, as it is not necessary to ascertain
to which identity a specific biometric sample belongs to
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(identification). In this experimental framework, a biometric
sample corresponds to an acquisition session.

The total number of 1 vs 1 session-level comparisons is as
follows:

• Task 1 (Desktop): 2,250,000 comparisons, involving
15,000 subjects not included in the development set.

• Task 2 (Mobile): 750,000 comparisons, involving 5,000
subjects not included in the development set.

The design of the comparisons is illustrated in Fig. 1.
For each subject, there are 5 enrolment sessions and
10 verification sessions, leading to 50 1vs1 comparisons,
which are averaged over the 5 enrolment sessions gener-
ating 10 genuine scores per subject. In a similar manner,
20 impostor scores per subject are generated. The impostor
sessions are divided into two groups: 10 similar impostor
scores, for which the verification sessions are randomly
selected from subjects belonging to the same demographic
group (same gender and age); 10 dissimilar impostor scores,
in which the verification sessions are all randomly selected
from subjects of different gender and age intervals 9IV):
10µ = 12.410%, σ = 0.036% in the desktop case,
µ = 9.444%, σ = 0.045% in the mobile case. Please
refer to Sec. IV and VII for details about the metrics and
results.

Based on the described evaluation design, following [11]
and [16], we consider two cases for evaluating the system:

• Global distributions: this case corresponds to dividing
all scores into two groups, genuine and impostor scores,
regardless of which subject they belong too. This case
corresponds to a having a fixed, pre-determined thresh-
old, implying a simpler deployment of the biometric
system. In order to assess the performance of the
biometric system, this choice means setting one single
threshold for all comparisons to obtain a decision.

• Mean per-subject distributions: the optimal threshold is
computed at subject-level, considering the 30 verifica-
tion scores as described above. This choice corresponds
to providing the system with more flexibility, so that
it can adapt to user-specific distributions [44], [45].
In a real-life use case, this would require processing the
subject’s enrolment samples to establish a threshold, and
it can be done as follows: acquiring various enrollment
samples, fromwhich to derive a genuine subject-specific
score distribution by considering pairwise comparisons
between enrollment samples; considering a pool of
samples from different subjects, from which to derive an
impostor subject-specific score distribution by consider-
ing pairwise comparisons with the genuine enrollment
samples; computing a subject-specific threshold based
on the two distributions. It is important to highlight
that this does not require re-training or fine-tuning the

9To verify that the score fluctuations due to randomness are not significant,
we repeated the choice 10 times with 10 different seeds. As an example,
we report the following evaluation values for TypeFormer 5F (Sec. VI-A) in
terms of global EER (Sec.

10Although unlabeled, we opted to include these subjects to maximize the
size of the provided dataset.

biometric system using subject-specific data. Then, all
metrics computed per-subject are averaged considering
all subjects in the evaluations set to obtain the values
displayed. Generally, the verification performance of the
system benefits from considering a different threshold
per user.

IV. METRICS ADOPTED
Within the years, several metrics have been proposed for
biometric verification. The common aspect of all metrics
is that they are based on the (normalized) scores that are
typically generated by pairwise comparisons of biometric
data. However, a comparison between systems is often
a difficult operation if they are evaluated according to
different metrics. Moreover, the attention of the scientific
community has recently shifted towards the evaluation of
the fairness of systems [46]. Consequently, based on the
scores, we also provide an initial assessment of this important
aspect which, to the best of our knowledge, is still an
unexplored aspect of KD. An overview of all metrics
considered is provided below. The scores will be computed
considering global andmean per-subject distributions. All the
presented metrics are returned by the KVC CodaLab scoring
program, easily allowing experimental analyses of multiple
aspects, such as different sets of input features for privacy-
enhancement (Sec. VII). To the best of our knowledge, these
scenarios have not been proposed in previously existing
literature.

A. VERIFICATION METRICS
In biometrics, a false match (FM) is defined as a comparison
decision of a match for a biometric probe and a biometric
reference that are from different biometric capture subjects,
while a false non-match (FNM) is defined as comparison
decision of non-match for a biometric probe and a biometric
reference that are from the same biometric capture subject
and of the same biometric characteristic. The rate respectively
associated with FMR (FNMR) corresponds to proportion
of the completed biometric non-mated (mated) comparison
trials that result in a false match (non-match) [47].

1) EQUAL ERROR RATE (EER)
The EER describes the point in which the FMR and FNMR
curves intersect. The two rates typically have opposite trends
with respect to the threshold setting (in the case of genuine
scores closer to 1, and impostor scores closer to 0, as the
threshold of a biometric system increases, the FMR will
drop and the FNMR curve will rise). On the DET curve
(Sec. IV-B), which is the plot of FNMR against FMR,
at various threshold settings, it corresponds to the point where
y = x.

2) FALSE NON-MATCH RATE AT X% FALSE MATCH RATE
(FNMR @ X% FMR)
We consider X = 1%, 10%. This also corresponds to a
point on the DET curve. This metric expresses a trade-off
between security and usability [9]. In fact, while from the
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point of view of security the priority is avoiding intrusions,
denying the access to the genuine subject a large number
of times would generate frustration and highly impacts the
usability of the system. In this case, the threshold is set
to X = 1%, 10% of FMR (rejection of 99%, 90% of
impostor attempts, respectively), aiming to minimize the
FNMR.

3) AREA UNDER THE RECEIVER OPERATING
CHARACTERISTIC (ROC) CURVE (AUC)
The ROC curve (Sec. IV-B) is the plot of the TMR (True
Match Rate) against FMR, at various threshold settings.
A true match corresponds to the case of a genuine subject
recognized as such. By definition, the TMR and the FNMR
sum to 1. A perfect classifier has an Area Under the ROC
Curve (AUC) of 1.

4) ACCURACY
The accuracy is computed as the fraction of correctly
classified attempts at a given discrimination threshold τ ,
corresponding, in the current work, to the EER threshold.

5) RANK-N
This metric concerns the identification of subjects (i.e.,
1 to many comparisons), therefore assessing a different
scenario from the previous metrics, which refer to the case
of verification (i.e., binary classification). Starting from
the comparison of biometric enrolment samples with N
biometric samples including a genuine one, it represents
the rate to which the genuine scores fall within the
best n matches. In the proposed framework, this metric
is computed by considering separately each one of the
genuine verification sessions against all 20 impostor sessions
available for each subject. The returned rank-n values
are averaged over the 10 genuine verification sessions
(n = 1).

B. CURVES
1) SCORE HISTOGRAMS
They are computed considering the global genuine and
impostor distributions. It is necessary to have a clear
separation between the two, with the genuine distribution
shifted toward 1, and the impostor one toward 0. A small
overlap of the tails corresponds to a better performance of
the system.

2) DETECTION ERROR TRADE-OFF (DET) CURVE
It is the plot of FMR against FNMR, at various threshold
settings, typically on a non-linear scale. As the thresh-
old decreases, the amount of false matches (impostor
subjects classified as genuine) increases, and the num-
ber of false non-matches decreases (genuine subjects
classified as impostor). The closest the DET curve to
the bottom left corner, the better the biometric system
will be.

3) ROC CURVE
It is the plot of the TMR against FMR, at various threshold
settings.

C. FAIRNESS METRICS
1) STANDARD DEVIATION (STD) OF EER BY DEMOGRAPHIC
GROUP
It considers the demographic differential assessment by
calculating the standard deviation in accuracy performance
between all demographic groups at a given discrimination
threshold τ (in this work corresponding to the global EER
threshold). The STD expresses a measure of how dispersed
the values is in relation to the mean. The optimal STD value
is 0%.

2) SKEWED ERROR RATIO (SER) OF EER BY DEMOGRAPHIC
GROUP
Skewness is a measure of the asymmetry of a distribution.
Similarly to the STD, SER is computed across demographic
subsets as the ratio between the greatest and smallest error
scores. It mainly represents the difference between the
sensitive attribute with the best and worst performance. The
larger the value, the greater the difference in the algorithm’s
discrimination towards a certain attribute. The optimal SER
value is 1.

3) FAIRNESS DISCREPANCY RATE (FDR)
It was proposed in [48]. It considers the FMR and FNMR
trade-off in the demographic differential assessment by cal-
culating the max difference in TMR and TNMR performance
between any two demographic groups di and dj and a given
discrimination threshold τ . In the current work, τ corresponds
to the point of FMR = 1%. Those differences are then
weighted by parameters α and β = 1−α, which represent the
level of concern applied to differences in FMR and FNMR
respectively. It is advantageous due to its formulation, that
encompasses two different metrics, and its flexibility given
by the parameters α and β. It can be plotted as a function of
every possible threshold value. Consequently, it is necessary
to have access to the ground truth. The FDR ranges from 0
(fair) to 1 (unfair).

4) INEQUITY RATE (IR)
It was proposed in [49]. It is computed considering the
ratio differences between minimum and maximum FMR and
FNMR per demographic groups di and dj for τ corresponding
to the point of FMR = 1%. Although spanning different
ranges from, its characteristics are similar to those of FDR.
The IR ranges from 0 (fair) to infinite (unfair).

5) GINI AGGREGATION RATE FOR BIOMETRIC EQUITABILITY
(GARBE)
It was proposed in [50] to overcome the limitations of FDR,
and IR. In fact, the former does not scale the values of FMR
and FNMR to the same order of magnitude, whereas the latter
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has no theoretical upper bound and may have a denominator
equal to zero. GARBE is inspired in the mathematics of the
Gini coefficient, computed for x = {FMR,FNMR} as:

Gx(τ ) =

(
n

n− 1

)(∑n
i=1

∑n
j=1 |ri − rj|

2n2r̄

)
where ri, rj ∈ {FMRdi@τ |di ∈ D} for r = FMR, ri, rj ∈

{FNMRdi@τ |di ∈ D} for r = FNMR, τ is the decision
threshold (FMR = 1%), di refers to a demographic group
from the set D of demographic groups, and n is the number
of demographic groups. These Gini coefficients are combined
as follows:

GARBE(tz) = αGFMR(tz) + (1 − α)GFNMR(tz)

where α represents the level of concern applied to differences
in FMR and FNMR respectively. The GARBE ranges from 0
(fair) to 1 (unfair).

6) SKEWED IMPOSTOR RATIO (SIR)
This is a novel metric proposed in this article. Normalized
impostor scores are grouped according to a specific attribute
(age or gender). For instance, considering age, it is possible
to group the comparisons as follows: ‘10-13 vs 10-13’,
‘10-13 vs 14-17’, ‘10-13 vs 18-26’, and so on, considering
all combinations. For each score group combination, the
average value is taken. Then, all values can be arranged in
a matrix, which is symmetric. The elements on the main
diagonal represent comparisons between the different sub-
jects belonging to the the same age or gender group (‘10-13
vs 10-13’, ‘14-17 vs 14-17’, etc.), while all other elements
are obtained from the remaining cross-group comparisons.
The ratio between the mean value of the elements in the
main diagonal, and the remaining non-duplicated elements,
is finally computed as a percentage. Such value expresses
how harder is a comparison between different subjects
belonging to the same demographic group in comparison to
subjects belonging to different ones, quantifying to which
extent demographic information is retained in the scores.
It can be formulated as follows:

SIR = 100
(

µ(sii)
µ(sij,i̸=j)

− 1
)

, i, j = 1, . . . , n

where n is the number of demographic groups (n = 6 for
age, n = 2 for gender), and s is the average score for a
specific type of comparisons. The optimal SIR value is 0 (%),
in case of no skew between impostor scores regardless of their
demographic group. In comparison with the previous metrics,
the advantages are as follows:

• It is not necessary to select a threshold value.
• It focuses on both intra-group and inter-group relations,
highlighting the differences in the two cases. If the
differences between the two cases are not significant nor
consistent, then the system is bias-free.

• It is not necessary to have access to the system,
which can be treated as a black box. It is sufficient

to run a significant number of appropriately distributed
comparisons.

• By considering the entire matrix as described above,
it is possible to focus on comparisons between specific
groups, gaining some precious insights about the system
and the similarities between demographic groups.

V. BIOMETRIC VERIFICATION SYSTEMS
Throughout the proposed framework, we evaluate two recent
state-of-the-art deep-learning models:

• TypeNet (2021) [11]: a Long-Short Term Memory
(LSTM) Recurrent Neural Network (RNN), trained with
triplet loss. In this case, we consider input sequences
of 150 characters typed. TypeNet is implemented in
Tensorflow [51].

• TypeFormer (2023) [16], [43]: a novel transformer
architecture consisting in a temporal and a channel
module enclosing two LSTM RNN layers, a Gaussian
Range Encoding (GRE), a multi-head self-attention
mechanism, and a block-recurrent transformer structure.
TypeFormer is also trained with triplet loss. In this case,
we consider input sequences of 50 characters typed.
TypeFormer is implemented in PyTorch [52].

Both approaches utilize Distance Metric Learning (DML)
[53]. The fundamental concept of DML involves training
a model that transforms input data into a new feature
space, enabling straightforward distances to be used for
analyzing and leveraging the ‘‘semantic’’ arrangement of
the input space [54]. A DML approach aims to establish
a neighborhood structure in the feature space by consid-
ering the relationship between intra-class (distances among
samples from the same class) and inter-class (distances
among samples from different classes) distances. In an
ideal feature space, samples from the same class will
remain in close proximity, while samples from different
classes will be distinctly separated. Following this idea, the
input sequences obtained from all sessions are transformed
into feature embeddings, that are expected to have lower
Euclidean distances if belonging to the same subject, higher
otherwise. In the test stage, the distances obtained from
the comparisons of feature embeddings corresponding to
each of the test sessions are normalized, and then they are
subtracted from 1 in order to transform them into similarity
scores.

VI. EXPERIMENTAL PROTOCOL
A. EVALUATION OF PRIVACY-ENHANCING INPUT
FEATURES
The two biometric systems considered, TypeNet and Type-
Former, take as input the same set of features extracted from
the raw data (Unix timestamps of the actions of pressing and
releasing a key), which include:
(i) Hold Time (HT): time interval between the release and

press instants of a given key, expressed in seconds.
(ii) Inter-Press Time (IPT): time interval between two

consecutive press actions, expressed in seconds.
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(ii) Inter-Release Time (IRT): time interval between two
consecutive release actions, expressed in seconds.

(iv) Inter-Key Time (IKT): time interval between a release
and the following press action, expressed in seconds.

(v) ASCII code (ASCII), normalized by dividing it by 255.
Such features are graphically represented in black in Fig. 2.
Input features (i)-(iv) are useful to capture the typing behavior
of the user in the time-domain, whereas the ASCII code (v)
describes the spatial relations due to the location of the key
pressed on the keyboard layout. However, although handled
in compliance with sensitive data protection regulations [13],
the acquisition and processing of the ASCII codes inevitably
reveals the content of the text, putting at risk the privacy of the
users. Consequently, in this experiment, we strive to remove
the ASCII code information in order to make the system
content-agnostic, and consequently more privacy preserving.
The sets of experiments run can be summarized as follows:
1. First, to evaluate and compare TypeNet and TypeFormer,

we consider their original set of features (the experiment
is named 5F, where ‘‘F’’ stands for ‘‘features’’), marked
in black in Fig. 2.

2. Then to quantify the importance of the ASCII code
information, we remove the ASCII code information
from the original set of features (experiment 4F).

3. We consider an extended set of time-domain features.
Several studies have in fact shown the usefulness of
considering groups of keys typed such as digraphs,
trigraphs, and n-graphs [55]. By considering not only
adjacent keys, but groups of three keys (Fig. 2, in red and
blue), we obtain a set of 10 features (experiment 10F):

[HT, IPT, IRT, IKT, IPT2, IRT2, IKT2,

IPT3, IRT3, IKT3]

4. We consider the extended set of time-domain features,
together with the ASCII code (experiment 11F).

In each case, the deep learning models are trained from
scratch.

B. MODEL TRAINING
The training of both models takes place on the KVC
development set considering identical settings to those
described in their respective papers. The only differences are
related to the division into training and validation sets. For
TypeNet, we consider a subset of 400 subjects to validate the
model at the end of each training epoch in terms of average
EER per subject. This choice is justified by the experimental
protocol followed in [11]. For TypeFormer, we consider an
80%-20% train-validation division of the KVC development
set, and we adopt the global EER as validation metric.
According to these validation metrics, the best-performing
epoch model is saved in each case.

VII. EXPERIMENTAL RESULTS
A. BIOMETRIC VERIFICATION
The results of the experiments are reported in Table 3. The
table is divided into two parts, each one corresponding to

FIGURE 2. A diagram representing the initial feature extraction process
for the time instant t = 0. HT = Hold Time; IPT = Inter-Press Time; IRT =

Inter-Release Time; IKT = Inter-Key Time; IPT2 = Inter-Press Time with
second following key; IRT2 = Inter-Release Time with second following
key; IKT2 = Inter-Key Time with second following key; IPT3 = Inter-Press
Time with third following key; IRT3 = Inter-Release Time with third
following key; IKT3 = Inter-Key Time with third following key.

one scenario: desktop and mobile. Each half can be further
divided into the two cases considered: results obtained in the
global genuine and impostor distributions (see Sec. III), and
results considering the mean values obtained for per-subject
genuine and impostor distributions. Each row shows a differ-
ent system, TypeNet or TypeFormer, trained on a different set
of input features, according to the 4 experiments described in
Sec. VI-A, while the different metrics are reported along the
columns.

By observing the overall trends in the table, it is possible to
notice that in the desktop case higher verification results can
be achieved, possibly due to a more constrained acquisition
scenario, as, in contrast to mobile devices, subjects are
more likely to be sitting down and in a still position while
typing on a desktop keyboard. In fact, as an example,
considering both TypeNet and TypeFormer with all possible
sets of features (8 experiments in total), the mean value
of all EERs obtained from the global distributions in the
desktop scenario is 10.53%, whereas the corresponding
value obtained in the mobile case is 13.11%. The trend
is consistent if we analyze the other metrics, such as the
FNMR @1% FMR (60.47% vs 72.95%) or AUC (95.73%
vs 93.99%). Furthermore, the desktop case results to perform
better also in the case of mean per-subject distributions.
In this case, we obtain a mean EER of 5.67% in the
desktop case vs 7.61% in the mobile case. Similarly, the
mean AUC is 97.70% vs 96.59%, and the mean rank-1
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TABLE 3. Complete comparison of the presented keystroke biometric verification systems.

is 75.92% vs 68.08%, respectively for desktop and mobile
devices.

Focusing on the four experiments involving different sets
of input features, it is possible to draw some interesting
conclusions. The best performing system for the desktop
scenario is TypeNet, which is affected by the lack of
the spatial information given by the ASCII code, and
the extended set of features is not able to compensate it
(6.76% EER for TypeNet 5F vs 8.95% EER for TypeNet
10F for global distributions). Nevertheless, despite the
performance decrease, the system still shows competitive
performance against the Transformer-based TypeFormer 5F

or TypeFormer 10F (respectively 12.95% EER and 12.75%
EER for global distributions). Moreover, these tendencies are
consistent considering mean per-subject distributions.

The opposite outcome can be observed in the case of
TypeFormer, which is the best performing system in the
mobile case: the model achieved with the extended set of
features (10F) proves to be the best performing system
in the mobile scenario (9.45% EER vs second best, 5F,
of 10.17% EER for global distributions). Consequently,
by introducing temporally-deepened input features, not only
it has been possible to limit the performance decrease
towards a more privacy-preserving verification system, but
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FIGURE 3. The graphs show a comparison between TypeNet 5F vs TypeNet 10F in the desktop case. (a) shows the score histograms, (b) shows the DET
curve, (c) shows the ROC curve.

FIGURE 4. The graphs show a comparison between TypeFormer 5F vs TypeFormer 10F in the mobile case. (a) shows the score histograms, (b) shows the
DET curve, (c) shows the ROC curve.

the verification performance is even significantly improved.
In this case, it must be specified that the number of
heads in the attention mechanism must be a multiple of
the number of input features, consequently we considered
(5 for 5F and 10F, 4 for 4F, and 1 for 11F due to
memory constraints). In the case of TypeFormer, it is also
interesting to point out that the second best performing model
corresponds to the experiment 5F, with the initial set of
features.

In addition, it is noticeable that subject-specific distribu-
tions lead to better verification performance in all cases.
In fact, the system benefits from gaining more flexibility
by setting a different threshold per subject. It is worth to
highlight that this is really the case for security systems
based on KD: in a real-life use case, once the system is
deployed and the subject identity is verified in some other
way, it is not hard to acquire multiple samples per subject.
All these subject-specific data could be used as enrolment
data, building a complete behavioral profile of the subject
and leading to even better performance, without necessarily
having to train or fine-tune the system. This would in fact
be a further possible step, that leaves additional margin of
improvement [56].

Another interesting observation is that it is very distinct
how in the desktop case TypeNet performs better, while
TypeFormer shows superiority in the mobile case. TypeNet
is based on a two-layer LSTM RNN, while TypeFormer is
based on a Transformer architecture, composed of several
modules, and more parameters. As an example, in the
desktop case the average TypeNet performance in terms of
EER, FNMR @1% FNMR, and AUC, over the four input
feature experiments, is respectively 7.89%, 45.83%, 97.48%,
for global distributions and 3.44% (EER), 98.96% (AUC),
86.59% (rank-1), for mean-per subject distributions. In each
case, the corresponding values achieved by TypeFormer are
13.17%, 75.10%, 93.98%, (global distributions), and 7.89%,
96.44%, 65.25% (mean per-subject distributions), showing
a significant gap. These trends are clearly opposite in the
mobile case, where TypeFormer shows 11.32%, 72.92%,
95.07% in the case of global distributions and 6.75%,
97.02%, 69.09% for the mean per-subject distributions.
In the corresponding experiments, TypeNet achieves 14.91%,
72.98%, 92.91%, for global distributions and 8.48%, 96.16%,
67.07% for the mean per-subject distributions. These trends
show that LSTM RNNs seem to model well the desktop
environment, while the higher variability of mobile devices
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is better modelled by a Transformer, which, however,
does not reach the same level of performance in absolute
terms.

In addition, in the case of the global distributions, also
the FNMR @10% FMR is reported. This represents a more
relaxed approach, as the threshold selected is less stringent
(90% of the impostors are rejected against 99% of FNMR
@1% FMR). According to both these metrics, TypeNet
in the desktop case achieves significantly better results in
comparison with all the other configurations, and its gap with
TypeFormer is much greater than for the mobile case, where
the two system performance is closer. These metrics are not
computed for the case of mean per-subject distributions as
there are not enough scores per subject for a sufficiently
fine threshold resolution. They are substituted by the Rank-
1 (not determinable for global distributions as subject-
dependent), which also shows a more regular behavior of
TypeNet in the desktop case in comparison with all other
configurations.

Fig. 3 and Fig. 4 show the curves described in Sec.
IV-B. In particular, it is possible to carry out a direct
comparison of TypeNet in the desktop case and TypeFormer
in the mobile case considering two of the four input feature
sets presented above (5F vs 10F). From left to right, the
histograms of the genuine and impostor distributions are
reported in Fig. 3 and 4 (a). It is possible to see that in
both rows the genuine distributions are more separated for
the case of 5F, while for the mobile case (TypeFormer), the
10F setup is able to create a better separation of impostors,
leading to a lower EER value. The threshold corresponding
to the EER value is marked by the black line. From these
macroscopic trends, the difference between the two impostor
scenarios (‘‘similar impostors’’ and ‘‘dissimilar impostors’’,
for comparison between subjects of the same and different
demographic groups, respectively) is not very pronounced.
In all graphs, the threshold values are reported in black. Then,
Fig. 3 and 4 (b) represent the DET curves (the threshold
corresponding to 1% and 10% of FMR are respectively
marked by the dashed red lines), while Fig. 3 and 4 (c)
report the ROC curves, showing similar trends from different
perspectives.

B. FAIRNESS EVALUATION
Table 4 shows the performance in terms of accuracy based
on the global EER threshold (%) considering different
demographic groups. Age groups are placed along the rows,
while genders along the columns. As an example, from
all experiments we take into consideration TypeNet in the
desktop case, and TypeFormer in the mobile case, based
on the same set of features (‘‘5F’’). In both cases, it is
possible to see that males achieved higher values (93.13%
against 92.49% of global EER for TypeNet, and 89.80%
against 88.55% for TypeFormer, respectively for males and
females). It is interesting to notice that, although the STD
and SER values are quite smaller in the desktop case, the
difference of EER between error rates across genders is still

TABLE 4. Results in terms of global accuracy for the final evaluation
datasets (desktop and mobile), evaluated for the different demographic
groups (gender and age). STD refers to the standard deviation, whereas
SER refers to the Skewed Error Rate (Sec. IV). Both metrics are computed
from all the elements of each table.

significant. Formulating an hypothesis that would explain
this trend is not immediate, and out of the scope of the
current work. Furthermore, by analyzing the behavior of
the systems considering different age groups, it is possible
to notice that for younger subjects, TypeFormer performs
worse than for older ones, while this trend is not as
evident for TypeNet. Such discrepancy could be due to
cultural differences related to the degree of easiness and
comfort in interacting with mobile devices across different
generations.

Table 5 shows all results of the fairness assessment
provided throughout the proposed framework. Along the
rows, the table is divided into two parts: the upper part
presents the results in the desktop scenario, while the lower
part is focused on the mobile scenario. Each half is further
divided into two sections, each reporting results of one
of the two models considered, TypeNet and TypeFormer,
considering the four experimental configurations presented in
Sec. VI-A. Concerning the different metrics, it is necessary
to point out that all metrics except SIR are calculated
considering 12 demographic groups, due to 6 age groups
and 2 genders (see Sec. II). In contrast, SIRa is computed
considering scores divided by age only (square matrix of
dimension 6), while SIRg considering gender only (square
matrix of dimension 2), to keep the assessments of each of
the two attributes independent (Sec. IV).

By observing Table 5, it possible to notice that there is
no clear superiority of one model as in the case of the
verification performance (TypeNet 5F for desktop devices,
TypeFormer 10F for mobile devices). By carrying out an
overall comparison of the desktop and mobile scenarios, it is
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TABLE 5. Comparison of the presented keystroke biometric verification systems from the point of view of fairness metrics.

possible to observe that demographic differentials related to
age and gender tend to be higher in the mobile case. In fact,
considering the mean values for each one of the metrics
computed over all desktop against all mobile experiments,
we obtain STD 0.77% vs 1.79%, SER 1.032 vs 1.07, FDR
95.90 vs 95.06, IR 1.36 vs 2.44, GARBE 0.06 vs 0.14, SIRa
2.80% vs 6.03%, SIRg 2.34% vs 6.63%. It is clear that in
the desktop scenario there is an improvement in fairness
according to each single metric.

If we consider a comparison of the two architectures
in each scenario, we can see that in the desktop case
the average performance achieved by TypeNet in terms
of SIRa is 2.80% and SIRg is 2.16%, while the scores
of TypeFormer are respectively 3.06% and 2.53%, being
more biased as well as less effective. A similar trend
is reported for the mobile case, with TypeNet (although
with lower verification performance) achieving SIRa=5.22%
and SIRg=6.42%, against SIRa=6.84% and SIRg=6.83%
achieved by TypeFormer.

Finally, having a look at trends due to different sets of
input features within the same scenario and same model
configuration, we can observe that the results are more
irregular and they do not show a clear overall trend as in
the previous cases. Nevertheless, considering for instance
the SIR values, we can observe that generally the ASCII
code is associated with higher bias in almost all experiments
and scenarios, showing that comparisons among the same
demographic groups are slightly harder than among different
groups.

VIII. CONCLUSION AND FUTURE WORK
In this article an open experimental framework to benchmark
keystroke dynamics for biometric verification is provided
to the research community to alleviate the heterogeneity
of the experimental protocols, metrics, and the limited size
of the databases adopted in the literature. The framework
is provided in the form of the Keystroke Verification

Challenge (KVC),11 hosted on CodaLab,12 and held within
the 2023 IEEE International Conference on Big Data,13

Sorrento, Italy, December 15th-18th, 2023. After such term,
the challenge will be made ongoing. The experimen-
tal framework is based on the two most complete and
large-scale public databases of free-text keystroke dynam-
ics up to date, collected respectively in a desktop and
mobile acquisition environment, including keystroke data
from more than 185,000 subjects overall. The proposed
framework not only allows a complete assessment of
the verification performance, but it also returns several
metrics related to biometric fairness and bias based on
the comparison scores, to gain new insights about KD.
To this end, a novel metric, the Skewed Impostor Ratio
(SIR), is proposed, designed to highlight inter- and intra-
demographic group patterns present in the final comparison
scores.

Finally, we make a first use of the proposed framework
by employing two recent state-of-the-art keystroke biometric
systems, TypeNet [11] and TypeFormer [16]. Besides a direct
comparison of the two, that shows the superiority of the
former in the desktop scenario, and of the latter in the mobile
one, we consider different sets of input features towards
a more privacy-preserving keystroke verification system.
The proposed solution is based on discarding the ASCII
code, which reveals the text content, in favor of extended
features in the time domain. We analyze four different
experimental configurations, that focus on deepening the
temporal information provided to the models in order to
compensate the removal of spatial information due to the
ASCII code, utilized to learn the relation in between the
location of the specific key in the keyboard layout, and
the correspondent time dynamics. Our experimental results
show that such approach allows to maintain satisfactory

11https://sites.google.com/view/bida-kvc/
12https://codalab.lisn.upsaclay.fr/competitions/14063/
13http://bigdataieee.org/BigData2023/
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performance in the desktop scenario, and even improved for
mobile devices.

Concerning future work, the next directions of research
will go toward the optimisation of the model architectures
to improve the recognition performance and to reduce
bias. More sophisticated training approaches will also be
investigated, i.e. loss functions based on the selections of hard
comparisons and adaptive margins [53], [57], specifically
designed for the case of behavioral biometrics such as
KD. Moreover, approaches based on the generation of
synthetic subject-specific data will be considered to assess
the suitability of such techniques to the problem of behavioral
biometrics-based verification. To this end, KVC represents
a dedicated and unified test bench for the entire biometric
research community. By doing so, we aim to foster the design
of innovative solutions that achieve improved performance
in comparison with existing ones, that are benchmarked
here.

Finally, the results of our contributed benchmark KVC in
terms of demographic attribute assessment also enable further
large-scale studies focused on examining the differences
in subjects’ typing behavior due to biological, cultural,
or linguistic factors. In this sense, new findings might be of
great interest for several branches of the Human-Computer
Interaction (HCI) community, e.g. privacy protection [14],
security of minors online [58], user experience improve-
ment [59], etc.
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