
Received 18 November 2023, accepted 9 December 2023, date of publication 21 December 2023,
date of current version 18 January 2024.

Digital Object Identifier 10.1109/ACCESS.2023.3345660

SlidingConv: Domain-Specific Description of
Sliding Discrete Cosine Transform
Convolution for Halide
YAMATO KANETAKA 1, (Graduate Student Member, IEEE), HIROYASU TAKAGI 2,
YOSHIHIRO MAEDA 3, (Member, IEEE), AND NORISHIGE FUKUSHIMA 1, (Member, IEEE)
1Department of Engineering, Faculty of Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
2Yamaha Corporation, Hamamatsu, Shizuoka 430-0904, Japan
3Department of Electrical Engineering, Faculty of Engineering, Tokyo University of Science, Niijuku, Katsushika-ku, Tokyo 125-8585, Japan

Corresponding author: Norishige Fukushima (fukushima@nitech.ac.jp)

This work was supported in part by Japan Society for the Promotion of Science (JSPS) KAKENHI under Grant 21H03465 and Grant
21K17768, and in part by the Environment Research and Technology Development Fund of the Environmental Restoration and
Conservation Agency of Japan under Grant JPMEERF20222M01.

ABSTRACT Filtering is a fundamental tool in image processing, and its acceleration affects many
applications. Therefore, various algorithmic and hardware accelerations have been proposed for filtering.
Recursive processing using infinite impulse response (IIR) filtering is an efficient algorithm, and various
hardware acceleration methods have been applied to IIR filtering. In addition, a domain-specific language
(DSL) of RecFilter was proposed to generate efficient IIR code for various hardware applications as
an extension of image processing language, Halide. Recursive filters based on sliding discrete cosine
transform (SDCT) have been the most efficient approximations in recent years. For hardware acceleration,
parallelization of recursive filters is challenging. One of the most efficient methods is tile-based
parallelization. However, even if a function is optimized and modularized, it is not sufficiently optimized
for applications where various pre/post-processing steps are coupled before and after filtering. Additionally,
multiplatform deployment requires reimplementation of the code. In this study, we extended Halide for
SDCT convolutions to realize efficient computing of image processing applications with filtering, named
SlidingConv. The experimental results showed that SlidingConv is faster than the hand-tuned CPU code and
1/1900 of the hand-tuned code length, running more efficiently than de facto libraries like OpenCV. To verify
its efficiency, we deployed the code on various hardware (x86/64 CPU with AVX2/AVX-512, ARM CPU,
and GPU). In addition, we verified that the proposed method can accelerate image processing with pre/post-
processing for filtering. Our code is available at https://fukushimalab.github.io/SlidingConv/.

INDEX TERMS Image processing, parallel recursive filtering, sliding DCT, domain-specific language,
Halide.

I. INTRODUCTION
Spatial filtering is an essential image processing tool
in computer graphics, computational photography, and
low-level vision applications. Accelerating spatial filters is
important because they are used in various applications. The
computational cost depends on the filtering window size.
A representation of 2D spatial filtering is finite impulse

The associate editor coordinating the review of this manuscript and

approving it for publication was Andrea F. Abate .

response (FIR) filtering, whose computational order isO(R2),
where R is the radius of the convolutional kernel. Speeding up
the filtering requires algorithmic and hardware acceleration.
If a kernel is separable, then the convolution can be computed
in O(R) by decomposing it into two 1D kernels. In addition,
the fast Fourier transform (FFT) reduces the convolution
order to O(logN), where N is the number of signal samples.
However, the number of scans of the entire image increases
for these accelerations, reducing the cache efficiency (two for
separable filtering and three for FFT). These algorithms have

VOLUME 12, 2024

 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 7563

https://orcid.org/0009-0000-8489-263X
https://orcid.org/0009-0002-6250-8929
https://orcid.org/0000-0001-6919-637X
https://orcid.org/0000-0001-8320-6407
https://orcid.org/0000-0002-0472-0318

Y. Kanetaka et al.: SlidingConv: Domain-Specific Description of SDCT Convolution for Halide

the following optimized libraries: OpenCV, Intel Integrated
Performance Primitive (IPP), AMD ROCm Performance
Primitives (RPP), NVIDIA Performance Primitives (NPP),
FFTW, cuFFT, and clFFT. In addition, a domain-specific
language (DSL) [1] for image processing, called Halide [2],
can deploy optimized binaries for various hardware. The
Halide language can separate descriptions of the algorithm
(image processing) and scheduling (loop reordering, paral-
lelization, and vectorization). This separation enables speed
improvements and various hardware deployments with a
simple description.

Infinite impulse response (IIR) filtering [3], [4], [5], [6],
[7], [8] can reduce more orders. The IIR filter is realized
by recursive processing, which allows it to be computed
at a constant time of O(K) per pixel, where K is the
approximation order (K ≪ R in most cases) and is
independent of the window size. The 1D IIR filter requires
two pass filters, casual and anti-casual directions, and is
realized by two IIR systems: parallel and serial systems. The
parallel system is the sum of the causal and anticausal results,
independently adding forward and reverse filters [3], [4], [5].
The serial system is a product of causal and anticausal results:
forward convoluting an input and then reverse convoluting
the forward result in a cascade manner [6], [7], [8]. In the 2D
or multidimensional signal cases, 1D filters are applied as a
cascade 1D filter in a separable manner. The IIR filter was
implemented in Insight Toolkit (ITK) [9], developed mainly
for medical image processing libraries.

Parallelization of recursive filtering (e.g., IIR) is complex
because of its computational dependency; thus, various
parallelization approaches have been proposed [10], [11],
[12], [13], [14], [15], [16], [17]. A simple parallel execution
is a row-by-row or column-by-column parallelization [11],
[12]. However, the number of threads in parallelization is
limited by the sizes of the rows and columns. In addition,
the data I/O efficiency of such parallelization is low owing
to the inefficient usage of memory and cache. Therefore, per-
tile parallelizing approaches have been proposed to overcome
these limitations [13], [14], [15], [16], [17]. These methods
use various innovations to initialize the boundary conditions
to accommodate dependencies among intertile units.

Tile parallelization code is complex. In addition, convo-
lutions are chained to various additional pre/post-processing
steps. A simple example is unsharp masking, which considers
the difference between the original image and convolutional
image and then adds it to the original image. Further-
more, floating-point operations on 8-bit images require
casting as additional pre/post-processing steps. This pre/
post-processing reloads the data (i.e., scans the entire image
again before and after the filters), reducing the cache
efficiency. Loop fusion for pre/post-processing and filtering
loops improves cache efficiency; however, implementing
loop fusion codes requires rewriting a large amount of
code. Moreover, such code-writing cannot be modulated as
a function or class, resulting in low portability.

RecFilter [19] was proposed to resolve this modulation
issue. RecFilter allows the tile-by-tile parallelization of IIR
filters by extending Halide. Recursive filtering requires help
with separated descriptions of algorithm and scheduling
because Halide mainly targets stencil computing, whereas
recursive filtering involves scan computing. Recursive
filtering requires initialization processing for each tile,
which interleaves the algorithm and scheduling descriptions.
RecFilter solves this problem by generating Halide codes.
In particular, RecFilter efficiently realizes IIR serial systems
where all filters are cascaded with a specific initialization
for per-tile parallelization. Moreover, IIR filters can be
decomposed into parallel and serial systems to represent
the approximate order as a combination of lower-order
filters [22], and RecFilter allows constructing filters of
appropriate order with parallel systems.

As a recent algorithmic improvement, sliding discrete
cosine transform (SDCT) filtering has realized an arbitrary
FIR filter as a recursive filter [23], [24], [25], [26], [27], [28],
[29]. SDCT can represent FIR filtering as short-time DCTs
and compute them as recursive filtering. The computational
order is O(K), as in IIR filters. SDCT filtering can be
computed with finite taps instead of an infinite initial length
owing to the FIR property. Moreover, the filter can be
implemented using a forward filter only (i.e., the number of
processes is halved from IIR without an anti-causal filter).
Therefore, SDCT filtering requires fewer image scans, and its
initialization is easier than IIR filtering. In addition, any even
function can be easily designed into a convolution with FIR
weights as input, whereas IIR filtering is difficult to design
arbitrary weights.

Code complexity in per-tile parallelization for SDCT
filtering is inherited from recursive IIR filtering. As an
example of increased complexity, the image quality evalu-
ation index, structural similarity (SSIM) [30], which uses
an internal Gaussian filter, has been accelerated using an
SDCTfilter [31], and another [32] which uses a constant-time
bilateral filter with SDCT filter and tiling to improve
efficiency. However, these applications require considerable
code rewriting to realize and deploy applications in various
architectures.

Therefore, we propose a domain-specific description for
SDCT filtering, named SlidingConv. SlidingConv decou-
ples the scheduling and algorithm descriptions for SDCT
filtering, generating a high-performance code with fewer
descriptions. Fig. 1 shows a visual overview of Sliding-
Conv. SlidingConv generates scheduling-aware Halide codes
from pre/post-processing, user-defined kernel, scheduling,
and SDCT algorithm descriptions. The generated code is
compiled for deployment in various architectures. Halide
is not a Turing-complete language; thus, Halide cannot
always describe schedules and algorithms separately. Slid-
ingConv solves this contamination problem by acting as
a Halide code generator. It also functions as a DSL,
inheriting Halide’s characteristics as a scheduling descriptive

7564 VOLUME 12, 2024

Y. Kanetaka et al.: SlidingConv: Domain-Specific Description of SDCT Convolution for Halide

FIGURE 1. Overview of SlidingConv.

TABLE 1. Summary of algorithms and implementations related to convolutional filters (R: radius, N : image size, K : approximation order, K ≪ R).

language. Similarly, SlidingConv can be embedded in Halide
codes.

This behavior is similar to RecFilter; however, the three
problems cannot be solved directly using the conventional
RecFilter. First, RecFilter cannot realize recursive filtering
in a parallel system. Second, RecFilter initialization is
specific to IIR. Third, SDCT filtering uses different data
for each approximation order of the parallel system in
the recursion, while RecFilter does not require this. More-
over, regarding RecFilter’s functionality, only pre-processing
can be described with filtering (i.e., no kernel fusion in
post-processing [33]).

The contributions of this paper are as follows:
• Wepropose the first DSL description for SDCTfiltering.
We support the parallel system of recursive filters,
specialize in initialization, and extend the recursive
reference data.

• We support loop and kernel fusion for pre and post-
processing. The functionality enables cache-efficient
descriptions for image processing that use filtering.

• We enable various CPU and GPU backends. Sliding-
Conv is the first implementation of the SDCT filter
on GPUs, ARM CPUs, and AVX-512 CPUs. Since
SlidingConv outputs Halide codes, it is easily adaptable
to various backends but provides unbreakable manual
scheduling for the SDCT filter.

Table 1 summarizes the algorithms and implementations of
convolutional filters.

II. PRELIMINARIES
A. SLIDING-DCT FILTERING
This section presents the details of SDCT filtering [28]. Here,
we present one-dimensional (1D kernel) cases because the

Algorithm 1 Sliding-DCT-Based Filtering
1: // Calculating first and second terms
2: for k ← 0 to K do
3: Zk (0)← Gk

∑
+R
n=−R Ck (n)f (n)

4: Zk (1)← Gk
∑
+R
n=−R Ck (n)f (n+ 1)

5: end for
6: // Calculating output value for location x = 0, 1
7: (f ∗ g)(0)←

∑K
k=0 Zk (0)

8: (f ∗ g)(1)←
∑K

k=0 Zk (1)
9: // Convoluting cosine terms with a sliding update
10: for x ← 2 to N − 1 do
11: if DCT − I || DCT − V then
12: Z0(x)← G0(f (x + R)− f (x − R− 1))+ Z0(x − 1)
13: else if DCT − III || DCT − VII then
14: Z0(x)← G01k (x−1)+2C0(1)Z0(x−1)−Z0(x−2)
15: end if
16: for k ← 1 to K do
17: Zk (x)← Gk1k (x−1)+2Ck (1)Zk (x−1)−Zk (x−2)
18: end for
19: // Calculating output value at position x
20: (f ∗ g)(x)←

∑K
k=0 Zk (x)

21: end for

cascaded processing of 1D kernels can realize multidimen-
sional kernels with separability. Algorithm 1 provides an
overview of SDCT filtering flow.

1) DEFINITION
Let f (x) ∈ IW (x ∈ S = {0, 1, . . . ,W−1} ⊂ N) be the input
signals, where I = [0.0 : 255.0] ∈ R is the range domain,
W is the size of the signal. Let g(n) ⊂ R2R+1 be the kernel
weight, where R ∈ N denotes the kernel radius. The output

VOLUME 12, 2024 7565

Y. Kanetaka et al.: SlidingConv: Domain-Specific Description of SDCT Convolution for Halide

TABLE 2. DCT parameters.

of FIR filtering (f ∗ g)(x) is defined as follows:

(f ∗ g)(x) =
R∑

n=−R

f (x + n)g(n). (1)

Here, we consider (1) in the DCT domain. The cosine is
an even function; thus, we considered only even functional
kernels. The weights g(n) can be represented by the following
inverse DCT from the DCT coefficients Gk ∈ R and DCT
basis Ck ∈ R (k = {0, 1, . . . ,R} ⊂ N):

g(n) =
R∑
k=0

GkCk (n), (2)

where the variables T (or φ = 2π
T), k0, and n0 depend on their

type of DCT. DCT can be divided into eight types depending
on how the basis, signal, and period are treated as discrete
signals for continuous signals, as summarized in Table 2. The
coefficients in the matrix form G = [G0,G1, . . . ,GR]T ∈
R1×R+1 can be represented using least squares [28] as
follows:

G = (CTWC)−1CTWg, (3)

where g = [g(0), . . . , g(R)]T ∈ R1×R+1 is the input weight,
C = [C0, . . . ,CR]T ∈ RR+1×R+1 is the cosine kernels and
W = diag(12 , 1, . . . , 1) ∈ RR+1×R+1 is the weight for dealing
with the kernel symmetry.

Convolution (1) can be represented using (2):

(f ∗ g)(x) =
R∑

n=−R

R∑
k=0

f (x + n)GkCk (n) =
R∑
k=0

GkFk (x),

(4)

Fk (x) =
R∑

n=−R

f (x + n)Ck (n), (5)

where Fk (x) ∈ R. This expression is O(R2) for a 1D
convolution whose complexity is higher than that of the
original convolution of (1), which is O(R).
The sliding transform can significantly reduce the order

of the increase. This transform utilizes the second-order shift
property, which is a relational expression of three short-time
transform coefficients for each k: Fk (x − 1), Fk (x), and
Fk (x + 1). The relationship is defined as

Fk (x − 1)+ Fk (x + 1) = 2Ck (1− n0)Fk (x)+1k (x), (6)

TABLE 3. Optimized delta functions for each DCT type.

where the function 1k (x) ∈ R is defined by the multiply-add
of the input f and coefficients Ck :

1k (x) = Ck (−R)f (x − R− 1)+ Ck (R)f (x + R+ 1)

−Ck (−R− 1)f (x − R)− Ck (R+ 1)f (x + R).
(7)

1k (x) function can be simplified by extending the terms cos
and sin. We can use the following relationships.

• DCT-I: Ck (±R) = (−1)k , Ck (±(R+ 1)) = (−1)kCk (1)
• DCT-III: Ck (R) = Ck (−R), Ck (±(R+ 1)) = 0
• DCT-V: Ck (±R) = Ck (±(R+ 1))
• DCT-VII: Ck (±R) = −Ck (±(R+ 1)).

Table 3 lists the optimized1
(k)
x for each DCT type introduced

in [28]. Furthermore, premultiplying Fk (x) by Gk on both
sides of (6) simplifies (4).

Zk (x − 1)+ Zk (x + 1) = 2Ck (1− n0)Zk (x)+1k (x)Gk ,

(8)

where

Zk (x) = GkFk (x). (9)

The DCT closely approximates the response with fewer
coefficients; thus, we can truncate the convolution by a
limited value, K ≪ R. K ∈ N is the approximation order.
The approximate definition is as follows:

(f ∗ g)(x) =
R∑
k=0

Zk (x) ≃
K∑
k=0

Zk (x). (10)

As Eq. (6) can be updated with two multiplications for each
component, the filter of (10) can be approximated by O(K),
which does not depend on the size of the kernel.

We focused on odd types (DCT-I, III, V, and VII) for
the usual odd-size filtering in this paper. The even types of
DCT-II, IV, VI, andVIII are for an even kernel size (2,4,6,. . .),
used for upsampling and downsampling because the axis
is n0 = 1

2 .

2) DIRECT CURRENT SPECIALIZATION FOR DCT
SDCT can be specialized when k = 0 because DCT-I and
DCT-V are k0 = 0 and C0(n) = cos(0) = 1 according to
Tab. 2, called a component of direct current (DC).

7566 VOLUME 12, 2024

Y. Kanetaka et al.: SlidingConv: Domain-Specific Description of SDCT Convolution for Halide

As C0(n) = cos(0) = 1, the DC of F0(x) can be
represented as

F0(x) =
R∑

n=−R

f (x + n)

= F0(x − 1)+ f (x + R)− f (x − R− 1). (11)

This relationship is similar to the box filter; thus, it is simple.
Thus, (8) can be specialized when k = 0 as

Z0(x) = Z0(x − 1)+ G0(f (x + R)− f (x − R− 1)). (12)

Using (12), Z0(x) can be computed with fewer operations and
higher accuracy than using (8) because there is no round error
in floating-point evaluation when multiplying Gk and Ck (n).
Furthermore, because K is usually small, this specialization
is crucial for speedup factors.

3) OPTIMIZATION OF RADIUS
Given the orderK andweight g, it improves filtering accuracy
to optimize the convolution radius R for matching the given
parameters [26]. This section introduces the optimization
approach.

As the FIR filter terminates weights up to a radius R,
we should consider the reproduction accuracy of the effective
range and ignore the weights of the outer long-tailed portions.
The former is the integral of the squared error of the kernel
weight g(t) and DCT approximated weight g̃(t), and this
definition is as follows:

Ef (K ,R) = η

∫
−R

−R
{g(t)− g̃(t)}2 dt, (13)

where

g̃(t) =
K∑
k=0

GkCk (n), η = 1/
∫
∞

−∞

g2(t)dt. (14)

η is the integral of the weight for normalization (e.g.,
√
2πσ

in the Gaussian kernel). The later of the squared errors of the
outer kernel function is as follows:

Es(R) = η

{∫
−(R+1)

−∞

g2(t)dt +
∫
∞

R+1
g2(t)dt

}
(15)

Then, weminimized the total error to find the optimal R using
a linear search, binary search, etc.

arg min
R∈W

{
Es(R)+ Ef (K ,R)

}
. (16)

This optimization does not affect the filtering speed because
it can be calculated before filtering.

B. HALIDE
Halide [2] is a major DSL embedded in C++ for
high-performance image processing. It describes the code in
the algorithm and scheduling parts separately. The algorithm
part includes essential processing and can be described as
hardware-independent parts. The scheduling part includes
performance tuning of processing and can be described

PROGRAM 1. Halide code for 3 × 3 box filtering.

for each hardware architecture. Based on these two parts,
a Halide compiler can automatically optimize the code’s
performance and deploy it to various hardware. Halide is
updated continuously and officially [34], [35], [36], [37].

Program 1 presents an example of Halide 3 × 3 box
filtering, and Table 4 lists the main classes and methods for
Halide scheduling. The Func class is the body of functions,
which defines functions using dimensional variables. In the
actual pipeline, pure definitions are executed, and updated
definitions are executed in the order they are defined. In the
update, the functions can be defined using reduction
domains. In the algorithm part, the input image is padded to
prevent external references to the input image, as described
by BoundaryConditions::repeat_edge, and then
separable 3 × 1 filtering is performed. In the scheduling
part, blur_y is split into 32 × 32 tiles, and variables x
and y are split into inner and outer variables. The inner
variable xi in x is then vectorized by a width of 8, and the
outer variable yo in y is parallelized. blur_x’s computation
timing is set to compute_at(blur_y, xo) that only the
necessary pixels are computed and stored within the xo-loop
of blur_y. Vectorization is also performed for xi with a
width of 8.

C. RECFILTER
RecFilter [19] is a Halide extension for cascaded IIR filtering
that internally generates Halide codes to overcome Halide’s
limitations in recursive filtering. Program 2 shows an exam-
ple code of RecFilter for IIR Gaussian filtering. RecFilter
is a class body, RecFilterDim is a dimension variable
in RecFilter. The method add_filter adds IIR
filtering, which has the first argument for setting the filtering
direction and the second for coefficients. For example,
add_filter(+x, {a, b, c}) is the definition of an
IIR filter, F(x) = af (x)+bF(x−1)+cF(x−2). The function
gaussian_weights returns the coefficients for IIRGaus-
sian Filtering. The split method converts a tile dimension
into a specific width, similar to Halide scheduling, but

VOLUME 12, 2024 7567

Y. Kanetaka et al.: SlidingConv: Domain-Specific Description of SDCT Convolution for Halide

TABLE 4. Major classes and scheduling method of Halide.

PROGRAM 2. RecFilter code for recursive gaussian filtering.

specialized for IIR filtering. Then, cpu_auto_schedule
sets an appropriate schedule with a specific vectorization
width from set_vectorization_width for RecFilter.

III. LIMITATIONS OF RECFILTER FOR
SLIDING-DCT-BASED FILTERING
We clarify the limitations of RecFilter for IIR filtering
by trying to realize SDCT filtering of Algorithm 1 by
RecFilter. Program 3 presents the pseudo-RecFilter code for
the SDCTfilter. Lines 4–6 in Program 3 represent lines 3–4 in
Algorithm 1, representing the initialized convolutions of the
first and second pixels. In addition, Algorithm 1’s line 13 or
15 is implemented as a recursive process using RecFilter’s
add_filter, where the array of the second argument
contains the feedforward coefficients in the first element and
the feedback coefficients in the last elements. The second and
third elements are 2Ck (1) and −1, respectively, because the
second and third terms are 2Ck (1)Zk (x − 1) and −Zk (x − 2).
The first term is Gk1k (x − 1), which changes depending

on the pixel. The first array element is set to 1, and the
value of Gk1k (x − 1) is assigned to the expression of
RecFilter. Its description is add_filter(+x, {1, 2 *
C1[k], -1}). In line 10 of Program 3, select assigns
values equivalent to Gk1k (x − 1) to pixels other than 0 and
1 in RecFilter. However, Program 3 has three problems:
1) loop splitting, 2) no starting point, and 3) fixed-input image
problems.

First, RecFilter runs one image scan for each recursive
filter. In the image-scanning loop of Algorithm 1’s line 11,
there areK+1 updates for Zk per pixel, but the processing can
be realized by one loop. The existing RecFilter runs the image
scanning loop per filter K+1 times, added by add_filter
to the for-loop (i.e., K + 1 times image scanning loops),
such as loop fission. This redundant loop structure causes
much of the cache miss. In addition, the filters added by
add_filter are executed in added order in a cascaded
manner, and the second and subsequent filters use the result of
the previous filter as an input image. Therefore, convolution
using SDCT cannot be realized when multiple filters are
processed independently of the input.

Second, RecFilter cannot specify the start pixel of the
filter because RecFilter is for IIR filtering, which considers
an entire image as an argument. Sliding-DCT-based filtering
is an FIR filter that requires a finite-size kernel to be
convolved with the pixel. In Algorithm 1’s line 2, the first two
elements are convolved with the initial values instead of the
update processing for the sliding transformation.Whereas IIR
filtering does not require the specification of the start pixel,
RecFilter does not have the specification functionality.

Third, RecFilter cannot change the input images in the
internal RecFilter class. IIR filtering refers to a pixel in the
input and the computed images for a newly computed output.
SDCT filtering uses the input image in 1k (x) computation,
which can be used for input like IIR filtering. However,1k (x)
must be specified for each recursive filter because 1k (x)
varies with k in the update process in Algorithm 1’s line 13.
This requirement interferes with its realization in RecFilter

7568 VOLUME 12, 2024

Y. Kanetaka et al.: SlidingConv: Domain-Specific Description of SDCT Convolution for Halide

FIGURE 2. The difference between tile scheduling for recursive filtering by Halide and SlidingConv. The first two pixels are initialization
calculations, and after that, sliding updates are performed; in the case of Halide, initialization cannot be inserted; thus, the neighboring
tiles must also be calculated, while the proposed method completes calculations on a per-tile basis.

PROGRAM 3. Pseudo RecFilter code for sliding transform convolution.

because RecFilter enforces one image as the filtering input
for each cascaded filter.

Because of these three limitations, the existing RecFilter
cannot realize SDCT filtering of Algorithm 1.

IV. PROPOSED METHOD
The native Halide code performs massive redundant compu-
tations for SDCT filtering with tiling parallelization because
each tile requires the results of the previous tile. Therefore,
recomputations of the previous tiles are required. The
tiling coordinates in the algorithm part must be hardcoded
to avoid this condition. SlidingConv can generate such
schedule-aware codes using a code that decouples the
algorithm from scheduling. Fig. 2 shows the computational
scheduling of Halide for SDCT filtering and that of the
proposed SlidingConv.

In addition, SlidingConv solves the limitations of Rec-
Filter. Furthermore, SlidingConv allows pre/post-processing

PROGRAM 4. Internal code for fixing loop splitting problem.

of filters to simultaneously, which realizes cache-efficient
implementations and provides the functionality of kernel
settings in SDCT filters.

A. SOLUTIONS FOR THE RECFILTER’S LIMITATIONS
1) LOOP SPLITTING
For the loop splitting problem, we changed RecFilter to
handle parallel systems in a single-loop structure. We newly
create as many Func objects as the number of filters
inside a RecFilter instance to merge the loops using the
compute_with method, and each Func independently
refers to the input of RecFilter. The code should specify
update(0) for scheduling because RecFilter uses RDom to
create the filter loop. Program 4 shows this modification.

2) NO-STARTING-POINT PROBLEM
To address the no-starting-point problem, we added a method
for specifying the initial values necessary to start the update

VOLUME 12, 2024 7569

Y. Kanetaka et al.: SlidingConv: Domain-Specific Description of SDCT Convolution for Halide

PROGRAM 5. Internal code for fixing no-starting-point problem.

PROGRAM 6. Internal code for fixing fixed-input image problem.

process. We added set_init_func method to allow this
functionality. When the filter added by the add_filter
method does not have the elements necessary to perform the
update process, it refers to theFunc specified by this method.
To specify the initial values for each filter, the same number
of Func as the number of times add_filter passes to
set_init_func. The first two elements of signals should
be specified by the specialized Func for initial convolutions,
named initFunc, allowing RecFilter to start updating the
sliding transform from the third element. Inside the internal
code of the extended RecFilter (Program 5), the select
methodwith the starting point condition switches between the
initial value specified by set_init_func and the updated
definition to define the starting point. Program 6 shows the
definition of initFunc.

3) FIXED-INPUT IMAGE PROBLEM
We added a method for specifying the reference pixels per
filter for the fixed-input image problem. We added the new
method, set_delta_func, to allow RecFilter to have
this functionality. The filter added by add_filter refers
to the Func specified by set_delta_func. This allows
RecFilter to specify 1k (x) that varies with each k and to
refer to a different value for each filter. Program 6 shows the
definition of set_delta_func.

B. SLIDINGCONV
SlidingConv is implemented in a class in Halide language,
defined SlidingConv. This is an inherited version of the
above improvements to the limitations of RecFilter. SDCT
filtering realizes an FIR filter that differs from the IIR filter
realized by RecFilter. FIR filters can consider the convolution
results more easily than IIR filters; however, they require
accurate parameters for the recursion process. SlidingConv
also provides transformation and optimization functions for
this purpose. Image processing rarely ends with a filter
alone but often runs some processes before and after the
filter. SlidingConv also allows combining these processes
to generate more efficient codes. Table 5 shows the list of
methods in SlidingConv. These functionalities are introduced
step by step.

Program 7 shows an example code for unsharp masking
that uses all the additional functionalities of SlidingConv. The
unsharp masking is defined as follows:

o = f + m · (f − g ∗ f) = (1+ m) · f − m · g ∗ f . (17)

SlidingConv is the body for SDCT filtering. Sliding-
Conv’s functionalities are described according to Program 7.

1) PRE-PROCESSING
First, we initialized the pixel values in SlidingConv by a
given Func or Buffer object. Func can contain any image
processing; thus, it can write arbitrary pre-processing. The
pre-processing is within the loop of the SDCT filtering by
default (i.e., no loop splitting). If we plan the pre-processing
separately, these processes run individually. In Program 7,
pre-processing is converting the data type from unsigned
char to float. No pre-processing is required if we
initialize SlidingConv by the SlidingConv input.

2) ALGORITHM SETTING
Next, we specified an algorithm for SlidingConv. The
set_kernel method sets the kernel weight defined by
the std::function, and set_radius sets its radius.
Program 8 is an example of the kernel weight as a
Gaussian weight (σ = 3). However, this std::function
does not limit the kernel weight to Gaussian, and an
arbitrary even function is available. The weight is described
by the type std::function<double(int, double, int)>,
whose arguments are maxRadius (window radius), offset
(n0 of DCT), and r (radius of required value). If r =
0, the code executes the automatic radius determination
described in Sec. II-A3. The computational cost of this
description does not affect the convolution itself because it
is called before filtering, and the cost is lower than that of
filtering.

In addition, set_algorithm sets the DCT type of
SDCT, and set_order sets its approximation order. The
filtering time and accuracy can also be controlled by
specifying the radius, algorithm, and order. These parameters
define the characteristics of SDCT filtering.

7570 VOLUME 12, 2024

Y. Kanetaka et al.: SlidingConv: Domain-Specific Description of SDCT Convolution for Halide

TABLE 5. Methods of SlidingConv.

PROGRAM 7. SlidingConv code for unsharp masking.

3) POST-PROCESSING
We can write arbitrary post-processing, running within the
SDCT convolution loop (i.e., no loop splitting) with the
set_post_process_func method. In Program 7,
the process corresponding to (17) is performed as
a post-processing step. If we do not call the set-
ting function, we can omit post-processing. The writ-
ing form is different from that of pre-processing. If
SlidingConv can accept the Func output, we can write

PROGRAM 8. std::function for gaussian weight kernel.

the following form, which is similar to pre-processing;
Func(x, y) =SlidingConv(x, y)+2 ∗ SlidingConv(x, y). How-
ever, the current implementation has not supported this form
due to the limitations of Halide in the language description.

Additional pre/post-processing is limited to point (pixel-
wise) operators. Polyhedral optimization must be consid-
ered [38], [39] for extending to stencil or areawise operations.

4) SCHEDULING
Finally, we set schedules for SlidingConv. SlidingConv
has the same functionalities of Halide listed in Table 4.
Additionally, we provided two scheduling scope meth-
ods: scheduleX (for x-direction) and scheduleY (for
y-direction). We cascaded two SDCT filters in the x-and
y-directions; therefore, SlidingConv should be scheduled
in each direction. We provided the cpu_auto_schedule
method for default scheduling instead of manual scheduling.
In addition, GPU scheduling for the OpenCL or CUDA
backend is possible using gpu_thread and gpu_block
methods for manual setting, or gpu_auto_schedule
for the default schedule. The schedulingmethods described in
Program 7 are equivalent to that in cpu_auto_schedule.
We provided tile(width/2,16) for X and tile(16,height/2) for
Y because they have good speeds for any kernel, order, image
size and CPU.

V. EXPERIMENTAL RESULTS
We evaluated SlidingConv based on performance, function-
ality, and descriptivity and made 9 experiments.

For performance evaluation, the first experiment compared
the proposed method with the hund-tuned SIMD code for

VOLUME 12, 2024 7571

Y. Kanetaka et al.: SlidingConv: Domain-Specific Description of SDCT Convolution for Halide

slidingDCT algorithms1 (Sec. V-A1). The second experiment
evaluated the filters of various algorithms and implemen-
tations based on the computational time and accuracy
(Sec. V-A2). The third experiment verified the effectiveness
of the proposedmethod for various architectures by justifying
its speed (Sec. V-A3).

For functionality evaluation, we conducted four exper-
iments. The first is the scheduling test for the CPU and
GPU (Sec. V-B1), which verifies the parameter of the tiling
parallelization. The second is the effectiveness of the pre-
and post-filtering features (Sec. V-B2), justifying the per-
formance enhancement of the image-processing chain. The
third is the DC optimization (Sec. V-B3), which examines
the effectiveness of DC specialization. The fourth is radius
optimization (Sec. V-B4), demonstrating the effectiveness of
the radius setting.

For descriptivity evaluation, we evaluate two aspects:
description efficiency and generated Halide code analysis.
We verified the description efficiency (Sec. V-C1) and ana-
lyzed SlidingConv’s intermediate code using the generated
Halide codes (Sec. V-C2) and loop structures (Sec. V-C3).

We set the default schedule as cpu_auto_schedule
or gpu_auto_schedule and the default algorithm as
DCT-V.We automatically calculated the radius by setting it to
0 based on (16). Table 6 lists the computers used. CPU1 and
GPU1 were the default computers. The codes used are listed
in Table 7. The compiler used was Microsoft Visual Studio
Professional 2019 for the CPUs, except for the ARM CPU
(using gcc).

A. PERFORMANCE
1) COMPARISON WITH HAND-TUNED CODE
ON X86/64 CPU
We compared SlidingConv with a hand-tuned AVX SIMD
implementation (over 20,000 lines of code) [21] using
x86/64 CPUs. We conducted this experiment to show how
closely the performance of the proposed method approaches
that of the hand-tuned code.

Fig. 3a shows the speed with respect to the approximation
order for each type of DCT. SlidingConv was faster
than SIMD for all DCT types and orders; however, the
difference was smaller from an order of approximately
8. SlidingConv’s optimization can accelerate it faster than
SIMD, but SlidingConv natively stores more data per order
than SIMD. SDCT filtering requires the last two computed
results per order for a sliding update of (8), and the older
output can be discarded. Ling buffering achieves an effective
implementation; however, Halide’s specifications do not
allow this implementation. Halide only allows the storage
of calculation results in loops; it is impossible to keep only
the previous result in the loop in the ring buffer. Therefore,
SlidingConv, a DSL for Halide language, uses more CPU

1We have no native GPU case because we do not have a hand-tuned GPU
code for SDCT. CPU is written in over 20,000 lines; thus, it is hard to rewrite
GPU codes, which is one of the motivations for this paper.

cache space per order than SIMD and increases the frequency
of cache misses with increased orders.

Fig. 3b shows the filtering speed with respect to σ for each
DCT type. For all types and orders of DCT, SlidingConv
is faster than SIMD but is more affected by σ than SIMD
because SlidingConv is more parallelized by tiles. Each tile
requires the initial processing of O(r) convolutions for each
order and direction at the start of two pixels; thus, a larger
σ (i.e., radius) has a greater impact than smaller SIMD tile
cases. The y-scale is quite small, with almost constant-time
filtering for each σ .
Fig. 3c presents the approximation accuracy for each order.

The accuracy depends on the DCT type, but it is noteworthy
that it exceeds 80 dB for approximation order 3. For an
8-bit image, 60 dB is sufficient to match the accuracy of
no-approximation [21].
Fig. 4 shows the speed with respect to σ for each image

size. SlidingConv is faster than SIMD when the image size
is small but slower than SIMD as the image size increases.
SlidingConv stores more data per loop because Halide can
only store the calculation results per loop unit. SlidingConv
usesmore cache space per loop than SIMD, and the frequency
of cache misses increases with image size.

2) TRADE-OFF BETWEEN APPROXIMATION ACCURACY AND
SPEED
We compared the performance evaluation of Gaussian con-
volution with various algorithms and their implementations.
We computed the actual Gaussian convolution responses
using the entire image (i.e., for large kernel sizes). Therefore,
they are approximated using an IIR or SDCT filter, or the
convolution radius is narrowed to a smaller size to speed
up the process. Here, we evaluated various implementations
regarding the trade-off between speed and approximation
accuracy on CPU and GPU. We used the convolution result
with a double precision of 6σ as the correct solution and
evaluated its approximation accuracy using the peak signal-
to-noise ratio (PSNR).

a: CPU
Fig. 5a shows the speed to PSNRwith varying approximation
orders or radius on Core-i5 10400 CPU. We used 7 methods:
SlidingConv, SIMD (AVX) implementation, sepFilter2D—
OpenCV’s FIR filtering, ITK—class RecursiveGaussian-
ImageFilter in Insight Toolkit (ITK) for IIR filtering,
RecFilter [19], RecFilter VYV [20]—an improved RecFilter
representation for the Vliet-Young-Verbeek IIR filtering [7],
and Halide implementation for separable filtering. Sliding-
Conv is the fastest and has sufficient accuracy because it is in
the top-left corner, and SIMD has the nearest performance.
The conventional DSL of RecFilter for IIR filtering has low
performance (outside the plot) because the implementation is
mainly for GPU. The improved RecFilter [20], which is for
the CPU, has a high-speed performance; however, its speed
is slower than that of SlidingConv, and its accuracy is low.

7572 VOLUME 12, 2024

Y. Kanetaka et al.: SlidingConv: Domain-Specific Description of SDCT Convolution for Halide

TABLE 6. Computational environment. *AVX-512 supported with 2 FMA units. **AVX-512 supported with 1 FMA unit. †ARM CPU (8 P-cores 2 E-cores). CC:
CUDA Cores.

TABLE 7. Used codes for each experiment.

FIGURE 3. Computational time of Gaussian filtering for each σ and DCT type on x86/64 CPU. Speed and accuracy of Gaussian filtering for each
approximation order and DCT type on x86/64 CPU (Intel Core i5-10400).

These three implementations work more efficiently than the
de facto libraries (OpenCV and ITK).

b: GPU
Fig. 5b shows the RTX3060 GPU case. We used 6 imple-
mentations: Sliding Conv, gpufilter [15], [17] with alg5f4
option—one of the fastest GPU IIR filtering, OpenCV’s
sepFilter2D on OpenCL, ITK VYV—ITK’s GPU IIR
implementation, RecFilter, and Halide implementation for
separable filtering. The difference from the CPU experiment
is that we changed the plots of SIMD to those of gpufilter
and erased those of the improved RecFilter (VYV). Because
there was no GPU implementation of the SDCT, we used

gpufilter instead. The gpufilter library is a highly efficient
convolutional implementation. We omitted the improved
RecFilter because it was not created for GPUs.

SlidingConv and gpufilter were faster than the de facto
libraries, and SlidingConv was the fastest with sufficient
accuracy. The proposed method is faster, and its plots stick
to the left edge.

3) DEPLOYMENT ON VARIOUS ARCHITECTURES
This experiment provides an example of the proposed
method’s effectiveness even when there are insufficient
optimization codes for a particular computer architecture.

VOLUME 12, 2024 7573

Y. Kanetaka et al.: SlidingConv: Domain-Specific Description of SDCT Convolution for Halide

FIGURE 4. Computational time of Gaussian filtering for each σ and image size on x86/64 CPU (Intel Core i5-10400).

This is because SlidingConv can optimize codes for various
architectures.

a: ARM
The SDCT hand-tuned code is available only for AVX [21];
therefore, the code must be rewritten if the CPU architecture
is significantly different. For example, the vector operations
must be rewritten for NEON in ARM CPUs. Otherwise,
we must use an unoptimized portable C++ code. Sliding-
Conv avoids these problems without changing the code.
Fig. 6a shows the filtering speed on M1 Pro (ARM64) and
Core i5-10400 (x86/64). We compared the following four
implementations: SlidingConv (Intel), SlidingConv (ARM),
CPP (Intel), and CPP (ARM). The C++ code of SDCT was
not optimized (i.e., without parallelization and vectorization
on x86/64).

CPP (ARM) and CPP (Intel) were significantly lower than
SlidingConv. SlidingConv (ARM) is as fast as SlidingConv
(Intel); SlidingConv is fast regardless of CPU architecture.

b: AVX-512
For the AVX-512 CPU, the same situation occurs with ARM
CPUs, which requires the AVX code to be rewritten to
the AVX-512 code. Fig. 6b shows the filtering speed on
x86/64 CPUs for AVX (i5 10400/i9 9900) and AVX-512 (i7
7800X/i9 11980HX). SIMD is an optimized C++ code with
AVX.

SlidingConv is as fast as SIMD on AVX CPUs and faster
than SIMD on AVX-512 CPUs. SlidingConv can generate
code optimized for AVX-512 through the scheduling method,
whereas SIMD only executes AVX instructions. SlidingConv
on i7-7800X is approximately 1.9 ms faster and that on
i9-11980 is approximately 0.6 ms faster than SIMD. This
is the difference in the number of FMA units, with a larger
number resulting in more effective optimization.

c: GPU:
In the GPU case, a complete code refresh is usually required,
whereas SlidingConv can perform this task only by changing
the schedule. Fig. 6c shows the speed of Gaussian filtering
on various GPUs: RTX2060 Super (Turing), RTX3060
(Ampere) and RTX4090 (Ada Lovelace).

SlidingConv is fast for all GPU architectures, and the
filtering speed is proportional to the GPU performance. The
gpufilter had relatively slow results for RTX3060 compared
to the others, whereas it had a higher FLOPS than RTX2060
Super. SlidingConv can generate code optimized for various
GPU architectures, whereas the gpufilter is optimized for the
Turing architecture.

B. FUNCTIONALITY
1) SCHEDULING OF SLIDINGCONV
This section examines the impact of changing the tilingwidth,
which primarily influences SlidingConv scheduling.

a: CPU
Fig. 7a shows the speed-to-tile width, which can be set using
the SlidingConv scheduling method; the other scheduling is
the same as cpu_auto_schedule). A tile width 128 was the
fastest on i5-10400, whereas 64 was the fastest on i9-9900K
and i9-9980XE. This indicated that the optimal tile width
depends on the CPUs (clock speed, threads, cache space,
etc.) and that different scheduling is required for each CPU
to utilize its performance effectively. Therefore, we provide
scheduling features for SlidingConv.

b: GPU
Fig. 7b shows various GPUs’ results of the filtering speed for
changing the tile width scheduling, fixing the other schedule
to be the same as gpu_auto_schedule. For RTX2060 Super
and RTX3060, a tile width of 32 was the fastest, while for
RTX4090, it was 16. This indicated that the optimal tile width
also depends on the GPU, and different scheduling is required
for each GPU.

2) PRE/POST-PROCESSING
When adding pre/post-processing to SDCT filtering, the
processing must be embedded in the filter code for high
efficiency, which requires significant code modification.
Fig. 8a shows the speed of unsharp masking, which requires
pre-and post-processing. We compared five methods: Slid-
ingConv (Gaussian), Gaussian filtering only by SlidingConv;
SlidingConv (Unsharp), Unsharp masking by SlidingConv
with pre/post-processing features; SlidingConv (Unsharp

7574 VOLUME 12, 2024

Y. Kanetaka et al.: SlidingConv: Domain-Specific Description of SDCT Convolution for Halide

FIGURE 5. Trade-off between accuracy (PSNR) and speed for various methods on x86/64 CPU (Intel Core i5-10400) and GPU (NVIDIA
GeForce RTX 3060).Left-top points indicate high performance. The image size is 512 × 512. The parameters are σ = 3. Note that the
output of RecFilter for CPU is 15.26 ms with 54.90 dB, which is outside of (a).

FIGURE 6. Speed of filtering by changing various situations. The image size is 512 × 512 with σ = 3 for (a), (b), and (d) and 2048 × 2048 with σ = 10 for
(c). The computers used are Intel Core i5-10400 and Apple M1 Pro for (a).

FIGURE 7. Filtering time for each tile width on x86/64 CPUs and GPUs: 2048 × 2048, σ = 10, order = 3.

computeroot), Unsharp masking by SlidingConv without
pre/post-processing features; SIMD (Gaussian), Gaussian

filtering only by SIMD; and SIMD (Unsharp), Unsharp
masking by SIMD implementation with a function call chain.

VOLUME 12, 2024 7575

Y. Kanetaka et al.: SlidingConv: Domain-Specific Description of SDCT Convolution for Halide

FIGURE 8. The resulting image of unsharp masking (σ = 3.0, order = 3) on Intel Core i5-10400.

SlidingConv (Unsharp) is as fast as SlidingConv (Gaus-
sian); thus, there is little overhead for the pre/post-processing
features of SlidingConv. Additionally, SIMD (Unsharp) is
significantly lower than SIMD (Gaussian), and SlidingConv
(computeroot) is also lower than SlidingConv (Unsharp); it
is important to write filtering in a single loop. Therefore,
SlidingConv is efficient for writing image processing using
SDCT filtering. Figs. 8b, 8c, 8d show the resulting images.
The PSNR between the OpenCV and SlidingConv outputs is
76.66 dB, invisible to the human eye.

3) DIRECT CURRENT SPECIALIZATION
This section verifies the effectiveness of the specialization
of DC components. Fig. 9 shows the computational time
and accuracy of Gaussian filtering for each approximation
order with and without DC specialization. DCT-I/V with
DC specialization uses the update equaition (12) for k =
0 while DCT-I/V without DC uses equaition (8) for k = 0.
Fig. 9a shows DCT-I/V with DC is approximately one order
of magnitude faster than without DC for all DCT types
and orders. Therefore, DC specialization is crucial for the
speedup factor.

Fig. 9b shows that filtering with DC has higher accuracy
than without DC for all DCT and orders because there is no
round error in the floating-point arithmetic in (12). Therefore,
direct current specialization is crucial for accuracy.

4) OPTIMIZATION OF RADIUS
This section shows the effectiveness of radius size opti-
mization. Fig. 10 shows the accuracy of Gaussian filtering
with DCT-V for each approximation order. For R = opt,
we optimized the radius using (16). For R = 6σ , we set the
radius to 6σ , sufficient for the typical FIR convolution. The
R = opt case has approximately 20 dB higher accuracy than
the R = 6σ case for all orders. Thus, an appropriate radius
setting impacts the filtering accuracy.

C. DESCRIPTIVITY
1) DESCRIPTIVE EFFICIENCY VS SIMD AND HALIDE
We evaluated the efficiency of the code description based on
the number of words and code lines. We used the new word

PROGRAM 9. An example code for word counting.

TABLE 8. The number of words and code lines.

counting metrics for the Halide code, and a word counting
example is shown in Program 9. Table 8 lists the word counts
of SlidingConv and the Halide code generated for the code
in Sec. V-A1. We excluded the kernel descriptions from the
evaluation.

SlidingConv contains only 36 words, whereas the gen-
erated Halide code contains 1352 words (×37 words).
Furthermore, the generated code (Program 10, discussed
later) includes the scheduling part of RDom in the algorithm
part. Writing the code is complex, contradicting Halide’s
advantage of describing the algorithm and scheduling parts
separately.

Additionally, we compared the line counts of SlidingConv
and manually optimized the SIMD code. Line counting
did not include blank lines or comments. SlidingConv has
only 11 lines, whereas SIMD has 21229 lines (×1900).
SIMD implementation is complex, whereas SlidingConv is
simple and highly readable. In addition, if we implement
unsharp masking, as shown in Program 7 in SIMD,
a tremendous amount of code modification is required;
however, we can realize this by adding only a few
lines with SlidingConv. Additionally, code optimization
can be easily realized through scheduling. We cannot
show the SIMD results of loop fusing for unsharp mask-
ing because it is difficult to reimplement more than
20,000 lines.

7576 VOLUME 12, 2024

Y. Kanetaka et al.: SlidingConv: Domain-Specific Description of SDCT Convolution for Halide

FIGURE 9. Time and accuracy of Gaussian filtering for each approximation order with σ = 3 on Intel Core i5-10400.

FIGURE 10. Effect of auto radius setting of gaussian filtering for each
approximation order. σ = 3.

2) GENERATED HALIDE CODE
Program 10 shows the generated Halide code of Program 7
(x-direction without scheduling code). The actual volume
would be approximately ×4 larger since we have additional
codes for scheduling, y-direction, std::function kernel
settings, etc.

Compared with Program 7, it is more complex because it
describes a mixture of scheduling (tiling) and an algorithm
(initialization process). This is unavoidable when writing
recursive filters in Halide. Therefore, we propose a DSL for
SDCT filtering. For example, in Program 10 line 4: xo =
(x / 256) and let t636= ((256*xo)+ (rxi− 0)), the algorithm
part of the generated Halide code is a scheduling-aware
code that considers scheduling by splitting in the filter
direction. We introduced a constant value of 256 through
scheduling to split the image width. When Halide writes
recursive filtering, it requires RDom descriptions for the
recursion in the algorithm part. To split the recursive filter
in this direction, we should change the extent of RDom.
This description implies that the scheduling of the recursive

filter must be considered when writing the algorithm in
Halide.

3) GENERATED LOOP STRUCTURE
Program 11 shows the scheduling loop generated for
Program 7 (x-direction). In Program 11’s lines 24-27,
recursive filtering can be processed in a single-pixel loop
because the update functions of the delta updating for each
k(∈ {1, 2, 3}) are in one loop.
Halide’s autoscheduler finds the optimal scheduling from

the descriptions of the algorithm-only part; however, Halide
cannot find it in recursive filtering because its algorithm
part is a scheduling-aware code. For example, when
x-directional filtering in a recursive process is vectorized
in the x-direction, it is necessary to compute each pixel
individually, making it impossible to vectorize them in
the filter direction and compute them together, which
introduces an incorrect output. This is a limitation of
Halide’s autoschedulers. Therefore, SlidingConv supports
manual scheduling and provides default scheduling via the
cpu_auto_schedule method.

VI. RELATED WORK
A. PARALLEL RECURSIVE FILTERING
Recursive processing is a typical technique for accelerating
filtering. An example is the summed area table (SAT) [40]
for box filtering in image processing. In computer vision,
this is called an integral image [41]. SAT is a particular case
of a first-order recursive filter. SAT can realize two types of
constant-time approximations of FIR filters: repeating box
filters in serial systems [42], [43] and stacking box filters
in parallel systems (stacked integrated image [44], [45]).
A survey paper [46] compared accuracy and speed, including
IIR filtering; however, this paper focused on a simple C on
x86/64 CPUs, which is not optimal from the parallelization
and vectorization aspects.

VOLUME 12, 2024 7577

Y. Kanetaka et al.: SlidingConv: Domain-Specific Description of SDCT Convolution for Halide

PROGRAM 10. Generated Halide code of Program 7. PROGRAM 10. (Continued.) Generated Halide code of Program 7.

PROGRAM 11. Generated scheduling loop of Program 7.

The core of the recursive processing of prefix sums,
yi = xi + yi−1, is not easy for parallelization; thus,
there are various implementations of recursive filters on
GPUs. First, a massively parallel GPU implementation

7578 VOLUME 12, 2024

Y. Kanetaka et al.: SlidingConv: Domain-Specific Description of SDCT Convolution for Halide

parallelizes the rows and columns without dependencies [47].
However, this is not sufficiently parallel for massively
parallel environments, and the data locality is low. Therefore,
parallelization by tiling has been considered for a long
time [10], and the GPU implementation of the recursive filter
by Nehab et al. used the superposition property to reduce the
dependence on tile computation and improve efficiency [13].
This filter is only available in serial type. Other serial-type
filters have been implemented in the Insight Toolkit (ITK) [9]
with highly efficient CPU and GPU implementations [14].
As an extension, there are also implementations of additive
forms, such as Deriche’s form [3], which are more highly
parallel [15]. These IIR filters require the consideration of
infinite-length taps; however, there are efficient implementa-
tions [16]. More efficient implementations extend to GPUs
for 3D filtering [17]. These implementations [13], [15], [16],
[17] are summarized on the following page.2

B. SHORT-TIME FOURIER AND SLIDING TRANSFORMS
The fast Fourier transform [48] is a classical accelera-
tion technique, and various libraries provide its functions
(FFTW [49], Intel MKL, cuFFT). Recently, the short-time
Fourier transform (STFT) [50] has been used for local anal-
ysis. Libraries for STFT included MATLAB stft, PyTortch
pythorch.stft, TensorFlow tf.signal.stft, librosa [51], and
the large time-frequency analysis toolbox (LTFAT) [52].
STFT is slower than FFT in usual calculations because
STFT computes FFT redundant on a block-by-block basis.
However, a sliding transform reduces the order and is called
a sliding discrete Fourier transform (SDFT) or a sliding
window discrete Fourier transform (SWDFT). The sliding
transform efficiently computes frequencies using an incre-
mental formula based on the relationship between adjacent
frequency components in a short-time DFT/DCT/DST. SDFT
is summarized in detail in the following papers [53], [54],
[55].

Frequency transformations have many applications,
including linear convolutions, correlations, and spectral
analyses. Among these, SDCT is used for convolution, and
specialized transforms for convolution have been proposed.
Convolutions usually require a forward transform, a filter,
and an inverse transform; short-time transforms also require
the same chains. However, convolution-specificmethods hide
the inverse transform in the flow, and SDCT filters are one
such method. Initially, SDCT filters were used in the context
of integral images [56] but were refined to various types of
SDCT filters: I [23], [24], [29], III [27], V [25], [26], and
VII [28].

Regular FIR filters have several parallelization pat-
terns [57] and can be implemented efficiently depending on
the situation. However, there is still little research on the
efficient hardware implementation of SDCT filters, which
are FIR filters realized as recursive filters. This research
is limited to CPU [21], [58]. The 1-pass 2D filter [58] is

2https://github.com/andmax/gpufilter

highly cache-efficient with fewer synchronizations, although
only multichannel data can be vectorized. This is useful for
the multichannel-friendly filter [32], [59] and constant-time
stereo matching [60]. An efficient vectorization method [21]
using FMA has also been proposed for pure SDCT filters.

C. DSL FOR IMAGE PROCESSING
In parallel computing, various computing patterns exist [61],
such as map, stencil, reduction, and scan patterns. In addition,
parallel computation and memory structures vary depending
on computer architecture. Therefore, programmers must
program carefully according to solving problems and use
the appropriate language depending on the architecture
(e.g., NVIDIA CUDA, AMD HIP, HSL, OpenCL, OpenMP,
OpenACC, MPI, SYCL).

DSLs that optimize the data stream to compute these
patterns efficiently have been proposed in various domains.
Stencil computation is a representative field of parallel
DSL [62], [63], [64] because stencil patterns are used in
various scientific problems. Image processing is a popular
field in DSLs. Image processing involves the most parallel
patterns; however, most image-processing algorithms include
map, stencil, and reduction patterns.

A representative DSL for image processing is Halide lan-
guage [2],3 and the development of Halide is still active until
2023. Image-processing DSLs typically optimize the stencil
computations and stream programs. HIPAcc [65]4 is similar
to Halide, and Forma [66]5 has autoscheduling functionality.
Currently, Halide also has mature autoscheduling [34], [35],
[36], [37], [67], [68], which has been verified in various
applications [69], [70]. PolyMage [38]6 uses the polyhedral
model [71] for loop parallelization, which is more flexible for
complex loop structures. These DSLs are used in multicore
CPUs and GPUs.

More specific DSLs exist in image processing for FPGAs.
Darkroom [72]7 is an early image-processing DSL for
FPGA that was embedded in Terra to extract the maximum
reuse of data. SPIRAL [73]8 is a DSL limited to signal
processing. The following research extends functionalities,
such as Rigel [74],9 RIPL [75],10 SODA [76],11 and Aether-
ling [77].12 In addition, extensions of image-processing DSL
to include an FPGA backend were proposed. PolyMage’s
FPGA expansion [78], HIPACC-FPGA [79], [80],13 and
HipaccVX [81]14 have been proposed. Halide has been

3https://halide-lang.org/
4http://hipacc-lang.org/
5https://github.com/NVIDIA/Forma
6https://github.com/bollu/polymage
7http://darkroom-lang.org/
8https://spiral.net/index.html
9https://github.com/jameshegarty/rigel
10https://github.com/robstewart57/ripl
11https://github.com/UCLA-VAST/soda
12https://aetherling.org/
13https://github.com/hipacc/hipacc-fpga
14https://github.com/HipaccVX/HipaccVX

VOLUME 12, 2024 7579

Y. Kanetaka et al.: SlidingConv: Domain-Specific Description of SDCT Convolution for Halide

extended to include an FPGA backend, such as Halide-
HLS [82]15 Halide to FPGAs [83] and Hetero-Halide [84].16

Halide has also been extended to other computing units
such as DSPs [85], push memory [86] and TensorCore [87].
To support accelerators while considering computation
scheduling functions, DSLs for directly generating native
language code (e.g., C and C++) rather than extending the
DSL are also emerging, such as Exo Language [88].17

Current DSLs are extended to more specialized and narrow
domains (e.g., machine learning) and broader domains. For
deep learning DSL, TVM [89], [90],18 Tensor comprehen-
sions [91]19 and Ansor [92] have also been proposed. TVM
shares many similarities with Halide modified from the
Halide IR. DSLs for deep learning are reviewed in [93].
For more general-purpose DSLs, a polyhedral model for
loop parallelization was used for wider domain adaptation.
A polyhedral compiler can be used for image processing
but is not limited to image processing: PLUTO [94],20

Polly [95],21 PENCIL [96],22 and TIRAMISU [97].23 These
DSLs can be used for Halide, and Distributed Halide [98]
is using Polly for better scheduling. Further research has
been proposed to convert binary files and old native code to
DSL. Helium [99]24 can convert compiled x86 binary codes
into Halide codes, and DEXTER [100]25 can automatically
translate image-processing libraries into Halide.

Another extension direction is to move away from the
stencil calculations; one is the proposedmethod. SlidingConv
was used for the scan pattern with the tiling strategy instead of
using stencil patterns for the usual convolution. RecFiler [19]
and its extension [20] are similar extension patterns. Most
image-processing DSLs are not Turing complete, and all
Halide computations are over regular grids. Thus, recursions
must have bounded domains, and additional loop genera-
tion by scheduling, such as initialization in SlidingConv,
was not allowed. Indigo [101]26 and Opt [102]27 support
image processing in matrix representation for inverse image
processing, which commonly uses matrix inverse and FFT.
RandConv extends Halide’s stencil computations to sparse
stencil computations [103].

VII. CONCLUSION
We present a new DSL for image convolution based on
a sliding DCT for high-performance computing on various
architectures. The sliding DCT can accelerate convolution’s

15https://github.com/jingpu/Halide-HLS
16https://github.com/UCLA-VAST/heterohalide
17https://exo-lang.dev/
18https://tvm.apache.org/
19https://facebookresearch.github.io/TensorComprehensions/
20https://github.com/bondhugula/pluto
21https://polly.llvm.org/
22https://github.com/pencil-language
23https://tiramisu-compiler.org/
24http://projects.csail.mit.edu/helium/
25https://dexter.uwplse.org/
26https://mbdriscoll.github.io/indigo/
27http://optlang.org/

fundamental image processing tools by converting FIR
filtering to recursive filtering. However, recursive processing
prevents efficient parallel image processing and complicates
the code. We solved this problem by providing only a
scheduling interface and hiding the complex high-efficiency
parallel code generation within the DSL. In addition, our DSL
supports optimal code generation with minimal code modi-
fication in various situations, adding pre/post-processing for
filtering and changing architectures (x86/64 AVX, AVX-512
CPU, ARM CPU, and GPU). We show that our DSL works
more efficiently than the de facto libraries of OpenCV
and ITK and the conventional work of RecFilter [19] and
gpufilter [15], [17] on various CPU and GPU architectures.
We also show the description efficiency that our DSL has
equivalent or better performance than hand-tuned CPU-
implemented code with a 1/1900 code length.

REFERENCES
[1] M. Mernik, J. Heering, and A. M. Sloane, ‘‘When and how to

develop domain-specific languages,’’ ACM Comput. Surv., vol. 37, no. 4,
pp. 316–344, Dec. 2005.

[2] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. Amarasinghe, and
F. Durand, ‘‘Decoupling algorithms from schedules for easy optimization
of image processing pipelines,’’ ACM Trans. Graph., vol. 31, no. 4,
pp. 1–12, Aug. 2012.

[3] R. Deriche, ‘‘Fast algorithms for low-level vision,’’ IEEE Trans. Pattern
Anal. Mach. Intell., vol. 12, no. 1, pp. 78–87, Jan. 1990.

[4] R. Deriche, ‘‘Recursively implementating the Gaussian and
its derivatives,’’ INRIA, Nat. Center Sci. Res. (CNRS), Paris
France, Res. Rep. RR-1893, 1993, p. 24. [Online]. Available:
https://inria.hal.science/inria-00074778 and https://about.hal.science/en/
legal-notice/

[5] G. Farnebäck and C.-F. Westin, ‘‘Improving deriche-style recursive
Gaussian filters,’’ J. Math. Imag. Vis., vol. 26, no. 3, pp. 293–299,
Dec. 2006.

[6] I. T. Young and L. J. van Vliet, ‘‘Recursive implementation of the
Gaussian filter,’’ Signal Process., vol. 44, no. 2, pp. 139–151, Jun. 1995.

[7] L. J. van Vliet, I. T. Young, and P. W. Verbeek, ‘‘Recursive Gaussian
derivative filters,’’ in Proc. Int. Conf. Pattern Recognit. (ICPR), 1998,
pp. 509–514.

[8] B. Triggs and M. Sdika, ‘‘Boundary conditions for young-van Vliet
recursive filtering,’’ IEEE Trans. Signal Process., vol. 54, no. 6,
pp. 2365–2367, Jun. 2006.

[9] T. Yoo, M. Ackerman, W. Lorensen, W. Schroeder, V. Chalana,
S. Aylward, D. Metaxas, and R. Whitaker, ‘‘Engineering and algorithm
design for an image processing API: A technical report on ITK-the insight
toolkit,’’ Med. Meets Virtual Reality 02/10, Nat. Library Med., Bethesda,
MD, USA, Tech. Rep., 2002, pp. 586–592.

[10] W. Sung and S. K. Mitra, ‘‘Efficient multi-processor implementation of
recursive digital filters,’’ in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process. (ICASSP), vol. 11, Apr. 1986, pp. 257–260.

[11] X. Wang and B. E. Shi, ‘‘GPU implemention of fast Gabor filters,’’ in
Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2010, pp. 373–376.

[12] D. Ruijters and P. Thévenaz, ‘‘GPU prefilter for accurate cubic B-spline
interpolation,’’ Comput. J., vol. 55, no. 1, pp. 15–20, Jan. 2012.

[13] D. Nehab, A. Maximo, R. S. Lima, and H. Hoppe, ‘‘GPU-efficient
recursive filtering and summed-area tables,’’ ACM Trans. Graph., vol. 30,
no. 6, pp. 1–12, Dec. 2011.

[14] I. Vidal-Migallon, O. Commowick, X. Pennec, J. Dauguet, and
T. Vercauteren, ‘‘GPU and CPU implementation of Young–Van Vliet’s
recursive Gaussian smoothing filter,’’ Insight J., p. 16, Jul. 2013.

[15] A. Maximo, ‘‘Efficient finite impulse response filters in massively-
parallel recursive systems,’’ J. Real-Time Image Process., vol. 12, no. 3,
pp. 603–611, Oct. 2016.

[16] D. Nehab and A. Maximo, ‘‘Parallel recursive filtering of infinite input
extensions,’’ ACM Trans. Graph., vol. 35, no. 6, pp. 1–13, Nov. 2016.

[17] A. Maximo, ‘‘GPU efficient 1D and 3D recursive filtering,’’Digit. Signal
Process., vol. 114, Jul. 2021, Art. no. 103076.

7580 VOLUME 12, 2024

Y. Kanetaka et al.: SlidingConv: Domain-Specific Description of SDCT Convolution for Halide

[18] G. Bradski, ‘‘The OpenCV library,’’ Dr. Dobb’s J. Softw. Tools, vol. 25,
no. 11, pp. 120–123, 2000.

[19] G. Chaurasia, J. Ragan-Kelley, S. Paris, G. Drettakis, and F. Durand,
‘‘Compiling high performance recursive filters,’’ in Proc. 7th Conf. High-
Perform. Graph. (HPG), Aug. 2015, pp. 85–94.

[20] H. Takagi and N. Fukushima, ‘‘An efficient description with halide for
iir Gaussian filter,’’ in Proc. Asia–Pacific Signal Inf. Process. Assoc.
Annu. Summit Conf. (APSIPAASC), 2020, pp. 28–35. [Online]. Available:
https://ieeexplore.ieee.org/document/9306460

[21] T. Otsuka, N. Fukushima, Y. Maeda, K. Sugimoto, and S.-I. Kamata,
‘‘Optimization of sliding-DCT based Gaussian filtering for hardware
accelerator,’’ in Proc. IEEE Int. Conf. Vis. Commun. Image Process.
(VCIP), Dec. 2020, pp. 423–426.

[22] L. Alvarez and L. Mazorra, ‘‘Signal and image restoration using shock
filters and anisotropic diffusion,’’ SIAM J. Numer. Anal., vol. 31, no. 2,
pp. 590–605, Apr. 1994.

[23] E. Elboher and M. Werman, ‘‘Cosine integral images for fast spatial and
range filtering,’’ in Proc. 18th IEEE Int. Conf. Image Process. (ICIP),
Sep. 2011, pp. 89–92.

[24] K. Sugimoto and S.-I. Kamata, ‘‘Fast image filtering byDCT-based kernel
decomposition and sequential sum update,’’ in Proc. 19th IEEE Int. Conf.
Image Process. (ICIP), Sep. 2012, pp. 125–128.

[25] K. Sugimoto and S.-I. Kamata, ‘‘Fast Gaussian filter with second-order
shift property of DCT-5,’’ in Proc. IEEE Int. Conf. Image Process.,
Sep. 2013, pp. 514–518.

[26] K. Sugimoto and S.-I. Kamata, ‘‘[Paper] efficient constant-time Gaussian
filtering with sliding DCT/DST-5 and dual-domain error minimization,’’
ITE Trans. Media Technol. Appl., vol. 3, no. 1, pp. 12–21, 2015.

[27] D. Charalampidis, ‘‘Recursive implementation of the Gaussian filter
using truncated cosine functions,’’ IEEE Trans. Signal Process., vol. 64,
no. 14, pp. 3554–3565, Jul. 2016.

[28] K. Sugimoto, S. Kyochi, and S.-I. Kamata, ‘‘Universal approach for DCT-
based constant-time Gaussian filter with moment preservation,’’ in Proc.
IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Apr. 2018,
pp. 1498–1502.

[29] T. Yano, K. Sugimoto, Y. Kuroki, and S.-I. Kamata, ‘‘Acceleration of
Gaussian filter with short window length using DCT-1,’’ in Proc. Asia–
Pacific Signal Inf. Process. Assoc. Annu. Summit Conf. (APSIPA ASC),
Nov. 2018, pp. 129–132.

[30] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, ‘‘Image quality
assessment: From error visibility to structural similarity,’’ IEEE Trans.
Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[31] T. Sasaki, N. Fukushima, Y. Maeda, K. Sugimoto, and S.-I. Kamata,
‘‘Constant-time Gaussian filtering for acceleration of structure similar-
ity,’’ in Proc. Int. Conf. Image Process. Robot. (ICIP), Mar. 2020, pp. 1–6.

[32] K. Sugimotoy, N. Fukushimazy, and S.-i. Kamatay, ‘‘200 FPS constant-
time bilateral filter using SVD and tiling strategy,’’ in Proc. IEEE Int.
Conf. Image Process. (ICIP), Sep. 2019, pp. 190–194.

[33] G. Wang, Y. Lin, and W. Yi, ‘‘Kernel fusion: An effective method for
better power efficiency on multithreaded GPU,’’ in Proc. IEEE/ACM Int.
Conf. Green Comput. Commun. Int. Conf. Cyber, Phys. Social Comput.,
Dec. 2010, pp. 344–350.

[34] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. Amarasinghe, ‘‘Halide: A language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines,’’
in Proc. ACM SIGPLAN Conf. Program. Lang. Design Implement.
(PLDI), vol. 48, no. 6, 2013, pp. 519–530.

[35] R. T. Mullapudi, A. Adams, D. Sharlet, J. Ragan-Kelley, and
K. Fatahalian, ‘‘Automatically scheduling halide image processing
pipelines,’’ ACM Trans. Graph., vol. 35, no. 4, pp. 1–11, Jul. 2016.

[36] T.-M. Li, M. Gharbi, A. Adams, F. Durand, and J. Ragan-Kelley,
‘‘Differentiable programming for image processing and deep learning in
halide,’’ ACM Trans. Graph., vol. 37, no. 4, pp. 1–13, Aug. 2018.

[37] A. Adams, K. Ma, L. Anderson, R. Baghdadi, T.-M. Li, M. Gharbi,
B. Steiner, S. Johnson, K. Fatahalian, F. Durand, and J. Ragan-Kelley,
‘‘Learning to optimize halide with tree search and random programs,’’
ACM Trans. Graph., vol. 38, no. 4, pp. 1–12, Aug. 2019.

[38] R. T. Mullapudi, V. Vasista, and U. Bondhugula, ‘‘PolyMage: Automatic
optimization for image processing pipelines,’’ in Proc. Int. Conf. Archit.
Support Program. Lang. Operating Syst. (ASPLOS), 2015, pp. 429–443.

[39] J. Zhao and A. Cohen, ‘‘Flextended tiles: A flexible extension of
overlapped tiles for polyhedral compilation,’’ ACM Trans. Archit. Code
Optim., vol. 16, no. 4, p. 47, 2019.

[40] F. C. Crow, ‘‘Summed-area tables for texture mapping,’’ in Proc. 11th
Annu. Conf. Comput. Graph. Interact. Techn., 1984, vol. 18, no. 3,
pp. 207–212.

[41] P. Viola and M. Jones, ‘‘Rapid object detection using a boosted cascade
of simple features,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Dec. 2001, pp. 511–518.

[42] W.M.Wells, ‘‘Efficient synthesis of Gaussian filters by cascaded uniform
filters,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. PAMI-8, no. 2,
pp. 234–239, Mar. 1986.

[43] P. Gwosdek, S. Grewenig, A. Bruhn, and J. Weickert, ‘‘Theoretical
foundations of Gaussian convolution by extended box filtering,’’ in Scale
Space and Variational Methods in Computer Vision (Lecture Notes in
Computer Science), Berlin, Germany: Springer, 2012, pp. 447–458.

[44] A. Bhatia,W. E. Snyder, andG. Bilbro, ‘‘Stacked integral image,’’ inProc.
IEEE Int. Conf. Robot. Autom., May 2010, pp. 1530–1535.

[45] E. Elboher and M. Werman, ‘‘Efficient and accurate Gaussian image
filtering using running sums,’’ in Proc. 12th Int. Conf. Intell. Syst. Design
Appl. (ISDA), Nov. 2012, pp. 897–902.

[46] P. Getreuer, ‘‘A survey of Gaussian convolution algorithms,’’ Image
Process. Line, vol. 3, pp. 286–310, Dec. 2013.

[47] J. Hensley, T. Scheuermann, G. Coombe, M. Singh, and A. Lastra, ‘‘Fast
summed-area table generation and its applications,’’ Comput. Graph.
Forum, vol. 24, no. 3, pp. 547–555, Sep. 2005.

[48] J. W. Cooley and J. W. Tukey, ‘‘An algorithm for the machine
calculation of complex Fourier series,’’ Math. Comput., vol. 19, no. 90,
pp. 297–301, 1965.

[49] M. Frigo and S. G. Johnson, ‘‘The design and implementation of
FFTW3,’’ Proc. IEEE, vol. 93, no. 2, pp. 216–231, Feb. 2005.

[50] J. B. Allen and L. R. Rabiner, ‘‘A unified approach to short-time Fourier
analysis and synthesis,’’ Proc. IEEE, vol. 65, no. 11, pp. 1558–1564,
Nov. 1977.

[51] B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Battenberg,
and O. Nieto, ‘‘Librosa: Audio and music signal analysis in Python,’’ in
Proc. Python Sci. Conf. (SciPy), vol. 8, 2015, pp. 18–25.

[52] Z. Průša, P. L. Søndergaard, N. Holighaus, C. Wiesmeyr, and P. Balazs,
‘‘The large time-frequency analysis toolbox 2.0,’’ in Proc. 10th Int.
Symp. Comput. Music Multidisciplinary Res.Marseille, France: Springer,
Oct. 2013, pp. 419–442.

[53] E. Jacobsen and R. Lyons, ‘‘The sliding DFT,’’ IEEE Signal Process.
Mag., vol. 20, no. 2, pp. 74–80, Mar. 2003.

[54] E. Jacobsen and R. Lyons, ‘‘An update to the sliding DFT,’’ IEEE Signal
Process. Mag., vol. 21, no. 1, pp. 110–111, Jan. 2004.

[55] R. Lyons and C. Howard, ‘‘Improvements to the sliding discrete Fourier
transform algorithm [tips & tricks],’’ IEEE Signal Process. Mag., vol. 38,
no. 4, pp. 119–127, Jul. 2021.

[56] M. Hussein, F. Porikli, and L. Davis, ‘‘Kernel integral images: A
framework for fast non-uniform filtering,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), Jun. 2008.

[57] Y. Maeda, N. Fukushima, and H. Matsuo, ‘‘Taxonomy of vectorization
patterns of programming for FIR image filters using kernel subsampling
and new one,’’ Appl. Sci., vol. 8, no. 8, p. 1235, Jul. 2018.

[58] N. Fukushima, Y. Maeda, Y. Kawasaki, M. Nakamura, T. Tsumura,
K. Sugimoto, and S.-I. Kamata, ‘‘Efficient computational scheduling of
box and Gaussian FIR filtering for CPU microarchitecture,’’ in Proc.
Asia–Pacific Signal Inf. Process. Assoc. Annu. Summit Conf. (APSIPA
ASC), Nov. 2018, pp. 875–879.

[59] K. Mishiba, ‘‘Fast guided median filter,’’ IEEE Trans. Image Process.,
vol. 32, pp. 737–749, 2023.

[60] Z. Ma, K. He, Y. Wei, J. Sun, and E. Wu, ‘‘Constant time weighted
median filtering for stereo matching and beyond,’’ in Proc. IEEE Int.
Conf. Comput. Vis. (ICCV), Dec. 2013, pp. 49–56.

[61] M. McCool, J. Reinders, and A. Robison, Structured Parallel Program-
ming: Patterns for Efficient Computation. Amsterdam, The Netherlands:
Elsevier, 2012.

[62] S. Krishnamoorthy, M. Baskaran, U. Bondhugula, J. Ramanujam,
A. Rountev, and P. Sadayappan, ‘‘Effective automatic parallelization
of stencil computations,’’ ACM SIGPLAN Notices, vol. 42, no. 6,
pp. 235–244, Jun. 2007.

[63] A. Nguyen, N. Satish, J. Chhugani, C. Kim, and P. Dubey, ‘‘3.5-D
blocking optimization for stencil computations on modern CPUs and
GPUs,’’ in Proc. ACM/IEEE Int. Conf. High Perform. Comput., Netw.,
Storage Anal., Nov. 2010, pp. 1–13.

VOLUME 12, 2024 7581

Y. Kanetaka et al.: SlidingConv: Domain-Specific Description of SDCT Convolution for Halide

[64] Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and
C. E. Leiserson, ‘‘The pochoir stencil compiler,’’ in Proc. 23rd
Annu. ACM Symp. Parallelism Algorithms Architectures, Jun. 2011,
pp. 117–128.

[65] R. Membarth, O. Reiche, F. Hannig, J. Teich, M. Körner, and W.
Eckert, ‘‘HIPAcc: A domain-specific language and compiler for image
processing,’’ IEEE Trans. Parallel Distrib. Syst., vol. 27, no. 1,
pp. 210–224, Jan. 2016.

[66] M. Ravishankar, J. Holewinski, and V. Grover, ‘‘Forma: A DSL for
image processing applications to target GPUs and multi-core CPUs,’’
in Proc. 8th Workshop Gen. Purpose Process. Using GPUs, Feb. 2015,
pp. 109–120.

[67] S. Sioutas, S. Stuijk, L. Waeijen, T. Basten, H. Corporaal, and L. Somers,
‘‘Schedule synthesis for halide pipelines through reuse analysis,’’ ACM
Trans. Archit. Code Optim., vol. 16, no. 2, pp. 1–22, Jun. 2019.

[68] S. Sioutas, S. Stuijk, T. Basten, H. Corporaal, and L. Somers, ‘‘Schedule
synthesis for halide pipelines on GPUs,’’ ACM Trans. Archit. Code
Optim., vol. 17, no. 3, pp. 1–25, Sep. 2020.

[69] X. Yang,M. Gao, Q. Liu, J. Setter, J. Pu, A. Nayak, S. Bell, K. Cao, H. Ha,
P. Raina, C. Kozyrakis, and M. Horowitz, ‘‘Interstellar: Using Halide’s
scheduling language to analyze DNN accelerators,’’ in Proc. 25th Int.
Conf. Archit. Support Program. Lang. Oper. Syst. (ASPLOS), Mar. 2020,
pp. 369–383.

[70] H. Nogami, S. Oishi, T. Sasaki, Y. Maeda, and N. Fukushima,
‘‘Performance evaluation of halide auto-scheduler with directional cubic
convolution interpolation,’’ in Proc. Int. Workshop Adv. Imag. Technol.
(IWAIT), vol. 12592, Mar. 2023, Art. no. 125922.

[71] C. Lengauer, ‘‘Loop parallelization in the polytope model,’’ in Proc. Int.
Conf. Concurrency Theory (CONCUR), 1993, pp. 398–416.

[72] J. Hegarty, J. Brunhaver, Z. DeVito, J. Ragan-Kelley, N. Cohen, S. Bell,
A. Vasilyev, M. Horowitz, and P. Hanrahan, ‘‘Darkroom: Compiling
high-level image processing code into hardware pipelines,’’ ACM Trans.
Graph., vol. 33, no. 4, pp. 1–144, 2014.

[73] P. Milder, F. Franchetti, J. C. Hoe, andM. Püschel, ‘‘Computer generation
of hardware for linear digital signal processing transforms,’’ ACM Trans.
Design Autom. Electron. Syst., vol. 17, no. 2, pp. 1–33, Apr. 2012.

[74] J. Hegarty, R. Daly, Z. DeVito, J. Ragan-Kelley, M. Horowitz, and
P. Hanrahan, ‘‘Rigel: Flexible multi-rate image processing hardware,’’
ACM Trans. Graph., vol. 35, no. 4, pp. 1–11, Jul. 2016.

[75] R. Stewart, K. Duncan, G. Michaelson, P. Garcia, D. Bhowmik, and
A. Wallace, ‘‘RIPL: A parallel image processing language for FPGAs,’’
ACM Trans. Reconfigurable Technol. Syst., vol. 11, no. 1, pp. 1–24,
Mar. 2018.

[76] Y. Chi, J. Cong, P. Wei, and P. Zhou, ‘‘SODA: Stencil with optimized
dataflow architecture,’’ in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Design (ICCAD), Nov. 2018, pp. 1–8.

[77] D. Durst, M. Feldman, D. Huff, D. Akeley, R. Daly, G. L. Bernstein,
M. Patrignani, K. Fatahalian, and P. Hanrahan, ‘‘Type-directed schedul-
ing of streaming accelerators,’’ in Proc. 41st ACM SIGPLAN Conf.
Program. Lang. Design Implement. (PLDI), Jun. 2020, pp. 408–422.

[78] N. Chugh, V. Vasista, S. Purini, and U. Bondhugula, ‘‘A DSL compiler for
accelerating image processing pipelines on FPGAs,’’ in Proc. Int. Conf.
Parallel Archit. Compilation Techn. (PACT), Sep. 2016, pp. 327–338.

[79] O. Reiche, M. Schmid, F. Hannig, R. Membarth, and J. Teich, ‘‘Code
generation from a domain-specific language for C-based HLS of
hardware accelerators,’’ in Proc. Int. Conf. Hardw./Softw. Codesign Syst.
Synth. (CODE+ISSS), Oct. 2014, pp. 1–10.

[80] O. Reiche, M. A. Özkan, R. Membarth, J. Teicha, and F. Hannig,
‘‘Generating FPGA-based image processing accelerators with hipacc,’’ in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2017,
pp. 1026–1033.

[81] M. A. Özkan, B. Ok, B. Qiao, J. Teich, and F. Hannig, ‘‘HipaccVX:
Wedding of OpenVX and DSL-based code generation,’’ J. Real-Time
Image Process., vol. 18, no. 3, pp. 765–777, Jun. 2021.

[82] J. Pu, S. Bell, X. Yang, J. Setter, S. Richardson, J. Ragan-Kelley, and
M. Horowitz, ‘‘Programming heterogeneous systems from an image
processing DSL,’’ ACM Trans. Archit. Code Optim., vol. 14, no. 3,
pp. 1–25, Sep. 2017.

[83] A. Ishikawa, N. Fukushima, A. Maruoka, and T. Iizuka, ‘‘Halide and
GENESIS for generating domain-specific architecture of guided image
filtering,’’ in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2019,
pp. 1–5.

[84] J. Li, Y. Chi, and J. Cong, ‘‘HeteroHalide: From image processing DSL
to efficient FPGA acceleration,’’ in Proc. ACM/SIGDA Int. Symp. Field-
Program. Gate Arrays (FPGA), Feb. 2020, pp. 51–57.

[85] S. Vocke, H. Corporaal, R. Jordans, R. Corvino, and R. Nas, ‘‘Extending
halide to improve software development for imaging DSPs,’’ ACM Trans.
Archit. Code Optim., vol. 14, no. 3, p. 21, 2017.

[86] Q. Liu, J. Setter, D. Huff, M. Strange, K. Feng,M. Horowitz, P. Raina, and
F. Kjolstad, ‘‘Unified buffer: Compiling image processing and machine
learning applications to push-memory accelerators,’’ ACM Trans. Archit.
Code Optim., vol. 20, no. 2, pp. 1–26, Jun. 2023.

[87] S. Sioutas, S. Stuijk, T. Basten, L. Somers, and H. Corporaal,
‘‘Programming tensor cores from an image processing DSL,’’ in
Proc. 23th Int. Workshop Softw. Compil. Embedded Syst., May 2020,
pp. 36–41.

[88] Y. Ikarashi, G. L. Bernstein, A. Reinking, H. Genc, and J. Ragan-Kelley,
‘‘Exocompilation for productive programming of hardware accelerators,’’
in Proc. 43rd ACM SIGPLAN Int. Conf. Program. Lang. Design
Implement., Jun. 2022, pp. 703–718.

[89] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan,
H. Shen, L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishna-
murthy, ‘‘TVM: An automated end-to-end optimizing compiler for
deep learning,’’ in Proc. USENIX Conf. Oper. Syst. Design Implement.
(OSDI), 2018, pp. 579–594. [Online]. Available: https://dl.acm.org/doi/
10.5555/3291168.3291211

[90] T. Chen, L. Zheng, E. Yan, Z. Jiang, T. Moreau, L. Ceze, C. Guestrin,
and A. Krishnamurthy, ‘‘Learning to optimize tensor programs,’’ in
Proc. Neural Inf. Process. Syst. (NIPS), 2018, pp. 3393–3404. [Online].
Available: https://dl.acm.org/doi/10.5555/3327144.3327258

[91] N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito,
W. S. Moses, S. Verdoolaege, A. Adams, and A. Cohen, ‘‘Tensor com-
prehensions: Framework-agnostic high-performance machine learning
abstractions,’’ 2018, arXiv:1802.04730.

[92] L. Zheng, C. Jia, M. Sun, Z. Wu, C. H. Yu, A. Haj-Ali, Y. Wang, J. Yang,
D. Zhuo, K. Sen, J. E. Gonzalez, and I. Stoica, ‘‘Ansor: Generating high-
performance tensor programs for deep learning,’’ in Proc. USENIX Conf.
Oper. Syst. Design Implement. (OSDI), 2020, p. 49. [Online]. Available:
https://dl.acm.org/doi/abs/10.5555/3488766.3488815

[93] M. Li, Y. Liu, X. Liu, Q. Sun, X. You, H. Yang, Z. Luan, L. Gan, G. Yang,
and D. Qian, ‘‘The deep learning compiler: A comprehensive survey,’’
IEEETrans. Parallel Distrib. Syst., vol. 32, no. 3, pp. 708–727,Mar. 2021.

[94] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan,
‘‘A practical automatic polyhedral program optimization system,’’ in
Proc. ACM SIGPLAN Conf. Program. Lang. Design Implement. (PLDI),
2008, pp. 101–113.

[95] T. Grosser, A. Groesslinger, and C. Lengauer, ‘‘Polly—Performing
polyhedral optimizations on a low-level intermediate representation,’’
Parallel Process. Lett., vol. 22, no. 4, Dec. 2012, Art. no. 1250010.

[96] R. Baghdadi, U. Beaugnon, A. Cohen, T. Grosser, M. Kruse, C. Reddy,
S. Verdoolaege, A. Betts, A. F. Donaldson, J. Ketema, J. Absar,
S. Van Haastregt, A. Kravets, A. Lokhmotov, R. David, and E. Hajiyev,
‘‘PENCIL: A platform-neutral compute intermediate language for accel-
erator programming,’’ in Proc. Int. Conf. Parallel Archit. Compilation
(PACT), Oct. 2015, pp. 138–149.

[97] R. Baghdadi, J. Ray, M. B. Romdhane, E. D. Sozzo, A. Akkas, Y. Zhang,
P. Suriana, S. Kamil, and S. Amarasinghe, ‘‘Tiramisu: A polyhedral
compiler for expressing fast and portable code,’’ in Proc. IEEE/ACM Int.
Symp. Code Gener. Optim. (CGO), Feb. 2019, pp. 193–205.

[98] T. Denniston, S. Kamil, and S. Amarasinghe, ‘‘Distributed halide,’’ ACM
SIGPLAN Notices, vol. 51, no. 8, pp. 1–12, Nov. 2016.

[99] C. Mendis, J. Bosboom, K. Wu, S. Kamil, J. Ragan-Kelley, S. Paris,
Q. Zhao, and S. Amarasinghe, ‘‘Helium: Lifting high-performance
stencil kernels from stripped x86 binaries to halide DSL code,’’ in
Proc. ACM SIGPLAN Conf. Program. Lang. Design Implement. (PLDI),
2015, pp. 391–402. [Online]. Available: https://dl.acm.org/doi/10.
1145/2737924.2737974

[100] M. B. S. Ahmad, J. Ragan-Kelley, A. Cheung, and S. Kamil, ‘‘Auto-
matically translating image processing libraries to halide,’’ ACM Trans.
Graph., vol. 38, no. 6, pp. 1–13, Dec. 2019.

[101] M. Driscoll, B. Brock, F. Ong, J. Tamir, H.-Y. Liu, M. Lustig, A. Fox,
and K. Yelick, ‘‘Indigo: A domain-specific language for fast, portable
image reconstruction,’’ inProc. IEEE Int. Parallel Distrib. Process. Symp.
(IPDPS), May 2018, pp. 495–504.

7582 VOLUME 12, 2024

Y. Kanetaka et al.: SlidingConv: Domain-Specific Description of SDCT Convolution for Halide

[102] Z. Devito, M. Mara, M. Zollhöfer, G. Bernstein, J. Ragan-Kelley,
C. Theobalt, P. Hanrahan, M. Fisher, and M. Niessner, ‘‘Opt: A domain
specific language for non-linear least squares optimization in graphics
and imaging,’’ ACM Trans. Graph., vol. 36, no. 5, pp. 1–27, Oct. 2017.

[103] H. Takagi and N. Fukushima, ‘‘Domain specific description in halide for
randomized image convolution,’’ in Proc. Asia–Pacific Signal Inf. Pro-
cess. Assoc. Annu. Summit Conf. (APSIPA ASC), Dec. 2021, pp. 63–69.
[Online]. Available: https://ieeexplore.ieee.org/document/9689317

YAMATO KANETAKA (Graduate StudentMember,
IEEE) received the B.E. degree from the Nagoya
Institute of Technology, Japan, in 2022, where he
is currently pursuing theM.E. degree. His research
interests include image processing, programming
languages, and iOS.

HIROYASU TAKAGI received the B.E. and M.E.
degrees from the Nagoya Institute of Technology,
in 2019 and 2021, respectively. In 2021, he joined
Yamaha Corporation, Japan. His research inter-
ests include image processing and programming
language.

YOSHIHIRO MAEDA (Member, IEEE) received
the B.E., M.E., and Ph.D. degrees in information
engineering from the Nagoya Institute of Technol-
ogy, Japan, in 2013, 2015, and 2019, respectively.
In 2019, he became an Assistant Professor with the
Tokyo University of Science, Japan. His research
interests include image-signal processing, parallel
image processing, and multispectral sensing. He is
a member of IEICE.

NORISHIGE FUKUSHIMA (Member, IEEE)
received the B.E., M.E., and Ph.D. degrees from
Nagoya University, Japan, in 2004, 2006, and
2009, respectively. He became anAssistant Profes-
sor, in 2009, and an Associate Professor, in 2015,
with the Nagoya Institute of Technology, Japan.
His research interests include image signal pro-
cessing, parallel image processing, and compilers.
He is a member of IEEE CAS, IEEE SPS, IEICE,
and IPSJ.

VOLUME 12, 2024 7583

