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ABSTRACT Nonlinear fluid dynamical systems, such as thermoacoustic systems, aeroelastic systems are
archetypical complex systems involving state transitions upon a change in bifurcation parameter. These state
transitions in any certain direction are always undesirable and can radically alter the operational paradigms
associated with these systems. Hence, predicting the impending dynamical state is paramount for avoiding
such undesirable transitions. The hitherto research so far focused largely on metric-based and model-
based indicators to foretell an impending transition and is often fraught with difficulties when deployed
in practicable scenarios. In this study, we assuage this end of concern by proposing a model-agnostic data-
driven method for automated classification of the dynamical states of nonlinear fluid dynamical systems.
By using recurrence plots we transform the time series pertaining to the dynamical states into images and
subsequently employ a convolution neural network (CNN) to classify the generated images. This study also
proceeds to present cross-domain classifications via a trained deep learning (DL) model and successfully
classify the dynamical states of one fluid dynamical system (say, thermoacoustic) with the dynamical states
of another fluid dynamical system (say, aeroelastic). The underlying methodology for the above is based on
open set (OS) domain adaptation - inherent to transfer learning schemes. Towards enhancing the confidence
levels of our proposed methodology, we carry out four cross-domain numerical experiments, wherein we
consistently get about 94 - 98% accuracy.

INDEX TERMS Dynamical systems, deep learning, open set domain adaptation, pattern recognition,
recurrence plots.

I. INTRODUCTION
The study of nonlinear dynamical systems is crucial for
deepening our understanding of the physical world. Different
dynamical systems display varying complexity and diverse
behavior far from equilibrium states. One crucial aspect of
dynamical systems is state transitions. State transitions in
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dynamical systems can occur in one of two ways: through
a gradual change in the system parameters [1] or due to
external fluctuations [2]. The former is typically termed
bifurcations, and the latter is called noise-induced transitions.
Bifurcation theory is used to study these transitions. There
are several types of bifurcations, such as fold bifurcation in
a pitch-plunge aeroelastic system exhibiting stall flutter [3],
[4], Hopf bifurcation in aeroelastic systems in the presence of
cubic hardening nonlinearity [5], and transcritical bifurcation
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in an asymmetric 2D pitching wing section with cubic
stiffness [6]. Each bifurcation type corresponds to distinct
dynamical behavior or state.

Identifying different dynamical states is paramount in
predicting transitions in dynamical system analysis. To date,
empirical indicators based on the system’s time series have
been used to predict impending transitions. Metric-based and
model-based indicators are the two broad categories to which
these indicators belong. Model-based indicators involve
fitting a specific model to the data, while metric-based
indicators assess changes in the system’s behavior without
linking the data to a specific model. Prominent metric-based
indicators include the Largest Lyapunov exponent (LLE)
[7] and Shannon entropy [5], [8], [9], while examples of
model-based indicators are time-varying AR(p) models [2]
and non-parametric drift-diffusion-jump models [1]. How-
ever, these methods have limitations in practical applications,
such as the requirement for noise-free and lengthy time series.

The disproportionate emphasis placed on metric-based or
model-based quantification in fluid dynamical systems [5],
[10], [11], [12] is a concern with the available methodologies
for predicting state transitions. The interaction of fluid flow
with flexible structures or acoustic-heat sources can be
best described by the paradigms of nonlinear dynamical
systems. Aeroelasticity, which refers to the interaction of
fluid flow with structures, and thermoacoustic behavior,
which involves the interaction of flows with heat-acoustic
sources, are prone to unpredictable and often catastrophic
bifurcations [3], [4], [10], [11], [13]. Interestingly, these
two fluid dynamical systems can exhibit similar bifurcation
scenarios under specific conditions. A key concern with these
catastrophic transitions in response dynamics is the sudden
emergence or disappearance of oscillatory instabilities. For
example, the aeroelastic system can give rise to self-sustained
limit cycle oscillations (LCOs) in the structural response,
known as flutter, at a critical bifurcation parameter. Similarly,
a thermoacoustic system can exhibit sustained pressure
oscillations called thermoacoustic instability, which also
manifests as LCOs in the pressure responses [13], [14], [15].
The two fluid dynamical systems considered in this study

are ubiquitous in various applications, ranging from power
and propulsion devices [16] to lifting surfaces such as aircraft
wings, micro aerial vehicles (MAVs), and wind turbine
blades [17]. Indeed, both systems exhibit their primary
instability through a Hopf bifurcation under determinis-
tic conditions and demonstrate an intermittency route to
Limit Cycle Oscillations (LCOs) under turbulent conditions
[13], [14].

Pulse combustors belong to a category of air-breathing
engines that utilize combustion pulsations to improve
their performance. Traditional pulse combustors use either
mechanical or aerodynamic valves to regulate the intake of
air and fuel, which is determined by the pressure within
the combustion chamber. However, thermal pulse combustors
exhibit pulsating combustion even when there is a constant

inflow of air and fuel across various operating conditions.
This pulsation arises due to complex interactions between the
system’s acoustic field and the irregular heat release from
combustion, leading to thermoacoustic instabilities. These
interactions result in intricate system dynamics, including
periodic, quasiperiodic, period doubling, and chaotic oscil-
lations. Factors like wall temperature and the air-fuel ratio
influence the system’s behaviour [10], [11], [18], [19], [20],
[21], [22].

On the other hand, nonlinear aeroelastic systems can
generate various bifurcations and unpredictable instabilities.
The type and source of nonlinearity in an aeroelastic system
significantly influence the aeroelastic response dynamics and
give rise to different bifurcation routes. For example, a cubic
hardening nonlinearity in structural stiffness, caused by large
deformations, results in a supercritical Hopf bifurcation [14].
Structural freeplay nonlinearity, which arises from loose
hinges or worn parts, leads to a period-doubling route to chaos
and subsequent divergent oscillations [23]. Aerodynamic
nonlinearity induced by dynamic stall can lead to both
subcritical [3], [4], [24] and supercritical Hopf bifurcation
routes [25], as well as a period-doubling route to chaos
[23], [26].

There has been a growing concern in industries that deploy
fluid dynamical systems such as gas turbine combustors,
wind turbine blades, aircraft wings, micro aerial vehicles
(MAVs), etc. The sudden onset of large amplitude Limit
Cycle Oscillations (LCOs) and subsequent secondary bifur-
cations is considered detrimental to structural integrity [16],
[17]. From a structural safety perspective, these LCOs and
their counterparts, such as period-doubling cascades, can
result in (i) abrupt structural failure upon the first occurrence
[17] or (ii) significant fatigue damage accumulation due
to stress cycle reversals [27], [28], [29]. Consequently,
the structural safety of these fluid dynamical systems is
compromised by the sudden onset of these dynamical
signatures. In response, both the aeroelastic and thermoa-
coustic communities have invested considerable efforts in
predicting, preventing, and suppressing instabilities in their
respective fluid dynamical systems [5], [12], [13], [14],
[18], [19], [20], [26], [30]. However, in the case of pulse
combustors, a type of thermoacoustic system, the intention
is to operate with oscillatory combustion [10], [11], [21],
[22], [31]. Therefore, the primary focus is on controlling and
maintaining oscillatory combustion rather than suppressing it
in pulse combustors. Consequently, predicting the dynamical
state transitions remains crucial, even with the intent to
sustain and control the oscillatory combustion.

Additionally, both the aeroelastic and thermoacous-
tic problems are highly complex multiphysics problems,
wherein the role of nonlinearity, fluid characteristics, and the
sensitivity to parameter degradation is not fully understood
[3], [5], [10] and, in turn, compelling the community to
formulate alternate metrics to foretell oscillatory instabilities.
In other words, the suite of measures, such as, say,
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characterizing multifractality [12], [30] or using a complexity
measure [5], is tailored for specific bifurcation scenarios.
However, discontinuous nonlinearities (for example, freeplay
in the structural stiffness) or stochasticity in the problem
can jeopardize traditionally known bifurcation routes and
can give rise to atypical bifurcations and, in turn, rendering
the metric-based and model-based measures ineffective. This
study focuses on addressing the need for developing a
data-driven approach to classify dynamical signatures. The
main objective is to create an AI-based model-agnostic tool
capable of understanding and recognizing patterns in time
series data, which is crucial for characterizing and preventing
undesirable transitions. It’s important to clarify that our
intention is not to propose an alternative method to the
existing traditional state transition prediction techniques in
nonlinear dynamics.

In this paper, we present an automated deep learning
approach for classifying the dynamical states of nonlinear
fluid dynamical systems. We utilize a convolutional neural
network (CNN) to process image representations of time
series data. Specifically, we transform the time series
related to a dynamical state of a nonlinear fluid dynam-
ical system into a recurrence plot (RP). These generated
recurrence plots serve as input to the CNN for classification
purposes.

Given that many nonlinear fluid dynamical systems
can exhibit similar bifurcation scenarios, this work also
introduces the concept of cross-domain dynamical states
classification using open-set domain adaptation (OS). Open-
set domain adaptation is a technique used to handle
situations where the source and target domains have inherent
differences, making it relevant for our research in classifying
dynamical states across different scenarios.

Through OS, a model trained to classify dynamical states
for a specific nonlinear fluid dynamical system can be
extended to classify dynamical states of other nonlinear fluid
dynamical systems after making necessary adjustments to
the deep learning model. This approach eliminates the need
to train a new model for each nonlinear fluid dynamical
system. In a practical case, the unknown class typically
outnumbers the known classes, making it challenging to
predict unknown classes with high precision. To overcome
this issue, we train models with unknown class samples
along with known classes of the source domain and increase
the individual class accuracy. This also implies that each
time-series image must have its class labelled, which is
quite challenging in real-world situations. In this work,
we conducted four cross-domain experiments. Our proposed
work yields test accuracy of 98% in experiment 1, 97% in
experiment 2, 96% in experiment 3, and 97% in experiment
4. To our understanding, this study represents the first attempt
to utilize OS domain adaptation and 2D CNN for the clas-
sification of dynamical states in nonlinear fluid dynamical
systems.

The following steps constitute this research paper’s
workflow.

• First, we obtain time series sequence data pertaining
to each dynamical state of those aforementioned two
nonlinear fluid dynamical systems.

• Second, a recurrence plot is generated for each time
series in the dataset. These images are then given as
input to the CNN-based DNN (Deep Neural Network)
classifier.

• Third, the OS domain adaptation experiment is done
for 4 source and target domain combinations. Table 2
represents the experiments done in this proposed work.
It should be noted that the CNN classifier architecture
is kept constant for all 4 experiments (Table 7). For
the purpose of performance validation, we use three
performance evaluation metrics/measures. Figure 2
shows the pipeline of this study.

The rest of the article is organised as follows. Section I-A
presents related works discussion. In section II, we briefly
explain the mathematical models of the fluid dynamical
systems considered in this study. In section III, we detail
the dataset used in this study. Second, we discuss the
generation of recurrence plots from the time series data.
Finally, we describe the CNN model as well as its parameter
choices. Section IV presents the results and discussions.
Finally, section V presents the major conclusions of this
study.

A. RELATED WORKS
1) DEEP LEARNING LITERATURE REVIEW
Deep learning (DL) falls within the realm ofmachine learning
as a specialized sub-field, which was first suggested by
Hinton et al. [32] in 2006. The idea behind deep learning
is to superimpose several hidden layers to mimic the human
brain’s neural network to learn new things. Deep learning
is one such technique that has several benefits over other
pattern recognition techniques. Deep learning models have
achieved cutting-edge performance in computer vision [33],
[34], [35], speech recognition [36], [37], and time series
classification [38], [39], [40], [41], [42], [43]. In contrast
to traditional machine learning algorithms, DL algorithims
such as Convolutional Neural Networks (CNN) with their
hierarchical representation, feature learning capabilities, and
adaptability to unknown data, stand as a fitting choice for
achieving our research objectives.

Convolutional Neural Networks (CNN) are among the
most widely utilized Deep Learning (DL) techniques in the
fields of computer vision and image analysis [44]. Unlike
the traditional classification framework with hand crafted-
features, they are highly noise-resistant models and can
extract highly informative, deep features with little to no
data feature engineering. Feature learning and classification
are seamlessly integrated into a single model and are co-
learned, resulting in mutual performance enhancement. This
is achieved through the utilization of multiple hidden layers
comprising various processing units, including convolution,
pooling, ReLU (rectified linear unit), and normalization.
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These layers collectively learn a hierarchy of features,
progressing from lower-level to higher-level representations.
Several variants of CNN have since been proposed and
are employed in various application sectors. Boullé et al.
proposed CNN to generalize and classify chaotic time series
with high accuracy and observed that CNN without batch
normalization outperforms state-of-the-art neural networks in
time series classification [45]. Chen et al. proposed CNN to
classify mechanical fault types in two datasets: gearbox and
motor bearing [46]. Barros and Ebecken proposed CNN to
classify ships based on acoustic signatures [47]. CNN was
proposed by Ben-Cohen et al. as a technique for classifying
CT images of the liver [48]. CNN have been utilized for
other applications such as image spam classification [49],
facial emotion classification [50], and fingerprint liveness
detection system [51]. Therefore, in the present work,
the ubiquitous influence of CNN in image classification
applications serves as an impetus to utilize DL in classifying
the dynamical states of the considered fluid dynamical
systems.

2) CONVOLUTIONAL NEURAL NETWORK (CNN)
AND RECURRENCE PLOT
Recurrence plots offer a means to visually depict the
periodic characteristics of a trajectory through a phase
space and enable us to investigate particular attributes
of the m-dimensional phase space trajectory through a
2D representation [52]. Therefore, representing time series
data as images introduces unique features that are not
present in 1D signals. This transformation allows time series
classification to be approached as an image recognition task.
The generated recurrence plots are then inputted to CNN
for classification in this work. In hitherto literature, CNN
and RP have been successfully used to analyze time series
data. Mukhopadhyay et al. transformed time series data from
chaotic dynamical systems such as Mackey-Glass, Lorenz,
Rössler, and Duffing oscillators into image representations
such as un-thresholded recurrence plots, which are fed into
a CNN to classify different system dynamics such as noisy
chaos, clean deterministic chaotic and stochastic dynamics
[53]. Lee et al. transformed capacity degradation data of
Li-ion batteries into recurrence plot and Gramian angular
fields, which are then fed into five types of CNN’s models
for state-of-health estimation [54]. Zhao et al. used CNN to
classify foetal heart rate (FHR) signals from a recurrence
plot to forecast foetal hypoxia [55]. Arratia and Sepúlveda
predicted financial time series data for the Standard & Poor’s
500 index and bank using CNN and recurrence plots [56].
Recurrence plots were utilized by Chen et al. to transform
financial time series into images, which they then used
to forecast trends in financial data [57]. Therefore, the
efficacy of recurrence plots in capturing essential patterns and
information from a time series data combined with CNNs
effectiveness in extracting relevant features from images
and learning hierarchical features provides an effective

platform for classifying/detecting different dynamical states
of nonlinear fluid dynamical systems.

3) OPEN SET DOMAIN ADAPTATION LITERATURE REVIEW
Deep learning (DL) algorithms require a large amount of
data, making them data-intensive and necessitating thousands
of time series for effective classification. However, in the
literature, DL models proposed for canonical dynamical
systems pose challenges when dealing with real-time systems
or models. Furthermore, a DL model designed for one
system’s dynamical states may not be transferable to others.
To address this, transfer learning techniques (TL), including
open set domain adaptation (OS), have been proposed
to improve model generalizability across diverse domains.
Traditional machine learning assumes training and test sets
from similar distributions. Yet, real-world situations often
feature differing distributions due to various sources or data
evolution. Blindly applying a trained model to a new dataset
can lead to reduced performance on the test data.

Domain adaptation is a component of Transfer learning
(TL) [58], [59], [60] that seeks to deal with these types
of issues by mitigating the difference between domains so
that the trained model can be generalised into the domain
of interest. In this context, the training and test sets are
designated as the source and target domains, respectively.
Domain adaptation encompasses two distinct categories:
closed-set (CS) and open-set (OS). When the source and
target domains have an equal number of classes, CS domain
adaptation is employed. However, OS domain adaptation
is used only when the source and target data share a few
classes of interest. Wei Zhang et al. introduced OS domain
adaptation approach based on deep learning for addressing
machinery fault diagnosis challenges. Theirmethod leverages
adversarial learning to extract domain-invariant features from
both source and target domains. Additionally, it incorporates
an instance-level weighted mechanism for the identification
of outlier classes within the target domain [61]. Jinghui
Tian et al. proposed an OS multi-source domain adaptation
method based on deep learning, which incorporates a
complementary transferability metric specifically designed
for mechanical fault diagnosis. In this work, both the source
and target domain include labelled data. The proposed
method is tested on a mechanical fault diagnosis dataset,
and the experimental results demonstrate that the method
achieves higher accuracy in prediction of unknown fault
types [62]. Xiaolei Yu et al. a statistical identification-guided
OS domain adaptation method for fault diagnosis. They
proposed the use of an Extreme Value Theory-guided
Progressive Adaptation (EVTPA) approach to address lim-
itations identified in prior OS fault diagnosis research.
To evaluate their method, experiments were conducted using
three datasets: the Office-31 dataset, the Planetary gearbox
dataset, and the Wheelset bearing dataset. The experimental
results indicate that the EVTPA model effectively identifies
unknown-class samples and guides knowledge transfer for
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Open-Set Domain Adaptation (ODA) tasks [63]. Huaqing
Wang et al. proposed a novel approach to fault diagnosis
using weighted domain adaptation with double classifiers.
The authors demonstrate the effectiveness of their approach
through experiments on several mechanical fault datasets:
Laboratory Gearbox dataset, the Case Western Reserve
University (CWRU) dataset, the Intelligent Maintenance
Systems (IMS), the centrifugal pump dataset. They compare
their method with other domain adaptation methods and
show that it outperforms them in terms of accuracy and
robustness [64]. Pau Panareda Busto et al. proposed the
concept of open-set domain adaptation in the context of image
classification and action recognition. They conducted evalu-
ations on various combinations of source and target domains,
including 26 open-set and 34 closed-set scenarios. The
datasets used in their study encompassed the Office dataset
and its extension with the Caltech dataset, the Cross-Dataset
Analysis dataset, the Sentiment dataset, synthetic data,
as well as two action recognition datasets-theKinetics Human
Action Video Dataset and the UCF101 Action Recognition
Dataset [65]. Zhang et al. proposed a method that combines
domain adaptation with an adaptive convolutional neural
network for the purpose of visual inspection of steel surface
defects [66]. Alvaro Fuentes et al. proposed an open-set self-
and across-domain adaptation architecture for tomato disease
recognition. The approach provides a set of guidelines for
analyzing the recognition of novel data to make the system
more adaptable to real-world environments. The proposed
method is evaluated on a tomato plant diseases dataset, and
the experimental results demonstrate that the proposed archi-
tecture achieved outstanding performance compared to other
existing methods used for a similar task [67]. Fevziye Irem
Eyiokur et al. proposed domain adaptation for unconstrained
ear recognition using deep convolutional neural networks.
They found that domain adaptation improves the performance
of deep CNN models for ear recognition. Additionally,
they observed that cropping ear images from profile faces
and applying data augmentation enhance the accuracy of
the ear recognition system [68]. Jieli Zhou et al. proposed
the Semi-supervised Open-set Domain Adversarial network
(SODA) for COVID-19 chest X-ray classification. Themodel
addresses large domain shift and the limited scale of the
COVID-19 chest X-ray dataset within a semi-supervised
open-set domain adaptation framework. SODA achieves
competitive results in closed-set domain adaptation and state-
of-the-art performance in unsupervised and semi-supervised
open-set domain adaptation [69]. Mohammed Abdelwahab
and Carlos Busso investigated supervised domain adaptation
for speech-based emotion recognition. They explored the
impact of labeled data quantity, speaker diversity, and model
adaptation approaches. Findings show even a small labeled
dataset significantly improves performance, while increased
speaker diversity doesn’t yield substantial gains. Classifiers
trained with naturalistic and spontaneous data perform simi-
larly. Both domain adaptation and incremental training yield
comparable results. Adaptive SVM and online SVMmethods

are proposed for model adaptation, with both showing similar
performance [70]. Jun Zhang et al. proposed an open set
domain adaptation network (OSDANet) in remote sens-
ing image scene classification, addressing challenges with
unknown classes. OSDANet uses an adversarially trained
feature generator and classifier to determine alignment or
rejection of target samples. Experimental results on AID and
UC Merced datasets demonstrate the method’s effectiveness,
utilizing standard cross-entropy loss for categorizing source
samples and binary cross-entropy loss for handling unknown
samples during training [71]. Nirmal S. et al. proposed
an efficient hyperspectral image (HSI) classification model
incorporating open-set domain adaptation and Generative
Adversarial Network (GAN) techniques. The model achieves
high accuracy for known and unknown classes, simplifying
annotation and feature classification across diverse HSI
datasets [72]. In Table 1, we have presented the analysis of
best studies following the OS domain adaptation.

II. MATHEMATICAL MODEL
Two different dynamical systems namely, a thermal pulse
combustor and a nonlinear aeroelastic system (with three
different types of nonlinearities) are considered for this study.
The numerical models for these systems and subsystems are
provided briefly in this section. The main aim of describing
these numerical models is to show how differently these
systems are modelled, and yet, contain similarities in the
dynamical transitions.

A. PULSE COMBUSTOR
A pulse combustor comprises a combustion chamber, which
is frequently modeled as a well-stirred reactor due to
its vigorous mixing, and a tailpipe extending from one
end of the combustor (as depicted in Fig. 1). Theoretical
investigations of thermal pulse combustors employed a
lumped model consisting of four coupled nonlinear ordi-
nary differential equations. This model, which includes an
unsteady well-stirred reactor and a lumped representation of
a tailpipe, was originally developed by Richards et al. [73]
and subsequently modified and explored by Mukhopadhyay
and colleagues [10], [11], [21], [22]. These modifications
incorporated considerations for radiative heat loss from the
flames, introducing an additional layer of nonlinearity. The
set of four coupled ordinary differential equations is derived
from principles of mass conservation, fuel (species) mass

FIGURE 1. Schematic diagram of the Pulse combustor.
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TABLE 1. Summary of reviewed papers on open set domain adaptation.

conservation, energy conservation within the combustor, and
momentum conservation within the tailpipe. These equations
can be expressed as follows,

dT
dt

=
γT
P

(
ZiTi
τf

+
1
τc

+
1
τh

)
−
T 2

P

(
(γ −1)

Ze
ρ0

+
Zi
τf

+
γ

τhTw

)
(1)

dP
dt

= γ
(ZiTi

τf
+

1
τth

+
1
τc
)−γT

(
Ze
ρ0

+
1

τhTw

)
(2)

dYf
dt

=
TZi
P

1
τf

(
Yf ,i−Yf

)
−

1
τc

CpToT
1hcP

)
(3)

du
dt

= (Pe−1)
(
RT0τf
LTPLc,2

)
−

1
DTP

Lc,2f
2τf

u3

|u|
(4)

where, T represents the combustor temperature, Tw signifies
the wall temperature, T0 stands for the ambient temperature,
P corresponds to the combustor pressure, Cp denotes the
specific heat at constant pressure, τh represents the heat
transfer time (Eq. 6), τc is the chemical reaction time (Eq. 7),
τf is the flow time (Eq. 5), ρ0 corresponds to the ambient
density, γ signifies the ratio of specific heats, LTP represents
the length of the tailpipe, Lc,2 is the second characteristic
length, u represents the gas velocity in the tailpipe, yf ,i
denotes the inlet fuel mass fraction,DTP denotes the diameter
of the tailpipe, yf is the fuel mass fraction and f signifies the
friction factor.

The equations presented above incorporate three funda-
mental characteristic times, namely, flow time (τf ), heat
transfer time (τh), and chemical reaction time (τc). These
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FIGURE 2. Pipeline of the proposed method: Convolutional neural network with open set domain adaption to classify the dynamical states of
nonlinear fluid dynamical systems.

TABLE 2. Experiments done in this proposed work.

characteristic times are defined as follows:

τf =
Zi
ρ0

, (5)

τh =
Lc,1ρ0CpT0
heff Tw

, (6)

τc =

[
B1hcP2yf 2

CpT0T 1.5 e−
Ta
T

]−1

(7)

where Lc,1 represents the initial characteristic length, V
corresponds to the combustor’s volume, Zi = ṁi/V , ṁi
denotes the mass flow rate at the combustor inlet, B is the
pre-exponential factor, Ta denotes the activation temperature
and heff represents the effective heat transfer coefficient.

The effective heat transfer coefficient, encompassing
contributions from both convection and radiation, is

defined as

heff = h+4kpσLc,1T03
(
Tw2 +T 2

)(
Tw+T

)
, (8)

where, h represents the convective heat transfer coefficient,
kP stands for the Planck mean absorption coefficient, and
σ corresponds to the Stefan-Boltzmann coefficient. Ze (=
ṁe/V ) is derived from the conservation of mass within the
tailpipe as

Ze =
uPe
τf Te

, (9)

where, Pe denotes the pressure within the tailpipe, and Te
represents the temperature within the tailpipe. The flow
through the nozzle that connects the combustor and the
tailpipe is assumed to be isentropic, although irreversibilities
are present in both the combustor and the tailpipe. As a result
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FIGURE 3. Schematic diagram of the 2-DoF aeroelastic model.

of these considerations, the temperature and pressure within
the tailpipe are obtained as

Te = T −
u2Lc,22

2CpT0τf 2
, (10)

Pe = P
(
Te
T

)γ /(γ−1)

, (11)

The detailed derivation of the model can be obtained in
Datta et al. [11]

B. AEROELASTIC SYSTEM
The aeroelastic system under consideration is shown in Fig. 3.
The system consists of a 2-DoF NACA 0012 airfoil of
semi-chord length b, having pitch (α) plunge (ξ ) motions,
constrained through translational and torsional springs of
stiffness kξ and kα , respectively. Terms, xα and ah denote the
non-dimensionalized length of themass center andmid-chord
from the elastic axis, respectively. The equation of motion for
the system is given as:

ξ ′′
+ xαα′′

+

(
ω̄

U

)2

ξ = −
1

πµ
Cl(τ ), (12)

xα
rα2

ξ ′′
+α′′

+

(
1
U

)2

M (α) =
2

πµrα2
Cm(τ ). (13)

here, ω̄ denotes the plunge to pitch natural frequency
ratio; µ denotes the nondimensional mass ratio; rα
is the non-dimensional radius of gyration; U is the
non-dimensional flow speed; Cl and Cm represent the
aerodynamic lift and moment coefficients, respectively.
M (α) denotes the non-dimensional pitch stiffness and is
modelled as a cubic polynomial (for cubic hardening
nonlinearity) or a bilinear function (for freeplay nonlinearity)
to incorporate structural nonlinearity. The dynamics of the
aeroelastic system is analysed under three different cases of
nonlinearities. Details of the respective mathematical models
are given as follows:

1) AEROELASTIC SYSTEM WITH CUBIC NONLINEARITY
Structural nonlinearity that arises from large deformations is
generallymodelled via Cubic nonlinear springs. Accordingly,
M (α) in Eq. 13 is defined as-

M (α) = α +βαα3 (14)

where βα is the coefficient of cubic stiffness. The aero-
dynamic lift and moment coefficients are calculated using
Wagner’s unsteady attached flow model. More details of the
model are not provided here for the sake of brevity and can
be found in [29].

2) AEROELASTIC SYSTEM WITH FREEPLAY NONLINEARITY
Loose hinges or worn parts in aeroelastic systems are
modelled as freeplay nonlinearity. Here, pitch stiffness is
considered to have a freeplay nonlinearity and is modelled
as a bilinear function-

M (α) =


α + δ if α < −δ

0 if −δ ≤ α ≤ δ

α − δ if α > δ

(15)

here δ denotes the freeplay gap and is assumed to be 0.5 in this
paper. The unsteady aerodynamic loads are calculated using
Wagner’s function.

3) AEROELASTIC SYSTEM WITH COMBINED FREEPLAY AND
AERODYNAMIC NONLINEARITY
In this case, both structure and aerodynamic loads are
modelled as nonlinear. The structure possesses a pitch
freeplay nonlinearity, same as II-B2, and the aerodynamics
is governed by dynamic stall nonlinearity [3], [26]. The
equation of motion is given by Eqs. 12 and 13. The
aerodynamic loads are modelled using a semi-empirical
Leishman-Beddoes (LB) dynamic stall model [23], [29]. The
LB model is capable of capturing the different stages of
dynamic stall i.e. flow separation, vortex shedding, and flow
reattachment.

The LB model can be represented as-

x ′
= f (x, α̂,q), (16)

states x = [x1,x2, . . . ,x12]T corresponds to aerodynamic
loads during different dynamic stall regimes; q = 2α′ is the
nondimensional effective pitch rate, and α̂ is the effective
angle of incidence.

The aerodynamic load coefficients are given as
Cn
Cm
Cc

 = g(x,α,q), (17)

where Cc and Cn are the coefficients of chord force and the
normal force, respectively. The lift coefficient is given as,

Cl = Cn cosα −Cc sinα. (18)

full details of the model are not provided here for the sake of
brevity and can be found in [74].

III. METHODS
This section describes the datasets used in this work in depth.
Second, we review the core ideas underlying the CNN model
and recurrence plot generation. To assess the performance
of the proposed CNN model, we discuss it along with the
parameter choices and evaluation metrics.
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TABLE 3. Dynamical states in pulse combustor dataset.

A. DATASET DESCRIPTION
In this study, we consider the pressure time series of the
pulse combustor model and the pitch angle time series of
the aeroelastic model. The pulse combustor responses are
obtained by solving the Eqs. 1, 2, 3, and 4, and aeroelastic
responses are obtained by solving the Eqs. 12 and 13 in state
space form using the fourth-order Runge-Kutta numerical
time integration technique. For the pulse combustor, the
time-step is 1× 10−5 s. Thus the dataset generated over the
time interval 2.5 s, is sufficiently large for post-processing
analysis. The pressure time series of the pulse combustor
model consists of 2,00,000 data samples (removing the
initial transience), whereas, the pitch angle time series of the
aeroelastic model consists of 80,000 data samples. To reduce
the computational cost of generating the recurrence plot,
we down-sample the time series sequences of the pulse
combustor model and aeroelastic model with 1/20th and 1/8th

of the original sampling frequency. As a result, the resampled
times series only has 10,000 data samples.

1) PULSE COMBUSTOR
Figure 4 shows the bifurcation diagram where the peak
values of temperature oscillations are plotted with the
bifurcation parameter, here, wall temperature. The pulse
combustor model considered in this work exhibits four
dynamical states, namely, (i) chaotic oscillations, (ii) period-
doubling oscillations, (iii) limit cycle oscillations, and (iv)
fixed-point response, as the wall temperature is increased
(see Fig. 4). The dataset consists of 280 sequences of
pressure signal samples at different wall temperatures.
Among 280 sequences of pressure signals, 67 sequences
are annotated as chaotic, 54 sequences are annotated as
period-doubling bifurcation, 126 sequences are annotated
as LCO, and 34 sequences are annotated as a fixed point
(Table 3).

2) AEROELASTIC SYSTEM WITH CUBIC NONLINEARITY
Figure 5 shows the bifurcation diagram of the model. The
considered model has two dynamical states (Table 4). Among
81 sequences of pitch angle measurements, 26 sequences are
annotated as fixed points, and 55 sequences are annotated as
LCO.

3) AEROELASTIC SYSTEM WITH FREEPLAY NONLINEARITY
Next, the pitch-plunge aeroelastic response data is obtained
from a nonlinear aeroelastic structure with structural freeplay
nonlinearity. Figure 6 shows the bifurcation diagram of

FIGURE 4. Bifurcation diagram (T vs Tw ) of pulse combustor model. The
regimes for different dynamical states are shown as (i) chaotic
oscillations, (ii) period-doubling oscillations, (iii) limit cycle oscillations,
and (iv) fixed-point response.

TABLE 4. Dynamical states in aeroelastic system with cubic nonlinearity
dataset.

TABLE 5. Dynamical states in aeroelastic system with freeplay
nonlinearity dataset.

the model. The details of the model and the bifurcation
diagram can be found in [23]. The considered model has
5 dynamical states (Table 5). Among 60 sequences of pitch
angle measurements, 8 sequences are annotated as a fixed
point, 22 sequences are annotated as LCO, 7 sequences are
annotated as chaotic, 12 sequences are annotated as period-1
with harmonic (p-1-h) LCO, and 11 sequences are annotated
as period-2 with harmonic (p-2-h) LCO.

4) AEROELASTIC SYSTEM WITH COMBINED FREEPLAY AND
AERODYNAMIC NONLINEARITY
This study used data from the model of aeroelastic
response with aerodynamic nonlinearity. Figure 7 shows
the bifurcation diagram of the model. The details of
the model and the bifurcation diagram can be found
in [23]. The model considered has 4 dynamical states
(Table 6). Among 79 sequences of pitch angle mea-
surements, 10 sequences are annotated as a fixed point,
7 sequences are annotated as chaotic, 48 sequences are
annotated as p-1-h LCO, and 14 sequences are annotated as
p-2-h LCO.
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FIGURE 5. Bifurcation diagram (α vs U) for an aeroelastic system with a structural cubic hardening nonlinearity.
Regime (I) denotes the fixed point response and regime (ii) denotes the LCO response.

FIGURE 6. Bifurcation diagram (α vs U) for an aeroelastic system with combined structural freeplay and aerodynamic
nonlinearity. Regime (i) denotes the fixed point response, regime (ii) denotes the LCO response, regime (iii) denotes
the p-1-h LCO, regime (iv) denotes the chaotic response, regime (v) denotes the p-2-h LCO response, regime (vi)
denotes the p-1-h LCO and regime (vii) denotes the LCO response.

TABLE 6. Dynamical states in aeroelastic response with combined
freeplay and aerodynamic nonlinearity dataset.

B. RECURRENCE PLOT GENERATION:
Recurrence is a fundamental characteristic of deterministic
dynamical systems, and recurrence plots provide a visual
tool for identifying the time instances when the system’s
trajectory nearly revisits the same region within the phase
space [75]. The primary goal is to identify the instances when
particular trajectories revisit a previous state, and it can be

expressed as follows:

Ri,j = 2
(
ε −

∥∥−→xi −
−→xj

∥∥)
,−→x (.) ∈ ℜ

m, i, j= 1, . . . ,K (19)

In Eq. 19, x represents the phase space vector, recon-
structed from the time series applying Takens’ delay
embedding theory, 2 is the Heaviside function, ε represents
the threshold distance, ∥.∥ represents the Euclidean norm,
and the indices represent the instants of time. The matrix
Ri,j is a symmetric matrix consisting of ones and zeros,
and it can be visualized in a 2-dimensional format as a
recurrence plot to depict how trajectories evolve over time.
In the recurrence plot, ‘ones’ are denoted by black points,
signifying time instances where the pairwise distances fall
below the threshold ε, while ‘zeroes’ are represented bywhite
points, indicating time instances where the pairwise distances
exceed ε.
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FIGURE 7. Bifurcation diagram (α vs U) for an aeroelastic system with combined structural freeplay and aerodynamic
nonlinearity. Regime (i) denotes the fixed point response and regime (ii) denotes the LCO response, regime (iii) denotes
the P-1-h LCO, regime (iv) denotes the LCO response, regime (v) denotes the aperiodic LCO response and regime (vi)
denotes the LCO response.

FIGURE 8. Sample of the recurrence plot representation of the time series dataset.

The first step in generating a recurrence plot is to recon-
struct the phase space from the time series data, requiring

two fundamental parameters: time delay and embedding
dimension. The choice of appropriate parameter values is
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FIGURE 9. Schematic diagram of the CNN model used in this study.

TABLE 7. CNN model architecture.

crucial as they directly impact classification outcomes. If the
embedding dimension is too low, it may lead to false
recurrence, while choosing a dimension that is too large can
result in round-off errors [76]. The time lag value should be
selected to ensure that the elements of the embedding vectors
are no longer correlated, enabling the accurate extraction
of spatial or geometrical structures for subsequent analysis.
In this study, the time lag value was determined using the
first local minimum of the average mutual information [77],
and the value of the embedding dimension was determined
using the false closest neighbour algorithm [78]. In this study,
we set the threshold value ϵ to 10. Recurrence plots were
generated using the recurrencePlot function in MATLAB.
Additionally, we applied the bicubic interpolation algorithm
to resize the recurrence plots to 256 × 256, reducing the
computational load during the training of the proposed CNN

model. A sample of these generated recurrence plots is
displayed in the figure 8.

C. CONVOLUTIONAL NEURAL NETWORK
Convolutional neural networks (CNNs) are among the
most widely used deep neural network (DNN) techniques.
LeCun et al. [44] was the first to apply CNN to recognize
hand-written digits. Then, the method was successfully
applied to a myriad of application domains, especially in
computer vision. In contrast to the conventional ‘‘feature-
based’’ categorisation framework, CNN does not need man-
ually created features. The feature learning and classification
components are combined and cooperatively learned in
a single model. As a result, the technique automatically
derives features from raw input data [79]. However, CNN’s
architecture considerably influences how well the CNN

710 VOLUME 12, 2024



S. Akshay et al.: OS Domain Adaptation for Classification of Dynamical States

models function. The functioning of the CNNmodel depends
upon the chosen CNN architecture. A typical architecture of
CNN consists of repetitions of a stack of many convolution
layers and a pooling layer, followed by one or more fully
connected layers. The following sections provide more
information on these layers.

1) PROPOSED CONVOLUTIONAL NEURAL NETWORK
MODEL PARAMETERS
This study employs a CNNmodel with two feature extraction
layers (our extensive experiments with the dataset revealed
that increasing the depth of the CNN models did not
result in a significant improvement in classification accuracy
(see Section IV-E). Our results showed that the shallower
model, as depicted in (Figure 9), achieved competitive
and satisfactory performance). The feature extraction layers
comprise a convolutional layer, a ReLU activation function,
and max-pooling layers. The convolutional layer utilizes
a 3 × 3 x 1 filter with a stride of [1, 1] and padding
set to ‘same,’ resulting in a feature map size of 256 ×

256 x 32. Following the application of the ReLU activation
function, a 2 × 2 max-pooling operation with a stride of
[1, 1] is applied to the feature map. Furthermore, to mitigate
overfitting, we have employed regularization techniques such
as L2 regularization, 50% dropout, and early stopping. In the
proposed CNNmodel, a fully connected layer with 128 nodes
was employed for classification, with the final classification
carried out in the softmax layer. Additionally, a summary
of the architectural details of the proposed CNN model is
presented in Table7.

IV. RESULTS & DISCUSSIONS
In this section, we evaluated the performance of the
proposed CNN-based open-set domain adaptation model for
classifying dynamical states of nonlinear fluid dynamical
systems through four cross-domain experiments. For all
cross-domain experiments in this study, we split the dataset
as follows: 40% for training, 30% for validation, and the
remaining 30% for testing. The performance of the trained
model was evaluated using 5-fold cross-validation.

Additionally, we conducted further experiments to address
specific questions:

• What were the effects of increasing the number of fea-
ture extraction layers in the CNNmodel on classification
performance?

• What is the effect of classifying using Short-Time
Fourier Transform (STFT) images compared to using
Recurrence Plots (RPs) as input for the proposed CNN
model

• We also examined the interpretability of the CNNmodel
by employing feature visualization techniques like
GRAD-CAM. This allowed us to highlight significant
features within the RPs of the time series related
to the dynamical states contributing most to accurate
predictions.

• Can traditional Machine Learning (SVM) achieve simi-
lar results to the proposed CNN model?

The experiments were conducted on a computer equipped
with an AMD Ryzen 9 5900HX processor running at a clock
speed of 3.30 GHz, a 6 GB GeForce RTX 3060 Graphics
card, and 16 GB of RAM. MATLAB was employed for
dataset preparation, while the Keras deep learning module
was utilized to conduct the experiments.

A. EXPERIMENT 1: CROSS-DOMAIN CLASSIFICATION OF
DYNAMICAL STATES USING CNN MODEL TRAINED ON
PULSE COMBUSTOR DATASET.
In this experiment, we train the CNN with the data from
the pulse combustor and employ it to detect dynamical
states pertinent to other datasets (Table 2). The former is
the source domain, and the latter is the target domain.
This experiment’s source and target domains share three
dynamical states: chaos, fixed point, and LCO. On the other
hand, the dynamical states p-1-h LCO, p-2-h LCO, and
the aperiodic LCO are not present in the source domain.
These dynamical states which are not present in the source
domain are annotated as unknowns and trained along with
source domain dynamical states. Table 8 shows the familiar
and unknown dynamical states in experiment 1. During the
training phase, a batch size of 10 was considered, and the
model was trained for 200 epochs with the inclusion of
an early stopping mechanism. The model achieves 99%
training accuracy, and an accuracy of 96% is achieved in
the validation result. The training and loss plots are shown
in Figure 12 and 11. It is observed that there is minimal
variation between train and test curves. This ensures that
our proposed model did not overfit. Figure 10 presents the
confusion matrix. It is evident from the confusion matrix
that the CNN model achieves a test accuracy of 98%. In K-
fold cross validation the model achieves an average test
accuracy of 97.00 (+- 2.75) for all folds. The proposed CNN
model achieves the highest accuracy of 100% in classifying
the dynamical states of chaos, period-doubling bifurcation,
fixed point, and unknown. The model also shows accuracy
of 97% in identifying the LCO. It has been observed in the
experiment that two images of LCO have been misclassified
as unknown. Table 9 shows the proposed CNN model
performance metric for cross-domain experiment 1.

B. EXPERIMENT 2: CROSS-DOMAIN CLASSIFICATION OF
DYNAMICAL STATES USING CNN MODEL TRAINED ON
AEROELASTIC SYSTEM WITH FREEPLAY
NONLINEARITY DATASET.
In this experimental setup, we utilize the CNN model trained
on data from the aeroelastic systemwith freeplay nonlinearity
(the source domain) to identify relevant dynamical states in
other datasets (Table 2). This experiment’s source and target
domains share four dynamical states: chaos, fixed point,
p-1-h LCO, and LCO. On the other hand, The dynamic states
period-doubling and aperiodic LCO are not present in the
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TABLE 8. Common and unknown dynamical states in cross-domain experiment 1.

FIGURE 10. Confusion matrix for cross-domain experiment 1.

TABLE 9. Performance metric of the proposed CNN model for
cross-domain experiment 1.

source domain. These dynamical states were annotated as
unknown states and trained along with subsets of dynamical
states in the source domain. Table 10 shows the familiar and
unknown dynamical states in experiment 2. During training,
a batch size of 10 was considered, and the model was trained
for 250 epochs. The model achieves 99% training accuracy,
and an accuracy of 98% is achieved in the verification
result. The training accuracy and loss plots are shown in
Figure 15 and 14. It has been observed that the train and test
curves differ only slightly. This guarantees that the suggested
model was not overfit. The confusion matrix represented in
Figure 13 reveals that the proposed CNN model achieves a
test accuracy of 97%. In K-fold cross validation the model
achieves an average test accuracy of 94.40 (+- 5.53) for all
folds. In recognising the dynamical states of chaos LCO, and
fixed point the proposedÂ CNN obtains the highest accuracy
of 100%. Additionally, the algorithm has a 91% accuracy

FIGURE 11. Training loss plot of cross-domain experiment 1.

FIGURE 12. Training accuracy plot of cross-domain experiment 1.

rate when identifying p-1-h LCO and a 81% accuracy rate
for identifying unknown dynamical states. Furthermore, the
model identifies the dynamical state p-2-h LCO with 50%
accuracy. In this experiment, it is observed that the model
misclassifies three images belonging to p-1-h LCO as LCO
and one image of p-2-h LCO as p-1-h LCO and 3 images of
unknown dynamical state as p-2-h LCO. The proposed CNN
model’s performancemetric for cross-domain experiment 2 is
shown in Table 11.
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TABLE 10. Common and unknown dynamical states in cross-domain experiment 2.

FIGURE 13. Confusion matrix for cross-domain experiment 2.

TABLE 11. Performance metric of the proposed CNN model for
cross-domain experiment 2.

C. EXPERIMENT 3: CROSS-DOMAIN CLASSIFICATION OF
DYNAMICAL STATES USING CNN MODEL TRAINED ON
AEROELASTIC SYSTEM WITH COMBINED FREEPLAY
AND AERODYNAMIC NONLINEARITY DATASET.
In this experimental setup, we train the CNN model using
data from the aeroelastic system featuring both freeplay
and aerodynamic nonlinearity (source domain), and then we
apply it to identify relevant dynamical states in other datasets.
(Table 2). This experiment’s source and target domains share
three dynamical states: fixed point, period-1 with LCO, and
LCO. On the other hand, The dynamical states chaos, period-
doubling, and p-2-h LCO are not present in the source
domain. These dynamical states were labelled as unknown
and trained alongside subsets of dynamical states present in
the source domain. Table 12 shows the familiar and unknown
dynamical states in experiment 3. During training, a batch

FIGURE 14. Training loss plot of cross-domain experiment 2.

FIGURE 15. Training accuracy plot of cross-domain experiment 2.

size of 10 was considered, and the model was trained for
175 epochs. The model achieves 98% training accuracy,
and an accuracy of 96% is achieved in the verification
result. The training accuracy and loss plots are shown in
Figure 17 and 18. Its evident from the plots that the model
did not overfit as the variations in the training loss and test
loss is similar. The confusion matrix in Figure 16 reveals that
the proposed CNN model achieves a test accuracy of 96%.
In K-fold cross validation the model achieves an average test
accuracy of 95.80 (+- 1.47) for all folds. As can be seen from
the confusion matrix, CNN achieves the highest accuracy
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TABLE 12. Common and unknown dynamical states in cross-domain experiment 3.

FIGURE 16. Confusion matrix for cross-domain experiment 3.

TABLE 13. Performance metric of the proposed CNN model for
cross-domain experiment 3.

of 100% in identifying dynamical states of Aperiodic LCO,
fixed point, andUnkown. Furthermore, Themodel also shows
high accuracy 96% in identifying LCO and accuracy of 67%
in identifying p-1-h LCO. In this experiment, it is observed
that the model misclassifies three images belonging to p-1-h
LCO as LCO. In images belonging to LCO, one image is
misclassified as p-1-h LCO and two images as unknown. The
proposed CNNmodel’s performancemetric for cross-domain
experiment 3 is shown in Table13.

D. EXPERIMENT 4: CROSS-DOMAIN CLASSIFICATION OF
DYNAMICAL STATES USING CNN MODEL TRAINED ON
AEROELASTIC SYSTEM WITH CUBIC
NONLINEARITY DATASET.
In this experiment, we train the CNN model with the data
from aeroelastic system with cubic nonlinearity (source
domain) and employ it to detect dynamical states pertinent
to other datasets (Table 2). This experiment’s source and
target domains share two dynamical states, fixed point and

FIGURE 17. Training accuracy plot of cross-domain experiment 3.

FIGURE 18. Training loss plot of cross-domain experiment 3.

LCO. On the other hand, chaos, period-doubling, p-1-h LCO,
p-2-h LCO, and aperiodic LCO are not present in the source
domain. These dynamical states, labelled as unknown states,
were trained alongside subsets of dynamical states present in
the source domain. Table 14 shows the familiar and unknown
dynamical states in experiment 4. During training, a batch
size of 10 was considered, and the model was trained for
200 epochs. The model achieves 98% training accuracy,
and an accuracy of 100% is achieved in the validation
result. The training accuracy and loss plots are shown in
Figure 21 and 20. Between the train and test curves, it is seen
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TABLE 14. Common and unknown dynamical states in cross-domain experiment 4.

FIGURE 19. Confusion matrix for cross-domain experiment 4.

TABLE 15. Performance metric of the proposed CNN model for
cross-domain experiment 4.

that there is little difference. That way, we can be certain that
our suggested model did not overfit. The confusion matrix
in Figure 19 demonstrates that the proposed CNN model
achieves an impressive test accuracy of 97%. In K-fold cross-
validation, the model maintains an average test accuracy of
97.60 (+- 1.02) across all folds. Analyzing the confusion
matrix, we note that the CNN excels with 100% accuracy
in identifying fixed points. It also performs well, with 96%
accuracy, in classifying LCO and achieving 94% accuracy in
identifying unknown states. In this experiment, it is observed
that the model misclassifies three images of an unknown
dynamical state and one image of a fixed point as LCO. The
proposed CNNmodel’s performancemetric for cross-domain
experiment 4 is shown in Table 15.

E. INFLUENCE OF DEEP CNN MODELS ON
CLASSIFICATION PERFORMANCE
In this experiment, we conducted a comparison of the
classification performance between deep CNN models and
the proposed CNN model. We carried out a series of

FIGURE 20. Training loss plot of experiment 4.

FIGURE 21. Training accuracy plot of cross-domain experiment 4.

comprehensive experiments, increasing the number of feature
extraction layers from 3 to 5 for all cross-domain experi-
ments. The details of the CNN models are illustrated in the
Tables 16, 17, and 18. Importantly, the hyperparameters of
the feature extraction layers for these CNN models were kept
consistent with the ones used in the proposed CNN model
introduced in this study. The classification performance of
the deep CNN models was assessed using various metrics
such as precision, recall, and F1-score. The Tables 19, 20, 21,
and 22 illustrate the classification evaluation metrics for
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TABLE 16. CNN2 model architecture.

TABLE 17. CNN3 model architecture.

TABLE 18. CNN4 model architecture.

cross-domain experiments 1 to 4. Figure 22 presents the
classification performance of the proposed CNN model
alongside deeper CNN models. It is evident from the figure
that the investigation revealed that deeper CNN models

did not significantly improve the classification accuracy
for our dataset. Our results demonstrate that our proposed
shallower model achieved competitive and satisfactory
performance.

716 VOLUME 12, 2024



S. Akshay et al.: OS Domain Adaptation for Classification of Dynamical States

TABLE 19. Comparison of classification evaluation metrics for proposed CNN and other CNN models for cross-domain experiment 1.

TABLE 20. Comparison of classification evaluation metrics for proposed CNN and other CNN models for cross-domain experiment 2.

TABLE 21. Comparison of classification evaluation metrics for proposed CNN and other CNN models for cross-domain experiment 3.

TABLE 22. Comparison of classification evaluation metrics for proposed CNN and other CNN models for cross-domain experiment 4.

FIGURE 22. Classification accuracies of the CNN models across four
cross-domain Experiments.

F. COMPARING STFT AND RPS FOR CNN CLASSIFICATION
This section compares classification accuracies between our
proposed CNN model, utilizing RPs as input, and another
common pre-processing technique, Short Time Fourier
Transform (STFT). STFT is commonly utilized in various
fields, including signal processing [80], audio analysis [81]
and other machine learning applications, to transform time

series data into visual representations. This experiment
aims to assess whether STFT representation of the times
series pertaining to the dynamical states of the nonlinear
fluid dynamical systems can improve or show similar
classification performance to RPs. This section presents
the classification results of our proposed CNN model with
spectrogram as inputs for classifying different dynamical
states of non-linear fluid dynamical systems for all four cross-
domain experiments.

1) GENERATING SPECTROGRAM IMAGES:
A spectrogram visualizes a time series against frequencies,
showcasing the signal’s strength at specific time instances.
It is presented as a two-dimensional graph, with frequency
plotted along the vertical axis and time along the horizontal
axis. In this study, STFT images are generated for each
time series corresponding to a dynamical state (after initial
transients are removed) in the dataset. This is achieved
using the ‘specgram’ function from the Matplotlib module
in Python. The ‘specgram’ function uses ‘viridis’ as a
default colormap. The intensity of the magnitudes of the
frequencies is represented using shades of yellow to green,
where dark regions (green) indicate less intense frequency
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FIGURE 23. Sample spectrogram images of dynamical states: (a) Chaos, (b) Fixed point, (c) LCO, (d) Period-doubling,
(e) p-1-h LCO, (f) p-2-h LCO.

components, and bright regions (yellow) indicate more
intense frequency components. Subsequently, these images
are resized to dimensions of 256 × 256 pixels, standardized,
and utilized as input for the CNN classifier. A sample of these
Short-Time Fourier Transform (STFT) images depicting
various dynamical states of the considered nonlinear fluid
dynamical systems is presented in Figure 23. As observed in
Figure (a) (‘Chaos’), the spectrogram captures the complex
and irregular behavior associated with chaotic dynamics. The
broad frequency distribution and lack of clear patterns signify
the inherent unpredictability in chaotic time series. In Fig-
ure (b) (‘Fixed Point’), the spectrogram exhibits consistent
frequency and intensity up to 0.6 seconds. After 0.6 seconds,
the intensity of the frequency diminishes, indicating a
transition to a steady-state dynamic. In Figures (c) (‘LCO’),
(d) (‘Period-doubling), and (f) (’p-2-h lco’), it is observed that
the spectrograms captures repeating frequency components,
emphasizing the presence of recurrent frequency patterns.
In Figure (e) (p-1-h LCo), the spectrogram highlights the
presence of a period 1-harmonic limit cycle oscillation with
a layered frequency pattern. The model’s hyperparameters
and architecture remain consistent with those employed for
the RPs approach (Table 7). Following this, the OS domain
adaptation experiment is executed for four cross-domain
experiments (Table 2).

2) SPECTROGRAM-BASED CLASSIFICATION PERFORMANCE:
Tables 23 to 26 illustrates the evaluation metrics for cross-
domain experiments 1 to 4. Figures 25 to 28 shows the
confusion matrices for cross-domain experiments 1 to 4.

As seen from the Figure 26, for cross-domain experi-
ment 1 (Table 8) the model performs exceptionally well
in identifying Fixed Point, achieving a 100% accuracy
rate. Additionally, the model demonstrates solid accuracy in
recognizing LCOwith an 87% accuracy, and Period-doubling
with an 88% accuracy. However, the model encounters
some challenges when it comes to identifying Unknown
dynamical states, achieving a 67% accuracy. Similarly, the
accuracy drops to 48% when attempting to identify Chaos
states.

Referring to Figure 27, for cross-domain experiment 2
(Table 10) we see that the model excels in classifying
the Fixed Point dynamical state with an impressive 95%
accuracy. It also demonstrates strong accuracy in recognizing
LCO at 87%, and p-1-h LCO at 82%. When it comes
to p-2-h LCO, the model maintains a commendable 75%
accuracy. However, the model faces some challenges when
dealing with Unknown dynamical states, achieving a modest
20% accuracy. Similarly, its accuracy drops to 34% when
attempting to identify Chaos states.

As can be seen from the Figure 28, for cross-domain
experiment 3 (Table 12) we can observe that the model
achieves a perfect 100% accuracy in classifying the Fixed
Point. Additionally, the model performs well in identifying
Unknown dynamical states, with an 88% accuracy. However,
the model faces some difficulties when it comes to LCO,
achieving a 68% accuracy. Similarly, it achieves a 67%
accuracy for Aperiodic LCO. The model’s accuracy drops
further, reaching 34%, when attempting to identify p-1-h
LCO.
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FIGURE 24. comparing classification accuracies of proposed CNN model
with RP and STFT as inputs across four cross-domain experiments.

FIGURE 25. Confusion matrix of CNN with STFT as input for cross-domain
experiment 4.

Referring to Figure 25, for cross-domain experi-
ment 4 (Table 14) the model achieves a remarkable
100% accuracy in classifying the Fixed Point. Fur-
thermore, the model impressively identifies LCO with
an 87% accuracy rate. However, its accuracy decreases
to 70% when trying to identify Unknown dynamical
state.

Figure 24 presents a comparison of classification accu-
racies between our proposed CNN model with recurrence
plot as input and with spectrogram as input for all four
cross-domain experiments. As can be seen for the Figure 24,
the model utilizing recurrence plots achieves the highest
classification accuracy in all experiments. Furthermore, the
model’s accuracy consistently outperforms when trained with
RPs as inputs compared to STFT inputs. This observation
strongly emphasizes the efficacy of recurrence plots in
capturing essential patterns and information, contributing
to accurate classification within the specific context of
dynamical state classification.

FIGURE 26. Confusion matrix of CNN with STFT as input for cross-domain
experiment 1.

FIGURE 27. Confusion matrix of CNN with STFT as input for cross-domain
experiment 2.

TABLE 23. Performance metric of CNN using STFT for cross-domain
experiment 1.

G. VISUALIZING CNN MODEL INTERPRETABILITY
WITH GRAD-CAM ANALYSIS
In this section, in order to understand the outcomes of
the suggested model, we used the Grad-CAM technique
to visually represent the output of the final convolution
layer of the CNN model. The technique is proposed
by Selvaraju et al. [82] to highlight significant regions of
the image that are class-specific, making the black box
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FIGURE 28. Confusion matrix of CNN with STFT as input for cross-domain
experiment 3.

TABLE 24. Performance metric of CNN using STFT for cross-domain
experiment 2.

TABLE 25. Performance metric of CNN using STFT for cross-domain
experiment 3.

TABLE 26. Performance metric of CNN using STFT for cross-domain
experiment 4.

TABLE 27. SVM hyperparameters.

models (Deep Learning Models) more transparent. Grad-
CAM extracts the last convolution layer’s feature maps and is
subjected to a weighted sum to yield a Grad-CAM heat map.
Then heat map is overlayed with the input image with shades

TABLE 28. SVM classification metrics for cross-domain experiment 2.

TABLE 29. SVM classification metrics for cross-domain experiment 1.

TABLE 30. SVM classification metrics for cross-domain experiment 3.

TABLE 31. SVM classification metrics for cross-domain experiment 4.

of red to green. The red region denotes the most emphasized
region, and green region denotes the least emphasized region
to classify an image. A sample of the results of theGrad-CAM
analysis is illustrated in Figure 29. It is shown that the patterns
corresponding to the recurrence plots for all classes namely
chaos, period-doubling, LCO, fixed point, aperiodic LCO,
p-1-h LCO, and p-2-h LCO are captured by the proposed
CNN architecture.

H. COMPARING CNN AND SVM PERFORMANCE IN
DYNAMICAL STATE CLASSIFICATION
In this section, we compared the classification performance
of the proposed CNN model for classifying the dynamical
states of nonlinear fluid dynamical systems with SVM.
This comprehensive experiment was assessed across all four
cross-domain experiments presented in our study.

To implement the SVM model, we employed the Grid-
SearchCV algorithm. This technique allowed us to fine-tune
the model’s hyperparameters, including C (penalty param-
eter), gamma (kernel coefficient), and the type of kernel
used. By setting ranges for individual hyperparameters, the
GridSearchCV algorithm systematically explored various
hyperparameter combinations to find the most suitable
configuration. The hyperparameter ranges selected for this
experiment were presented in Table 27. The data was
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FIGURE 29. A sample of Grad-CAM analysis on different dynamical states. a) Chaos, b) Period-doubling, c) LCO, d) Fixed point, e) p-1-h LCO, f) p-2-h
LCO, and g) Aperiodic LCO.

split into training and testing data in an 80/20 split. The
classification metrics were evaluated based on precision,
recall, and F1 score. Tables 29, 28, 30, and 31 illustrates
the evaluation metrics for cross-domain experiments 1 to 4.
Figures 30, 31, 32, and 33 shows the confusion matrices for
cross-domain experiments 1 to 4.

As seen from the Figure 30, for cross-domain experiment 1
(Table 8) SVMmodel achieves 100% accuracy in classifying
dynamical states Chaos, Period doubling, and Fixed point.
The model also shows 96% accuracy in identifying LCO.
However, the model only achieves 33% accuracy in identi-
fying unknown dynamical states.

As seen from the Figure 31, for cross-domain experiment 2
(Table 10) SVM model achieves 100% accuracy in clas-
sifying dynamical states LCO, Unknown, and Fixed point.
The model also shows 93% accuracy in identifying Chaos.
However, the model completely misclassifies the dynamical
states p-1-h LCO and p-2-h LCO.

As observed in Figure 32, for cross-domain experiment 3
(Table 12) the SVM model achieves 100% accuracy in
classifying the dynamical states Unknown and Fixed Point.
It achieves an accuracy of 96% in identifying LCO. Addi-
tionally, the model attains a 40% accuracy in recognizing
p-1-h LCO. However, the model encounters challenges in
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FIGURE 30. SVM confusion matrix for cross-domain experiment 1.

FIGURE 31. SVM confusion matrix for cross-domain experiment 2.

FIGURE 32. SVM confusion matrix for cross-domain experiment 3.

accurately identifying the Aperiodic-LCO dynamical state,
resulting in misclassification.

FIGURE 33. SVM confusion matrix for cross-domain experiment 4.

FIGURE 34. comparing classification accuracies of proposed CNN model
with SVM.

As depicted in Figure 33, for cross-domain experiment 4
(Table 14) the SVM model achieves 100% accuracy in
classifying the dynamical states Unknown and Fixed Point.
Additionally, the model demonstrates a 96% accuracy rate in
identifying the LCO.

Figure 34 shows the comparison of the classification
accuracies of our proposed CNN model with SVM model
for all four cross-domain experiments. As can be seen from
Figure 34 CNN achieves highest classification accuracy in
cross-domain experiments 1 to 3, on the other hand SVM
achieves highest classification accuracy in cross-domain
experiment 4. Though the SVM model shows excellent
classification performance in classifying the dynamical
states, it falls short of the performance of our suggested CNN
model.

V. CONCLUDING REMARKS
This paper introduces an open-set (OS) domain adaptation-
based deep learning technique for classifying dynamical
states of nonlinear fluid dynamical systems.Nonlinear fluid
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dynamical systems are susceptible to unexpected and some-
times catastrophic bifurcations as a result of gradual changes
in system parameters. These changes can trigger state tran-
sitions that unfold in specific directions, invariably regarded
as undesirable, and hold the capacity to profoundly modify
the operational characteristics of these systems. Therefore,
distinguishing the qualitative nature of the dynamical state
within the nonlinear fluid dynamical system is paramount
in preventing catastrophic state transitions. In this study,
we present an automated approach for the classification of
dynamical states of nonlinear fluid dynamical systems using
deep learning. Furthermore, given that numerous nonlinear
fluid dynamical systems can exhibit similar bifurcation
scenarios, we introduce the concept of open-set domain
adaptation (OS). With OS, a model initially trained to
classify dynamical states in one specific nonlinear fluid
dynamical system can be extended to classify dynamical
states in other nonlinear fluid dynamical systems by making
appropriate adjustments to the deep learning model. This
innovative approach eliminates the need to train a new
model for each individual nonlinear fluid dynamical system.
To the best of our knowledge, this study is the first to
use an OS adaptation-based deep learning technique for
the classification of dynamical states in nonlinear fluid
dynamical systems.

We have proposed the use of image representations derived
from time series data associated with the dynamical states of
nonlinear fluid dynamical systems, reframing the problem as
a pattern recognition task employing deep learning. Instead
of directly using raw time series data, our approach involves
acquiring knowledge about the dynamical system through
image-based features. We have developed a convolutional
neural network (CNN) for the multi-class classification of
these dynamical states within nonlinear fluid dynamical
systems, drawing inspiration from the successful applica-
tion of deep learning in automated feature extraction and
image classification. Our proposal involves leveraging the
dynamic data through textured recurrence plot (RP) images,
which depict the time-series characteristics as textured 2D
images. These images serve as a visual representation of
the time series, aiding in the differentiation of dynamical
states.

Experiments were conducted on four source-target domain
combinations to assess the model’s ability to generalize
to unfamiliar data while maintaining a consistent model
architecture. The experimental results consistently demon-
strated the model’s impressive performance, achieving above
95% accuracy across all conducted experiments. Further
investigations were carried out to establish the efficacy of
Recurrence Plots (RPs) in capturing essential patterns and
information crucial for accurate classification, in comparison
to the widely used pre-processing technique Short-Time
Fourier Transform (STFT). These experiments conclusively
revealed that the CNN model utilizing RPs as input
consistently outperformed the CNN model employing STFT
representations of the time series data corresponding to the

dynamical states. These findings underline the superiority of
RPs in enhancing the classification process.

Moreover, the classification performance of the proposed
CNN model employing RPs as input was compared with
SVM across all cross-domain experiments. Experimental
results show that the proposed CNN model consistently
outperforms SVM. Although the results are promising, this
study primarily addresses the OS domain adaptation problem,
where the source and target domains have only a few shared
dynamical states. Additionally, the dynamical states in both
the source and target domains are manually labeled, which
is a laborious and time-consuming process. In real-world
scenarios requiring model deployment, labeled data may be
exclusive to the source domain, or both source and target
domains could contain unlabeled data. The application of
the proposed method to such scenarios poses challenges.
Future research will shift its focus to unsupervised dynamical
state classification, which is more practical for engineering
applications.
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