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ABSTRACT This paper introduces a fixed-time self-structuring neural network (SSNN)-based adjustable
prescribed performance control for quadrotors designed to handle mutational external disturbances and input
saturation. To address the unpredictable nature of such disturbances during missions, SSNN is proposed for
limited on-board resources of the quadrotors. This kind of neural network can adaptively adjust the number of
neurons in real time to achieve more precise estimations while minimizing resource consumption. Second,
to overcome the singularity problem that arises when the tracking error may exceed the boundary of the
envelope when a mutation disturbance occurs, an adaptively adjustable prescribed performance function is
proposed to constrain the tracking error, which is alwayswithin the envelope to avoid the singularity problem.
A fixed-time adaptive command filter that can estimate an unknown upper bound on the derivative of the
virtual control law with respect to time is proposed and improves the convergence rate. Under Lyapunov’s
theorem, it is demonstrated that the closed-loop system can converge to the origin within a fixed time,
showcasing the effectiveness of the proposed control strategy as evidenced by comparative simulation results.

INDEX TERMS Adjustable prescribed performance, self-structuring neuron network, fixed-time stability,
input saturation, quadrotor UAV.

NOMENCLATURE
p = [x, y, z]T position vector.
v = [vx , vy, vz]T Linear velocity vector.
2 = [φ, θ, ψ]T Angle vector.
ω = [ωφ, ωθ , ωψ ]T Angular rate vector.
m Total mass.
g Gravity acceleration.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohammad Alshabi .

J = diag
{
Jx , Jy, Jz

}
Inertia matrix.

dv = [dx , dy, dz]T External disturbance in trajectory
subsystem.

dω = [dφ, dθ , dψ ]T External disturbance in the
attitude subsystem.

ωi Angular velocity of the i-th rotor.
b Drag force coefficient.
l Distance from the rotor to the cen-

ter of mass.
c The reverse moment coefficient.
Jr Inertia moment of the rotor.
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I. INTRODUCTION
Recently, quadrotor unmanned aerial vehicles (UAVs) have
found widespread employment in industrial and academic
domains, demonstrating significant potential in areas such
as agriculture, environmental reconnaissance, logistics and
transportation, and disaster detection [1], [2], [3], [4]. Com-
pared with fixed-wing and helicopter UAVs, quadrotor UAVs
have a simple structure, convenient maintenance and excel-
lent maneuverability. Even though the quadrotor offers all
of these benefits, it is challenging to develop a reliable and
robust controller because of the abovementioned factors [5],
[6], [7], [8]. First, the quadrotor system is a complex dynami-
cal systemwith six degrees of freedom (DOFs), characterized
by underactuation, strong coupling, and nonlinearity. In addi-
tion, during actual flight, the quadrotor inevitably encounters
environmental disturbances, including aerodynamic distur-
bances and wind gusts, which can destabilize the system
due to its lightweight structure and motor output limitations.
Therefore, it is essential to design a control scheme that is
efficient and robust, taking into consideration the aforemen-
tioned factors simultaneously.

The majority of such schemes have commonly been
based on a state feedback control strategy [9], [10], [11],
[12], [13]. For example, a nonlinear implicit proportional-
integral-derivative (PID)-type controller was implemented in
a quadrotor system to obtain optimal feedback gains [9].
In [10], to address the inherent challenge of ‘‘complex-
ity explosion’’ in backstepping design, a sigmoid tracking
differentiator (STD) was employed to circumvent tedious
analytical calculations, enabling the construction of a robust
backstepping output feedback trajectory tracking controller.
In [11], recursive sliding mode control (RSMC) was estab-
lished to reduce chattering and guarantee a fast response.
A unit quaternion-based model predictive control (MPC)
technique was proposed for quadrotors, which can ascertain a
smooth singularity-free flight within model uncertainty [12].
Nonetheless, the application of MPC for trajectory tracking
in low-cost autopilots is challenging due to the substantial
computational complexity and significant memory consump-
tion involved. In [13], a special learning structure based on
some approximation of back-propagation error that can be
applied to adaptive control using neural networks was pro-
posed. Although the designed antidisturbance controller for
quadrotors can ultimately ensure uniformly bounded (UUB)
results, its upper bound will be infinitely growing as the
initial state tends to infinity becausewhen the initial condition
of the quadrotor is difficult to obtain accurately, the setting
convergence time is unspecified in advance. In [14], Polyakov
proposed the fixed-time stability method, which extends the
concept of finite-time stability. This approach ensures conver-
gence within a predetermined period that is independent of
initial conditions, solely determined by the controller gain.
In [15], a fault-tolerant tracking control strategy based on a
disturbance observer and fixed-time sliding mode (FTSM) is
proposed for a quadrotor system. In [16], an observer-based

adaptive sliding mode control (SMC) strategy was proposed
to achieve fixed-time stability for the attitude error system.
Additionally, a sinusoidal function was employed as a non-
linear function to mitigate chattering and singularity issues
in the control scheme. In [17], a nonsingular fast terminal
sliding mode (NFTSMC) control strategy for quadrotors was
proposed, and asymptotic stability of the tracking error was
achieved. However, the convergence region of all closed-loop
signals in the aforementioned strategies is reliant on the
bounds of certain unknown terms. Most of the fixed-time
control schemes for quadrotors could cause an unpredictable
accident due to only considering the steady-state performance
of the tracking error without transient performance. Pre-
scribed performance control (PPC) methods [18], [19], [20],
[21] are known for constraining the tracking error within
a predefined function and have been extensively studied
and widely employed in the literature. The PPC methods
utilize an error transformation function to convert the con-
strained dynamics into unconstrained dynamics and integrate
the original dynamics with performance functions. In [18],
the tracking error signal of the closed-loop system can con-
verge to within a prescribed performance boundary in a fixed
time by using an adaptive fixed-time command filter and
a fractional-power error compensation mechanism. In [19],
to satisfy a 6-DOF spacecraft rendezvous and docking oper-
ation, a novel filter compensation system was proposed and
combined with dynamic surface control (DSC) theory and a
radial basis function neural network (RBF-NN) to ensure the
performance constraints of all closed-loop states. To achieve
global proximate tracking in the fixed-time stabilization of
uncertain robot manipulators, a nonsingular terminal sliding
mode PPC strategy is proposed in [20], which combines the
advantages of fixed-time methods, sliding mode algorithms,
and PPC, resulting in an improved convergence rate and
steady-state and transient performance. To avoid the issue
of singularity caused by the maximum value of the tracking
error that may exceed the predefined performance boundary,
an adjustable prescribed performance function (APPF) is
proposed, and a new compensation system is designed for the
input saturation problem for hypersonic flight vehicles that
are subject to actuator saturations in [21]. In [22], A novel
approximation-free simple control scheme is proposed, along
with a thrust saturation approach, which is capable of bypass-
ing ideal attitude extraction singularities in position control
design. Considering the characteristics of quadrotor aircraft
in practical applications (e.g., simple structure, strong cou-
pling), it is inevitable that the system will be destabilized
by external mutation disturbances such as wind gusts when
performing missions in the air. In response to this prob-
lem, addressing the impact of external mutation disturbances
on quadrotor systems will be the focus of our forthcoming
research.

In addition to designing robust controllers, several solu-
tions have been proposed to enhance the robustness
and adaptiveness of quadrotor systems against unknown
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disturbances [23], [24], [25], [26]. In [23], the authors pro-
posed a disturbance observer (DO) to estimate uncertainties
and external disturbances for quadrotors. In [24], a solution
proposed is the utilization of an adaptive sliding mode dis-
turbance observer (ASMDO) in conjunction with a nested
adaptive structure. This approach allows for the estima-
tion of disturbances without relying on prior knowledge of
their upper bounds or derivatives, thereby enhancing the
robustness and adaptiveness of the quadrotor system against
unknown disturbances. In [25] and [26], the extended state
observer (ESO) is employed as a key component, playing
a crucial role in the quadrotor system. The ESO is uti-
lized to expand the disturbance term of the system into
a new state, allowing for estimation and compensation of
uncertainties, thereby improving the robustness and adaptive-
ness of the quadrotor system against unknown disturbances.
In [27] and [28], the uncertainty and disturbance estimator
(UDE) is utilized to compensate for the modeling uncer-
tainties and the unknown environmental disturbances, such
that the formation errors converge asymptotically to zero.
In addition to the methods mentioned above, fuzzy logic
and neural networks (NNs) are also effective means of esti-
mating nonlinear terms. In [29], an artificial neural network
was utilized to approximate the unknown nonlinear term.
In [30] and [31], by combining adaptive techniques and
RBFNN, the estimated unknown nonlinear terms are made
closer to the true value, and the robustness of the system
is improved. Due to the characteristics of neural networks,
more neurons represent a better approximation performance,
but it is challenging to determine the optimal number of
neurons.

Increasing the number of neurons will instead increase the
computational burden of the system, which is unacceptable
on a quadrotor with limited on-board resources. To reduce
the computational burden, some NNs strategies that can
adjust the number of neurons online are available, such as
SEGRNN(self-evolving general regression) was developed
that can modify its structure and its parameters online to
achieve the control goals based on the environment [32],
a self-structured neural network (SS-NN) with a variable
structure is employed to approximate the unknown dynamics
in the nonlinear system [33], [34]. This kind of neural net-
work can adjust the number of neurons online while ensuring
the approximation performance, which is more realistic for
practical applications.

Inspired by the aforementioned studies and taking into
account the challenges of model uncertainty, external dis-
turbances, and input saturation in quadrotor systems. This
controller integrates adjustable prescribed performance with
an adaptive self-structuring neural network to achieve the
convergence of the closed-loop system to the origin within
a fixed time. The main innovations of the proposed controller
can be summarized as follows:

(i) Different from the fixed-boundary envelope PPC [35],
[36], [37], the proposed prescribed control can avoid the con-
trol singularity problem by readjusting the envelope boundary

to achieve improved transient and steady-state tracking per-
formance.

(ii) To cope with the ‘‘Differential Explosion’’ problem,
which may be caused by the time derivatives of the vir-
tual control law, we propose a kind of adaptive fixed-time
command filter. Unlike [18], this method can estimate an
unknown upper bound on the derivative of the virtual con-
trol law and enhance the stability of the closed-loop control
system.

(iii) To address lump disturbances, including model uncer-
tainties and external disturbances, self-structuring neural
networks (SSNNs) are proposed. In contrast to RBF-NN [19],
[30], [31]. SSNN allows for the online adjustment of neuron
count based on compensation efficiency, resulting in more
accurate approximation performance with fewer resource
requirements.

The rest of this paper is structured as follows. Section II
introduces the preliminaries. Section III presents the design
of the control strategy and the detailed closed-loop system
stability analysis. Section IV presents numerical simulations
to verify the proposed method. Section V summarizes the
whole article and prospects for future work.

FIGURE 1. A simplified sketch of the structure of the quadrotor.

II. MODEL DESCRIPTION AND PRELIMINARIES
A. DYNAMICS SYSTEM DESCRIPTION
As illustrated in Fig. 1, an earth-fixed coordinate E =

{xe, ye, ze} and a body-fixed coordinate B = {xe, ye, ze}
are established, which simplifies the description of flight
states. The dynamics of the quadrotor UAV model, consider-
ing parameter uncertainties, external disturbances, and input
saturation, are described as [38].

ẍ=sat
(
τf
)
(cosφ sin θ cosψ+sinφ sinψ) /m

−Kx ẋ/m+dx
ÿ = sat

(
τf
)
(cosφ sin θ sinψ − sinφ cosψ) /m
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− Kyẏ/m+ dy
z̈ = sat

(
τf
)
(cosφ cos θ) /m− g− Kzż/m+ dz

φ̈ = θ̇ ψ̇

(
Jy − Jz

)
Jx

−
Jr
Jx
θ̇ ϖ̄ −

Kφ
Jx
φ̇ +

1
Jx
sat

(
τφ
)
+ dφ

θ̈ = φ̇ψ̇
(Jz − Jx)

Jy
−
Jr
Jy
φ̇ϖ̄ −

Kθ
Jy
θ̇ +

1
Jy
sat (τθ )+ dθ

ψ̈ = φ̇θ̇

(
Jx − Jy

)
Jz

−
Kψ
Jz
ψ̇ +

1
Jz
sat

(
τψ
)
+ dψ (1)

where ϖ̄ = F4+F3−F2−F1 represents the overall residual
rotor angle and is considered a bounded disturbance. The total
lift τf and control input τω =

[
τφ, τθ , τψ

]T related to the
rotor thrust are defined as

τf = F1 + F2 + F3 + F4 = b
(
ω2
1 + ω2

2 + ω2
3 + ω2

4

)
τφ = lF3 − lF1 = lb

(
ω2
3 − ω2

1

)
τθ = lF4 − lF2 = lb

(
ω2
4 − ω2

2

)
τψ = c (−F1 + F2 − F3+ F4) = c

(
−ω2

1+ ω2
2 − ω2

3 + ω2
4

)
(2)

For simplification, (1) can be converted to the following
forms: 

ṗ = v
v̇ = (sat (τf)4/m − g)+fv(v) + dv
2 = ω̇

ω̇ = J−1sat (τω)+ fω(ω) + dω

(3)

where g = [0, 0, mg]T denotes the gravity of the
quadrotor, the coupling term 4(2) = [4x ,4y,4z]T

with 4x = (cosφ sin θ cosψ + sinφ sinψ) /m, 4y =

(cosφ sin θ sinψ−sinφ cosψ)/m, and4z = (cosφ cos θ )/m
is a vector derived from the transformation between rotational
dynamics and translational dynamics. The model parame-
ter uncertainties caused by aerodynamic coefficients in the
position subsystem and attitude subsystem are represented
by fv(v) = [fx , fy, fz]T with fx = −Kx ẋ/m, fy = −Kyẏ/m,
fz = −Kzż/m, and fω(ω) = [fφ, fθ , fψ ]T with

fφ = θ̇ ψ̇

(
Jy − Jz

)
Jx

−
Jr
Jx
θ̇ ϖ̄ −

Kφ
Jx
φ̇,

fθ = φ̇ψ̇
(Jz − Jx)

Jy
−
Jr
Jy
φ̇ϖ̄ −

Kθ
Jy
θ̇ , and

fψ = φ̇θ̇

(
Jx − Jy

)
Jz

−
Kψ
Jz
ψ̇, respectively,

Kp = [Kx ,Ky,Kz]T and Ka = [Kφ,Kθ ,Kψ ]T . The input
saturation constraint function sat (∗) of quadrotors can be
expressed as follows:

sat (τι) =

{
τι,maxsign (τι) , if |τι| > τι,max

τι, else
(4)

where τι(ι = f , φ, θ, ψ) represents the desired control input,
regardless of input saturation. τι,max is the maximum control

authority, and the ι-th component can be provided by each
rotor.
Assumption 1: The time derivatives of lumped disturbance

Dp = [Dx ,Dy,Dz]T = fv(v) + dv, Da = [Dφ,Dθ ,Dψ ]T =

fω(ω)+ dω are hypothesized to be upper bounded, and there
exist unknown nonnegative constants D̄, which satisfy max{∥∥Ḋp

∥∥ , ∥∥Ḋa
∥∥} ≤ D̄.

Assumption 2 [39]: x(i)d , y
(i)
d , z

(i)
d , φ

(i)
d , θ

(i)
d , ψ

(i)
d ∈ L∞

[0,∞) for i = 0, 1, describe the desired positions and yaw
angles, respectively, where (i) is the i-th order derivative of
the variable. There exist nonnegative constants ξx , ξy and ξz
that satisfy

∣∣∣x(1)d

∣∣∣ ≤ ξx ,

∣∣∣y(1)d ∣∣∣ ≤ ξy,

∣∣∣z(1)d ∣∣∣ ≤ ξz < g for all

t ≥ 0 and ξ2x + ξ2y < (g− ξz)
2.

Assumption 3 [40]: To prevent the singularity problem,
restrict the roll angle φ and pitch angle θ to (−π/2, π/2),
and constrain the yaw angle ψ to (−π, π).
Remark 1: Based on the currently available research [39],

Assumption 1 is a prerequisite for traditional observer design.
During quadrotor flight, the position and attitude subsys-
tems have limited control inputs due to the upper bound on
the maximum output torque of the motor. Furthermore, the
energy of other external disturbances, including turbulence,
is finite and short in duration. Therefore, Assumption 1 is
considered reasonable from an engineering perspective, i.e.,
the derivatives of the external disturbances dv and dω with
respect to time have an unknown upper bound.

B. SELF-STRUCTURING NEURAL NETWORKS (SSNNs)
The RBFNN is frequently employed to approximate uncer-
tain disturbances because of its excellent approximation
performance. Although increasing the number of neurons in
the RBFNN can improve its approximate performance, the
computational burden of the system increases, and determin-
ing the optimal number of neurons becomes challenging.
In order to reduce the computational burden, SSNN selec-
tively deletes certain neurons in the network and retains only
the most effective ones. This process eliminates ineffective
neurons, aiming to achieve optimal performance approx-
imation with minimal neuron usage. Additionally, when
uncertain disturbances change, neurons can adjust in real
time, and the estimated result of the external disturbance can
be directly compensated to the controller.

A continuous function f (x) estimated by the following
formula is

f (x) =
(
W ∗

)T h (x)+ µ (x) , ∀x ∈ ℜ (5)

where x is the state of f (x),µ (x) is the SSNN approximation
error satisfying ∥µ (x)∥ < µ̄, µ̄ is an unknown nonnegative
constant, andW ∗ represents the optimal weight matrix, which
is defined as

W ∗
= argmin

{
sup
x∈ℜ

∣∣∣f (x)−
(
W ∗

)T h (x)∣∣∣} (6)
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FIGURE 2. SSNN algorithm flowchart.

where h (x) denotes the Gaussian basis function:

hj (x) = exp

(
−

∥∥x − cj
∥∥2

2b2j

)
, j = 1, 2, . . . ,N (7)

where cj and bj represent the center vector of the j-th node in
the hidden layer and the width of the Gaussian function hj (x),
respectively.

The self-structuring strategy can be divided into two parts
as follows:

(1) The neuron-splitting strategy is determined by com-
paring the splitting threshold Gth ∈ (0, 1), which is
the maximum value of activation of all neurons hmax =

max
1≤k≤s

hk , k = 1, 2, . . . , s. If hmax ≤ Gth, the neuron-splitting

strategy is activated, i.e., the neurons do not achieve optimal
activation, and a new neuron needs to be added to achieve
a better effect. The update parameter of the new neuron is
represented as follows:

cnewj =
xj + cj

2
bnewj = bj
W new
j = 0

(8)

where cnewj denotes the weight of the new neurons, xj, cj
and bj are the parameters of the maximum activated neu-
rons, and W new

j is the weight initial value of new neurons.
A schematic diagram of the structural changes in neurons is
shown in Fig 3.

(2) To avoid the computational overload caused by neuron
overgeneration, eliminate the ineffective neurons. If the acti-
vation function hk of the k-th neuron is below a preset delete
thresholdPth, it suggests that the neuronmay be underutilized
or even inactive. By estimating the activation of this neuron,
the neuron is finally removed if the culling strategy is satis-
fied, and the culling strategy is designed as follows:

Ik =

{
exp (−υ) Ipk , if hk ≤ Pth
Ipk , if hk > Pth,

k = 1, 2, . . . ,N

(9)

where Ik denotes a censoring index. Ipk represents the cen-
soring index of the last recent calculation. The k-th neurons
will be eliminated, which satisfies Ik < Ith. Adjusting the

FIGURE 3. Structural diagram of neuronal changes.

parameter value υ enables the neuron to perform multiple
censoring judgments. The flow chart of the whole SSNN
algorithm is presented in Fig. 2.
Remark 2: If the unknown nonlinear system f (x) approx-

imated by the neural network is complex, a larger Gth is
chosen, more neurons can be generated, and a better approx-
imation can be achieved.

C. DEFINITIONS AND LEMMAS
Definition 1: Consider a nonlinear system as:

ẋ(t) = f (x) , x (0) = x0 (10)

where equation (10) achieves asymptotic stability; further-
more, if it achieves finite-time convergence, there exists a
time T satisfying lim

t→T
x (t) = 0 and x (t) = 0 for all t ≤ T .

Definition 2 [14]:The nonlinear system (10) is fixed-time
stable if it is globally finite-time stable and the convergence
time is bounded by the settling time T (x0) ∈ ℜ. Then, there
exists a positive constant Tmax ∈ ℜ satisfying T (x0) ≤

Tmax∀x0.
Lemma 1 [41]: If the given nonlinear system (10) satisfies

the following inequality

V̇ (x) ≤ −λ1V (x)α − λ2V (x)β + ℓ (11)

where λ1 > 0, λ2 > 0, 0 < α < 1, β > 1 and 0 < ℓ < ∞.
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Then, the fixed-time convergence time of the origin of the
nonlinear system (10) is bounded by

T ≤
1

λ1ϖ (1 − α)
+

1
λ2ϖ (β − 1)

(12)

where 0 < ϖ < 1. The set of residuals for the solution of the
nonlinear system yields the following results:

x ∈

{
V (x) ≤ min

{
(ℓ/ (1 −ϖ)λ1)

1
α , (ℓ/ (1 −ϖ)λ2)

1
β

}}
(13)

Lemma 2 [42]: The following inequality satisfies any
constant

0 < |λ| − λ tanh
(
λ

∂

)
< k∂ (14)

where ∂ > 0, λ ∈ ℜ and k = 0.2785.
Lemma 3 [43]: For any variables n, m and constants r ,

if n > 0, m ≥ 0 and r > 0, satisfy the following inequality:

mr (n− m) ≤
1

1 + r

(
n1+r − m1+r

)
(15)

else if n > 0,m ≤ n, and r > 1 satisfy

(m− n) ≤ nr − mr (16)

III. MAIN RESULTS
A. ADJUSTABLE PRESCRIBED PERFORMANCE
The trajectory tracking error of quadrotor dynamics is defined
below:{

ep,1(t) = p− pd , ep,2(t) = v− zp, p = x, y, z
ea,1(t) = 2−2d , ea,2(t) = ω − za, a = φ, θ, ψ

(17)

Inspired by [21], adjustable prescribed performance func-
tions are proposed, which can be adaptively readjusted
according to the input saturation to avoid the singularity
problem.

First, in order to optimize the traditional prescribed per-
formance function to reach a kind of adjustable prescribed
performance function that can adjust the envelope curve in
real time, the definition of an adjustable prescribed perfor-
mance function is proposed as:

ρi =

(
ρi0 − ρi∞

)
exp(−γit) + ρi∞ + k1,i(exp(k2,iδu,i) − 1)

(18)

where ρi∞ > ρi0, k1,i ∈ ℜ
+ (i = x, y, z, φ, θ, ψ) and k2,i ∈

ℜ
+ are designed positive parameters, ρi(0) = ρi0 indicates

that the maximum overshoot in the transient phase should
be less than ρi0, ρi(∞) = ρi∞ is utilized to constrain the
tracking error in the steady-state phase, γi is the prescribed
convergence rate for the tracking error. An auxiliary variable
δu,iι = (f , φ, θ, ψ) is introduced to compensate for the input
saturation as follows:

δ̇u,i = −ks,1δu,i + ks,2min{|τι − sat(τι)|} (19)

where ks,1 ∈ ℜ
+ and ks,2 ∈ ℜ

+ are positive design
parameters.

To guarantee the tracking error ei,1(t) within boundary
constraints of the states are as follows:

−βiρi(t) < ei,1 (t) < β̄iρi(t) (20)

where βi and β̄i are positive constants. The initial value of
yield:

−βiρi(0) < ei,1 (0) < β̄iρi(0) (21)

Proposition 1: 1. ζi(εi) is a smooth and strictly increasing
function;

2. lim
εi→−∞

ζi(εi) = βi and lim
εi→∞

ζi(εi) = β̄i;

3. where εi is a transformed error and the error ei,1 is related
to εi by

ei,1 = ρiζi(εi) (22)

According to Proposition 1, an error transformation
function that satisfies the above properties is chosen as
follows:

ζi (εi) =
ei (t)
ρi (t)

=
2
π
arctan (εi) (23)

Then, the transformation function is introduced as
follows:

εi = ζ−1
i

(
ei,1 (t)
ρi (t)

)
= tan

(
πei,1 (t)
2ρi (t)

)
(24)

Taking the derivative of εi in (24)

ε̇i = ri(ėi,1 + —λiei,1) (25)

where ri =
π
2ρi

sec2
(
πei,1
2ρi

)
and —λi = −ρ̇i/ρi, i =

(x, y, z, φ, θ, ψ). When (21) is satisfied, we can obtain the
inequality ri > π

2ρi
> 0 that holds.

Theorem 1: To maintain the initial constrained condi-
tion (21) for the tracking error, the prescribed performance
envelope (20) can be implemented at any time interval,
provided that the transformed tracking error εi (t) remains
bounded.
Remark 3: Since the traditional prescribed performance

function cannot adjust the envelope boundary, thus causing
the singularity problem, an adjustable prescribed perfor-
mance function (18) is proposed, which can adjust the
envelope boundary in real time to avoid the singularity
problem in the case of mutation disturbances while guar-
anteeing that the transient and steady-state errors of the
quadrotor system are stabilized within the error constraint
boundary.

B. ADJUSTABLE PRESCRIBED PERFORMANCE FIXED-TIME
CONTROLLER DESIGN
Next, a fixed-time prescribed performance controller is devel-
oped using the DSC strategy. This controller is designed to
ensure that the trajectory tracking error converges to near zero
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within a specified small region in a fixed time. The design
process will be introduced in two steps.
Step 1: According to (25), the virtual control law zp,i =

[zp,x , zp,y, zp,z]T is derived as

zp,i(t) = ṗd − ep,1—λi − kp,1r−1
p εq1p − kp,2r−1

p εq2p . (26)

where q1, q2 are designed positive constants and sat-
isfy 0 < q1 < 1 and 1 < q2. kp,1 and kp,2
are diagonal matrices whose components are positive,
pd = [xd , yd , zd ]T , ep,1 = diag{ex,1, ey,1, ez,1}, rp =

diag{rx , ry, rz},—λp = [—λx , —λy, —λz]T and εp =

[εx , εy, εz]T .
Assumption 4: The derivatives of the input signal of the

filter żi are continuous. There exist unknown nonnegative
constants ηi that satisfy |żi| ≤ ηi
To avoid the ‘‘Differential Explosion’’ problems caused by

the analytical derivative of calculation, an adaptive fixed-time
command filter is designed as:

Ti ˙̂zi = ξ
qm
i + ξ

qn
i + Tiη̂i tanh

(
ξiη̂

σi

)
˙̂ηi = −pi,1η̂

qm
i − pi,2η̂

qn
i + |ξi| (27)

where ẑii = (x, y, z, φ, θ, ψ) is the output of the filter, and
ẑi(0) = ẑi(0) is satisfied. where 0 < qm < 1, 1 < qn, pi,1,
pi,2 and σi > 0 are designed as positive constants, which
represent the gain of the filter and adaptive law, respectively.
Ti denotes the time delay constant.

From Assumption 4, η̂i is the estimate of ηi, and the error
of the boundary estimated is defined as:

η̃i = ηi − η̂i (28)

The filtering error ξi generated by DSC is defined as:

ξi = zi − ẑi (29)

Construct the Lyapunov function Vf as follows:

Vf =
1
2
ξTp ξp +

1
2
ξTa ξa +

1
2
η̃Tp η̃p +

1
2
η̃Ta η̃a (30)

Based on Lemma 2, differentiating Vf with respect to time
yields

V̇f = ξTp ξ̇p + η̃Tp
˙̃ηp + ξTa ξ̇a + η̃Ta

˙̃ηa

≤ −
1
Tp

(
ξTp ξp

) 1+qm
2

−
1
Tp

(
ξTp ξp

) 1+qn
2

−
1
Ta

(
ξTa ξa

) 1+qm
2

−
1
Ta

(
ξTa ξa

) 1+qn
2

+ k
(
σp + σa

)
+

∣∣∣ξTp ∣∣∣ η̃p +

∣∣∣ξTa ∣∣∣ η̃a
+ η̃Tp

˙̃ηp + η̃Ta
˙̃ηa (31)

where k = 0.2785. By recalling Lemma 3, one has

η̃Tp η̂
qm
p ≤

1
1 + qm

(
2η1+qmp − η̃1+qmp

)
η̃Tp η̂

qn
p ≤

1
1 + qn

(
2η1+qnp − η̃1+qnp

)

η̃Ta η̂
qm
a ≤

1
1 + qm

(
2η1+qma − η̃1+qma

)
η̃Ta η̂

qn
a ≤

1
1 + qn

(
2η1+qna − η̃1+qna

)
(32)

Then, substituting (27) into (31) and considering(32),
we obtain

V̇f ≤ −kf1V
mt
f − kf2V

nt
f + cf (33)

where mt =
1+qm
2 , nt =

1+qn
2 , kf1 = min

{
1
Tp
, 1
Ta
,
pp,1
1+qm

}
,

kf2 = min
{
1
Tp
,
1
Ta
,
pp,2

1 + qn

}

cf =
2pp,1
1 + qm

(
η2p

) 1+qm
2

+
2pp,2
1 + qn

(
η2p

) 1+qn
2

+
2pa,1
1 + qm

(
η2a

) 1+qm
2

+
2pa,2
1 + qn

(
η2a

) 1+qn
2

+ k
(
σp + σa

)
Solving (33) results in Vf (t) = 0 when t holds t ≥ Tf ,

and it is apparent that all filter signals will converge into the
following region:

x ∈

{
V (x)≤ min

{(
cf

(1 −ϖ) kf1

) 1
mt
,

(
cf

(1 −ϖ) kf2

) 1
nt

}}
(34)

In fixed time

Tf ≤
1

kf1ϖ (1 − mt )
+

1
kf2ϖ (nt − 1)

(35)

Remark 4: In contrast to [18], by utilizing the adaptive
law, this method can estimate an unknown upper bound on the
derivative of the virtual control law and enhance the stability
of the closed-loop control system

Let żp(t) pass through the fixed-time command fil-
ter(27), the position velocity tracking error be denoted as
ep,2 (t) = v − zp, and take the time derivative of ep,2 as
follows:

ėp,2 = up + Dp − żp (36)

According to [38], the dynamics of a quadrotor are a
coupled and underactuated nonlinear system, implying that
the position and attitude states cannot be controlled inde-
pendently. To stabilize the linear velocity tracking error ep,2,
the desired attitude angle 2d = [2d

φ,2
d
θ ,2

d
ψ ]

T and its
associated virtual control law up = [ux , uy, uz]T are designed
as follows:

ux = (cosφd sin θd cosψd + sinφd sinψd )τf /m
uy = (cosφd sin θd sinψd − sinφd cosψd )τf /m
uz = (cosφd cos θd )τf /m− g

(37)
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Subsequently, taking the inverse transformation of (37), the
total thrust τf , reference roll angle φd , and reference pitch
angle θd can be derived as

τf = m
√
u2x + u2y + (uz + g)2

φd = arcsin
[
(ux sinψd − uy cosψd )m/τf

]
θd = arctan

[
(ux cosψd + uy cosψd )/(uz + g)

] (38)

where the reference yaw angle ψd is assigned by a guidance
level. To maintain the position subsystem state and achieve
fixed-time convergence, the dynamic inversion principle is
applied, and the virtual control input up is designed as
follows:

up = ˙̂zp − rpεp − D̂p − kp,3e
q3
p,2 − kp,4e

q4
p,2 (39)

where kp,3 and kp,4 are diagonal matrices whose components
have positive gains for the position subsystem, and q3, q4 are
designed positive constants and satisfy 0 < q3 < 1, 1 < q4.
By recalling Assumption 1, D̂p = [D̂x , D̂y, D̂z]T is the

estimated value of Dp.
Step 2:Define the attitude angle tracking error as ea,1(t) =

[eφ,1, eθ,1, eψ,1]T = 2(t)−2d (t), and the time derivative of
ea,1 can be obtained as

ėa,1 = 2̇ − 2̇d (40)

To realize the tracking of the attitude angle in fixed
time stabilization, the following virtual control law is
established:

za(t) = 2̇d − ea,1—λa − ka,1r−1
a εq1a − ka,2r−1

a εq2a (41)

where ka,1 = diag
{
kφ,1, kθ,1, kψ,1

}
and ka,2 = diag{

kφ,2, kθ,2, kψ,2
}
denote the positive gain to be regulated,

ea,1 = diag{eφ,1, eθ,1, eψ,1}, ra = diag{rφ, rθ , rψ }, —λa =

[—λφ, —λθ , —λψ ]T and εa = [εφ, εθ , εψ ]T . Then, a filtered
vector ẑa (t) = [ẑφ, ẑθ , ẑψ ]T can be obtained by letting za(t)
pass through the fixed-time command filter and define the
angular velocity error ea,2 (t) =

[
eφ,2, eθ,2, eψ,2

]T
= ω− za,

whose differential in terms of time is derived as

ėa,2 = J−1τω + Da − ża (42)

Based on (42), the practical torque action for the angular
rates subsystem is designed as

τω = J
(
˙̂za − raεa − D̂a − ka,3e

q3
a,2 − ka,4e

q4
a,2

)
(43)

where ka,3 = diag
{
kφ,3, kθ,3, kψ,3

}
and ka,4 = diag{

kφ,4, kθ,4, kψ,4
}
are the tunable nonnegative gain vectors

for the attitude subsystem and D̂a = [D̂φ, D̂θ , D̂ψ ]T is the
estimated value of Da.

C. FIXED-TIME ADAPTIVE SS-NN-BASED ADJUSTABLE
PRESCRIBED PERFORMANCE CONTROL STRATEGY
DESIGN
As illustrated in Fig. 4, a fixed-time SS-NN-based adjustable
prescribed performance control method is established with

FIGURE 4. Block diagram of the proposed control.

input saturation, model uncertainties and mutational dis-
turbances. The SS-NN-based strategy is employed with
convergence for lump disturbances in a fixed time. The
adaptive network weights Ŵ are constructed to estimate
the desired weights W ∗ and the error matrix of the weight
W̃ = W ∗

− Ŵ is defined.
For simplicity of subsequent proofs, (1) is rewritten as

follows: 
ṗ = v
v̇ = uv + Dp

2̇ = ω

ω̇ = J−1τω + Da

(44)

whereDp = fv(v)+dv andDa = fω(ω)+dω. By recalling(5),
we obtain  D̂p =

(
W∗

p

)T
h1
(
Zp
)
+ µp

(
Zp
)

D̂a =
(
W∗

a
)T h2 (Za)+ µa (Za)

(45)

where D̂p =

[
D̂x , D̂y, D̂z

]T
and D̂a ==

[
D̂φ, D̂θ , D̂ψ

]T
rep-

resent the position and attitude system estimation of lumped
disturbances, respectively. Zv =

[
eTp,1, e

T
p,2

]
and Zω =[

eTa,1, e
T
a,2

]
are input vectors, and W∗

p and W∗
a are defined

as (6).
The estimation error is calculated as

˜̄µi = µ̄i − ˆ̄µi (46)

where µi indicates the approximation errors, ∥µi (x)∥ < µ̄i,
and i = x, y, z, φ, θ, ψ .
Theorem 2: Under the conditions that the initial condi-

tion of APPF in (21) satisfies Assumptions 1-3 and the
adaptive fixed-time command filter (27), the fixed-time
controller (47), SS-NN adaptive law (48), and adaptive func-
tion (49) are utilized to guarantee that the tracking errors
ep,1 and ea,1 converge within a fixed time to a neighborhood
of the original subject to the performance constraint of the
APPF, model uncertainties, input saturation and mutational
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disturbances.

up = ˙̂zp − εprp − Ŵ
T
p h1

(
Zp
)
− ˆ̄µp tanh

(
ep,2
ϒ1

)
−kp,3e

q3
p,2 − kp,4e

q4
p,2

τω = J(˙̂za − εara − Ŵ
T
a h2 (Za)− ˆ̄µa tanh

(
ea,2
ϒ2

)
−ka,3e

q3
a,2 − ka,4e

q4
a,2)

(47)
˙̂Wp = kw1

(
h1(Zp)eTp,2 − kw2Ŵp

)
˙̂Wa = kw3

(
h2(Za)eTa,2 − kw4Ŵa

)
(48)

where Ŵ i is the estimate ofW∗
i and kw1, kw2, kw3, kw4, ϒ1, ϒ2

are nonnegative constants.
The adaptive law can be expressed as

˙̂
µ̄p = kµ1

(
tanh

(
ep,2
ϒ1

)
ep,2 − kp,5 ˆ̄µ

q5
p − kp,6 ˆ̄µ

q6
p

)
˙̂
µ̄a = kµ2

(
tanh

(
ea,2
ϒ2

)
ea,2 − ka,5 ˆ̄µ

q5
a − ka,6 ˆ̄µ

q6
a

)
(49)

where kµ1, kµ2, kp,5, kp,6ka,5, and ka,6 are designed nonneg-
ative gains.

Proof: To prove Theorem 2, construct a Lyapunov func-
tion V1 as follows:

V1 =
1
2
εTp εp +

1
2
εTa εa +

1
2
eTp,2ep,2 +

1
2
eTa,2ea,2 (50)

Differentiating (50) with respect to time as follows

V̇1 = εTp ε̇p + eTp,2ėp,2 + εTa ε̇a + eTa,2ėa,2 (51)

Substituting Eqs. (26), (41), and (47) into (51) yields

V̇1 ≤ −kp,1
(
ε2p

) 1+q1
2

− kp,2
(
ε2p

) 1+q2
2

− ka,1
(
ε2a

) 1+q1
2

− ka,2
(
ε2a

) 1+q2
2

− kp,3
(
e2p,2

) 1+q3
2

− kp,4
(
e2p,2

) 1+q4
2

− ka,3
(
e2a,2

) 1+q3
2

− ka,4
(
e2a,2

) 1+q4
2

+ eTp,2W̃
T
p h1

(
Zp
)
+ eTa,2W̃

T
a h2 (Za)

− eTp,2 ˆ̄µp tanh
(
ep,2
ϒ1

)
− eTa,2 ˆ̄µa tanh

(
ea,2
ϒ2

)
+ eTp,2µp

(
Zp
)
+ eTa,2µa (Za) (52)

Based on(52), a Lyapunov function can be established as
follows:

V2 = Vf + V1 +
1
2

(
W̃

T
p k

−1
w1 W̃p

)
+

1
2

(
W̃

T
a k

−1
w3 W̃a

)
+
1
2

(
˜̄µ
T
p k

−1
µ1

˜̄µp

)
+

1
2

(
˜̄µ
T
a k

−1
µ2

˜̄µa

)
(53)

Differentiating (53) with respect to time yields

V̇2 = V̇f + V̇1 + k−1
w1

(
W̃ T
p

˙̃Wp

)
+ k−1

w3

(
W̃ T
a

˙̃Wa

)
+ k−1

µ1

(
˜̄µTp

˙̃
µ̄p

)
+ k−1

µ2

(
˜̄µTa

˙̃
µ̄a

)
(54)

By recalling Lemma 2, and according to Young’s inequal-
ity, we can obtain that the following inequation holds:

W̃
T
p Ŵp ≤

1
2

(
W∗

p

)T
W∗

p −
1
2
W̃

T
p W̃p

W̃
T
a Ŵa ≤

1
2

(
W∗

a
)T W∗

a −
1
2
W̃

T
a W̃a (55)

Based on Lemma 3, the following equation holds:

˜̄µ
T
p

ˆ̄µq5
p ≤

1
1 + q5

(2µ̄1+q5
p − µ̃1+q5

p )

˜̄µ
T
p

ˆ̄µq6
p ≤

1
1 + q6

(2µ̄1+q6
p − µ̃1+q6

p )

˜̄µ
T
a

ˆ̄µq5
a ≤

1
1 + q5

(2µ̄1+q5
a − µ̃1+q5

a )

˜̄µ
T
a

ˆ̄µq6
a ≤

1
1 + q6

(2µ̄1+q6
a − µ̃1+q6

a ) (56)

Furthermore, substituting Eqs. (48) and (49) into Eq. (56),
can be simplified as

V̇2 ≤ −kf Vf − kp,2ε2p − ka,2ε2a − kp,4e2p,2 − ka,4e2a,2

−
kp,6

1 + q6
˜̄µ
2
p −

ka,6
1 + q6

˜̄µ
2
a −

kw2
2
W̃ T
p W̃p

−
kw4
2
W̃

T
a W̃a +� (57)

where

� =
2pp,1
1+qm

(
η2p

) 1+qm
2

+
2pp,2
1+qn

(
η2p

) 1+qn
2

+
2pa,1
1+qm

(
η2a

) 1+qm
2

+
2pa,2
1+qn

(
η2a

) 1+qn
2

+
2kp,5
1+q5

(
µ̄2
p

) 1+q5
2

+
2kp,6
1+q6

(
µ̄2
p

) 1+q6
2

+
2ka,5
1+q5

(
µ̄2
a

) 1+q5
2

+
2ka,6
1+q6

(
µ̄2
a

) 1+q6
2

+
kw2
2

(
W∗

p

)T
W∗

p

+
kw4
2

(
W∗

a
)T W∗

a+k1ϒ1
∣∣µ̄p

∣∣+k2ϒ2
∣∣µ̄a

∣∣+k (σp+σa)
is a nonnegative constant.

Then, (57) can be further formulated as follows:

V̇2 ≤ −kv2V2 +� (58)

where

kv2 = min
{
kf , kp,2, ka,2, kp,4, ka,4,

kp,5
1 + q5

,
kp,6

1 + q6
,

ka,5
1 + q5

,
ka,6

1 + q6
,
kw2
2
,
kw4
2

}
> 0.

The inequality (58) can be further computed as

0 ≤ V2 (t) ≤
�

kv2
(1 − exp (−kv2t))+ V2 (0) exp (−kv2t)

(59)
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Thus, there exists an upper bound on the error signals
ξp, ξa, εp, εa, ep,2, ea,2, ˜̄µp, ˜̄µa, W̃p, W̃a of the closed-loop
system for quadrotor dynamics, which are bounded by the
following inequality:∥∥ξp∥∥ ≤

√
2�/kv2 ∥ξa∥ ≤

√
2�/kv2∥∥εp∥∥ ≤

√
2�/kv2 ∥εa∥ ≤

√
2�/kv2∥∥ep,2∥∥ ≤

√
2�/kv2

∥∥ea,2∥∥ ≤
√
2�/kv2∥∥∥ ˜̄µp

∥∥∥ ≤
√
2�/kv2

∥∥∥ ˜̄µa

∥∥∥ ≤
√
2�/kv2∥∥∥W̃p

∥∥∥ ≤
√
2�/kv2

∥∥∥W̃a

∥∥∥ ≤
√
2�/kv2 (60)

The closed-loop tracking error signal mentioned earlier can
potentially converge to a small residual set, which can be
minimized by appropriately adjusting the controller parame-
ters. Furthermore, by recalling Theorem 1 and coupling with∥∥εp∥∥ ≤

√
2�/kv2, ∥εa∥ ≤

√
2�/kv2, which implies that

the tracking error state can be limited to satisfy (20). Further
analysis reveals the existence of a nonnegative constant σw
that satisfies W̃ T

i W̃i ≤ σw.
To demonstrate that the tracking error in the closed-loop

control system converges to near zero in a fixed time. If any
real constants x > 0, the following inequalities hold:

x
b+1
2 − x ≤

(
b+ 1
2

) b+1
1−b

−

(
b+ 1
2

) 2
1−b

=

∏
(61)

Subsequently, to further demonstrate that the closed-loop
system achieves fixed-time stability, Eq. (57) can be
expressed as

V̇2 ≤ −k1V
q
2 − k2V

p
2 +3 (62)

where

q =
1+qm
2

=
1+q1
2

=
1+q3
2

=
1+q5
2

;

p =
1+qn
2

=
1+q2
2

=
1+q4
2

=
1+q6
2

;

k1 = min
{
kp,1, ka,1, kp,3, ka,3,

1
Tp
,
1
Ta
,

pp,1
1+qm

,
pa,1
1+qm

,
kp,5
1+q5

,
ka,5
1+q5

kw2
2
,
kw4
2

}
k2 = min

{
kp,2, ka,2, kp,4, ka,4,

1
Tp
,
1
Ta
,

pp,2
1+qn

,
pa,2
1+qn

,
kp,6
1+q6

,
ka,6
1+q6

,
kw2
2
,
kw4
2

}
3 =

2pp,1
1+qm

(
η2p

) 1+qm
2

+
2pp,2
1+qn

(
η2p

) 1+qn
2

+
2pa,1
1+qm

(
η2a

) 1+qm
2

+
2pa,2
1+qn

(
η2a

) 1+qn
2

+
2kp,5
1+q5

(
µ̄2
p

) 1+q5
2

+
2kp,6
1+q6

(
µ̄2
p

) 1+q6
2

+
2ka,5
1+q5

(
µ̄2
a

) 1+q5
2

+
2ka,6
1+q6

(
µ̄2
a

) 1+q6
2

+
kw2
2

(
W∗

p

)T
W∗

p

+
kw4
2

(
W∗

a
)T W∗

a+k1ϒ1
∣∣µ̄p∣∣+k2ϒ2 |µ̄a|+k

(
σp+σa

)
+25+σw1+σw2

Based on Lemma 1, all the error signals will converge to
the region set

x ∈

{
V2 ≤ min

{(
3

k1 (1 −ϖ)

) 1
q

,

(
3

k2 (1 −ϖ)

) 1
p
}}

near zero in a fixed time

Tg ≤
1

k1ϖ (1 − q)
+

1
k2ϖ (p− 1)

(63)

Based on the stability analysis above, the proposed control
strategy can effectively address the tracking control chal-
lenges caused by model parameter uncertainties, mutational
external disturbances, and input saturation. In combination
with Theorem 1 and (60), the trajectory tracking error can
be constrained to satisfy (20) and guarantee that the tracking
error of the closed-loop system converges to near zero within
a fixed time. The whole closed-loop system achieves fixed-
time stability.

The proof of Theorem 2 ends
Remark 5: Because the proposed strategy involves many

control parameters, it is quite difficult to obtain an optimal
solution. To ensure that the error signal can converge to
within the prescribed performance envelope in a fixed time,
we can satisfy the determination of the gain parameter of the
controller by the trial-and-error method.

IV. SIMULATIONS
In this section, the superiority and efficiency of the pro-
posed method are evaluated by simulations and comparative
experiments. Time-varying trajectory tracking and external
disturbance scenarios are considered, and the algorithm is
implemented in the MATLAB/SIMULINK platform with a
fixed-step solver and a sampling time of 0.001 s for all control
algorithms.

By referring to [38], the model parameters of quadro-
tors are chosen as follows: m = 2 kg, l = 0.2m,
J = diag {1.25, 1.25, 2.5}N · s2/rad, g = 9.8 m/s2c =

1.14 · 10−7N·, s2/rad2b = 2.98 · 10−6N · s2/rad2,
Kp = diag {1.2, 1.2, 1.2} · 10−2N · s/rad, and Ka =

diag {1.2, 1.2, 1.2} ·10−2N · s/rad, and the associated param-
eters of the controllers are listed in Table 1.
The initial number of neurons in the SSNN is selected as

N = 21, the initial conditions of the adaptive law are selected
as Ŵp = Ŵa = [0, 0, 0]T , and the center of the Gaussian
functions is uniformly distributed in [−5, 5] with a width of
0.5. The splitting threshold Gth and the delete threshold Pth
are designed as 0.8 and 0.3, respectively.

To verify that the proposed control algorithm can achieve
fixed-time trajectory tracking under a mutational external
disturbance, the trajectory reference signal and mutational
external disturbance are considered as follows:

The reference trajectory is given as follows:

pd =


xd = 8 cos (0.3t)
yd = 4 sin (0.6t)
zd = 0.5t

(64)
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TABLE 1. Design parameters of the proposed algorithm.

The mutational external disturbances are given as

Dp =
[
dx , dy, dz

]T
=



[1.2 sin (0.2t) cos (0.2t) ,
1.6 cos (0.1t) sin (0.3t) ,
1.3 sin (0.4t) cos (0.2t)]T , t < 30
[6 sin (0.4t) cos (0.4t) ,
6 cos (0.2t) sin (0.4t) ,
6 sin (0.4t) cos (0.4t)]T , t ≥ 30

Da =
[
dφ, dθ , dψ

]T
=



[0.3 sin (0.2t) cos (0.2t) ,
0.2 cos (0.2t) sin (0.1t) ,
0.5 sin (0.2t) cos (0.3t)]T , t < 30
[2 sin (0.4t) cos (0.4t) ,
2 cos (0.2t) sin (0.4t) ,
2 sin (0.4t) cos (0.3t)]T , t ≥ 30

(65)

The initial position and angle states are set as p (0) =

[7, 1, 0]T m and 2 (0) = [0, 0,−π /4]T , respectively, and
the desired yaw angle is chosen as 2d

ψ = 0 rad.
Case 1: Verify the effectiveness of the proposed control

method
The simulation results are presented in Figs. 5-11. Specif-

ically, Fig. 5 illustrates the three-dimensional trajectory
tracking results, indicating that the quadrotor is capable of
tracking the desired path with high speed and accuracy.
Fig. 6 indicates the trajectory control error under the APPF,

FIGURE 5. 3D trajectory tracking.

and the mutation external disturbance occurs in the 30th
second. By employing the adjustable boundary and SSNN,
the singularity problem caused by the mutation disturbance
is avoided, and the estimated disturbance can be adjusted
online rapidly and fed back to the controller in time to
eliminate the influence of the external disturbance. Fig. 7
depicts the response curves of position and attitude track-
ing, which demonstrate that the proposed controller exhibits
strong robustness against mutation external disturbances and
that both the trajectory and attitude states can ultimately
achieve uniformly bounded results. From Fig. 8, we find that
a mutation disturbance occurs at 30 seconds, and the external
disturbance is compensated according to the estimated value
of the SSNN feedback. Fig. 9 shows that the filtering error
converges quickly to a small value even when a mutation
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FIGURE 6. Trajectory tracking error constraints within a mutational
external disturbance (a)attitude system, (b)position system.

disturbance is encountered. Fig. 10 illustrates the adaptive
law of the upper limit of the derivative of the fixed-time
command filter used to estimate the virtual control input
over time, which facilitates realtime updating of the filter
parameters and enables the filter to adapt to system changes.
The change in the number of neurons in the SSNN is provided
in Fig. 11, which indicates that the initial number of neurons
is 21, and the final number of neurons remains stable at
18 and 15 even though the mutation disturbance occurs at the
30th second. Fig. 12 illustrates the weight estimates of the
SSNN, which are still bounded even if the mutation dis-
turbance appears after 30 seconds. The results presented in
Figs. 11-12 show that the proposed SSNN is capable of
adjusting the number of neurons in real time, reducing the
computational burden while remaining stable and bounded
when dealing with mutational disturbances. The adaptability
of the SSNN ensures that it retains only effective neu-
rons while eliminating ineffective neurons, leading to better
approximation performance.

FIGURE 7. Six-directional trajectory tracking.

FIGURE 8. Control inputs.

FIGURE 9. Filtering errors.

Case 2: Comparative study against finite-time con-
troller [23] Subsequently, a comparative study is performed
by comparison with the finite-time control method under the
same environmental conditions to prove the superiority of the
proposed control strategy.
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TABLE 2. Designed parameters of the finite-time controller [22].

FIGURE 10. Adaptive laws of the filter.

FIGURE 11. The number of neurons.

The finite-time disturbance observer for the position sub-
system is proposed as follows:

ż1,i = v1,i + αivi +
(
sat

(
τf
)
4(i) − gE

)
w1,i = −λ1,pL

1/3
1

∣∣z1,p − vi
∣∣(2/3) sign (z1,p − vi

)
+ z2,i

ż2,i = w2,i

FIGURE 12. The 2-norm of the SSNN weight estimate
∥∥∥Ŵp

∥∥∥ and
∥∥∥Ŵa

∥∥∥.

v2,i = −λ2,pL
1/3
1

∣∣z2,p − w1,i
∣∣(1/2) sign (z2,p − w1,i

)
+ z3,i

ż3,i = −λ3,pL
1/3
1

∣∣z3,p − w2,i
∣∣ sign (z3,p − w2,i

)
i = (x, y, z)

(66)

The finite-time disturbance observer for the attitude sub-
system is given as:

ż1,j = v1,j + αjωj − J−1
j sat

(
τj
)

w1,j = −λ1,aL
1/3
2

∣∣z1,a − ωj
∣∣(2/3) sign (z1,a − ωj

)
+ z2,j

ż2,j = w2,j

v2,j = −λ2,aL
1/3
2

∣∣z2,a − w1,j
∣∣(1/2) sign (z2,a − w1,j

)
+ z3,j

ż3,j = −λ3,aL
1/3
2

∣∣z3,a−w2,j
∣∣ sign (z3,a−w2,j

)
j = (φ, θ, ψ)

(67)

The finite-time control strategy for the trajectory loop is
designed as follows:

sp,i = e1,i + βp
∣∣ė1,i∣∣αp sign (ė1,i)

τf = −
m

cosφ cos θ

[
1
αzβz

∣∣ė1,z∣∣2−αp + kt,1sp,z

+kt,2
∣∣sp,z∣∣αp sign (ė1,z)] (68)
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FIGURE 13. Trajectory tracking error constraiTrajectory tracking error
constraints compared with a finite-time controller [23](a) position
subsystem, (b) attitude subsystem.

FIGURE 14. Comparison of two control strategy inputs.

For the attitude loop:

sa,j = ea,1 + βa
∣∣ėa,1∣∣αa sign (ėa,1)

τj = −
1
bj

[
−

1

αjJ
−1
j

∣∣ėa,1∣∣2−αa + kt,3sa,1

+kt,4
∣∣sa,1∣∣αa sign (sa,1)+ αjωj + 2̈d

j + z2,j
]

(69)

where sp,i and sa,j denote the sliding surface, αi = −Ki/m
and αj = −J−1

i Kj. The controller gains are set in Table 2.
Fig. 13 illustrates the trajectory tracking performance

of the proposed controller and finite-time controller with
the same environmental conditions. The proposed controller
exhibits faster convergence within the first 30 seconds, with
a quicker response and effective constraint of the tracking
error within the boundaries. Furthermore, even in the pres-
ence of mutation disturbances after 30 seconds, the proposed
controller maintains superior performance compared to the
finite-time controller. Fig. 14 demonstrates that the proposed
controller achieves stable convergence of the quadrotor sys-
tem with a faster response compared to finite-time control,
even in the presence of mutation disturbances, and requires
lower resource consumption. Thus, the abovementioned anal-
ysis demonstrates the effectiveness and usefulness of the
proposed controller in handling lump disturbances, includ-
ing unknown external disturbances and uncertain nonlinear
functions, while adjusting the number of neurons in real
time to reduce the computational burden and improve the
approximation accuracy for quadrotors with limited onboard
resources.

V. CONCLUSION
In this article, an adjustable prescribed performance method
is proposed for quadrotor UAVs dealing with mutation distur-
bances and actuator saturation. This method enables adaptive
adjustment of predetermined performance boundaries with-
out compromising convergence speed. It also addresses the
potential singularity problem arising from tracking error
peaks. By utilizing a self-structuring neural network and
compensating for lump disturbances, the proposed control
method achieves high-accuracy trajectory tracking for practi-
cal quadrotors with limited onboard resources. This makes
the proposed method practical and feasible for quadrotors
operating in real-world environments. Further work will pro-
mote the existing algorithms, which will be considered for
practical applications such as actuator failure and obstacle
avoidance, and to achieve a networked quadrotor distributed
formation coordination control design.
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