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ABSTRACT State-space formulations offer a flexible approach for developing soft sensors in industrial
processes, leveraging both data information and domain knowledge of process dynamics. On one hand, the
state vector introduces varying perspectives in modeling process dynamics. However, choosing the definition
of a state vector that is appropriate for the data and problem at hand is not a simple task. In this study,
we examine and bridge three hybrid models using the framework of state space equations. We explore
three key aspects within this framework: problem formulation, state prediction, and parameter estimation
by the Expectation-Maximization (EM) algorithm. We compare the three hybrid models and two recurrent
neural networks (RNN) approaches on three real-world datasets from desulfuring, polymerization, and
sulfur recovery processes. Results are analyzed from both the data perspective and the process perspective,
aiming to enhance the understanding and implementation of soft sensors in dynamic settings, with potential
implications for various industries relying on accurate and adaptable soft sensor technologies.

INDEX TERMS Auto-regressive dynamic latent variables (ADLV), linear dynamical system (LDS), quality
prediction, multivariate time series, soft sensor, state space models, structural time series (STS).

I. INTRODUCTION
When building soft sensors, a single static model is often
inadequate to describe the observed data, as the system is
susceptible to various changes such as mechanical element
abrasion, shifts in operating modes, process faults, material
quality variations, and weather fluctuations, among other
factors. Such system changes are directly reflected in the
distribution divergence between the training data and test
data, posing serious challenges for real-world applications:
for example, the degradation of a trained model after a
period of online operation. Therefore, dynamic models have
shown to be more practical and realistic for updating and
maintaining soft sensors in non-stationary environments [1],
[2], [3], [4], [5].

The combination of conventional multi-statistical algo-
rithms (e.g., PCR, SVR, PLS, ANN) with adaptive learning
has emerged as a popular solution to this problem. These
approaches incrementally update models to react to changing
environments during online operations. Model adaptation can
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be achieved in two ways: 1) by incorporating more recent
samples through a moving window or forgetting factor [3],
and 2) by utilizing more relevant and similar data based
on distance or density distribution, such as just-in-time-
learning [4] and importance weighting [5].

A common characteristic of these approaches lies in
addressing the drift adaptation problem from a data perspec-
tive. However, it is essential to recognize that data drift is
a consequence rather than the root cause itself [6]. Simply
retraining and updating the local models in response to data
changes does not address the underlying reasons behind the
drift. These approaches lack physical interpretations and may
face challenges in gaining the trust of domain experts.

In contrast, the state-space approach, as an alternative
solution for maintaining soft sensors, does not suffer from
these drawbacks. State-space models (SSM) are inherently
model-oriented, allowing the incorporation of process expert
knowledge into the model, such as process dynamics and
measurement noise. In industrial processes, SSM has proven
to be a flexible and robust framework for representing
and controlling dynamic systems implemented by First
Principle Models (FPM) [7], controller design [8] and
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system identification of multiple input multiple output
systems [9].

To develop soft sensors with SSM, the definition of the
state vector plays a significant role in modelling the process
dynamics. Due to the flexibility of the SSM framework, there
are many different ways to define state vectors. Most studies
in this field have focused only on specific approaches, such
as dynamic latent variable models [17], [18], [19], [20], [21].
In this case, the state vector refers to the extracted latent
feature space. However, it can also describe the regression
coefficients or other variables of interests. Therefore, it would
be interesting to investigate whether these different methods
result in similar performance in terms of predictions or
their performance depend on the applications and data at
hand. So far, here has been little comparative analysis of the
model performance in different scenarios and across different
definitions of the state vector.

In this article, we discuss and compare three representative
solutions from a practical standpoint. By investigating
and analyzing these different formulations, we aim to
explore their respective strengths, limitations, and potential
applications in soft sensor development. We believe that
these comparisons offer a broader perspective on modelling
process dynamics to both researchers and practitioners. The
contributions of this paper are as follows:

1) We bridge and connect the time-varying coefficient
models for dynamic soft sensors, the auto-regressive
latent variable models for process data analysis,
and decomposition and separation of time series in
econometrics under the framework of SSM.

2) We provide solutions for the general case to unify
various models, in particular, with regard to dynamics
modelling, parameter inference and estimation, and
prediction. Specifically, Kalman filter and smoother are
utilized for state inference and prediction, which help
build more interpretable soft sensors.

3) The key parameters required are estimated iteratively
by the Expectation Maximization (EM) algorithm,
which aides model development when no prior knowl-
edge is available.

4) We present results on three case studies, and the
differences in performance of the models are explained
and discussed from both the data perspective and
process perspective.

II. RELATED WORK
Before proceeding with the literature, it is essential to
acknowledge that the state-space formulations for data-
driven soft sensors are not unique, and the assumption of
the presence of a ‘‘true’’ model is unrealistic. In prac-
tice, a ‘‘good’’ model is often more desirable in terms
of prediction performance. Constructing a suitable model
requires one to consider empirical facts, domain knowledge,
historical context, data quality, and research objectives. These
insights help identify the dynamic factors of a system,
including but not limited to: 1) time-varying parameter

models, implying gradual changes of the linear regression
coefficients; 2) autoregressive latent variables projected from
higher-dimensional inputs that are potentially contaminated
by random noise; 3) a separate additive nonstationary
disturbance influencing a stationary regression model.

A. LINEAR DYNAMICAL SYSTEMS (LDS)
The first case focuses primarily on extening static soft sensors
into dynamic models by allowing time-varying parameters
through the Kalman filter. These models are commonly
referred to as linear Gaussian state space models [10],
whereas more specifically, they are also known as the linear
dynamical systems (LDS) [11] or simply time-variant soft
sensors [12]. For consistency, we will use the term LDS to
represent these types of models. The concept of LDS has been
adopted in many applications. Xu et al. employed the LDS
to reflect the personalized time-varying treatment effects for
Pakinson’s disease patients [13]. Dastjerd et al. present a
novel algorithm that combines generalized random walk,
multi-state-dependent parameter, and time varying parameter
to achieve high accuracy online quality monitoring [14].
Liang et al. applied this approach to an electrical/ultrasonic
dual-modality dynamic imaging method to reconstruct the
time-varying distribution [15]. While the assumption of LDS
is attractive and convenient, it can sometimes be too general
and vague in meaning, limiting its application. Therefore, it is
necessary to complement the soft sensor development with
other perspectives.

B. DYNAMIC LATENT VARIABLES (DLV)
In the second scenario, emphasis is shifted towards modeling
latent variable with explanatory variables. On one hand,
dimensionality reduction is often necessary to deal with the
high multicollinearity and redundancy in process data. On the
other hand, process data might be corrupted by random noises
or other nonstationary disturbances [16]. These two factors
collectively lead to the dynamic latent variable methods.
For example, Wen et al. extend the traditional PCA to a
linear Gaussian state-space model to allow dynamics of the
latent scores [18]. Similarly, Li et al. develop a dynamic
PLS that incorporating the supervision into the measurement
equation [19]. Qin et al. has provided a comprehensive
comparison of these data-based latent dynamic variable
models for prediction andmonitoring [21]. Due to the roots in
traditional dimension reduction techniques, it is observed that
these types of methods often model the measured inputs and
measured outputs separately by the latent scores, resulting
in three equations. In this study, we integrate the dimension
reduction into the state equation, aiming for more direct
comparison with the time-varying coefficient models.

Moreover, we consider Recurrent Neural Networks
(RNNs) and Long Short-Term Memory (LSTM) [22] as
relevant studies to DLV models. RNNs typically define
hidden units as a function of both previous units and the
current input, indicating a similarity to the operation of
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SSM. Medsker et al. [23] present and study the architecture
of RNNs with classic state-space representations from a
dynamic system perspective. Although in principle RNNs
are rooted in modelling dynamic systems, their structures
of memory cells and gates involve nonlinear operations and
pose challenges from dealing with data shortage, model
training, parameter tuning, and vanishing and exploding
gradients [24].

C. DECOMPOSITION OF TIME SERIES
The last circumstance draws inspiration from the applications
of SSM in economic and financial research, where time series
are separated into several explainable and simpler compo-
nents (trends, seasonalities, trading day effects, human errors,
etc) [25]. This splitting-based time series modeling approach
has been applied in many domains. R. Salles et. al review
and compare several transformation methods that separate
nonstationary time series to explain the intrinsic physical
phenomena such as deterministic trends and structural breaks
[26]. Stathopoulos et al. propose a traffic model that supple-
ments the observed traffic flow with other factors (roadway
capacity, section length, signalization plans, weather, etc.)
[27]. Liu et al. [28] present DynaConF to decouple stationary
conditional distribution from nonstationary part, and it has
demonstrated better performance than some state-of-the-art
deep learning methods on several public datasets.

Building on this idea, the regression of sensor data, which
are commonly used as the exogenous variables by data-driven
soft sensors, can be viewed as a global stationary component.
And this major effect may influence the target variable with
other additive nonstationary components together (such as
self-evolving stochastic noise and control variables). This
new perspective offers opportunities to address complex
changes and dynamics of the industrial systems.

Although individual efforts have been made to explore
each formulation, to our best knowledge, there has been
little attention paid to their comparisons. We aim to provide
a comprehensive and unified view of dynamic soft sensor
development within the framework of SSM. We thoroughly
discuss, analyze and compare their differences in assump-
tions, formulation, and parameter estimation among these
models. Through this comparative analysis, we seek to gain
insights into the dynamic modeling problems in real-world
applications.

III. METHODOLOGY
A. COMMON FRAMEWORK
We first present the general framework for soft sensors, and
it includes the soft sensor formulation with SSM, the Kalman
filter and smoother for inference, and the EM algorithm for
parameter learning.

1) SSM FOR SOFT SENSORS
The most general state-space representation of soft sensors
with m inputs, n outputs, and d state variables can be written

in the following form:

(State equation) xk+1 = Axk + Buk + wk (1)

(Observation equation) yk = Cxk + Duk + vk (2)(
wk
vk

)
∼ N

((
0
0

)
,

(
Q 0
0 R

))
, (3)

where k = 1, 2, · · · , n is the sample number, xk ∈ Rd is the
state vector, and uk ∈ Rm and yk ∈ Rn are the measured input
and output vector at time instant k , respectively. The vector
wk ∈ Rd and vector vk ∈ Rn are unrelated vector white noise
with mean zero and covariance matrices Q and R. A ∈ Rd×d

is the state transition matrix modelling the dynamics of the
physical system, B ∈ Rd×m is the input matrix, C ∈ Rn×d

is the emission matrix relating the measurements to the state,
and the remaining matrix D ∈ Rn×m is the direct transition
matrix.

This general form of SSM defined by (1) and (2) together
can describe a rich class of dynamic models. In the context of
soft sensor modelling, this is also a very powerful time series
model with widespread applications. Under this problem
formulation, yk can be understood as the quality variable,
or the difficult-to-measure variable, such as the flash point
of a petroleum or the concentration of a chemical. uk , the
fixed input, can be seen as the exogenous or predetermined
variables. Usually, it refers to the easy-to-measure data,
or more directly, features, that may enter into the state
equation or observation equation. However, the definition of
xk is much more flexible and is therefore one of the key
research focus of this study.

According to the above formulation, the transition equation
and observation equation define a Markov chain

p(y1:n, x1:n) = p(x1)p(y1|x1, u1)
n∏

k=2

p(xk |xk−1, uk−1)p(yk |xk , uk ), (4)

where the initial vector x1 is assumed to has a mean of
µ0 and a covariance 60, and the transition distribution is
given by p(xk |xk−1, uk−1) ∼ N (xk |Axk−1 + Buk−1,Q)
and emission distribution by p(yk |xk , uk ) ∼ N (yk |Cxk +

Duk ,R), respectively. In this model, there are some important

parameters, denoted by θ
def
= {µ0, 60,A,B,Q,C,D,R}, that

often cannot be known in advance. Accordingly, the EM
algorithm is employed to determine θ as well as the unknown
states. It should be noted that, for soft sensor applications,
we are particularly interested to predict the next latent state
xk and its corresponding observation yk given y1 to yk−1.
Therefore, the estimation of EM algorithm serves as a means
to deliver better models for prediction and forecasting.

2) EXPECTATION STEP
Let Yn = {y1, y2, . . . , yn}, Xn = {x0, x1, x2, . . . , xn} and
Un = {u1, u2, . . . , un}, and based on themaximum likelihood
estimation, the complete data log-likelihood function can be
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written as follows:

lYn,Xn (θ ) = −
1
2
ln |60| −

1
2
(x0 − µ0)6

−1
0 (x0 − µ0)T

−
n
2
ln |Q| −

1
2

n∑
k=1

(xk − Axk−1 − Buk−1)Q−1

× (xk − Axk−1 − Buk−1)T

−
n
2
ln |R| −

1
2

n∑
k=1

(yk − Cxk − Duk )R−1

× (yk − Cxk − Duk )T . (5)

In the E-step, the objective is to make inference about
the local posterior marginals for the latent variables from
the observed sequence, and the conditional expectation of
lYn,Xn (θ ) given all the observed data Yn and a parameter set
θold is denoted as

Q(θ |Yn, θold) = E[lYn,Xn (θ )|Yn, θ
old]. (6)

The EM algorithm for SSM requires the smoothed estimates
of xk , which can be obtained through Kalman filter and
Kalman smoother. For convenience, we denote the condi-
tional expectation of state xk given the observation up to
time s as xsk = E[xk |Ys], and the corresponding conditional
expectation of the variance of estimation error is Psk =

E[(xk −xsk )(xk −xsk )
T
|Ys]. Similarly, the covariance matrix of

error at time k and t is expressed as Psk,t = E[(xk − xsk )(xt −

xst )
T
|Ys].

The equations for estimating xsk where s ≤ n are consistent
with the Kalman filter equations. With initial conditions x00 =

µ0 and P00 = 60, and for k=1,2,. . . , n,

xk−1
k = Axk−1

k−1 + Buk−1 (7)

Pk−1
k = APk−1

k−1A
T

+ Q (8)

xkk = xk−1
k + Kk (yk − Cxk−1

k − Duk ) (9)

Pkk = (I − KkC)P
k−1
k (10)

with

Kk = Pk−1
k CT (CPk−1

k CT
+ R)−1. (11)

The updated mean xkk can be seen as taking the predicted
mean xk−1

k and subsequently incorporating a correction
proportional to the discrepancy between the predicted value
(Cxk−1

k + Duk ) and the actual observation yk . The factor for
this adjustment is represented by the Kalman gain matrix Kk .
The relevant scales of Q and R are essential for determining
the Kalman gain.
Then the posterior marginal distributions xnk can be updated

conditioned on all the observations Yn. In the context of
time-series data, this involves incorporating both the past
and future observations. Although this approach is not
applicable for real-time predictions, it serves a crucial role in
determining the model’s parameters. With initial conditions

xkk and Pkk obtained via (7) to (10), for k = n, n− 1, . . . , 1,

xnk−1 = xk−1
k−1 + Jk−1(xnk − xk−1

k ) (12)

Pnk−1 = Pk−1
k−1 + Jk−1(Pnk − Pk−1

k )JTk−1 (13)

where

Jk−1 = Pk−1
k−1A

T (Pk−1
k )−1. (14)

The covariancematrix of estimation error at time k and k−1 is
given by

Pnk,k−1 = Jk−1Pnk . (15)

3) MAXIMIZATION STEP
The M-step constitutes maximizing Q(θ |Yn, θold) with
respect to the parameters in θ , and thus produces the updated
hypothesis of the parameters, denoted θnew.
Maximizing with respect to µ0 and 60 gives

µnew
0 = xn0 (16)

6new
0 = Pn0 (17)

Optimization of A, B, and Q gives[
Anew Bnew

]
=

[
Sxb Sxz

] [
Sbb Sbz
Szb Szz

]−1

(18)

Qnew
=

1
n
{Sxx − Sxb(Anew)T − Sxz(Bnew)T

− AnewSbx + AnewSbb(Anew)T

+ AnewSbz(Bnew)T

− BnewSzx + BnewSzb(Anew)T

+ BnewSzz(Bnew)T } (19)

and the closed solutions for Anew and Bnew are provided
in (45) and (46).

Maximization with respect to C , D, and R leads to[
Cnew Dnew]

=
[
Syx Syu

] [
Sxx Sxu
Sux Suu

]−1

(20)

Rnew =
1
n
{Syy − Syx(Cnew)T − Syu(Dnew)T

− CnewSxy
+ CnewSxx(Cnew)T + CnewSxu(Dnew)T

− DnewSuy
+ DnewSux(Cnew)T + DnewSuu(Dnew)T }

(21)

and the closed solutions for Cnew and Dnew are provided
in (47) and (48). The above solutions have used the smoothed
estimates, covariances, and cross moments. Some of them are
replaced by symbols for simplicity, see (34) to (44).

The E-step and M-step are repeated until convergence.
Convergence can be referred to as either the algorithm reaches
a predefined number of iterations or the log-likelihoods of
two iterations differ by a predefined threshold. We adopt the
first condition in this study.
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B. MODEL-SPECIFIC DESCRIPTIONS
In the last section, we have introduced the inference and
learning in the most general state-space formulation. Next,
we discuss three specific modelling approaches that having
differing assumptions and formulations.

1) LDS
Unlike traditional fixed-parameter soft sensors, LDS allows
the regression coefficients to vary with time. The state-space
representation for LDS follows

(State equation) xk+1 = Axk + wk (22)

(Observation equation) yk = Ckxk + vk (23)

where xk+1 is the regression parameter at time k + 1. The
evolution of xk+1 is controlled by the deterministic and linear
transformation of xk to Axk , and followed by a random walk
wk . Then, Ck , the measured sensor data at time k , relates
the observation yk to the state variable xk . The transition
matrix A in this case is often assumed to be a diagonal matrix
for simplicity [1], [20]. In some works, A is assumed to be
identity matrix, modelling small variation and gradual change
of the regression parameter [30].

It can be seen that (23) has the structure of a linear
regression model but the coefficient vector xk varies over
time. A simple illustration of LDS is provided in the left
part of Fig. 1, where the wavy line depicts the time-varying
coefficient vector. Generally, soft sensors with constant
coefficients may work for some special static and stationary
cases, but models with time-variant regression parameter
are more realistic in reality. Not only is LDS a powerful
tool to analyze a wide range of system changes occurred
in dynamical physical systems, it also provides additional
facilities such as incorporating prior knowledge of process
dynamics and data information, retaining tractability of
inference, and requiring no predefined window size or
forgetting factor.

Due to the simple form of the LDSmodel, its parameter set

θ
def
= {µ0, 60,A,Q,R} can be easily obtained by imposing

0 on all elements of B and D.

2) ADLV
Different from the LDS models, the state variables in ADLV
models are defined in terms of the feature space, rather
than the regression coefficient. In this study, the state-space
representation for ADLV models follows

(State equation) xk+1 = Axk + Buk + wk (24)

(Observation equation) yk = Cxk + vk (25)

where the state equation describes the dynamic latent
variables. The latent variable xk+1 not only has a correlation
structure originated from the multivariate autoregressive
model, where the correlation is captured by the transition
matrix A, and it is also related to the linear projection of
the measured input uk . wk is the white Gaussian noise. The
measurement yk is a linear projection from a lower dimension

of current latent feature xk , where C is the regression
parameter and the noise vk is the normal distributed residual.
This formulation is distinguished with some other dynamic

latent variable models proposed in [18], [19], [20], and [21]
that it directly incorporates the measured input into the
state equation. Furthermore, it is noted that Zhou et al. [29]
have used this terminology previously, i.e., the autoregressive
dynamic latent variable (ARDLV) model, they argue that the
latent variable at current time step is correlated to its past L
values, and thus, resulting a AR(L) process. However, cross
correlations are not considered in this study and our model
remains an AR(1) process.
It can be observed that through the introduction of uk ,

the state equation of ADLV model has more parameters
than the corresponding LDS model, and it is also less
straightforward to understand the model. The middle part of
Fig. 1 provides a simple illustration of the ADLV models,
where the circles (or ellipses) with concentric rings symbolize
the expanding and contracting latent feature space, and the
arrows radiating in and out illustrate the potential changes
and dynamics of the system. By imposing zeros on D, the

solution of parameter estimations of the ADLVmodels (θ
def
=

{µ0, 60,A,B,Q,C,R}) through EM algorithm follows the
general derivations in Section III-A2 and Section III-A3.

3) STS
Although the majority of the study on this topic define the
state vector as either related to the regression coefficients or
the latent feature space, it is possible to attribute the process
dynamics to other factors. In fact, there are advantages to
include all the dynamic variables in the state vector so that
the measured input can be seen as deterministic. For example,
we define a simple structural time series (STS) model as the
following

(State equation) xk+1 = Axk + wk (26)

(Observation equation) yk = Cxk + Duk + vk (27)

where the process dynamics at time k + 1 are assumed
to be captured by the state vector xk+1, and yk is a linear
transformation of xk with the addition of a classical linear
regression on the known or predetermined exogenous vector
uk , and an observation noise modeled by vk .
The essence of the STS models lies in the decomposition

of the observations into several components, and domain
knowledge plays an important role. For example, (26) can
represent a known FPM expressed in a difference equation
(or a set of equations) [7]. The state vector can also account
for external factors that influence the process, such as
the change of the weather or season, the occurrence of
system maintenance, and human error, which can enter the
observation equation in a similar manner as (26). This is
parallel in structure with time series modelling in economic
research, which seeks explanations of the observation from a
variety of effects, such as the stochastic trend, the seasonal
component, rare event, etc. Thus, not only does the STS
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FIGURE 1. Simplified graphic illustrations of the three dynamic models that all function under the standard state-space framework: left) the LDS model;
middle) the ADLV model; right) the STS model.

model support the specification of the model, but it also offers
more interpretability and assists further analysis.

In Fig. 1, the illustration of STS model (right) is on the
basis of the LDS models and the ADLV models, where
neither change of the regression coefficients (straight line)
nor fluctuations of the feature space are observed. On the
contrary, some additional disturbance influences the process
dynamics.

To sum up, the three examples we have listed model the
process dynamics from different point of views, and details
regarding the descriptions of the variables and matrices are
summarized in Table 1.

TABLE 1. The model-specific differences in descriptions.

C. PREDICTION AND FORECASTING
After learning the parameters through EM algorithm, the
models could be readily used for prediction. In this study,
we investigate both the online prediction and offline predic-
tion of the three models. By comparing and highlighting the
distinction between the two approaches, we aim to provide
a clear understanding of their strengths and implications for
state-space modelling.

1) ONLINE PREDICTION
Online prediction in the context of SSM refers to making
prediction based on the recursive estimation of the system’s
state. It assesses the models’ ability to make one-step-ahead
predictions, which is a practical requirement during plant

operation. This approach is consistent with the Kalman filter
equations

xkk = xk−1
k + Kk (yk − Cxk−1

k − Duk ) (28)

xkk+1 = Axkk + Buk (29)

ŷk+1 = Cxkk+1 + Duk+1, (30)

where the most recent observation is incorporated and the
state estimate is corrected with the prediction error, leading
to potentially more accurate and timely predictions.

2) OFFLINE PREDICTION
Offline prediction in this study refers to predicting the future
states or outputs without updating the state variables based
on new observations. It tests the model’s ability to capture
long-term trends, dynamics, and fluctuations in the data. This
kind of prediction does not employ any correctionmechanism
from future observations, and its accuracy relies heavily on
the proper initialization of the model and its parameters.

xkk = xk−1
k (31)

xkk+1 = Axkk + Buk (32)

ŷk+1 = Cxkk+1 + Duk+1 (33)

As the equations show, prediction of target variable ŷk offline
requires only the system’s model and the known inputs
(process data). If the model captures the dynamic of the
system correctly and matches the actual measurements in
testing phase, it is expected to operate on its own evenwithout
the update from the newmeasurements. This independence of
operation helps relieve the burden of constantly monitoring
the target through laboratory experiments.

IV. EXPERIMENTS AND RESULTS
The research on the three modeling methods discussed in this
paper pointed to the relevancy of a comparative analysis of
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FIGURE 2. Online and/or offline prediction results of the butane content of the six models. Black solid line is the measurements of the test set, red
dashed line represents the online prediction results, and the blue dash-dot line denotes the corresponding offline predictions.

TABLE 2. Descriptions and analysis about the case studies.

their practical effects in the soft sensor prediction problem.
Such comparison can assist researchers and practitioners
design their models when building soft sensors. For this
purpose, three benchmarks derived from real industrial appli-
cations are employed as case studies. These datasets present
different statistical properties and cover representative types
of processes and variables of interest, as shown in Table. 2.
We chose these datasets to provide a discussion on the effects
of the modeling techniques applied to soft sensor prediction.

In addition to comparing the three dynamic models,
we also include the ordinary least squares (OLS) regression
as the baseline and two representative neural networks,
namely RNN and LSTM, in the comparison experiments.
After training the models, they are tested in two ways,
online prediction and offline prediction, where applicable.
To maintain consistency across the experiments, we also
evaluate the RNN and LSTM models in an offline mode,
where the true observations are substituted with the network’s
predictions.

To evaluate the prediction performance of the comparison
methods used in our case studies, we employ the root mean

square error (RMSE) and mean absolute error (MAE) as
the evaluation metrics. Next, we describe the performed
experiments in detail.

A. DEBUTANIZER COLUMN DATASET
The debutanizer column dataset has been commonly used
as a study case for soft sensor development [4], [16],
[31]. In a desulfuring and naphtha splitter plant in Italy,
7 sensors, including top and bottom temperature, pressure,
reflux flow, etc., are installed to monitor the butane
concentration in stabilized gasoline. A total of 2394 data
samples have been collected in the process, among which
the first 2000 samples are used for model training, while the
remaining 394 instances are used for testing.

For RNN and LSTM, the initial 2000 samples are further
split, reserving 400 samples for model validation. In the
experiments, both RNN and LSTM are composed of one
recurrent layer, 10 features in the hidden state, Tanh activation
neural networks, and the learning rate and epoch number are
determined based on the specific application requirements.
And the length of the input sequence is set to be 3.

The initialization for the EM algorithm and Kalman filter
plays an important role for its convergence and stability. For
all three models, they are performedwith approximate diffuse
initialization, assuming little knowledge of the initial states,
i.e., zeros for initial state µ0 and 60 = αI , where α =

100 and I is the identity matrix. Matrices A, Q, and R are
assumed to be αI with α = 1, 0.0005, and 0.1, respectively.
For the ADLV model, matrix B was initialized by the right
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singular vectors of the input data, conveniently obtained
through the PCA algorithm, whereas C was initialized
randomly, and the dimension of the state d is assumed to be 3.
Finally, the H and C matrices in the STS model were also
initialized randomly, and the dimension of the state r is set
as 2.

TABLE 3. The RMSE/MAE performances for butane content prediction of
the comparison methods and the iteration number required.

FIGURE 3. Taylor diagram of predictions for debutanizer column dataset
produced by different models (Superscript of * to model names refers to
results of online predictions, and the next two Taylor diagrams follow the
same mark.).

The comparison results of the debutanizer dataset are
summarized in Fig. 2, Table 3, and Fig. 3. The measurements
in the test set exhibited wavy fluctuations across time and
changed smoothly. In the predictions, the baseline model,
OLS, only captured the pattern locally with many undesired
small variations. For the other methods, they all produced
accurate predictions for online predictions, whereas the
offline predictions exhibited different patterns.

The predictions made by the LDS model drifted directly
from observations when no labels were available, indicating a
disagreement between the learned model and the truemodel.
Comparatively, the ADLVmodel and STS model generalized
better than the LDS model, as shown in Table 3. The ADLV
model is distinguished by its smooth predictions that matched
the pattern of the measurement in general, and the predictions

results of STS model had the lowest RMSE. Furthermore, the
predictions of the RNN and the LSTMmodels were similar to
that of the OLSmodel and drifted away from the observations
in the middle.

We also plotted Taylor diagram [32] as a goodness-of-fit
measure to evaluate the performance of the comparedmodels.
Taylor diagrams summarize three performance metrics of
each model in the prediction of one dataset in a single plot:
standard deviation of the predictions indicated by the distance
to the origin, centered RMSE (CRMSE) shown in contours,
and Pearson correlation coefficient between the observed and
the simulated related to the azimuthal angle.

In Fig. 3, the online predictions of the three models all
demonstrate similarities to the observations (black star on
the x-axis), i.e., closer standard deviations and higher corre-
lations to the reference point. Conversely, the predictions in
the offline mode are marked by larger standard deviation (the
ADLVmodel) and lower correlations to the observations (the
LDS and STS models). It is noted that the ADLV model has
the least change of performance between online and offline
predictions in terms of correlation, demonstrating reliability
compared to the other two models.

B. MELT INDEX DATASET
The second dataset was collected from the daily records of
process data and laboratory measurements in an industrial
polyethylene process plant in Taiwan [33]. After prepro-
cessing, 17 features from the second and third reactors are
selected as input data, while the melt index of the third reactor
serves as the output variable for the soft sensor. Among
the 331 observations, those collected from July 2009 (the
first 249 samples) are used for model training, and the data
acquired since 2011 are used for testing. For the RNN and
LSTM, the last 49 samples of the training set are used for
validation.

The initialization for the EM algorithm and the Kalman
filter remained in a similar way as in the last experiment,
except the initialization of the state covariancematrixQ = αI
for the ADLV model and the STS model, with α = 0.1 and
α = 0.01, respectively, and an initialization of smaller
observation error variance, with R = 0.05.

TABLE 4. The RMSE/MAE performances for melt index prediction of the
comparison methods and the iteration number required.

The comparison results for the melt index dataset are
summarized in Fig. 4, Fig. 5 and Table 4, respectively.
Compared to the previous example, the target variable in this
case study exhibited more drastic fluctuations over time. The
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FIGURE 4. Online and/or offline prediction results of the melt index of the six models. Black solid line is the measurements of the test set, red dashed
line represents the online prediction results, and the blue dash-dot line denotes the corresponding offline predictions.

FIGURE 5. Taylor diagram of predictions for melt index dataset produced
by different models.

OLS regression model with 17 features achieved partially
satisfactory prediction performance. It predicted well for the
first 60 samples but gradually deviated from the true pattern
in the latter part, possibly due to its inability to capture new
system dynamics.

In this example, the three methods had similar prediction
errors and lower correlations to the observed in general,
which makes the selection of the best model more difficult.
Although the offline prediction results of the ADLV model
were closer to the observed, the results of the STS model
presented a similar standard deviation in scale, and the
results of the LDS model were more balanced in these
two aspects. Moreover, the distances between the online
predictions and offline predictions of the three models were
relatively close, showing in three pairs in Fig. 5. This suggests
that all three models produced reasonable results and model
selection depends on considerations for different aspects of
predictions.

Regarding the results of RNN and LSTM, their complex
structures did not benefit this task and yielded unsatisfactory
results. As shown in Fig. 4e, the RNN model produced
predictions in opposite directions and showed latency in
its predictions, particularly near the end of the test set.
On the other hand, the prediction results of LSTM are
flatter and suggest a gap in predictions after switching to
offline mode. Nevertheless, training neural networks required
significant effort in parameter tuning compared to the state-
space models, and the resulted models lacked interpretation.

C. SULFUR RECOVERY UNIT DATASET
The third case study is based on another real-life industrial
chemical process, specifically the sulfur recovery unit (SRU)
process, which aims to remove environmental pollutants from
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FIGURE 6. Online and/or offline prediction results of the SO2 concentration of the six models. Red dashed line represents the online prediction
residuals, and the blue dash-dot line denotes the corresponding offline prediction residuals.

acid gases. The SRU dataset is a benchmark dataset for soft
sensor design [11], [31], which takes five different acid gas
flows as input to predict the concentrations of hydrogen
sulfide (H2S) and sulfur dioxide (SO2) in the tail stream.
Based on prior expert analysis of the process dynamics, the
target variable is considered related not only to the current
input data but also to the input query sampled 5, 7, and 9 time
steps earlier [31]. This leads to a total of 20 dimensions after
appending the input data.

For this study, we choose the concentration of sulfur
dioxide (SO2) as the target variable. After pre-processing, the
SRU dataset contains 10,072 samples of 20 process variables
and one target variable. Among which, the first 7000 samples
are used as the historical training data for OLS and the
three dynamic models. For the RNN and LSTM, the latter
2000 samples of the training set are used for model validation.
The remaining 3072 samples form the test set.

For this case study, the EM algorithm and Kalman filter
were initialized with R = 0.01, and Q = αI , where α =

0.0001 for the LDS model and α = 0.01 for the ADLV
and STS models, and the transition matrix A = 0.1I for
the STS model. All the other parameters were generated
consistently as the first two examples. For the training of
RNN and LSTM, two-layer neural networks with 100 hidden
nodes were employed and trained for 250 epochs.

Table 5 summarizes the prediction results of the com-
parison methods on the test set of the third case study.
Although the offline prediction results of all three models
present similar patters in Fig. 6, according to Fig. 7, however,

TABLE 5. The RMSE/MAE performances for SO2 concentration prediction
of the comparison methods and the iteration number required.

the result of the ADLV model was closer to the observed,
had similar standard deviation and smaller RMSE than the
other two methods. It is also noted that the ADLV model
had the least changes in all three metrics between the online
predictions and offline predictions, as shown in Fig. 6b. The
consistency of performance is a desired quality when applied
in practical applications. Lastly, both the online and offline
predictions of RNN and LSTM appeared very flat and lacked
details, resulting in large residuals compared to the other
models. This suggests that the RNN and LSTMmodels might
not be as suitable for this particular application.

V. DISCUSSION
Our experiment results suggest that the prediction per-
formance of each dynamic models for for soft sensor
problems were dependent on the characteristics of the dataset
and the nature of the process. And the significance of
choosing a suitable modelling method is visualized in Fig. 8,
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FIGURE 7. Taylor diagram of predictions for sulfur dataset produced by
different models.

which shows the observed maximum prediction accuracy
improvements (measured by the decrease in RMSE error)
over the OLS regression approach.

As shown in Fig. 8, the online approach consistently shows
a significantly higher accuracy improvement compared to
the offline approach. This suggests that the online methods
are more effective at adjusting to changes in real-time data.
It can be observed that the LDS model and the STS model
show higher online accuracy improvements (90% and 89%),
demonstrating good adaptability and flexibility, particularly
when the observations are assumed to be measured with
high resolution. This may also relate to their having less
parameters compared to the ADLV model and are therefore
easier to train.

Furthermore, by analyzing the decrease in prediction
accuracy across the online and offline predictions for each
model in Fig. 8, we observe that the ADLV model is the
most consistent among the three models. This observation
is in agreement with the results in the prediction plots
and Taylor diagrams shown earlier, which suggests that the
complexity of the ADLV model might allow it to capture
more nuanced patterns through dimensionality reduction.
Given this results, the ADLV model may be the preferred
choice if an application requires offline predictions.

Moreover, our experiment results also indicate dependence
upon the characteristic nature of the datasets. We believe that
understanding the difference in the intrinsic processes helps
selection of a suitable model. Accordingly, Fig. 8b presents
this complementary information. It can be observed that
the dependence on datasets is stronger than that of models.
The debutanizer column dataset has the highest online
prediction improvement at 89% and most offline prediction

FIGURE 8. Maximum online and offline prediction accuracy
improvements. (a) presents model-wise improvement across three
datasets. (b) presents dataset-wise improvement between three models.

improvement at 31%. The results of the SRU dataset follow
a similar pattern, while the melt index dataset exhibits the
least online (26%) and offline (18%) improvements. Next,
we analyze this results from two aspects, the data perspective
and the process perspective.

According to Table. 2, the debutanizer column dataset
and the SRU dataset share many similarities. Their larger
sizes compared to the dimensions allow for the successful
training of more complex models, such as the ADLV
model. Conversely, datasets with smaller sizes and larger
dimensions, such as the melt index dataset, may cause
overfitting problems. These differences in data statistics
are also related to sampling frequencies. Despite the large
number of samples in the SRU dataset, its high sampling
frequency (every minute) only covers a short period of
time (about 7 days). In contrast, the melt index dataset was
sampled daily and spanned almost a whole year. The smaller
size and longer time span make it more suitable for a time-
varying coefficients model like the LDS model.

Differences in the nature of the process and the variable
of interest also help explain the performance of each model.
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The polymerization process focuses on the ease of the flow
of the melt of the produced material and is directly related
to the quality (average molecular weight) of the end product.
In contrast, the desulfuring and the sulfur recovery processes
concentrate on the by-products (butane content and hydrogen
sulfide concentration) and aim to reduce environmental
pollutants and contaminants. In this context, the pollutants
need to be minimized, and the models are designed to
signal abnormal high-level concentrations to optimize their
removal. The complex chemical reactions involved and the
indirect links between the process data and the key variable
may require more complex models (like the ADLV and STS
models) to capture the underlying dynamics.

VI. CONCLUSION
To sum up, this paper presents three representative state-space
formulations for dynamic soft sensing applications. These
different models need to be selected appropriately to capture
the underlying dynamics of the process and ensure prediction
accuracy. For this purpose, we evaluated three modelling
methods commonly used in real-world applications. We aim
to contribute to the process of formulation, selection and
application of SSM-based dynamic models encountered in
industrial projects.

A detailed assessment of the effects of these three
models on soft sensor predictions was conducted based on
our experiment results. The high percentage improvements
indicate that all three models are significantly better than
the baseline OLS approach when implemented online.
Specifically, we observed that the results of the LDS model
were consistently the best among all models for online
predictions. The results of the STS model were in similar
range to that of the LDS model. The online approach’s
superiority suggests that it’s better suited for adapting to
dynamic environments, but it may also require continuous
data streams and could be more sensitive to data anomalies
or noise.

On the other hand, the offline predictions produced by the
three models demonstrated varying patterns and there was
no best model across the three datasets. Factors including
data size, sampling frequency, the intrinsic characteristics of
the process all influence the prediction results. Nonetheless,
it was possible for us to observe that the ADLV model
produced the most consistent predictions across online
and offline predictions, which indicates its ability to work
with larger datasets and potentially complex relationships.
In practice, this means that the model is reliable even when
it is not updated by the laboratory measurements. We also
note that the result of the STS model was closely related
to that of the OLS model and can generally improve its
result. Understanding these effects helps guide the selection
of appropriate models for different applications and data
types for soft sensor development in industrial processes.

It should be noted that modelling and interpreting the
underlying dynamics of the physical process based on
the collected process data is a very challenging problem.

Real-world data may present more complex nonstationarity
and show varying characteristics across applications. The
models we discuss in this paper lay a foundation on the
subject upon which further theoretical exploration of more
sophisticated predictive frameworks can be constructed.
We also suggest future research to validate the models across
different domains and industries.
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