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ABSTRACT Infrared imaging has broad and important applications. However, the infrared detector
manufacture technique limits the detector resolution and the resolution of infrared images. In this work,
we design a Recurrent Large Kernel Attention Neural Network (RLKA-Net) for single infrared image
super-resolution(SR), and then demonstrate its superior performance. Compared to other SR networks,
RLKA-Net is a lightweight network capable of extracting spatial and temporal features from infrared images.
To extract spatial features, we usemultiple stacked Recurrent LearningUnits (RLUs) to expand the network’s
receptive field, while the large kernel attention mechanism in RLUs is used to obtain attention maps at
various granularity. To extract temporal features, RLKA-Net uses the recurrent learning strategy to keep
persistent memory of extracted features, which contribute to more precise reconstruction results. Moreover,
RLKA-Net employs an Attention Gate (AG) to reduce the number of parameters and expedite the training
process. We demonstrate the efficacy of the Recurrent Learning Stages (RLS), Large Kernel Attention Block
(LKAB), and Attention Gate mechanisms through ablation studies. We test RLKA-Net on several infrared
image datasets. The experimental results demonstrate that RLKA-Net presents state-of-the-art performance
compared to existing SR models. The code and models are available at https://github.com/ZedFm/
RLKA-Net.

INDEX TERMS Infrared image super-resolution, image processing, recurrent neural network, attention
mechanism.

I. INTRODUCTION
Infrared imaging can provide valuable thermal information
about objects, thus having broad application areas such
as medical diagnostics, security surveillance, and defense.
However, compared to visible images, manufacturing high-
resolution infrared detectors is more challenging [1]. Hence,
infrared images often present comparable low resolution
and visual quality. Thus, image super-resolution (SR) is
a critical technique that can reconstruct high-resolution
infrared images from low-resolution (LR) measurements
to recover the thermal details of an object. Moreover,
image super-resolution can also enhance the performance of
detection and recognition using LR infrared images [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Ángel F. García-Fernández .

Single-image super-resolution is a classical computer
vision problem, which reconstruct a high-resolution image
from an LR image by solving an ill-posed inverse prob-
lem [3], [4], [5]. As deep learning technology grows rapidly,
a large number of convolutional neural networks (CNNs)
have been designed for image SR and achieved remarkable
performance. However, research on infrared image SR
methods is few. Moreover, the state of the art (SOTA) CNN-
based SR algorithms designed for visible images do not
perform well on infrared images as shown in Fig. 1(left),
even retrained on infrared images. This is due to the imaging
mechanisms of infrared detectors significantly differ from
visible detectors, resulting in distinct visual characteristics
between infrared and visible images.

In this paper, we design a lightweight architecture
named Recurrent Large Kernel Attention Neural Network
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FIGURE 1. CNN-based SR model specifically designed for visible images
to reconstruct high-resolution infrared images typically yields
unsatisfactory performance. Scenario: image 00719 from FLIR [6]
dataset. Left: RCAN [7]. Right: our RLKA-Net (×4).

(RLKA-Net) for infrared image SR, which consists of
Recurrent Learning Stage (RLS), Large Kernel Attention
Block (LKAB), and Attention Gate (AG). Generally, the
most common way to enhance the performance of CNN
is to unfold the network and deepen the structure in the
temporal or the spatial dimension. In RLKA-Net, we use
Recurrent Learning Stages (RLS) to unroll the network in the
temporal dimension, and use multiple stacked Large Kernel
Attention Blocks (LKAB) to unfold the network in the spatial
dimension. With RLS and LKAB, the extracted temporal
and spatial features help RLKA-Bet present superior SR
performance. Furthermore, the Large Kernel Attention Block
is based on the large kernel decomposition assumption, which
reduces the parameters in convolutional kernels and improves
the calculation efficiency. Additionally, the Attention Gate
facilitates faster convergence during the training process.
As shown in Fig 2, our RLKA-Net achieves state-of-the-art
performance in infrared image super-resolution comparing to
other SR models.

FIGURE 2. Trade-off between parameters and performance(PSNR) on
CVC09 for ×4 infrared SR.

To summarize, our contributions are listed as follows:
1) We design the Recurrent Large Kernel Attention

Neural Network (RLKA-Net) for single infrared image super-
resolution. RLKA-Net is a lightweight model that efficiently
reconstructs high-resolution infrared images, achieving state-
of-the-art performance in several infrared datasets.

2) We propose the Recurrent Learning Stages (RLS) to
extract temporal features for infrared SR tasks. RLS not only
keeps persistent memory of the extracted features in training
steps but also expands the network’s receptive field.

3) We design the Large Kernel Attention Block and
Attention Gate to obtain multi-scale attention maps and
reduce computational complexity, which ensures RLKA-Net
a lightweight model for efficient infrared image SR.

The remainder of this paper is organized as follows.
In Section II, we briefly review the related works about
infrared image SR method. In Section III, we discuss
the architecture of our Recurrent Large Kernel Attention
Network, along with RLS, LKAB, and AG. In Section IV,
we present the details of the infrared image datasets and the
training configurations, as well as the ablation analysis and
the experimental results. Finally, we draw the conclusion and
discuss the future directions of our work in Section V.

II. RELATED WORK
A. LIGHT-WEIGHT SINGLE IMAGE SUPER-RESOLUTION
(SISR) MODELS
In SISR, SRCNN [8] is a pioneering work that introduces
deep learning into the field. Early deep learning SISR works
primarily focus on deeper structures to improve feature
extraction abilities. In VDSR [9], a 20-layer network with
665K parameters is used. Then another dense-connected
network named DRCN [10] with 1,774K parameters is
designed. Later, Zhang et al. [11] design the residual
dense network (RDN, 128 layers) for SISR. Group from
Northeastern University [7] design the very deep residual
channel attention networks (RCAN, 400 layers) to extract
low-frequency information. Furthermore, based on residual
learning, dense connections, and attention mechanisms, more
networks with a great amount of parameters are proposed [5],
[12], [13], [14], [15]. Although these networks present
better results, they use a large amount of parameters, make
computational cost expensive, thus limit their performance in
real-time reconstruction applications.

To reduce computational cost, Dong et al. [16] redesign
SRCNN by directly extracting features from LR images
instead of pre-upsampling these images first. This strategy
avoids processing massive data at the beginning and has
been widely applied in SISR networks [17], [18], [19].
Additionally, depth-wise separable convolutions [20], [21],
self-calibrated convolution [22], and group convolution [23]
have been employed to make deep networks smaller.
In BSRN [24], depth-wise separable convolution replaces
standard convolution to reduce computational cost, while two
types of attention schemes are also designed for accurate
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reconstructions. In the network PAN [25], a pixel attention
(PA) scheme with self-calibration for efficient SSIR is
designed. In CARN-M [26], the group convolution module
presents remarkable results compared to traditional time-
consuming models. In addition, in network RFDN [27],
the receptive field is expended while the network uses a
small number of parameters. Based on adaptive cropping
and information multi-distillation, the lightweight model
IMDN [28] presents distinguished performance for SSIR.
VapSR [29] is a vast-receptive-field pixel attention network
with 342K parameters. Experimental results demonstrate this
performance of the well-designed attention.

B. NETWORKS FOR INFRARED IMAGE SR(I2SR)
Although numerous deep learning models have been
designed for SISR, a few of them are for infrared images.
Researchers focus more on fusion models for visible and
infrared images [30], [31], [32]. On the other hand, the
performance of applying visible SR models to infrared
images is often unsatisfied.

In 2018, He et al. [33] present the first work of designing
a deep neural network with a cascaded architecture for I2SR.
In paper [34], Rivadeneira et al. construct a comprehensive
thermal image dataset composed with infrared images at
various resolutions, and employed a CycleGAN architecture
for I2SR. Later, Prajapati et al. [35] design a CNN-based
architecture, referred to as ChaSNet, for the PBVS-2021
Thermal SR Challenge. In ChaSNet, the concept of channel
splitting is used to improve the reconstruction quality.
Furthermore, Batchuluun et al. [36] split the thermal
image into smaller region images for deblurring and then
applied a newly proposed generative adversarial network
(GAN) for infrared SR(I2SR). Based on transfer learning,
Huang et al. [37] design the progressive generative adver-
sarial network (PSRGAN). In addition, Yang et al. [38]
utilize visible images as a complementary source, and
design a spatial attention residual neural network for I2SR
reconstruction. Although these I2SR models achieve nice
performance, few of them focus on a lightweight I2SRmodel.

C. RECURRENT NEURAL NETWORKS
Most of the SR models mentioned earlier only unfold the
network in the depth dimension. In contrast, recurrent neural
networks (RNNs) unroll the structure in the time dimension,
thus help capturing temporal features. In 2014, Cho et al. [39]
explore RNN’s potential in feature representation by applying
the RNNEncoder-Decoder for statistical machine translation.
Mao et al. [40] design amulti-model recurrent neural network
(m-RNN) to learn visual information more effectively.
Furthermore, in Mem-Net [41] and DRRN [42], recursive
learning blocks with a multi-path structure are designed
to improved SR performance. The network is unrolled in
the temporal dimension without adding more parameters.
DSRN [43] is a dual-state recurrent network for SISR.

In FBRNN [44], a deep feedback architecture with multiple
recurrent and residual blocks is used.

Unrolling a network in the temporal dimension enables
the model to capture more detailed features from different
learning periods. In addition, by incorporating suitable
attention mechanism in the recurrent learning stage, the
captured detailed features can lead to a better SR result [45].
Thus, in this work, we also use the recurrent learning strategy
in our lightweight I2SR network.

D. ATTENTION SCHEMES FOR IMAGE SR
The attention mechanism can be regarded as a discriminative
selection process, that guides networks to focus on informa-
tive regions for a specific task. In the following, we summa-
rize related works using three attention mechanisms: channel
attention, spatial attention, and multi-attention mechanism.

1) CHANNEL ATTENTION
In 2018, Hu et al. [46] design a compact lightweight
structure called Squeeze-and-Excitation (SE) network, which
can adaptively recalibrate channel-wise feature maps by
calculating the inter-channel dependencies. This is the first
work on channel attention. Subsequently, in RCAN [7],
channel attention based attention residual blocks are used for
SISR to achieve superior reconstructions. Later, SAN [13]
is designed to to capture channel-wise features according
to second-order statistics. Generally, extracting channel-wise
features using the channel attention mechanism can help a
backbone network to improve its representation ability.

2) SPATIAL ATTENTION
Spatial attention focus on the relevance between specific
regions which contribute to better restoration. In SeLNet,
Choi and Kim [47] use spatial attention to achieve better
reconstructions and low computational complexity simulta-
neously. Later, in HAN [48], a channel-spatial attention mod-
ule is designed to learn the channel and spatial inter-feature
dependencies in each layer. Further works tend to combine
different attention mechanisms, or multi-attention mecha-
nism, to learnmore informative features for a better SR result.

3) MULTI-ATTENTION MECHANISM
Based on vision transformers, in IPT [49] and SwinIR [50],
multi-head self-attention is used to capture long-range depen-
dence. Furthermore, a hybrid attention scheme combining
self-attention and channel-wise attention is used in HAT [51]
for SISR. On the other hand, in 2022 Guo et al. [52] indicate
that a large kernel convolution can be divided into three com-
ponents: a spatial local convolution (depth-wise convolution),
a spatial long-range convolution (depth-wise dilation convo-
lution), and a channel convolution. Then, they propose a novel
linear attention mechanism named Large Kernel Attention
(LKA), which keeps the advantages of self-attention and
convolution, such as preserving a long-range dependence,
strong capability to extract structure information, powerful
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FIGURE 3. Architecture of the Recurrent Large Kernel Attention Network (RLKA-Net),number of the recurrent learning stage is set to 4.

self-adaptability, and having less parameters. Latter based
on large kernel attention, MAN [53] designs Multi-Scale
Large Kernel Attention (MLKA), which combines LKAwith
a multi-scale mechanism to build various-range correlations
with low computational complexity.

III. METHODOLOGY
In this paper, we introduce a Recurrent Large Kernel
Attention Network (RLKA-Net) for infrared image super-
resolution (SR). In the RLKA-Net, features are extracted
from infrared images in both spatial and temporal dimensions
with high efficiency. Details of RLKA-Net is presented in this
section.

As depicted in Fig.3, our architecture comprises three
components: the Shallow Feature Extraction Module (SFM),
the Deep Feature Extraction Module (DFM) based on several
Recurrent Learning Stages (RLS), and the high-quality
infrared image reconstruction module.

Given a low-resolution (LR) infrared image ILR ∈ R3∗H∗W ,
SFM is used to extract shallow features Fs ∈ RC∗H∗W

by using a simple 3 × 3 convolution function fSFM (·),
as illustrated in Eq.1:

Fs = fSFM (ILR) (1)

Subsequently, the shallow feature Fs is fed into the DFM
for further feature extraction. DFM is denoted as fDFM (·) as
shown in Eq. 2. Fd represents the extracted deep features.
Utilizing multiple Recurrent Learning Stages (RLS), the
DFM can efficiently extract diverse deep features with fewer
parameters to be optimized. Each RLS composes several
recurrent learning units (RLUs). the l-th RLU is represented
as RLUl(·). Each RLU contains a large kernel attention block
(LKAB), an attention gate(AG) and two normalization layer,
as shown in Fig. 3. Details about RLS, LKAB and AG
are presented in the following subsections. The notation [[·]]
represents the feature refinement procedure of l-th RLU.

Fd = fDFM (Fs)

= [[RLUl (x1) ,RLUl (x2) . . .RLUl (xn)]] (2)

For the reconstruction module, some SISR methods
employ up-sampling operations before skip connections,
which introduce additional computation. But the improve-
ment in reconstructions is limited. To construct a lightweight
SR model, we add the initial shallow feature Fs with Fd
for the final reconstruction module frecon(·) to obtain a
high-resolution infrared image ISR ∈ R3∗H∗W . The final
reconstruction operation is formulated as Eq. 3.

ISR = frecon(Fs + Fd ) (3)

Regarding optimization, we employ the commonly used
L1 loss for a fair comparison with several well-known
SR models. Assuming the input batch contains N infrared
images, i.e., ILRi , IHRi with {i = 1, · · · ,N }, the training
process aims to minimize the L1 loss as illustrated in Eq. 4,

L1(2) =
1
N

N∑
i=1

||fRLKA−N (ILRi )−IHRi ||1, (4)

where fRLKA−N represents the network, and 2 denotes its
optimizable parameters.

A. RECURRENT LEARNING STAGE (RLS)
The recurrent learning stage (RLS) can perform feature
learning both in temporal and spatial dimensions. On one
hand, RLS recursively learn temporal features. On the other
hand, RLS enlarges the receptive field along the depth
direction of the network architecture. Consequently, RLS can
help a network having more accurate reconstructions.

Fig. 4 presents the schematic diagram of the RLS strategy.
We define the symbol O{·}

i
j as the output of the j-th RLU in

the i-th period in the time domain. Then the procedure of RLS
can be illustrated as follows:

I. In stage 1, both the recurrent time and the network
depth are set to one as shown in Fig. 4. The features
extracted from previous module are sent to single one
recurrent learning unit (RLU). The output of this stage
is

O {RLS}
1
1 = RLU1(Fs) (5)
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FIGURE 4. The schematic diagram of recurrent learning stage strategy.

where O {RLS}
1
1 represent the output of stage 1. RLU1

is the operation function of the first RLU.
II. In stage 2, the network architecture is extended in

both time and depth dimensions. As shown in Fig. 4,
we utilize the second RLU to extend the receptive fields
in the spatial dimension. Additionally, features from the
previous recursive period are preserved to learn more
temporal details.

O {RLS}
2
1 = RLU1(O {RLS}

1
1)

O {RLS}
2
2 = RLU2([O {RLS}

1
1 ,O {RLS}

2
1]) (6)

Eq. 6 defines that O {RLS}
2
2 integrates the feature

extracted in stage 1 and stage 2, reserving more spatial
and temporal information.

III. In stage 3, the network architecture is further extended
in both dimensions. The procedure is similar to stage 2.
Eq. 7 defines the outputs of the RLS units.

O {RLS}
3
1 = RLU1(O {RLS}

2
1)

O {RLS}
3
2 = RLU2([O {RLS}

3
1 ,O {RLS}

2
2])

O {RLS}
3
3 = RLU3([O {RLS}

3
1 ,O {RLS}

3
2 ,

O {RLS}
2
2]) (7)

IV. Stage 4 is the final recurrent stage in our network.

O {RLS}
4
1 = RLU1(O {RLS}

3
1)

O {RLS}
4
2 = RLU2([O {RLS}

4
1 ,O {RLS}

3
2])

O {RLS}
4
3 = RLU3([O {RLS}

4
1 ,O {RLS}

4
2 ,

O {RLS}
3
3])

O {RLS}
4
4 = RLU3([O {RLS}

4
1 ,O {RLS}

4
2 ,

O {RLS}
4
3 ,O {RLS}

3
3]) (8)

As shown in Eq. 8, O {RLS}
4
4 integrated all the feature

from previous recurrent learning period, benefiting
from the large receptive field in depth dimension
and the persistent memory from recurrent learning
stages.

V. In summary, the outputs of the l-th RLS can be
summarized by the formula Eq. 9,

O {RLS}
l
1 = RLU1(O {RLS}

l
1)

...

O {RLS}
l
N = RLUN ([O {RLS}

l
1 ,O {RLS}

l
2

. . . ,O {RLS}
l
N−1 ,O {RLS}

l
N ]) (9)

Note that, by ablation experiments, we find that our
DFE model presents the best performance in terms
of reconstruction quality and speed when we set the
number of RLS to 4. Thus, we use 4 RLS stages in DFE.

B. RLU WITH LARGE KERNEL ATTENTION BLOCK (LKAB)
As illustrated in Fig. 3, given an input feature map X ∈

RH×W×C , the procedure of a RLU can be formulated as
Eq. 10,

N = LN (X )

X = X + λ1fLKAB(N )

N = LN (X )

X = X + λ2fAT (N ) (10)

where LN (·) is layer normalization, λ1 and λ2 are the
learnable weight factors, fLKAB(·) and fAT (·) are the operation
of large kernel attention block (LKAB) and attention gate
(AG) modules. The point-wise convolution utilized for
preserving dimensions is omitted in Eq. 10. We present the
details of LKAB and AT in following.

1) LARGE KERNEL DECOMPOSITION
As well-known, large kernel convolutions typically result in
a significant amount of computational overhead and parame-
ters, making optimization challenging. However, it has been
demonstrated [52] that the standard kernel convolution can
be decomposed into three parts: depth-wise convolution
(spatial local convolution), depth-wise dilation convolution
(spatial long-range convolution), and channel convolution
(1 × 1 convolution). For instance, given a K × K large
kernel convolution, it can be decomposed into a

[K
d

]
×

[K
d

]
depth-wise dilation convolution (DWDConv) fDW (·) with the
dilation d , a (2d−1)× (2d−1) depth-wise convolution (DW
Conv) fDWD(·), and a 1×1 point-wise convolution (PW-Conv)
fPW (·). Thus, this large kernel convolution can be illustrated
as Eq. 11,

LKA(X ) = fPW (fDWD(fDW (X ))), (11)

where X is the input feature map X ∈ RH×W×C , and
the output is denoted as LKA(·). Note that, a large kernel
convolution is also referred to as a large kernel attention.

In terms of computational complexity, assuming the input
and output features having the same size H × W × C ,
we denote the number of parameters as P(K , d) and the
floating-point operations (FLOPs) as F(K , d), where d
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represents the dilation rate, and K is the size of the large
kernel. Then, we have [53]

P(K , d) = C(
[
K
d

]2
× C + (2d − 1)2) + C2 (12)

and

F(K , d) = P(K , d) × H ×W . (13)

From Eq.12 and Eq.13, we can find that by reducing the
parameter d ,P(K , d) andF(K , d) decrease quickly. Thus, the
large kernel decomposition can save a substantial amount of
computing costs by selecting an appropriate dilation rate d .

2) LARGE KERNEL ATTENTION BLOCK (LKAB)
Large kernel attention (LKA) has been applied to visible
visual tasks [52], [53] to achiev remarkable performance.
We employ multi-scale LKA to form a large kernel attention
block for feature extraction in I2SR, as shown in Fig. 5:

FIGURE 5. Schematic diagram of the multi-scale large attention block
(LKAB).

I. Given the input feature map X ∈ RH×W×C , LKAB
initially splits X into n groups, X1, X2, · · · , and
Xn ∈ RH×W×C/n.

II. For each group Xi, an independent LKAmodule is used
generate the homogeneous scale attention map LKAi.

III. A spatial attention (SAi) module is used for feature
aggregation as show in Eq. 14,

LKAB(X ) = SA(Xi) ⊗ LKAi(Xi). (14)

where SA(Xi) represents the i-th spatial attention
module, and LKAi denotes the corresponding LKA
module. This is due to that excessive dilation and
partition operations have been found to make visible
SR results [53] having block artifacts.

3) ATTENTION GATE (AG)
Inspired by the gate unit in transformer blocks used
to improve feature representation [51], we construct the
attention gate (AG) by integrating the SA module and depth-
wise convolution, as illustrated in Fig. 6. The Attention

FIGURE 6. Detail about the attention gate (AT).

Gate (AG) serves a dual function: it incorporates an adaptive
gating mechanism into the recurrent learning unit, enabling
the model to selectively attend to related spatial information.
At the same time, AG can help to reduce the number of
parameters thus the computational cost, thereby augmenting
the network’s efficiency in reconstruction, which is critical
for conducting a lightweight I2SR model.

IV. EXPERIMENTS
In this section, we demonstrate our network with a series of
experiments.

A. DATASETS AND IMPLEMENTATION DETAILS
Datasets are very important for learning-based reconstruction
methods. However, most public datasets for infrared images
are on tasks such as fusion, classification, and detection.
Open-source datasets for I2SR are rare. To obtain HR and
LR image pairs for training and evaluation, we utilize the
images from datasets FLIR [6], OSU [54], CVC09 [55], and
LLVIP [56] as HR samples. Fig. 7 presents typical scenes
from these datasets. We then apply bicubic or Lanczos [57]
downsampling with different levels of noise to obtain the
LR samples. Furthermore, we use peak signal-to-noise ratio
(PSNR) and structural similarity (SSIM) to evaluate the
infrared reconstruction quality.

In the training phase, we train the network for each dataset.
The OSU, FLIR, CVC09, and LLVIP datasets contain 270,
2000, 4000, and 6,000 images, respectively. We also do
dataset augmentation by horizontal flipping and rotating each
pair of IR images by 90, 180, and 270 degrees.

We set the batch size and patch size to 16 and 64 × 64,
respectively. The Adam optimizer with β1 = 0.9, β2 = 0.99,
and ε = 10−8, is used for model optimization. The initial
learning rate is set at 2×10−4 and follows a cosine annealing
schedule over 200,000 iterations. All experiments utilize
the PyTorch framework and are executed on two Nvidia
RTX 3090 GPUs.

In the testing phase, we utilize totally 1227 images, 27 from
OSU, 200 from FLIR, 400 from CVC09, and 600 from
LLVIP. The Y channel data of the reconstructed images are
used for quality evaluation.

Additionally, we retrain the SRmodels designed for visible
band on infrared datasets to generate the test results presented
later in this manuscript.
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TABLE 1. Experiments result of different numbers of recurrent learning stage.

TABLE 2. Experiments result of different unfolding method.

FIGURE 7. Typical scenes from the datasets, top-left, CVC09 [55];
bottom-left, LLVIP [56]; top-right, FLIR [6]; and bottom-right, OSU [54].

B. ABLATION ANALYSIS
Here, we present the ablation analysis of our Super-
Resolution (SR) model. Several experiments have been
designed to demonstrate the efficacy of the recurrent learning
strategy (RLS), the large kernel attention block (LKAB),
and the attention gate (AG) components. These experiments
aim to systematically evaluate the individual contributions
of these modules to the performance of the overall model.
Furthermore, we will investigate the potential synergistic
effects that may arise from the interaction between these
components. This analysis will enable a deeper understanding
of our designed SR model, paving the way for future
improvements and potential applications.

1) ABLATION EXPERIMENT ON RLS
As previously discussed, we use RLSs for efficient infrared
image SR. We set the large kernel size as (13 × 13).

A large kernel convolution is decomposed into a (5 × 5)
depth-wise convolution (DW Conv), a 5 × 5 depth-wise
dilation convolution (DWD Conv) with dilation rate 3, and
a point-wise convolution (PW Conv).

a: THE OPTIMAL NUMBER OF RLS
First, we need to determine the optimal number of RLS. The
experimental results are presented in Table 1. When we set
the number of RLS to 2, the modal has fewer parameters
and relatively low computational complexity. However, the
SR reconstruction quality is not high. The PSNR and SSIM
values are pretty low. As we increase the number of RLS,
the reconstruction quality, the PSNR and SSIM values are
improved. However, this also leads to a significant rise in
the number of the model’s parameters and the computational
complexity. Notably,When the number of RLS is in increased
from 4 to 6, the PSNR only improves 0.15dB, while the
number of the parameters increase 800k. Consequently,
to balance computational complexity and reconstruction
performance, we set the number of RLS to 4.

b: DISCUSS ON UNFOLDING METHOD
We evaluate three unfolding models on multiple datasets for
I2SR, unfolding in the temporal, spatial, and in both temporal
and spatial dimensions. The results are presented in Table 2.
We observe that, based on the PSNR and SSIM values,
unfolding in the temporal domain alone presents relatively
low performance. The PSNR and SSIM values for unfolding
in the spatial domain are larger. But the best performance is
observed when using unfolding in both dimensions.

2) ABLATION EXPERIMENT ON LKAB
In order to demonstrate the effectiveness of LKAB, we com-
pare the LKAB module with other typical modules used
in SR, including the Enhanced Residual Block (ERB) in
EDSR [5], the pixel attention block (PAB) in PAN [25],
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FIGURE 8. PSNR vs Iteration of different SR module.

TABLE 3. Experiments result of different super-resolution module.

TABLE 4. Experiments result of with or without attention gate.

TABLE 5. Discussion on computational complexity.

the residual channel Attention block (RCAB) in RCAN [7],
and the large kernel attention (LKA) in VAN [52]. For a
fair comparison, we use the same architecture that unfolds
the network in both temporal and spatial dimensions, only
replacing LKAB with the aforementioned SR modules.
The experimental results are illustrated in Fig. 8 and
Table. 3.
We observe that compared to other attention-based mod-

ules, the ERB performs worst in terms of PSNR and SSIM.
Although the PAB has the lowest number of parameters, the
reconstruction performance is not good. The RCAB module
has the largest number of parameters. But it does not achieve
the best reconstruction results. Our LKAB module presents
the highest PSNR and SSIM values, while using the second
smallest number of parameters.

FIGURE 9. PSNR vs Iteration of RLKA-Net and RLKA-Net-wo in different
datasets.

FIGURE 10. Loss vs Iterlation of RLKA-Net and RLKA-Net-wo in different
datasets.

FIGURE 11. Trade-off between parameters and performance(SSIM) on
CVC09 for ×4 infrared SR.

3) ABLATION EXPERIMENT ON AG
We also conduct experiments on the attention gate (AG) in
the model using the aforementioned datasets. For clarity, the
model using AG is referred to as RLKA-Net, while the model
without AG is named as RLKA-Net-wo.We set the number of
RLS as 4. The PSNR results are summarized in Table. 4. The
PSNR and Loss vs. iteration curves are displayed in Fig. 9
and Fig. 10. It is clear that RLKA-Net with AG consistently
outperforms RLKA-Net-wo in terms of PSNR.
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TABLE 6. Quantitative comparison (average PSNR/SSIM) with other SR models in different infrared datasets.

FIGURE 12. Visual comparisons of our RLKAN with other SR methods on OSU [54] and LLVIP [56] dataset. (×4).

4) DISCUSSION ON COMPUTATIONAL COMPLEXITY
To demonstrate the reduced computational complexity of
using large kernel attention block (LKAB), we replace the

block with conventional spatial attention (SA) module, and
replace the large kernel decomposition with the directly
calculated large-scale convolution. The results are shown
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FIGURE 13. Visual comparisons of our RLKAN with other SR methods on FLIR [6] and CVC09 [55] dataset. (×4).

in Table.5We observed that, Large Kernel Decomposition not
only reduced the computational cost of the network, but also
its PSNR and SSIM performance slightly outperformed those
obtained through direct large kernel computation. That’s
because large kernel attention effectively captures complex
spatial relationships and enhances the final reconstruction
result.

C. EXPERIMENTAL RESULTS
1) QUANTITATIVE EVALUATION
To demonstrate the network RLKA-Net, we conducted
comparative experiments with the other 9 super-resolution
models, FSRCNN [16], EDSR [5], DRCN [10], DRRN [42],
MemNet [41], RCAN [7], IMDN [28], MAN [53], and
SwinIR [50]. Four datasets based on OSU [54], FLIR [6],
CVC09 [55], and LLVIP [56] are used. Details on the four

datasets are discussed in substion IV-A. The number of
parameters in each model, as well as the PSNR and SSIM
values are presented in Table. 6, Fig. 11 and Fig. 2.

From Table. 6, we can observe that the number of
parameters in RLKA-Net is only 100k more than FSRCNN,
much fewer than the other models. In terms of PSNR and
SSIM, deep learning-based methods present better results
than bicubic interpolation. Different models adopt various
feature extraction strategies, such as deepening the network
structure, constructing recurrent modules, and introducing
multiple attention mechanisms, which result in diverse final
reconstruction outcomes. Overall, our RLKA-Net achieves
the highest average PSNR and SSIM values for both scale
factors, ×2 and ×4, across all four datasets. This indicates
that our model is more effective in capturing and preserving
the essential features of infrared images for the SR problem.
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Additionally, it is worth to notice that, the number of
parameters for RLKA-Net is the second smallest one among
the 10 models, and much lower than the numbers for EDSR,
DRCN, RCAN, IMDN, MAN, and SwinIR. This makes it
more efficient and potentially more suitable for real-time
applications.

2) SUBJECTIVE VISUAL EVALUATION
In Fig. 12 and Fig. 13, we present reconstruction samples
using the 9 deep learning models which have the higher
PSNR and SSIM values. Although FSRCNN has the
fewest perameters, its performance is the worst. Thus the
reconstructions are not present here. Fig. 12 presents results
using samples from OSU and LLVIP, while Fig. 13 is for
results using FLIR and CVC09.

Infrared images in OSU are more about campus scenes
captured from a long distance. Image_00116 as shown in
Fig. 12 is a typical one. By comparing the enlarged HR image
and the reconstructions obtained using the 9 models, it can
be observed that, IMDN, MAN, SwinIR and our RLKA-Net
present much more details, while the reconstruction using
EDSR, DRCN, DRRN, and MemNet have blurry and blocky
artifacts. However, RLKA-Net uses much less parameters.

The LLVIP [56] dataset also focuses on campus scenes.
But the images are captured from a closer distance and with a
higher resolution. Using image_40116 fromLLVIP as the HR
sample, we can find that, the reconstruction using RLKA-Net
has higher contrast compared with the other 8 SR models.
Moreover, using the other models, the pedestrians in the
image are blurred, and the details of the tree branches are
severely lost, while the reconstruction using RLKA-Net has
better resolution and more details.

Comparing the reconstructions of the sample image_
004087 in the FLIR [6] dataset (as shown in Fig. 13), we can
observe the followings. For the lattice-like structures of
distant buildings, our RLKA-NET is the only one which can
reconstruct the structure clearly. Additionally, for the nearby
pedestrians and vehicles, other SR methods lose details of
the pedestrian’s head and backpack. The vehicle contours are
blurred. In contrast, our RLKA-NET restores the details with
a better visual quality.

In the last set of reconstructions using image_00253 from
the CVC09 [55] dataset, we can see that, for the windows
of the building, our RLKA-NET has clearer reconstructions
with more details of the edges than the other models. We can
get the same observation for the enlarged person’s head part.

Generally, the reconstructions using RLKA-Net have
much better visual quality.

V. CONCLUSION
In this paper, we design a Recurrent Large Kernel Attention
Network (RLKA-Net) for infrared image super-resolution
(I2SR). The RLKA-Net is based on recurrent learning
strategy and extracts a diverse set of features in both
temporal and spatial dimensions, yielding better I2SR recon-
structions. In RLKA-Net, we design large kernel attention

block (LKAB) and attention gate (AG) specific for I2SR.
LKAB enables efficient multi-scale feature extraction with
a few number of model parameters, thus improving the
performance of the network. Furthermore, the application of
AG accelerates the model’s training process, allowing the
training loss to reach a low level quickly. Experiment results
show that our model (RLKA-Net) achieves the state-of-the-
art performance for the I2SR problem.

For future work, we expect the following directions:
1) Our infrared super-resolutionmodel (RLKA-Net) can be

integrated with target recognition and detection tasks. Under
low-resolution and low-contrast conditions, RLKA-Net can
produce higher-quality images, enabling more accurate target
recognition and detection results.

2) The RLKA-Net model is also applicable to the fusion
of infrared and visible light image super-resolution tasks.
The lightweight RLKA-Net can meet real-time processing
requirements in various scenarios.

3) The RLKA-Net network can be further investigated
for larger-scale SR, or SR for extremely low signal-to-noise
ratios cases.
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