
Received 22 November 2023, accepted 16 December 2023, date of publication 19 December 2023,
date of current version 25 January 2024.

Digital Object Identifier 10.1109/ACCESS.2023.3344817

Dynamic Partial Computation Offloading for the
Metaverse in In-Network Computing
IBRAHIM ALIYU 1, (Member, IEEE), SEUNGMIN OH 1, NAMSEOK KO 2, TAI-WON UM 3,
AND JINSUL KIM 1, (Member, IEEE)
1Department of ICT Convergence System Engineering, Chonnam National University, Gwangju 61186, South Korea
2Mobile Core Network Research Section, Electronics and Telecommunications Research Institute, Daejeon 34129, South Korea
3Graduate School of Data Science, Chonnam National University, Gwangju 61186, South Korea

Corresponding authors: Tai-Won Um (stwum@jnu.ac.kr) and Jinsul Kim (jsworld@jnu.ac.kr)

This work was supported in part by the Electronics and Telecommunications Research Institute (ETRI) funded by the Korean
Government (‘‘A Study of Hyper-Connected Thinking Internet Technology by Autonomous Connecting, Controlling and Evolving Ways’’)
under Grant 23ZR1110; in part by the Institute of Information and Communications Technology Planning and Evaluation (IITP) funded
by the Korean Government [Ministry of Science and ICT (MSIT)] through the Artificial Intelligence Innovation Hub under Grant
2021-0-02068; and in part by the National Research Foundation of Korea (NRF) funded by the Korean Government (MSIT)
under Grant NRF-2021R1I1A3060565.

ABSTRACT The computing in the network (COIN) paradigm is a promising solution that leverages unused
network resources to perform tasks to meet computation-demanding applications, such as the metaverse.
In this vein, we consider the partial computation offloading problem in the metaverse for multiple subtasks in
a COIN environment to minimize energy consumption and delay while dynamically adjusting the offloading
policy based on the changing computational resource status. The problem isNP-hard, andwe transform it into
two subproblems: the task-splitting problem (TSP) on the user side and the task-offloading problem (TOP)
on the COIN side. We model the TSP as an ordinal potential game and propose a decentralized algorithm to
obtain its Nash equilibrium (NE). Then, we model the TOP as a Markov decision process and propose the
double deep Q-network (DDQN) to solve for the optimal offloading policy. Unlike the conventional DDQN
algorithm, where intelligent agents sample offloading decisions randomly within a certain probability, the
COIN agent explores the NE of the TSP and the deep neural network. Finally, the simulation results reveal
that the proposed model approach allows the COIN agent to update its policies and make more informed
decisions, leading to improved performance over time compared to the traditional baseline.

INDEX TERMS Computational offloading, deep reinforcement learning, game theory, in-network comput-
ing, metaverse.

I. INTRODUCTION
The metaverse is a persistent and immersive simulated envi-
ronment breaching the physical and digital world through
virtual, augmented, and extended reality (XR) [1]. An essen-
tial characteristic of the metaverse is its potential to provide
an immersive experience to large groups of users who simul-
taneously share a keen sense of mutual presence through
XR. With the proliferation of cheap XR equipment and tech-
nology, such as head-mounted displays, the metaverse is
expected to feature in multiplayer games, workplace meet-
ings, scientific research, and engineering [2].

The associate editor coordinating the review of this manuscript and

approving it for publication was Rentao Gu .

However, deploying portable and small devices, such as
small head-mounted displays, mobile augmented reality, and
others that can meet the demands of XR, is still a significant
challenge because such devices are limited in processing
power, storage, and battery life [3], [4]. Although mobile
edge computing (MEC) offers a solution through remote
task offloading (TO), it cannot simultaneously support mas-
sive user demand [5], [6], [7], [8]. The computing in the
network (COIN) paradigm is a promising solution that lever-
ages unused network resources to perform tasks, reducing
delay and satisfying the quality of experience (QoE) require-
ments [9], [10], [11]. However, adding computing resources
or enabling COIN increases power consumption. Allocat-
ing the dynamic COIN computing resources and meeting

VOLUME 12, 2024

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

11615

https://orcid.org/0000-0002-5340-6675
https://orcid.org/0000-0002-0420-5658
https://orcid.org/0000-0001-5861-8792
https://orcid.org/0000-0002-4922-1774
https://orcid.org/0000-0002-2433-4473
https://orcid.org/0000-0003-3183-2857

I. Aliyu et al.: Dynamic Partial Computation Offloading for the Metaverse in In-Network Computing

constantly changing user demands, alongside ensuring over-
all system availability, is a critical problem. Considering that
XR functionality can be split into several subtasks [3], the
task-splitting problem (TSP) from the user perspective and
subsequent optimization of dynamic COIN resource alloca-
tion under delay and energy constraints is a fundamental
problem.

A. SCENARIO
We consider a metaverse scenario where multiple users with
user equipment (UE) constraints participating in an XR social
event, such as shopping, competing for the available com-
puting resources. Due to the UE(s) entering and leaving the
network and the dynamic demand and changing status of the
resources, an optimal offloading policy must be predicted
and updated accordingly.We examined theXR functionalities
that can be split between the UE and COIN resources. The
COIN resources are expected to spread across the nodes; thus,
we classify the resources into two: fog in-network computing
nodes (FINs) and edge in-network computing nodes (EINs).
The FINs are closer to the UE, whereas the EINs are farther
from the user. These nodes are controlled and managed by
a COIN controller, which knows the status of the nodes,
including the request queue and distances. The spread of the
computing nodes offers the benefit of distributed computing.
However, it creates the challenge of determining an optimal
offloading location considering the dynamic user demand
and requests pending in the network and each user’s task-
splitting (TS) decision. Thus, we model the TSP as an ordinal
potential game (OPG) and obtain its NE. Each user makes an
independent TS decision based on the generated task; thus,
the solution is suboptimal. Hence, we employ the double
deep Q-network (DDQN) on the network side to optimize the
offloading policy over time.

B. MOTIVATION AND CONTRIBUTIONS
The massive deployment of the metaverse is expected to gen-
erate tremendous demand for computing resources because
it could transform how we live, work, and interact with
the physical world [12]. Moreover, UE, such as mobile
devices, is resource-constrained to provide delay-sensitive
and compute-intensive services for the metaverse [5]. Con-
ventionally, tasks can be fully or partially offloaded remotely
to MEC at the network edge or a cloud data center to
address this challenge. However, MEC is often limited and
cannot support themassive demand of simultaneous users [5],
[6], [7], [8]. Because the metaverse is expected to provide
an immersion experience to a large group of simultaneous
users [13], optimal computing resource allocation is critical to
resolving the resource demand conflict among simultaneous
users. The COIN paradigm is a promising solution that lever-
ages unused network resources to perform tasks, reducing
delay and meeting QoE requirements [9], [10]. However,
adding computing resources or enabling COIN increases
power consumption. This competing situation leads to a joint

optimization problem of time delay and energy consumption
for metaverse tasks. Although tremendous progress has been
made in solving the network joint task-offloading problem
(TOP) [14], [15], [16], most studies have focused on atomic
TO. Furthermore, more research is needed to understand
various metaverse tasks and offloading to COIN-enabled
nodes with the corresponding resources required for each
task.

Therefore, this paper addresses the problem of metaverse
applications, where resource constraints and the demand
for real-time computation present a significant challenge.
We focus on metaverse multiple subtask offloading and
the subsequent offloading policy optimization, considering
the dynamic demand and nature of the COIN resources
under energy and delay constraints. This study considers
the metaverse TSP, partial TOP, and computing and caching
resource allocation for massive deployment. Specifically,
we formulate a joint metaverse task for partial computa-
tional offloading in a COIN environment to minimize energy
consumption and delay while dynamically adjusting the
offloading policy based on changing the demand for compu-
tational resources to avoid congestion.

We prove that the problem is NP-hard, so we transform it
into two subproblems: an optimal TSP on the user side and
a computational TOP on the COIN side. We model the TSP
as an OPG and propose a decentralized algorithm to obtain
its Nash equilibrium (NE). The users in the OPG act inde-
pendently and not toward the collective goals of the system;
thus, its solution is suboptimal for online TS decisions for the
metaverse.

Hence, we formulate the suboptimal performance resulting
from each user in the OPG as a Markov decision process
(MDP) to solve for the optimal partial TO policy. We pro-
pose a DDQN to optimize the system. The agent learns to
adjust the uploading policy to meet the global demand and
resources available in the network. Unlike the conventional
DDQN algorithm, where intelligent agents sample offloading
decisions randomly within a certain probability, the COIN
agent explores the NE of the TS algorithm and the deep neural
network (DNN) within the probability. By exploring the TS
game solution, the agent can update its policies to make
more informed decisions in the future, leading to improved
performance over time.

The proposed approach performs better in lowering partial
TO costs and optimizes the future offloading policy against
the baseline approaches. The main contributions of this paper
are as follows:

1) We formulate a joint metaverse TS and computational
offloading in a COIN environment to minimize energy
consumption and delay while dynamically adjusting
the offloading policy based on the demand to avoid
congestion. We prove that the problem is NP-hard.

2) We decompose the problem into two parts to solve it:
TSP on the user side and computational TOP on the
COIN side. Considering that the TSP is a combinatorial
optimization over a multidimensional discrete space,

11616 VOLUME 12, 2024

I. Aliyu et al.: Dynamic Partial Computation Offloading for the Metaverse in In-Network Computing

we formulate the problem as an OPG and prove the
existence of the NE to determine the optimal TS for
each user.

3) To address the suboptimal performance resulting from
each user acting noncooperatively to minimize their
own cost, not the system state’s collective goal,
we model the TOP as an MDP. We propose a DDQN
to optimize the system. The agent learns to adjust the
uploading of the proposed DDQN to learn the optimal
offloading policy under the users’ TS game solution to
address the TOP. The agent learns to adjust the upload-
ing policy to meet the global demand and resources
available in the network.

4) We conduct extensive simulations to evaluate the
dynamic TO and resource allocation performance.

The rest of the paper is organized as follows. Section II
discusses related studies, and Section III presents the sys-
tem model, including the problem formulation for the TSP
and TOP. Next, Section IV discusses a dynamic partial TO
scheme to solve the problem. Then, Section V discusses the
simulation results to verify the effectiveness of the proposed
method. Section VI concludes the paper.

II. RELATED WORK
The TO can be classified as full or partial (partitioning)
offloading [17], [18]. Full offloading focuses on atomic
tasks. Partial offloading deals with divisible tasks or appli-
cations. Partial offloading can be further classified as
data-oriented, continuous-execution, and code-oriented parti-
tioning offloading [19]. In data-oriented partitioning offload-
ing, the application can split the task into subtasks with
the number of data known beforehand [20]. In contrast,
in continuous-execution partitioning offloading, the number
of data is unknown [21]. Code-oriented partitioning offload-
ing focuses on applications where tasks can be divided into
subtasks with dependencies [22], [23]. Ding et al. [24] con-
sidered code-oriented partitioning offloading inmultiuser and
multi-MEC scenarios with the aim of minimizing the execu-
tion overhead.

Joint communication and computing resource allocation
problems for TO have recently received considerable atten-
tion, particularly in MEC networks [14], [15], [16]. For
instance, Jošilo and Dán [25] considered the problem of
offloading latency-sensitive computation tasks in edge com-
puting under network slicing. Inter- and intraslice radio and
computing resource management have been investigated for
low-complexity dynamic resource allocation. In addition,
Hu et al. [26] addressed atomic TO optimization in MEC,
where multiple users compete for resources while minimiz-
ing transmission power using greedy-pruning algorithms.
Tong et al. [27] proposed the Lyapunov online energy con-
sumption optimization algorithm to solve the queue backlog
and energy consumption in MEC. Further, Liu et al. [28]
addressed TO in MEC considering the mobility user devices
and proposed a mobility-aware and code-oriented partition-
ing computational offloading scheme.

Moreover, other research has considered offloading tasks
to the three major resources—caching, communication, and
computing resources [16], [29], [30]. However, MEC is often
limited and cannot support the massive demand of simulta-
neous users [4]. This problem warrants a solution that can
reduce the computational burden of MEC.

In this vein, the COIN paradigm has also garnered interest
as a potential solution to support latency-constrained appli-
cations. Cooke and Fahmy [31] demonstrated the significant
efficiency of COIN for distributed streaming applications in
terms of latency, throughput, bandwidth, energy, and cost.
The use of machine learning, such as the decision tree, multi-
layer perceptron, and support vector machine, to orchestrate
delay-constrained task placement in COIN has also displayed
remarkable performance [32].

Furthermore, COIN-enabled holographic streaming appli-
cations present improved performance in terms of low
latency and high bandwidth [11], [33]. These studies have
demonstrated the potential of COIN to support the massive
deployment of latency-contained applications, such as the
metaverse. However, for optimal performance and load distri-
bution in terms of energy and latency, considering the location
of the COIN node and user demand under changing network
conditions, a dynamic TO scheme is essential.

Despite this, most previous studies [6], [32], [34], [35],
[36], [37], [38], [39], [40] have treated tasks as a single
unit and did not consider situations where the tasks could
be divided and handled by different computing nodes. This
situation is critical in the metaverse, where a metaverse
task consists of multiple tasks that can be decomposed and
offloaded to different computing nodes (e.g., a COIN node).

Although a study [3] proposed XR TS in the fifth-
generation (5G) network, their solution offers three upload
modes. This approach may be sufficient for a virtual,
augmented, or XR experience with few users. However, opti-
mizing the TO mode is essential for a massive metaverse
deployment scenario, considering the tremendous simultane-
ous demand for network resources. Hoa et al. [41] address
partial offloading in edge-computing-assisted metaverse sys-
tems. However, the authors focus on minimizing latency
constraints and consider single edge server.

Similarly, Tütüncüoğlu et al. [42] considered subtask
offloading in server-less edge computing and proposed an
online learning algorithm maximizing the application util-
ity. In addition, Zhang et al. [43] addressed the subtask
dependency offloading problem in MEC and proposed a
scheme that minimizes the subtask energy and latency execu-
tion. Nonetheless, these studies considered binary offloading
decision-local or server-less edge computing or MEC and
a static topology with users always accessing the same
resources.

Motivated by the limitations of the mentioned work,
this study addresses the problem of metaverse applications,
where resource constraints and the demand for real-time
computations considering multiple subtasks present signif-
icant challenges. Moreover, optimal resource allocation to

VOLUME 12, 2024 11617

I. Aliyu et al.: Dynamic Partial Computation Offloading for the Metaverse in In-Network Computing

FIGURE 1. Typical extended reality (XR) task processing on a device.

efficiently harness the COIN paradigm, considering its
dynamic resources, is a unique problem. Thus, we present
a novel approach that considers both metaverse TS on the
user side and computational TO on the COIN side, aiming
to minimize energy consumption and delay. We propose a
decentralized algorithm to obtain the NE of the TSP, which
is an interesting contribution that addresses the challenge of
users acting noncooperatively. Contrary to previous studies,
the DDQN algorithm explores the NE of the TS algorithm,
leading the agent to make more informed decisions in the
future and improving performance over time.

Table 1 compares the proposed method and state-of-the-art
schemes involving partial computational offloading. As evi-
dent, most previous work has focused on atomic tasks in
MEC. However, the metaverse is characterized by multiple
subtasks whose computational offloading is critical. More-
over, the dynamic set of COIN resources and changing user
demand require attention to harness the benefit of the COIN
paradigm. Although one study [6] employed the game the-
ory and reinforcement learning (RL) approach to address
software caching updates and computational offloading, the
scope is only for MEC. The TO is handled on the user side
using the game theory, whereas the RL operates at the MEC
end to predict whether the task software is already cached in
the server. No further optimization of the offloading policy
is conducted to handle dynamic user demand and the chang-
ing resource status. The uniqueness of our approach lies in
decoupling the TSP on the user side and the subsequent TO
policy optimization.

III. SYSTEM MODEL
A. NETWORK MODEL
This study considers XR applications to be a metaverse con-
stituent with growing interest across a spectrum of users.
The XR processing entails eight functionalities, which can be
grouped into four components: object tracking and detection,
simultaneous localization and mapping (SLAM) and map
optimizationwith a point cloud dataset, hand gesture and pose
estimation, and multimedia processing and transport, such as
rendering and encoding [3] (see Fig. 1). The critical notation
used in this article is summarized in Table 2.

FIGURE 2. Metaverse task offloading in computing in the network (COIN).

In this scenario, a group of users with a metaverse appli-
cation simultaneously generates fork-join-type job tasks on
each device. Each task can be split into four subtasks (four
major components) that can be executed in parallel, in series,
or combined. The UE can locally perform the task or offload
it to an FIN or EIN considering the constraints of power,
computing capacity, QoE, and demand from other users in
the network, as illustrated in Fig. 2. The COIN concept guar-
antees computing resources to be added or made available in
the network. Thus, we consider the availability of computing
resources alongside the joint optimization problem.

We consider a multiuser network system model for the
COIN network, which consists of a UE set κ = {1, 2, . . .K },
a set of fifth- or fourth-generation access points A =

{1, 2, ..A} through which the UE can offload tasks, a FIN set
FIN = {1,fin} and an EIN set EIN = {1 . . . 2, . . . ein}.
The COIN (communication and computing) resources are
defined as the set R = A ∪ FIN ∪ EIN .

B. TASK MODEL
Unlike previous studies [6], [32], [34], [35], [36], [37],
[46] focusing on atomic tasks, metaverse divisible tasks
are considered. For simplicity, we assume the subtasks are
independent–a fork-joint task type. Thus, for UE k , we model
a task of type k as a directed acyclic graph Gk = (Vk ,Ek),
where υϵVk is the subtask. The source node υk0 ϵVk and
sink node υk

|Vk |
represent the task input transmitted via AP

aϵA and the last execution subtask node, respectively. Node
υϵVk\

{
υk0

}
is the computational task and corresponds to the

divisible task function constituting a metaverse task. More-
over, a directed edge e

(
υkp , υ

k
q

)
ϵEk indicates that υkp (the

parent node) is executed before υkq (the child node).

11618 VOLUME 12, 2024

I. Aliyu et al.: Dynamic Partial Computation Offloading for the Metaverse in In-Network Computing

TABLE 1. Related work.

TABLE 2. Notation summary.

We assume each metaverse task f ϵF is denoted by the
tuple parameters:

〈
If ,Vf ,Pf

〉
, where If , Vf , and Pf are the

task f input size, software volume, and computational load,
respectively. The task f =

{
fk,0, fk,1, fk,j

}
, where k is

the user and j is the number of subtasks.

C. COMMUNICATION MODEL
This work considers that the computing nodes in the FIN
and EIN operate at different frequencies and have no mutual
interference between the two offloading destinations. Users
offloading to the same destination experience interference
because code division multiple access enables user offload-
ing to the same destination to occupy the same spectrum

of resources. Similar to another study [6], we investigated
the wireless interference model for partial computation
offloading in COIN. The uplink rate for the FIN and EIN,
respectively, for a user k in time t is [6], [47]:

ωk,t =
B
M
log

(
1 +

ρFINk ηFINk∑
nϵK\{k},αn,t=αk,t

ρnηn + σ 2

)
, (1)

ωk,t =
B
M
log

(
1 +

ρEINk ηEINk∑
nϵK\{k},αn,t=αk,t

ρnηn + σ 2

)
, (2)

where ρFINk and ρEINk denote the transmission power for
user k to the FIN and EIN, ηFINk and ηEINk represent the chan-
nel gains for the two offloading destinations FIN and EIN,
σ 2 is the variance of the complex white Gaussian channel
noise, and

∑
nϵK\{k},αn,t=αk,t

ρnηn inidicate the interference of
user k induced by other users. Users incur more interference
using the uplink transmission rate, and a low transmission
rate indicates numerous users offloading through the same
channel and destination. This approach increases the energy
consumption and cost of offloading tasks.

D. COMPUTATION MODEL
We consider the local computation by the UE, FIN, and
EIN. In the following, we elaborate on the three computation
destinations.

1) LOCAL COMPUTING
The time taken to execute a given task f locally only includes
the processing time on the local node at time t and is defined
as

T Lk,f =
Pf
FLk

s.t FLi (t) ≤ Fi,max , (3)

VOLUME 12, 2024 11619

I. Aliyu et al.: Dynamic Partial Computation Offloading for the Metaverse in In-Network Computing

where FLk is the actual frequency at which a local node can
execute the task.

The energy consumption of executing a given task f locally
at a frequency FLk is linearly proportional to the square of
FLk . Considering the dateline constraint τ in which user k
must accomplish the tasks, the central processing unit (CPU)
frequency for user k satisfies FLk ≥ Pf /τ . Thus, the energy
consumption when user k executes task f locally is

εLk,f = λ(FLk)
2
Pf = λ

P3f
τ 2

, (4)

where λ denotes the energy coefficient of the user device
determined by the chip architecture [36], [48].
Similar to previous studies [35], [37], the cost model of

user k is modeled in terms of the completion time and energy
consumption as follows:

CLk,f ,t = f
(
δTk T

L
k , δEk εLk

)
= δTk T

L
k + δEk εLk , (5)

where δTk and δEk represent the delay and energy preference
(weight), respectively, and 0 ≤ δTk , δEk ≤ 1, δTk + δEk = 1.

2) FOG COIN
If a user decides to offload task f at each time t , the user must
offload the task input (If) and its corresponding software (Vf).
Offloading a task f to the external FIN consists of three delay
parts. The first part deals with the time needed to transmit the
input data If and is expressed as

T tk,FIN =

If + V f

ωk,t

s.t T Fi (t) ≤ θi,F (t) , (6)

where ωk,t is defined by (1).
The second part deals with the time taken to execute the

task in the external resource FIN and is expressed as

T exek,FIN =
Pf
FFINk

, (7)

where FFINk is the actual frequency at which the FIN can
execute the task.

The last part of the delay is the time taken to return the
computational results from the FIN to the mobile/local node.
However, this delay is negligible compared to the input data
If [48]. Thus, the total delay for offloading the task to the FIN
over an access point a is defined as

T FINk,f ,t = T exek,FIN + T tk,FIN

=
Pf
FFINk

+

If + V f

ωk,t
. (8)

The task must be accomplished in the current time slot t;
thus, the delay satisfies T FINk,f ,t ≤ τ. This delay is applicable
during the TS problem from the user’s perspective.

The TO problem aims to minimize the overall system cost;
thus, additional delay at FIN is modeled using the M/M/1
queuing model. The queuing system considers the delays

incurred by offloading policies of all users on the network
side, including the waiting time a subtask spends in the queue
before execution. The queuing delay model consists of the
waiting time and delay due to utilization. The waiting time is
the time a subtask waits in the queue before being served by
the FIN and includes the sum of the remaining service time
for all subtasks in the queue and the service time of the current
subtask. The delay due to utilization considers the influence
of the utilization factor on the queue delay-utilization factor
of 1, indicating the FIN is fully used and the subtask experi-
ences the full remaining service time plus its own service time
as the queue delay. A utilization factor of less than 1 indicates
that the FIN is not fully used. The model is described as
follows.

We let FIN denote the FIN queue buffer. From service
time sFIN (t) = Pf /FFINk +(If + V f)/ωk,t , the arrival time
is aFIN (t) = 1/sFIN (t) . The FIN rate is given as

FIN (t) =

1∑

j FIN (j) + sFIN (t)
, if FIN > 0

∞, otherwise.

Hence, the utilization factor is

FIN =

aFIN (t)

FIN (t)
, if FIN (t) ̸= ∞

1, otherwise.

The queue delay is calculated as

QFINf ,t =

∑
j⊆f

FIN (j) + sFIN (t), if FIN = 1

FIN 2

1 − FIN
sFIN (t) , otherwise.

(9)

Thus, the total latency cost for offloading to the FIN is the
summation of the processing, transmission time, and queuing
delay.

T FINk,f ,t =
Pf
FFINk

+

If + V f

ωk,t
+ QFINf ,t , (10)

where the first and second part on the right-hand side (RHS)
of Eq. (10) is computed by Eq. (8).

The energy consumption is characterized by the energy
used in offloading the task input size and software volume,
considering the energy for connection scanning and execution
is negligible. The energy consumption can be expressed as
follows:

εFINk,f ,t = ρk
If + V f

ωk,t
, (11)

where ρk denotes the transmission power of the device, and
ωk,t is defined in (1). The total cost of offloading a task f
considering the delay and energy to the cost model of user
k is modeled in terms of the completion time and energy
consumption time as follows:

CFINk,f ,t = f
(
δTk T

FIN
k,f ,t , δ

E
k εFINk,f ,t

)
= δTk T

FIN
k,f ,t + δEk εFINk,f ,t , (12)

11620 VOLUME 12, 2024

I. Aliyu et al.: Dynamic Partial Computation Offloading for the Metaverse in In-Network Computing

where δTk and δEk represent the delay and energy weight,
respectively, as expressed in Eq. (5).

3) EDGE COIN
When the user k offloads task f to EIN for execution in slot t ,
it must offload both the task input (If) and its corresponding
software (Vf). The total delay, which consists of execution
and transmission delay, is expressed as

T EINk,f ,t = T exek,EIN + T tk,EIN

=
Pf
FEINk

+
If + Vf

ωk,t
, (13)

where FEINk is the actual frequency for the EIN, and ωk,t is
given by Eq. (2). The first part of the RHS of (11) is the
execution delay, and the second part of the RHS of (11) is
the transmission delay.

Similar to Fog COIN, the additional delay at the FIN for
the TO problem is modeled using the M/M/1 queuing model.
The queuing delay model also consists of the waiting time
and delay due to utilization and is described as follows.
We let EIN denote the FIN queue buffer. From service time
sEIN (t) = Pf /FEINk + (If + Vf)/ωk,t , the arrival time is
aEIN (t) = 1/sEIN (t) . The EIN rate is defined as

EIN (t) =

1∑

j EIN (j) + sEIN (t)
, if EIN > 0

∞, otherwise.

The utilization factor is obtained as

EIN =

aEIN (t)

EIN (t)
, if EIN (t) ̸= ∞

1, otherwise.

The queue delay is calculated as

QEINf ,t =

∑
j⊆f

EIN (j) + sEIN (t), if EIN = 1

EIN 2

1 − EIN
sEIN (t) , otherwise.

(14)

In this case, the total latency cost for offloading to the EIN
is the summation of the processing, transmission time, and
queuing delay:

T EINk,f ,t =
Pf
FEINk

+
If + Vf

ωk,t
+ QEINf ,t , (15)

where the first and second parts on the RHS of Eq. (15) are
computed by Eq. (13).

Similarly, the EIN must accomplish the task in the current
time slot t; thus, the delay transmission is modeled as follows:

εEINk,f ,t = ρk
If + Vf

ωk,t
. (16)

The total cost of offloading a task f to the EIN is

CEINk,f ,t = f
(
δTk T

EIN
k,f ,t , δ

E
k εEINk,f ,t

)
= δTk T

EIN
k,f ,t + δEk εEINk,f ,t . (17)

E. JOINT OPTIMIZATION PROBLEM FORMULATION
We aimed to minimize the average task execution cost of all
users in the network over each time slot by jointly optimizing
TS decisions at the user end and TO policy on the COIN side
to dynamically adjust the offloading policy to balance the TO
distribution, avoiding congestion. The cost of user k at the
time t is formulated as

Ck,t =

∑
f

1
(
Sk,t = 0

)
CLk,f ,t

+ 1
(
Sk,t ∈ M

) ((
1 − b(t)

f

)
CFINk,f ,t + b(t)

f C
EIN

k,f ,t

)
,

(18)

where 1 (.) is an indicator function, which is 1 when the
parentheses are valid; otherwise, it is 0. In Eq. (18), the first
case is for the local execution (Sk,t = 0) of task f , where
the total execution cost is the local execution cost: Ck,t =

CLk,f ,t . The second case is when user k executes the task by

offloading it to the FIN (Sk,t ∈ M and b(t)f = 0) in which the
cost, Ck,t = CFINk,f ,t , consists of the cost of transmission and
execution. Similarly, in the case of offloading the task to the
EIN (Sk,t ∈ M and b(t)f = 1), the total cost, Ck,t = CEINk,f ,t ,
entails the cost of transmission and execution. Thus, the joint
optimization problem for the metaverse task computation and
resource allocation can be formulated as follows:

Jp :min
Sk,t

Lim
T→∞

1
T

T∑
t=1

∑
k∈K

Ck,t

s.t. d1 :

∑
v∈M∪{0}

k,v,t ≥ 1, ∀k ∈ K, v ∈ Vk

d2 : b(t)f ∈ {0, 1},

d3 :

(
1 − b(t)f

)
T FINk,v,t + b(t)f T

EIN
k,v,t = µ,

d4 :

∑
f ∈
b(t)f Vf ≤ δEIN , ∀t ∈ T,

d5 :

∑
f

(
1 − b(t)f

)
Vf ≤ δFIN , ∀t ∈ T,

d6 : S...t ∈ {0, 1 . . . ,M} ∀k ∈ K, ∀t ∈ T,

v ∈ Vk . (19)

Constraint d1 states that at least one subtask of a given task is
partially offloaded. Constraint d2 indicates that the offloaded
task is executed at either the FIN or EIN. Constraint d3
enforces the task execution delay requirement. Constraints d4
and d5 indicate the EIN and FIN cache sizes, respectively.
Constraint d6 represents the task computing modes where
Sk,t = 0 for the local task execution, and Sk,t = m(m ∈ M)
indicates the TO to the EIN or FIN via channelm.Considering
the dynamic user demand and network resource availability
across different time slots coupled with the lack of the user
transition request probability, it is tractable to solve problem
Jp directly. Thus, we prove that the problem is NP-hard in
Lemma 1.

VOLUME 12, 2024 11621

I. Aliyu et al.: Dynamic Partial Computation Offloading for the Metaverse in In-Network Computing

Lemma 1: Problem Jp, involving interactive TS from a
user perspective and optimal TO for COIN across different
time slots, is NP-hard.

Proof: See Appendix A.

IV. DYNAMIC TASK OFFLOADING AND RESOURCE
ALLOCATION
The optimization problem in Eq. (19) presents a unique chal-
lenge in determining an optimal solution in polynomial time,
considering that dynamic system demand may arise as users
engage in various metaverse activities. The primary difficulty
is dealing with user offloading decisions based on the device
constraints, the dynamic demands for the available offloading
computing and cache resources, and the lack of certainty
of the future demand while maintaining the metaverse QoE.
To solve these challenges, we decomposed the problem into
two parts to solve it: an optimal TSP on the user side and
computational TOP on the COIN side. The TOP ismodeled as
a multiuser OPG, and a decentralized algorithm is proposed
to address its NE. The MDP modeling is employed for the
TSP, and the DDQN is used to learn the optimal policy for
the TOP to meet unforeseen demand.

A. MULTIUSER TASK-SPLITTING(TS) ALGORITHM
In any given time slot t , the TS decision is based on the cost
of computing such a task and is unaffected by other slots.
Each user’s decision is independent and is unaffected by other
users’ decisions over time. Based on this, we formulate the
problem as a noncooperative ordinal game and solve for its
NE. Inspired by previous research [6], the game is modeled
as follows.

We let Sk,t =
{

k,0,t , k,1,t , .., k,v,t | k,v,t = m(m ∈ M)
}

denote the set of TS strategies for user k where v is the
number of subtasks. The set of all UE strategies is given as
St =

{
k,t | k,t ∈ Sk,t , k ∈ K

}
, where k,t = k,0,t =

0 indicates the task is executed locally, and k,t = k,v,t =

m(m ∈ M) represents offloading to the EIN
(
b(t)f = 0

)
and

FIN
(
b(t)f = 0

)
through channel m. Focusing on the UE per-

spective, the TSP and computational TOP for the multiuser
game in slot t is given as

Jp1 :min
St

ft (St) =

∑
k∈K

Ck,t .

s.t. d 3 and d6 (20)

Similar to previous work [6], where the TOP is considered,
St for the TSP has (M + 1) value selections, which is a
combinatorial problem that is challenging to solve over a
multidimensional discrete space {0, 1, 2, . . . ,M}

K×v. Subse-
quently, we transformed it into a multiuser OPG and proved
the existence of the NE to determine the optimal TS for each
user.

Thus, the Jp1 problem is transferred to a non-cooperative
multiuser strategic game g =

〈
K,
{
Sk,t

}
k∈K

, ft (αt)
〉
, where

the K is the game player set, the strategy of user k is given
as Sk,t , and ft (αt) denotes the computing cost for user k .

The game objective is to achieve an NE solution S∗
t ={

S∗

1,t , S
∗

2,t , . . . , S
∗
K ,t

}
, where no user can change the decision

through cost reduction.
To split the task and determine the offloading location,

a user in the game computes the cost of computing the
subtask. The subtask is offloaded to the location with the
least computing cost. In other words, a task is offloaded to
either the FIN or EIN when its local computing cost is larger;
CLk,t ≥

(
1 − b(t)f

)
CFk,t + b(t)f CEk,t . By substituting Eqs. (5),

(12), and (17) into the inequality

δTk T
L
k + δEk εLk

≥

(
If + Vf

) (
δTk + δEk ρk

)
ωk,t

+ δTk T
exe
k,F IN

− b(t)f
(
δTk T

exe
k,F IN − δTk T

exe
k,E IN

)
ωk,t

≤

(
If + Vf

) (
δTk +δEk ρk

)
δTk

(
T Lk −T exek,F IN

)
+δEk εLk + b(t)f

(
δTk T

exe
k,F IN−δTk T

exe
k,k IN

) ,

the interference
(
Rk,t

)
of user k is derived as

Rk,t =

∑
n∈K{k},αn,t=αk,t

ρn,, ηn

≤
ρk , ηk

M(If+Vf)
(
δTk+δEk ρk

)
B
2

(
δTk

(
T Lk −T exek,F IN

)
+δEk εLk +b(t)f

(
δTk T

exe
k,F IN−δTk T

exe
k,E IN

))
−1

−σ 2.

(21)

The inference threshold (λk) for user k is given as

λk

=
ρk,ηk

M(If +Vf)
(
δTk +δEk ρk

)
2
B
(
δTk

(
TLk −Texek,F IN

)
+δEk εLk +b(t)f

(
δTk T

exe
k,F IN−δTk T

exe
k,E IN

))
−1

− σ 2.

(22)

Using Eq. (21), the user can reduce the energy con-
sumption of the system-low interference suggests the user
reduces the computation cost through offloading; otherwise,
it is accomplished through local computing. Similar to pre-
vious work [47], the game g is an OPG with a potential
function:

φ (St) =
1
2

K∑
k

∑
n̸=k

ρkηkρnηn1
(
Sn,t = Sk,t

)
×
(
Sk,t > 0

)
+

K∑
k=1

ρk , ηkλk1
(
Sk,t = 0

)
. (23)

A user k offloads a task when Rk,t ≤ λk , otherwise, it is
accomplished by local computing. Fig. 3 illustrates the mul-
tiuser partial task splitting scenario in the network. Remark 1.
The TSP game g is an OPG with a potential function and can
achieve NE. Proof. See Appendix B.

11622 VOLUME 12, 2024

I. Aliyu et al.: Dynamic Partial Computation Offloading for the Metaverse in In-Network Computing

FIGURE 3. Multiuser partial task splitting using the game theory in the
network.

Remark 1: The TSP game g is an OPG with a potential
function and can achieve NE.

Proof: See Appendix B.
Algorithm 1 solves the multi-user TSP from the user per-

spective by splitting the task into subtasks for computation
offloading and achieving NE for the TS. The algorithms
initialise the TS decision of all UE to 0 and execute a
repeat-until loop until an END message is received. For
each UE, the algorithm calculates the interference and trans-
mission rate for each subtask v ∈ Vk , then computes the
corresponding optimal strategy for the TS by solving three
constraints: d1, d3 and d6. These constraints enforce that the
tasks are optimally decomposed to subtasks among the COIN
resources while considering the energy consumption and
delay constraints. Each user reaches an optimal S∗

k,t decision
on its subtask v ∈ Vk by minimising the objective function
ft
(
Sk,t , S−k,t

)
. The users send requests to COIN for possible

updates on the optimal offloading policy. The optimal policy
is discussed in the subsequent section, addressing the TOP.
Meanwhile, the COIN system sends the END message if no
update request is sent. The users then offload their tasks after
receiving the END message. Similar to [6], the convergence
behaviour of Algorithm 1 is given in Lemma 2.
Lemma 2: The multi-user TS game g can reach an NE

solution within a finite iteration given as

1
2K

2�2
max + K (�maxλmax − �minλmin)

π�min.
| π ∈ R+.

Proof: See Appendix C.

B. DEEP REINFORCEMENT LEARNING-BASED PARTIAL
COMPUTATION OFFLOADING AND SOFTWARE CACHING
From the user’s perspective, we established the TS strategies
using OPG to determine a mutually satisfactory TS decision
given a decomposable task in any time slot. By substituting
the optimal S∗

t TS solution, the original problem can be

Algorithm 1Multi-User Computation TS
1 Initialisation: Each UE k ∈ K initialises its TS

decision Sk,t = 0
2 Repeat
3 For: each UE k ∈ K : do
4 For: each task subtask υϵVk : do
5 Calculate interference Rk,t and the transmission

rate ωk,t
6 Compute the strategy Sk,t by solving constraint

d1, d3 and d6
7 Select the best optimal decision S∗

k,t = ft(
Sk,t , S−k,t

)
8 if S∗

k,t ̸= Sk,t then
9 send a message to the COIN agent for optimal

offloading policy update
10 if an optimal update is received, then
11 update the TS decision, Sk,t = S∗

k,t
12 end if
13 end if
14 end for
15 end for
16 Until an END message is received
17 Return Sk,t

transformed as follows:

Jp2 :min
δk,t

Lim
T→∞

1
T

T∑
t=1

∑
k∈K

Ĉk,t

s.t. d 1, d2, d 4, and d5, (24)

where

Ĉk,t =

∑
f

1
(
Sk,t = 0

)
CLk,f ,t

+ 1
(
Sk,t ∈ M

) ((
1 − b(t)f

)
CFINk,f ,t + b(t)f CEINk,f ,t

)
(25)

The essence is to solve the optimal decision problem con-
sidering the demand from the users. For Q-learning, each
subtask of every task for each user requires a state-action pair
with the corresponding Q-values. With massive user demand,
the memory cannot sustain such demands. To address the
problem of providing an optimal offload policy in time slot
t + 1, we applied the DDQN to capture the stateaction pair
and predict the Q-values corresponding to the optimal partial
task offload based on time slot t . Problem Jp2 is formulated
as an MDP to design the DDQN algorithm. We elaborated on
the state, action, and reward as follows.

• State: Due to the several users with several subtasks,
the system state for each subtask can differ due to task
input, computation, and software sizes; the availability
of computing resources in FIN and EIN; and the decision
of other users to offload partially, so the state space of a
single agent increases exponentially with the number of
pieces of UE. Therefore, to capture such heterogeneous

VOLUME 12, 2024 11623

I. Aliyu et al.: Dynamic Partial Computation Offloading for the Metaverse in In-Network Computing

FIGURE 4. Task offloading optimization using the double deep Q-network
(DDQN).

states and solve the problem of state exploration, we pro-
pose the following equation to compute the system per
user for all subtasks: St = St,K ∈ (F + 1)K , where
St,k∈K =

∑F
f=0 Sf , Sf = Sv⊆f = χ0S0 + χ1S1 + χ2S2+

χ3S3 | χj∈{0,1,2..} ∈ {0, 1}, and Sv⊆f is the weighted sum
of the user’s CPU and cache, subtask input parameters〈
If ,Vf ,Pf

〉
, FIN/ EIN’s CPU, and cache size. Using the

proposed formula, we obtain a value reflecting each
subtask’s state.

• Action: The action in time slot t is the offloading state
in At = bt+1 ∈ {0, 1, 2}F×v.

• Reward: The reward is defined as the difference between
the total current cost and total subsequent cost of the
partial offloading policy of the system, given as Rt+1 =∑K

k=1 Ck,t −
∑K

k=1 Ck,t+1. The cost considers the queue
at both the FIN and EIN and follows Eqs. (10) and (15),
respectively, for the delay cost calculation.

The objective of the problem is to minimize the total sys-
tem cost in the network. The DDQN architecture employed
in this study is depicted in Fig. 4. The model aims to capture
and learn the users’ state models and predict the optimal
partial offloading policy, considering the system’s total cost
of the offloading policy. To address the problem of high
dimensionality and complex action space, we employed the
state coding and action aggregation (SCAA) DNN model
proposed in previous work [6], which is discussed below.
In the SCAAmodel, the influence of the input order on the

DNN output is mitigated, where Xt =
{
1
(
Sk,t ∈ f

)
k ∈ K

}
instead of the state St . The SCAA uses a dropout mechanism
at the input layer to the code user’s state and a two-layer
output arch to aggregate the TO action dynamically.

Conventionally, the output of the neuron of the DNN corre-
sponds to the number of all possible actions with each neuron
and the output state-action value Q (St ,At) . Considering the
metaverse scenario and problem, assigning a neuron to each

subtask from each user is impractical because this results
in an exponential increase in the number of neurons with
an increase in users. For example, k users, with F tasks
decomposable into υ subtasks, requires k×F ×υ neurons in
the output layer.

In addition, listing all possible actions is impossible due to
the heterogeneous size of the task input sizes and software.
The two-layer architecture of the SCAA-DNN consists of V
neuron cells and one neuron for the last layer. The output
layer 2 = (21, 22 . . . 2v) corresponds to the state-action
value of computation and caching of the v subtask. The
last layer has no activation unit, but the output is the sum
of all input variables. We let wL = (w1L ,wvL , ..wVL) be
the weight connection between the first and last layers. The
state-action value of a specific action At = bt+1 to wL is
wfL = b(t+1)

v , ∀v ⊆ f ∈ F. Therefore, the DNN outputs the
predicted state-action value Q (St ,At) =

∑
v⊆f ∈F b(t+1)

v 2

The DDQN is trained using the ε-greedy policy based
on the NE DDQN, where the COIN agent explores the NE
of the TS algorithm with probability ε or determines the
offloading strategies on A∗

t = argmaxQ (St , a) with a prob-
ability of (1 − ε). The NE DDQN explores NE and ensures
the experiences in the memory pool are NE [34]. The users
generate tasks decomposable into subtasks at time slot (t+1)
using Algorithm 1. Based on the subtasks from all users, the
system state St , action At , reward Rt+1 and next state St+1
stored in the experience memory are used as training data for
the DDQN. A batch of data in the experience memory are
sampled in the form of (St ,At ,Rt+1, St+1).

During the training phase, At assigned to wL is wfL =

b(t+1)
v , ∀v ⊆ f ∈ F, and the input is processed as Xt ={
1
(
vkj ∈ f

)
: k ∈ K , j ∈ v

}
. The state-value action value is

predicted and approximated as follows:

Q (St ,At) = Rt+1 + γ max Q (St+1, a) , (26)

where γ ∈ (0, 1) is the discount factor. The target DNN is
used to infer the value of max Q (St+1, a). The main network
selects the action during the agent’s interaction with the
environment. The loss is calculated using the Huber function
to stabilize the learning processing, whereas the DNN is
trained using the backward algorithm. Algorithm 2 presents
the training algorithm.

At the inference phase, we determined the optimal offload-
ing policy in the time slot (t + 1) using the following optimal
offloading statement:

J̃p2 :max
Sk,t

∑
v⊆f ϵF

b(t+1)
v 2v

s.t. d7 :

∑
v⊆f ϵF

b(t+1)
v Vv ≤ Ci

d8 : b(t+1)
v ∈ {0, 1, 2}

d9 : i ∈ {FIN ,EIN ,Local}. (27)

The problem J̃p2 is a typical knapsack problem. Unlike pre-
vious work [6], focusing on cache and noncache software in
MEC, we derived the solution using the recursive algorithm

11624 VOLUME 12, 2024

I. Aliyu et al.: Dynamic Partial Computation Offloading for the Metaverse in In-Network Computing

that considers the cache availability in both the FIN and EIN.
We let the matrix ∈ (v, c) represent the optimal solution for
the task using subtask v ⊆ f ∈ F using a cache size c under a
time constraint. The recursive function ∈ (v, c) is defined as

∈ (v, c) = argmin
a∈{0,1,2}

(
∈

(
v− 1, c− b(t+1)

v Vv
)

+b(t+1)
v 2v

)
. (28)

Algorithm 3 presents the optimal action state whose time
complexity is O(2FC + F).
The optimal offloading state in time slot t + 1 assists the

COIN agent in producing the optimal partial offloading at
a low cost. Considering that the interference increases the
overall cost when more subtasks are assigned to a specific
computing resource, the FIN or EIN, the COIN agent learns
to create an optimal partial offloading policy.

In summary, the algorithm takes the last layer out and
initializes the variables of task location, weights, and total
cost. Next, it iterates over the task software file and optimizes
the knapsack, considering the file hit rate. The algorithm
determines the optimal TO and caching policy based on
the available capacity and previous caching decisions. The
caching capacity, file size, and cache hit rates are used to
determine an optimal partial offloading policy.

Algorithm 2 DDQN Training Algorithm
1 Initialize: Replay memory RM to capacityM , the

weight copy frequency g
2 Initialize: The main DNN with random weight θ and

copy the weight θ to the target DNN
3 For: time slot t = 1 : T do
4 With probability ε, select an NE At = S∗

t from the
TS game; otherwise, select Q (St , a) as the partial
offloading state in slot t + 1.

5 Compute the reward Rt+1 using At in time slot t+1.
6 Store transition (St ,At ,Rt+1, St+1) in the RM
7 Sample random minibatch (St ,At ,Rt+1, St+1)

from the RM
8 Assign values to the weight wL based on the SCAA-

DNN model
9 Assign bt+1 to the weight of the TLA in the main net

and obtain Q (StAt)
1 Using the loss function, perform gradient descent

with respect to the DNN parameter
Update the target network every g slots

1 End for

V. SIMULATION RESULTS
This section presents extensive simulations to verify the
effectiveness of the proposed TS using OPG and the subse-
quent optimization of the TS solution using the DDQN over
time, based on the dynamic system state, to improve overall
performance. We considered a scenario with K = 30 users
randomly distributed within a 200 × 200m cell region, and

Algorithm 3 Solving for an Optimal Action for Partial
Offloading
Input:2t , {Vv ⊆ f , f ϵF}

Output: The optimal partial offloading policy bt+1
1 bt+1 = [0]F , = [0]F×C , r = [0]F×C ;

2 for each vϵ [1,F] : do
3 if v < F then
4 for each cϵ [1,C] : do
5 if v == 1 then
6 r (v, c) = 1 (Vv < c)
7 (v, c) = r (v, c)2v
8 else
9 r (v, c) = argmin

aϵ{0,1,2}
((v− 1, c− aVv) + a2v)

10 (v, c) = r
(v, c) 2v + (v− 1, c− r (v, c)Vv)

11 end if
12 end for
13 else
14 r (F,C) = argmin

aϵ{0,1,2}
((F − 1,C − aVv) + a2F)

15 (F,C) = r (F,C)

2F + (F − 1,C − r (F,C) VF)

16 end if
17 end for
18 bt+1(F) = r (F,C)

19 for each v = F − 1 : −1 : 1 do
20 bt+1(v) = r

(
v,C −

∑
v+1≤j≤F bt+1(j)∗V j

)
21 end for

return bt+1

the FIN and EIN were placed at the center and edge of
the cells, respectively. The FIN is closer to the user and
equidistant to the EIN, which is placed after the FIN.

As presented in Fig. 1, we assume the number of subtasks
is J = {0, 1, 2, 3} where 0, 1, 2, and 3 represent object
tracking and detection, SLAM with the point cloud dataset,
hand gesture and pose estimation, and multimedia processing
and transport, respectively. The input parameter data size If
for each task f for user k is uniformly randomly selected for
each subtask fk =

{
fj : j ∈ J

}
in [1, Ijmax

]
GB. Similarly, the

software data size and CPU cycle for computing the subtask
are uniform and randomly selected in

[
1,Vjmax

]
GB and

[1,Pjmax] gigacycles.
We assumed each metaverse task f ∈ F is denoted by

the tuple parameters:
〈
If ,Vf ,Pf

〉
, where If ,Vf , and Pf denote

the task input size, software volume, and computational load,
respectively. The task f =

{
fk,0, fk,1, fk,2 . . . fk,j

}
, where k is

the user and j is the number of subtasks. Similar to previous
work [6, 47], the energy coefficient is 5 × 10−27. Table 3
presents the simulation environment settings unless otherwise
stated.

VOLUME 12, 2024 11625

I. Aliyu et al.: Dynamic Partial Computation Offloading for the Metaverse in In-Network Computing

TABLE 3. Parameter summary.

For the evaluation, we considered the baselines for which
RL is not used to optimize the TS. The following baseline
strategies were considered for the evaluation.
MEC: In this strategy, subtasks are computed locally or

offloaded to MEC based on the available caching memory.
This baseline enables observing the performance of the COIN
based on the proposed approach against the MEC baseline.
This strategy is among the state-of-the-art strategies. For
instance, one study [24] suggested this baseline through a
greedy strategy to reach an offloading decision by choosing
the execution location with minimal overhead.
Random Computing: This strategy is based on random

partial offloading of subtasks to the FIN and EIN or locally
computed on the device. Several studies have employed this
strategy to demonstrate the efficiency of offloading algo-
rithms [49]
OPG: This strategy considers a scenario where RL does

not optimize the TS solution. This baseline grants insight
into the overall network cost when the DDQN is not
applied. Some state-of-the-art methods have proposed this
approach [37], [47].

We employed the OPG specifically for TS; thus, each user
conducts the game among its subtasks using the interference
generated by each subtask to reach a decision.

To compare the proposed approach’s performance fairly,
we analyzed several aspects. We compared average costs
and rewards across training episodes against benchmarks.
Fig. 5(a) illustrates that our model consistently yielded the
lowest costs after 200 episodes, with cost savings surpass-
ing 13% over the MEC approach by the 1000th episode.
Fig. 5(b) shows that the proposed method achieved a higher
system reward, surpassingMEC by about 16%. This outcome

FIGURE 5. Performance evaluation with respect to the iteration step
under various episodes: (a) system cost and (b) system reward.

indicates that the proposed method can offer an optimal
offloading strategy under changing network conditions.

Furthermore, we assessed the proposed method’s effi-
ciencywith user numbers ranging from 20 to 45. The analysis,
illustrated in Fig. 6, shows that the proposed method outper-
forms others in cost efficiency across different user numbers,
achieving up to a 23% cost reduction compared to the MEC,
the next best method, when user numbers increase to 45.
As user numbers grow, the proposed method consistently
decreases system costs, highlighting its robust scalability and
promising application for expansive user networks. Thus, our
method is effective for both small-scale and large-scale user
scenarios.

In assessing the system model’s performance for compute-
intensive tasks, we varied the values of Vmax and Pmax to
analyze their influence on cost efficiency. At a Vmax value
of 26, our model achieves a cost reduction of 24% compared
to the second-best model, the MEC, as shown in Fig. 7.
Moreover, the analysis ofPmax , as depicted in Fig. 8, indicates
that our model attains a maximum cost efficiency improve-
ment of 45% at a Pmax of 14. These outcomes consistently

11626 VOLUME 12, 2024

I. Aliyu et al.: Dynamic Partial Computation Offloading for the Metaverse in In-Network Computing

FIGURE 6. Comparison of the average cost for each time slot for different
numbers of users.

FIGURE 7. Comparison of the average cost for each time slot for different
maximum software volume Vmax .

demonstrate the robustness of our model in maintaining supe-
rior cost-efficiency gains across varied task input. It high-
lights its potential for adaptability and reliable performance
in scenarios with diverse computational workload demands.

Finally, we consider evaluating the proposed approach’s
performance under four, seven, and 10 subtasks. The user
number and training episodes were 30 and 2,000, respec-
tively. Fig. 9 illustrates the optimal subtask computational
offloading distribution and the corresponding cost for the
different subtasks. As illustrated in the distribution, the OPG
method offloads most of the subtasks from the users to the
FIN or EIN, suggesting that each player in the game indepen-
dently determines its TS irrespective of the general demand
by other users. Similarly, random offloading distributed tasks
marginally between the user device and the FIN and EIN.
However, the OPG and random methods incur a high average
cost on the overall system.

Furthermore, in the MEC approach, subtasks are partially
offloaded to the EIN only at the network edge. Although this

FIGURE 8. Comparison of the average reward for each time slot for
different maximum computation load Pmax .

approach has a significant cost reduction compared to the
OPG and random methods, performing some computations
at the FIN in the proposed approach further reduces the cost.
This approach further reduces the cost by 8%, 5%, and 70%
for four, seven, and 10 subtasks, respectively. This outcome
reveals that this approach is more suitable for multiple sub-
task offloading, particularly for metaverse scenarios where
multiple subtasks are expected.

A. DISCUSSION
In the scenario by Ding et al. [24], UE has multiple MEC
servers to choose from in a one-to-many fashion. The UE
must determine the MEC servers within the communication
range. Once it is determined that the servers have available
computing resources, the UE continues offloading to that
location. However, our method considers the dynamic user
demands and changing resource availability of other servers
once offloading begins. The handling or optimizing of the
offloading policy is necessary to balance the network load
considering the datelines of the tasks in the applications, such
as the metaverse. This approach addresses this problem by
constantly updating the offloading policy to handle unfore-
seen demand. Additionally, UE acts with a greedy strategy;
therefore, the optimal offloading strategy must be updated
for better performance over time. The proposed approach
reduces the overall cost by 70% and improves the reward
by 8%.

Unlike previous work [37], [47] that employed the game
theory for multiuser computational offloading, where each
player’s decision is relative to the others considering the infer-
ence, the proposed game for each player is centered on the
subtasks and interference generated as a result. As suggested
by the results, this approach is suitable for multiple subtask
situations because it reduces the overhead cost by 70% for
10 subtask scenarios. Thus, the proposed DDQN for updating
the offloading policies addresses the dynamic user demand
and network resources status.

VOLUME 12, 2024 11627

I. Aliyu et al.: Dynamic Partial Computation Offloading for the Metaverse in In-Network Computing

FIGURE 9. Comparison of optimal partial computational offloading distributions under various numbers of subtasks: (a) Four subtasks, (b) seven
subtasks, and (c) 10 subtasks.

VI. CONCLUSION
This paper investigated the partial TO problem for metaverse
divisible tasks in a dynamic multiuser COIN to minimize
costs based on energy and latency. We solved the prob-
lem by decomposing it into two parts—the first deals with
the TSP from the user perspective, and the second deals
with the optimal TO from the network perspective. We per-
formed extensive simulations to verify the effectiveness of
the proposed TS solution using OPG and the TO solution
using the DDQN. We reformulated the TSP as a multiuser
game and proposed a decentralized algorithm to solve for
the NE solution. Next, we proposed a DDQN to optimize
the TS solution over time, considering the changing system
state to improve the overall performance. Unlike the con-
ventional DDQN algorithm, where intelligent agents sample
offloading decisions randomly and from the main network s
within a probability, in the proposed DDQN algorithm, the
COIN intelligent agent uses offloadingwhere the COIN agent
explores the NE of the TS algorithm and the DNN within the
probability.

By exploring the TS game solution, the agent can update
its policies to make more informed decisions in the future,
leading to improved performance over time. Furthermore,
we formulated a system state that captures the hetero-
geneous nature of subtasks for UE, FIN, and EIN com-
putational resources and communication conditions. The
proposed approach performs better in lowering partial TO
costs and optimizing future offloading policies against base-
line approaches. As COIN is likely to coexist with existing
edge computing, future studies can explore partial subtask
offloading in a collaborative scenario where the task type,
dependency, and software caching status can be investigated
for optimal partial offloading strategies.

REFERENCES
[1] L.-H. Lee, T. Braud, P. Zhou, L. Wang, D. Xu, Z. Lin, A. Kumar,

C. Bermejo, and P. Hui, ‘‘All one needs to know about Metaverse: A com-
plete survey on technological singularity, virtual ecosystem, and research
agenda,’’ 2021, arXiv:2110.05352.

[2] W. Yu, T. C. Jie, and J. Zhao, ‘‘Multi-agent deep reinforcement learning
for digital twin over 6G wireless communication in the Metaverse,’’ in
Proc. IEEE Conf. Comput. Commun. Workshops (INFOCOM WKSHPS),
May 2023, pp. 1–6.

[3] F. Alriksson, D. H. Kang, C. Phillips, J. L. Pradas, and A. Zaidi, ‘‘XR and
5G: Extended reality at scale with time-critical communication,’’ Ericsson
Technol. Rev., vol. 2021, no. 8, pp. 2–13, Aug. 2021.

[4] T. J. Chua, W. Yu, and J. Zhao, ‘‘Resource allocation for mobile Metaverse
with the Internet of Vehicles over 6G wireless communications: A deep
reinforcement learning approach,’’ inProc. IEEE 8thWorld Forum Internet
Things (WF-IoT), Oct. 2022, pp. 1–7.

[5] X.-Q. Pham, T. Huynh-The, E.-N. Huh, and D.-S. Kim, ‘‘Partial compu-
tation offloading in parked vehicle-assisted multi-access edge computing:
A game-theoretic approach,’’ IEEE Trans. Veh. Technol., vol. 71, no. 9,
pp. 10220–10225, Sep. 2022.

[6] Z. Chen, W. Yi, A. S. Alam, and A. Nallanathan, ‘‘Dynamic task software
caching-assisted computation offloading for multi-access edge comput-
ing,’’ IEEE Trans. Commun., vol. 70, no. 10, pp. 6950–6965, Oct. 2022.

[7] H. Guo and J. Liu, ‘‘Collaborative computation offloading for multiaccess
edge computing over fiber–wireless networks,’’ IEEE Trans. Veh. Technol.,
vol. 67, no. 5, pp. 4514–4526, May 2018.

[8] L. N. T. Huynh, Q.-V. Pham, X.-Q. Pham, T. D. T. Nguyen, M. D. Hossain,
and E.-N. Huh, ‘‘Efficient computation offloading in multi-tier multi-
access edge computing systems: A particle swarm optimization approach,’’
Appl. Sci., vol. 10, no. 1, p. 203, Dec. 2019.

[9] S. Huang, R. Chen, Y. Li, M. Zhang, K. Lei, T. Xu, and X. Yu, ‘‘Intelligent
eco networking (IEN) III: A shared in-network computing infrastructure
towards future Internet,’’ in Proc. 3rd Int. Conf. Hot Inf.-Centric Netw.
(HotICN), Dec. 2020, pp. 47–52.

[10] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and P. Kalnis, ‘‘In-
network computation is a dumb idea whose time has come,’’ in Proc. 16th
ACM Workshop Hot Topics Netw., 2017, pp. 150–156.

[11] F. Aghaaliakbari, Z. A. Hmitti, M. Rayani, M. Gherari, R. H. Glitho,
H. Elbiaze, and W. Ajib, ‘‘An architecture for provisioning in-network
computing-enabled slices for holographic applications in next-
generation networks,’’ IEEE Commun. Mag., vol. 61, no. 3, pp. 52–58,
Mar. 2023.

[12] Y. Cai, J. Llorca, A. M. Tulino, and A. F. Molisch, ‘‘Compute-and data-
intensive networks: The key to the Metaverse,’’ 2022, arXiv:2204.02001.

[13] L. Rosenberg. VR vs. AR vs. MR vs. XR: What’s the Difference? Accessed:
Nov. 2, 2022. [Online]. Available: https://bigthink.com/the-future/vr-ar-
mr-xr-metaverse/

[14] J. Zhang, X. Hu, Z. Ning, E. C.-H. Ngai, L. Zhou, J. Wei, J. Cheng, B. Hu,
and V. C. M. Leung, ‘‘Joint resource allocation for latency-sensitive ser-
vices over mobile edge computing networks with caching,’’ IEEE Internet
Things J., vol. 6, no. 3, pp. 4283–4294, Jun. 2019.

[15] K. Guo, M. Yang, Y. Zhang, and J. Cao, ‘‘Joint computation offloading and
bandwidth assignment in cloud-assisted edge computing,’’ IEEE Trans.
Cloud Comput., vol. 10, no. 1, pp. 451–460, Jan. 2022.

11628 VOLUME 12, 2024

I. Aliyu et al.: Dynamic Partial Computation Offloading for the Metaverse in In-Network Computing

[16] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas, ‘‘Service
placement and request routing in MEC networks with storage, computa-
tion, and communication constraints,’’ IEEE/ACM Trans. Netw., vol. 28,
no. 3, pp. 1047–1060, Jun. 2020.

[17] P. Mach and Z. Becvar, ‘‘Mobile edge computing: A survey on architecture
and computation offloading,’’ IEEE Commun. Surveys Tuts., vol. 19, no. 3,
pp. 1628–1656, 3rd Quart., 2017.

[18] S. Bebortta, S. S. Tripathy, S. Basheer, and C. L. Chowdhary, ‘‘Deep-
Mist: Toward deep learning assisted mist computing framework for
managing healthcare big data,’’ IEEE Access, vol. 11, pp. 42485–42496,
2023.

[19] O. Muñoz, A. Pascual-Iserte, and J. Vidal, ‘‘Optimization of radio and
computational resources for energy efficiency in latency-constrained
application offloading,’’ IEEE Trans. Veh. Technol., vol. 64, no. 10,
pp. 4738–4755, Oct. 2015.

[20] K. Li, ‘‘A game theoretic approach to computation offloading strat-
egy optimization for non-cooperative users in mobile edge comput-
ing,’’ IEEE Trans. Sustain. Comput., early access, Sep. 5, 2018, doi:
10.1109/TSUSC.2018.2868655.

[21] M.Molina, O. Muñoz, A. Pascual-Iserte, and J. Vidal, ‘‘Joint scheduling of
communication and computation resources in multiuser wireless applica-
tion offloading,’’ in Proc. IEEE 25th Annu. Int. Symp. Pers., Indoor, Mobile
Radio Commun. (PIMRC), Sep. 2014, pp. 1093–1098.

[22] L. Yang, J. Cao, H. Cheng, and Y. Ji, ‘‘Multi-user computation partitioning
for latency sensitive mobile cloud applications,’’ IEEE Trans. Comput.,
vol. 64, no. 8, pp. 2253–2266, Aug. 2015.

[23] P. Di Lorenzo, S. Barbarossa, and S. Sardellitti, ‘‘Joint optimization of
radio resources and code partitioning in mobile edge computing,’’ 2013,
arXiv:1307.3835.

[24] Y. Ding, C. Liu, X. Zhou, Z. Liu, and Z. Tang, ‘‘A code-oriented parti-
tioning computation offloading strategy for multiple users and multiple
mobile edge computing servers,’’ IEEE Trans. Ind. Informat., vol. 16, no. 7,
pp. 4800–4810, Jul. 2020.

[25] S. Jošilo and G. Dán, ‘‘Joint wireless and edge computing resource man-
agement with dynamic network slice selection,’’ IEEE/ACM Trans. Netw.,
vol. 30, no. 4, pp. 1865–1878, Aug. 2022.

[26] J. Hu, K. Li, C. Liu, and K. Li, ‘‘Game-based task offloading of multiple
mobile devices with QoS in mobile edge computing systems of limited
computation capacity,’’ ACM Trans. Embedded Comput. Syst., vol. 19,
no. 4, pp. 1–21, Jul. 2020.

[27] Z. Tong, J. Cai, J. Mei, K. Li, and K. Li, ‘‘Dynamic energy-
saving offloading strategy guided by Lyapunov optimization for IoT
devices,’’ IEEE Internet Things J., vol. 9, no. 20, pp. 19903–19915,
Oct. 2022.

[28] Y. Liu, C. Liu, J. Liu, Y. Hu, K. Li, and K. Li, ‘‘Mobility-aware and
code-oriented partitioning computation offloading in multi-access edge
computing,’’ J. Grid Comput., vol. 20, no. 2, p. 11, Jun. 2022.

[29] A. Ndikumana, N. H. Tran, T. M. Ho, Z. Han, W. Saad, D. Niyato, and
C. S. Hong, ‘‘Joint communication, computation, caching, and control in
big data multi-access edge computing,’’ IEEE Trans. Mobile Comput.,
vol. 19, no. 6, pp. 1359–1374, Jun. 2020.

[30] Q. Chen, F. R. Yu, T. Huang, R. Xie, J. Liu, and Y. Liu, ‘‘Joint resource
allocation for software-defined networking, caching, and computing,’’
IEEE/ACM Trans. Netw., vol. 26, no. 1, pp. 274–287, Feb. 2018.

[31] R. A. Cooke and S. A. Fahmy, ‘‘A model for distributed in-network
and near-edge computing with heterogeneous hardware,’’ Future Gener.
Comput. Syst., vol. 105, pp. 395–409, Apr. 2020.

[32] G. Lia, M. Amadeo, G. Ruggeri, C. Campolo, A. Molinaro, and
V. Loscrì, ‘‘In-network placement of delay-constrained computing tasks
in a softwarized intelligent edge,’’ Comput. Netw., vol. 219, Dec. 2022,
Art. no. 109432.

[33] F. Aghaaliakbari, F. G. Javid, Z. Tasnim, Z. A. Hmitti, M. Gherari,
R. H. Glitho, and H. Elbiaze, ‘‘Demonstration of an in-network com-
puting enabled architecture for holographic streaming,’’ in Proc. IEEE
Conf. Netw. Function Virtualization Softw. Defined Netw. (NFV-SDN),
Nov. 2022, pp. 101–102.

[34] S. Liang, H. Wan, T. Qin, J. Li, and W. Chen, ‘‘Multi-user computation
offloading for mobile edge computing: A deep reinforcement learning and
game theory approach,’’ in Proc. IEEE 20th Int. Conf. Commun. Technol.
(ICCT), Oct. 2020, pp. 1534–1539.

[35] S. Yang, ‘‘A joint optimization scheme for task offloading and resource
allocation based on edge computing in 5G communication networks,’’
Comput. Commun., vol. 160, pp. 759–768, Jul. 2020.

[36] L. Wu, Z. Liu, P. Sun, H. Chen, K. Wang, Y. Zuo, and Y. Yang,
‘‘DOT: Decentralized offloading of tasks in OFDMA-based heteroge-
neous computing networks,’’ IEEE Internet Things J., vol. 9, no. 20,
pp. 20071–20082, Oct. 2022.

[37] J. Chen, Q. Deng, and X. Yang, ‘‘Non-cooperative game algorithms for
computation offloading in mobile edge computing environments,’’ J. Par-
allel Distrib. Comput., vol. 172, pp. 18–31, Feb. 2023.

[38] W. Yu, T. J. Chua, and J. Zhao, ‘‘Asynchronous hybrid reinforcement
learning for latency and reliability optimization in the Metaverse over
wireless communications,’’ IEEE J. Sel. Areas Commun., vol. 41, no. 7,
pp. 2138–2157, Jul. 2023.

[39] J. Gu, J. Wang, X. Guo, G. Liu, S. Qin, and Z. Bi, ‘‘A Metaverse-based
teaching building evacuation training system with deep reinforcement
learning,’’ IEEE Trans. Syst., Man, Cybern., Syst., vol. 53, no. 4,
pp. 2209–2219, Apr. 2023.

[40] A. Yu, H. Yang, C. Feng, Y. Li, Y. Zhao, M. Cheriet, and A. V. Vasilakos,
‘‘Socially-aware traffic scheduling for edge-assisted Metaverse by deep
reinforcement learning,’’ IEEE Netw., early access, Oct. 3, 2023, doi:
10.1109/MNET.2023.3317108.

[41] N. T. Hoa, L. V. Huy, B. D. Son, N. C. Luong, and D. Niyato, ‘‘Dynamic
offloading for edge computing-assisted Metaverse systems,’’ IEEE Com-
mun. Lett., vol. 27, no. 7, pp. 1749–1753, Jul. 2023.

[42] F. Tütüncüoglu, S. Jošilo, and G. Dán, ‘‘Online learning for rate-adaptive
task offloading under latency constraints in serverless edge computing,’’
IEEE/ACM Trans. Netw., vol. 31, no. 2, pp. 695–709, Apr. 2023.

[43] Y. Zhang, J. Chen, Y. Zhou, L. Yang, B. He, and Y. Yang, ‘‘Dependent task
offloading with energy-latency tradeoff in mobile edge computing,’’ IET
Commun., vol. 16, no. 17, pp. 1993–2001, Oct. 2022.

[44] X. Huang, X. Deng, C. Liang, and W. Fan, ‘‘Blockchain-enabled task
offloading and resource allocation in fog computing networks,’’ Wireless
Commun. Mobile Comput., vol. 2021, pp. 1–12, Dec. 2021.

[45] W. Li, S. Cao, K. Hu, J. Cao, and R. Buyya, ‘‘Blockchain-enhanced fair
task scheduling for cloud-fog-edge coordination environments: Model and
algorithm,’’ Secur. Commun. Netw., vol. 2021, pp. 1–18, Apr. 2021.

[46] W. Yu, T. J. Chua, and J. Zhao, ‘‘Asynchronous hybrid reinforcement
learning for latency and reliability optimization in the Metaverse over
wireless communications,’’ 2022, arXiv:2212.14749.

[47] X. Chen, L. Jiao, W. Li, and X. Fu, ‘‘Efficient multi-user computation
offloading for mobile-edge cloud computing,’’ IEEE/ACM Trans. Netw.,
vol. 24, no. 5, pp. 2795–2808, Oct. 2016.

[48] S. Josilo, ‘‘Task placement and resource allocation in edge computing
systems,’’ Ph.D. dissertation, Royal Inst. Technol., Stockholm, Sweden,
2020. [Online]. Available: https://nbn-resolving.org/urn:nbn:se:kth:diva-
272623

[49] Y. Cui, L. Du, H. Wang, D. Wu, and R. Wang, ‘‘Reinforcement learning
for joint optimization of communication and computation in vehicular
networks,’’ IEEE Trans. Veh. Technol., vol. 70, no. 12, pp. 13062–13072,
Dec. 2021.

[50] K.-H. Loh, B. Golden, and E.Wasil, ‘‘Solving themaximum cardinality bin
packing problem with a weight annealing-based algorithm,’’ inOperations
Research and Cyber-Infrastructure. Boston, MA, USA: Springer, 2009,
pp. 147–164.

[51] K. Yamamoto, ‘‘A comprehensive survey of potential game approaches
to wireless networks,’’ IEICE Trans. Commun., vol. 98, no. 9,
pp. 1804–1823, 2015.

IBRAHIM ALIYU (Member, IEEE) received the
B.Eng. and M.Eng. degrees in computer engineer-
ing from the Federal University of Technology,
Minna, Nigeria, in 2014 and 2018, respectively,
and the Ph.D. degree in computer science and
engineering from Chonnam National University,
Gwangju, South Korea, in 2022. He is cur-
rently a Postdoctoral Researcher with the Hyper
Intelligence Media Network Platform Laboratory,
Department of ICT Convergence System Engi-

neering, Chonnam National University. His research interests include
distributed computing for massive metaverse deployment, federated learn-
ing, data privacy, network security, and artificial intelligence for autonomous
networks.

VOLUME 12, 2024 11629

http://dx.doi.org/10.1109/TSUSC.2018.2868655
http://dx.doi.org/10.1109/MNET.2023.3317108

I. Aliyu et al.: Dynamic Partial Computation Offloading for the Metaverse in In-Network Computing

SEUNGMIN OH received the bachelor’s degree
from the Department of Digital Contents, Korea
Nazarene University, in 2019, and the M.S. degree
from the Department of ICT Convergence Sys-
tem Engineering, Chonnam National University,
in 2021, where he is currently pursuing the Ph.D.
degree with the Department of ICT Convergence
SystemEngineering. His research interests include
deep learning, machine learning, and computer
vision.

NAMSEOK KO received the M.S. and Ph.D.
degrees from the Korea Advanced Institute of
Science and Technology (KAIST), Daejeon,
South Korea, in 2000 and 2015, respectively. He is
currently the Director of the Mobile Core Network
Research Section, Electronics and Telecommu-
nication Research Institute (ETRI). He is also
an Associate Professor with the Department of
Information and Communication Engineering,
University of Science and Technology (UST).

Since joining ETRI, in 2000, he has participated in various research and
development projects, including 5G mobile core network technology. He is
also leading several ongoing projects related to 6G network architecture.
Previously, he served as the Vice Chair for the ITU-T Focus Group IMT-
2020. He is currently the Vice Chair of the SG11 and the Technology
Committee and a Rapporteur of Q.20 of SG13 in ITU-T and leads the
Network Technology Working Group, 6G Forum, South Korea.

TAI-WON UM received the B.S. degree in elec-
tronic and electrical engineering from Hongik
University, Seoul, South Korea, in 1999, and the
M.S. and Ph.D. degrees from the Korea Advanced
Institute of Science and Technology (KAIST),
Daejeon, South Korea, in 2000 and 2006, respec-
tively. From 2006 to 2017, he was a Principal
Researcher with the Electronics and Telecom-
munications Research Institute (ETRI), a leading
government institute on information and commu-

nications technology in South Korea. He is currently an Associate Professor
with Chonnam National University, Gwangju, South Korea. He has been
actively participating in standardization meetings, including ITU-T SG20
(the Internet of Things, smart cities, and communities).

JINSUL KIM (Member, IEEE) received the B.S.
degree in computer science from the University of
Utah at Salt Lake City, UT, USA, in 1998, and the
M.S. and Ph.D. degrees in digital media engineer-
ing from the Korea Advanced Institute of Science
and Technology (KAIST), Daejeon, South Korea,
in 2004 and 2008, respectively. Previously, he was
a Researcher with the Broadcasting Telecom-
munications Convergence Research Division,
Electronics and Telecommunications Research

Institute (ETRI), Daejeon, from 2004 to 2009, and was a Professor with
Korea Nazarene University, Cheonan-si, South Korea, from 2009 to 2011.
He is currently a Professor with Chonnam National University, Gwangju,
South Korea. He is a member of the Korean National Delegation for ITU-T
SG13 International Standardization. He has participated in various national
research projects and domestic and international standardization activities.
He is also the Co-Research Director of the Artificial Intelligence Innovation
Hub Research and Development Project hosted by Korea University and the
Director of the G5-AICT Research Center.

11630 VOLUME 12, 2024

