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ABSTRACT With the escalating requirements for maintenance of wind turbines, the deployment of
Unmanned Aerial Vehicles (UAVs) for inspection tasks has become increasingly prevalent. However,
wind turbine blades, which are thin and long, possess weak texture features that lead to target confusion
when tracking specific parts of the dynamic blades. Additionally, wind turbine units, being large dynamic
structures, often exceed the camera’s field of view (FOV) and exhibit unique motion characteristics. These
factorsmake the visual tracking of specific components unstable due to the lack of globalmotion information.
In order to address the aforementioned challenges and achieve consistent calibration of key components
under the dynamic operating conditions of wind turbines, this study has adopted a strategy of integrating
the Squeeze-and-Excitation Network (SEnet) into the backbone network of YOLOv5. Innovatively, two
hyperparameters have been introduced into the existing loss function to adjust the weights of samples under
conditions of data imbalance, thereby enhancing the performance of the detection model. In the application
of the DeepSORT tracking algorithm, Long Short-Term Memory (LSTM) networks have been combined to
predict the trajectory of the rotor blade’s central point, and an optimized Kalman filter has been employed to
significantly improve the system’s adaptability and precision under various motion conditions. Empirical
results from this study underscore the efficacy of the proposed method, demonstrating its capability to
accurately differentiate individual blades as well as specific blade segments. Compared to the traditional
YOLOv5, the enhanced YOLOv5-SE has demonstrated a 5.3% improvement in the Mean Average Precision
(mAP_0.5) evaluationmetric. Moreover, the improved DeepSORT algorithm has exhibited high efficiency in
maintaining continuous and stable tracking of moving blades, adeptly handling scenarios where rotor blades
frequently enter and exit the FOV. This advancement paves the way for the broader application of UAVs in
wind turbine inspections, offering the potential for more efficient and accurate maintenance protocols.

INDEX TERMS Target tracking, wind turbine, YOLOv5, motion estimation, unmanned inspection.

I. INTRODUCTION
As the scale of wind energy development rapidly expands, the
field of inspection faces increasingly significant challenges.
Traditional manual inspection methods, though feasible,
have emerged with high costs and associated safety risks
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as primary constraints. Owing to their high efficiency,
swift responsiveness, and exceptional reliability, UAVs are
becoming the predominant choice for wind turbine unit
inspections [1]. In non-stoppage scenarios, detecting the
external condition of wind turbine generator units not only
effectively enhances operational efficiency but also offers
a crucial means to reduce maintenance costs. However,
capturing the precise status of specific rotor blades during the

VOLUME 12, 2024

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ 5321

https://orcid.org/0009-0003-8855-1367
https://orcid.org/0000-0003-0167-1087
https://orcid.org/0000-0003-0895-9876
https://orcid.org/0000-0001-7531-4459
https://orcid.org/0000-0001-8219-9110


Y. Xu et al.: Recurrent Approach for Uninterrupted Tracking of Rotor Blades Using Kalman Filter

motion of wind turbines is a major challenge in intelligent
inspections [2]. To address this, this study employs deep
learning algorithms specifically designed for the detection
and tracking of moving wind turbine generator unit rotor
blades.

During wind turbine operations, the outer segments of their
blades can reach linear speeds of over 90 m/s [3], leading to
motion blur interference. The highly similar features among
the three blades and the lack of distinct texture features on
each blade make it challenging to identify specific segments.
Moreover, with the span of wind turbine blades often reaching
hundreds of meters [4], a drone’s FOV during inspection
missions can’t encompass an entire blade. Consequently, the
regions of interest frequently enter and exit the FOV as blades
move. Ensuring consistent calibration of targets in long-term
tracking is imperative for continuous and stable tracking of
specific blade sections during observation.

In addressing the aforementioned challenges, this study
conducted the following core work:

1. Optimization of DeepSORT for Rotor Blades: Con-
sidering the nonlinear motion characteristics exhibited by
wind turbine rotor blades, DeepSORT faces certain tracking
limitations. To mitigate this, we optimized the state variables
and the state transition model of the Kalman filter. This
ensured alignment with the nonlinear motion patterns of rotor
blades, enhancing tracking accuracy and stability.

2. Utilization of LSTM for Uninterrupted Tracking: To
ensure continuous stability in tracking the target region when
rotor blades frequently enter and exit the FOV, we employed
an LSTMmodel. This predicted the motion trajectory of rotor
blades outside the camera’s FOV, enabling the Kalman filter
to continuously receive position information, thus achieving
efficient and uninterrupted tracking.

3. Integration of SEnet with YOLOv5: In this research,
we integrated the SEnet into the backbone network of
YOLOv5. To further address the issue of class imbalance in
the data, we adjusted the loss function and introduced two
hyperparameters. This balanced the uneven distribution of
samples and consequently improved detection accuracy.

Through experimental validations, our study has proven its
capability to identify and track critical segments of specific
blades under wind turbine motion conditions effectively.
It ensures target consistency calibration of essential com-
ponents of specific rotor blades in motion, enhancing the
efficiency of intelligent drone inspections of wind turbine
generator units.

II. RELATED WORKS
In recent years, computer vision technology applications
have significantly expanded [5]. Research on the precision
of target detection and the stability of target tracking has
particularly gained traction, notably within the wind power
sector, where the accurate detection and consistent tracking
of wind turbine motion is crucial.

Advancements in detecting weak-textured feature targets
have been significant. Ran et al. [6] and colleagues enhanced

the real-time detection of weak texture defects on wind
turbine blades by improving the feature pyramid network,
reallocating input feature weights to better capture feature
information, thus increasing the model’s accuracy and
robustness. Xiaoxun et al. [7] and his team focused on the
efficient detection of surface cracks on wind turbine blades,
particularly less visible light-colored cracks, by enhancing
crack feature extraction under various lighting conditions
using multi-source information and the C3TR module.
Addressing the challenge of bolt loosening on wind turbines
due to their non-distinct texture features, Yang et al. [8]
and his team proposed a dual-phase detection framework
that merges traditional manual torque techniques with deep
learning models, enabling the recognition of bolts loosened
by as little as 2 degrees under various conditions. Zhang and
Wen [9] and his group introduced the SOD-YOLO model,
optimized for rapidly detecting small target defects and
other subtle imperfections. Yang et al. [10] and colleagues
improved the detection precision of weak texture feature
insulation defects on complex backgrounds by integrating
Spatial Pyramid Pooling (SPP) with the MobileNet net-
work. Xia et al. [11] and his team developed a unique
reparameterized large-kernel C3 module specifically for
weak-textured targets, combining adaptive receptive fields
with multi-scale feature fusion to optimize detection of
weak texture steel surface defects. Wang et al. [12] and
his group created various feature extraction modules that
combine depth, shape, and texture characteristics of detection
targets, input into a cooperative network to enhance detection
accuracy. Finally, Chen et al. [13] and his team developed
a trapezoidal multi-attention network (LMNet) that excels
in extracting features from weak-textured objects while
minimizing feature information loss.

Nevertheless, the primary detection targets of this study,
wind turbine blades, present highly similar features amongst
each other, and distinct texture features within different
sections of the blades are lacking, posing a challenge for
recognizing specific blade sections.

Deep learning-based target tracking algorithms in the
literature have shown substantial improvements in accuracy
and robustness. Kim [14] achieved consistent calibration of
high-maneuverability targets in 3D space by acquiring posi-
tion and speed information of the tracking target and account-
ing for obstacles. Ning et al. [15] introduced STD-Yolov5,
a new model embedding an attention mechanism into the
primary network to enhance the network’s feature extraction
capacity, improving detection of weak texture targets against
complex backgrounds. Wang and Huang [16] and his team
used an improved gray neural network to track and pinpoint
feature points of targets in videos, achieving consistent
target calibration within video streams. Rao et al. [17] and
associates proposed a multi-camera coordination strategy
for motion target detection, tracking, and matching to meet
the visual tracking requirements of specific targets. Du [18]
and his team proposed a novel dynamic tracking approach
for athletes based on wireless body area networks, capable
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FIGURE 1. Schematic diagram of the YOLOv5 network structure.

of distinguishing and tracking similar targets for target
consistency calibration.

Despite successes in the continuous and stable tracking
of specific targets, wind turbines, the focus of this paper,
often exceed the camera’s FOV and display unique motion
characteristics. The regions of interest frequently transition
in and out of the FOV due to blade movement throughout the
observation process, challenging the continuous and stable
tracking of turbine blades and leading to unstable visual
tracking of specific components because of the absence of
global motion information.

In conclusion, while existing studies have made strides
in detecting weak-textured targets and tracking them, sig-
nificant challenges remain in addressing large dynamic
structural objects like wind turbines with distinct motion
characteristics against complex backgrounds. Thus, this study
aims to bridge gaps in current research by integrating and
optimizing the YOLOv5 backbone network, utilizing LSTM
to predict the trajectory of the central point of thewind turbine
blades, and enhancing the Kalman filter to improve system
adaptability and accuracy, achieving consistent calibration
of specific key components of the blades under operational
conditions.

III. TECHNICAL SOLUTIONS
A. THE NETWORK STRUCTURE OF YOLOv5
This study utilizes YOLOv5 for the detection of wind
turbine blade segments, the comprehensive design of which
is depicted in Figure 1. The architecture of the YOLOv5
model can be broadly divided into four components: input,
backbone, neck, and output [19]. As delineated in the figure,
the input phase employs the Mosaic data augmentation
technique. This method not only diversifies the background
context of the detection target within the image but also
bolsters the model’s ability to detect smaller objects.
Additionally, the input phase facilitates adaptive anchor
box computations and dataset-specific image scaling. The
backbone segment predominantly adopts the Focus and the
Cross Stage Partial (CSP) structures. In the network’s neck,
integration of the Feature Pyramid Network (FPN) with the
Personal Area Network (PAN) structure enhances multi-scale
feature fusion capabilities. For the output phase, the model
leverages a bounding box loss function, promoting faster and
more efficient convergence.

FIGURE 2. SEnet module structure.

B. IMPROVEMENT OF YOLOv5
1) INTEGRATING SEnet IN YOLOV5’s BACKBONE NETWORK
As the depth of the YOLOv5 network increases, the extracted
information at the output becomes progressively abstracted.
Moreover, during the wind turbines’ operation, the motion
blur substantially affects the blade detection process. The
considerable similarity among blade features, coupled with
the absence of distinct texture patterns between blade sec-
tions, complicates the detection of specific blade components
in drone inspection footage. In light of these challenges,
this study undertakes refinements to the original YOLOv5.
The modifications facilitate the learning of inter-channel
feature relationships, amplifying the expression of pivotal
channel features. This enhancement subsequently boosts the
performance of the trained model.

The SENet is adept at discerning the significance of
features across diverse channels, thereby enriching the
feature map’s representation of dimensional attributes. The
architectural layout of the SENet is depicted in Figure 2.

For an input X with a shape of C × H × W , after
passing through the convolutional layer, the feature map U
is obtained. The calculation process is as follows:

Ftr : X → U ,X ∈ RH ′
×W ′

×C ′

, U ∈ RH×W×C . (1)

uc = vc ∗ X =

c′∑
s=1

vsc ∗ xs. (2)

The SEnet module is typically positioned after the
convolutional layer and primarily consists of two oper-
ations:: Squeeze and Excitation. This module undertakes
significance learning across various channels of U , thereby
promoting the expression capability of the essential channels
and concurrently attenuating the activity of the relatively
weaker channels. Initially, the SENet module implements the
Squeeze operation on U , deriving a one-dimensional feature
zc at the channel level. zc stands as the preliminary weight
coefficients for each respective channel. The procedure
for the Squeeze operation is delineated in the subsequent
equation:

zc = Fsq (uc) =
1

H ×W

H∑
i=1

W∑
j=1

uc(i, j). (3)

In order to capture the activation intensity of feature
representation for each channel, the initially obtained weight
coefficients zc undergo Excitation processing. The Excitation
mechanism comprises two fully connected layers and two
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FIGURE 3. The backbone network of YOLOv5 integrates the SENet module.

activation layers. zc is successively processed through dimen-
sion reduction and elevation by these two fully connected
layers. The elevated output s retains the same shape as zc,
serving as the updated weight coefficients for the channels.
The computation process is detailed in the subsequent
equation:

s = Fex(z,W ) = σ (g(z,W )) = σ (W2δ (W1z)) . (4)

After the first fully connected layer, a Rectified Linear
Unit (ReLU) activation function is applied. In contrast, the
subsequent fully connected layer utilizes a Sigmoid activation
function. During training, iterative computations within the
SENet module enable the two fully connected layers to
establish a nonlinear relationship, thereby capturing the
variances in the expressive capacities across channels.

The SENet module, based on the computed channel weight
coefficients s, performs a reassignment operation on the
input feature map U , enhancing the activation of relatively
important channels. The process for this reassignment
computation is detailed in the subsequent equation:

x̃c = Fscale (uc, sc) = sc · uc. (5)

In the advanced layers of the YOLOv5 network, particu-
larly within the Neck and Head segments, the feature maps
carry more pronounced semantic information compared to
the BackBone. Nonetheless, the SENet encounters difficul-
ties distinguishing pivotal features from those small-scale
feature maps that are characterized by a high degree of
feature information fusion. This complexity hinders the apt
allocation of learning weights. Even though the Backbone
of YOLOv5 may not contain rich semantic information,
it encapsulates essential texture and contour details of
the targets. Such nuances are vital for detecting wind
turbine blades which are devoid of distinct texture markers.
By amplifying the learning weights associated with these
texture and contour details, the efficacy of the model’s
training can be substantially augmented.

In our research, the SE module is amalgamated into the
BackBone of the primary network, as delineated in Figure 3.
Figure 3 (a) showcases the intrinsic main network structure
of YOLOv5, while Figure 3 (b) portrays the configuration
of the YOLOv5 main network post the SENet integration.
The enhanced YOLOv5 algorithm with the integrated SENet
is denominated YOLOv5-SENet. This iteration, despite a
notable reduction in parameters, conserves the overarching
information and bolsters the model’s resilience.

SENet is a mechanism that discriminatively amplifies
salient features while attenuating non-pertinent ones by
harnessing global contextual information. This architecture
facilitates the model in ascertaining feature weights con-
tingent upon the incurred loss, thereby adjudicating the
prominence of each feature map. In accordance with this
discerned importance, a weight coefficient is ascribed to
each feature channel. Such a stratagem enables the neural
network to predominantly concentrate on the feature maps
corresponding to segments of the wind turbine blade,
augmenting their weight in the process. Concurrently, it de-
weights the less consequential or marginally influential
feature maps, mitigating the perturbation from intricate
backgrounds during model training and, thereby, enhancing
the model’s efficacy.

2) IMPROVEMENT OF LOSS FUNCTION
The loss function of YOLOv5 primarily consists of object
loss, classification loss, and bounding box regression loss.
Importantly, both the object loss and classification loss utilize
BCEWith Logits as their respective loss functions, as detailed
below:

BCE(p, y) =

{
− ln(p), y = 1
− ln(1 − p), y = 0.

(6)

In the aforementioned equation, p represents the probabil-
ity output after undergoing the Sigmoid activation function;
y is the genuine sample label, taking values of either 0 or 1.

Within the image, regions containing the wind turbine are
classified as positive samples, whereas the other areas are
considered negative samples. For positive samples, a larger
output probability corresponds to a reduced loss. In contrast,
for negative samples, a smaller output probability results in
a lesser loss. The imbalance between positive and negative
samples is evident in one-stage object detection algorithms.
Specifically, in drone-captured images of wind turbines, the
background’s proportion considerably exceeds that of the
wind turbines. Consequently, the loss values produced by
the loss function predominantly originate from the negative
sample backgrounds. To address this, we have modified
the loss function in this study, incorporating parameters
to equilibrate the influence of both positive and negative
samples on the loss.

To regulate the weights assigned to positive and negative
samples, it’s imperative to mitigate the influence of an
abundance of negative samples on the loss. This objective
can be accomplished using a balancing factor, as illustrated
below:

αt =

{
α, y = 1
1 − α, y = 0.

(7)

The factor at provides different weights depending on the
sample label, and its principle is shown in the equation below:

BCE (p, y, αt) =

{
−α ln(p), y = 1
−(1 − α) ln(1 − p), y = 0.

(8)
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The factor at controls the proportion of positive and
negative samples in the loss by adjusting its magnitude.When
at is in the interval [0.50,1], it can increase the proportion of
the positive sample loss while reducing that of the negative
sample loss. An at value within the range [0.25,0.75] can
achieve better AP (Average Precision) values.

The factor at is designed to regulate the contributions of
positive and negative samples to the loss, without altering the
loss pertaining to easily separable and challenging samples.
Thus, modulation factors (1 − p)γ and pγ are employed to
control the weights of the difficult-to-distinguish samples and
easily distinguishable samples, with the underlying principle
illustrated as follows:

BCE(p, y, r) =

{
−(1 − p)γ ln(p), y = 1
−pγ ln(1 − p), y = 0.

(9)

In the aforementioned formula, γ falls within the range
[0,5]. By adjusting the value of γ , one can control the
magnitude of the modulation factor, thereby regulating the
loss weight for hard-to-distinguish and easily distinguishable
samples. When γ = 0, it represents the standard binary
cross-entropy loss function. When 0 < γ ≤ 5, the effect
is to reduce the contribution of easily classified samples to
the loss, enabling the model to focus more on challenging
samples.

By integrating the balancing factor at with the modulation
factors (1 − p)γ and pγ , we obtain the improved Focal loss.
The updated loss function is presented as follows:

FocalLoss (p, y, αt , γ )

=

{
−α(1 − p)γ log(p), y = 1
−(1 − α)pγ log(1 − p), y = 0.

(10)

In this context, the balancing factor at addresses the imbal-
ance between positive and negative samples in the model,
thereby reducing the influence of complex backgrounds on
model training. The modulation factors (1 − p)γ and pγ

control the impact of the differences between easily and
hard-to-distinguish samples on the loss. This enhances the
discriminative power between segments of wind turbine
blades, leading to improved training results for the model.

C. THE PRINCIPLE AND IMPROVEMENT OF DEEPSORT
ALGORITHM
This study employs the DeepSORT algorithm [20], [21] for
tracking wind turbine blades and assigning IDs, combined
with the enhanced YOLOv5-SE, to distinguish the segments
of the blades, aiming to identify specific segments of
particular blades. Compared to its predecessor, SORT,
DeepSORT significantly reduces ID loss by introducing
cascade matching and new trajectory verification. This is
crucial for this study, as it requires distinguishing between
three blades that have extremely similar visual appearances.
Large structures like wind turbines often exceed the camera’s
FOV and exhibit unique motion characteristics. Throughout
the observation process, due to the movement of the blades,

FIGURE 4. Optimized tracking flowchart.

the region of interest frequently enters and exits the FOV,
challenging the continuous and stable tracking of the wind
turbine blades. This underscores the need to refine the
Kalman filter, providing a robust solution for such complex
scenarios.

In this study, YOLOv5 is employed as the detector
and DeepSORT as the tracker. Further refinements were
made to the Kalman filter within DeepSORT, integrating it
with LSTM to enhance tracking robustness. The optimized
tracking process is illustrated in Figure 4.

The entire tracking workflow is as follows:
(1) Object Detection: YOLOv5 is employed to detect the

wind turbine blades in the input real-time video. For each
video frame, YOLOv5 generates bounding boxes along with
their respective confidence scores for all detected objects.
Based on its confidence score, non-maximum suppression
(NMS) is applied, eliminating detections with low confidence
(below 0.6) and retaining high-confidence bounding boxes.

(2) LSTM Trajectory Prediction: If a target consecutively
appears for more than a predefined threshold, denoted as
‘m’, an LSTM model is initialized to utilize the previously
collected trajectory data for predicting the future trajectory
of the target. If the target becomes occluded or exits the FOV,
the LSTMmodel persists in generating trajectory predictions.

(3) Kalman Filter and Virtual Observation: Upon the
target’s departure from the FOV, the LSTM’s trajectory
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predictions serve as surrogate observations and are integrated
into the Kalman filter. Using these surrogate observations, the
Kalman filter continues estimating the state of the target until
its re-entry into the FOV.

(4) Target Tracking and State Estimation: Within the FOV,
the target’s state and trajectory are estimated and predicted
via the Kalman filter. For accurate target matching and
tracking, the system leverages cascade matching combined
with the Hungarian algorithm, ensuring that each target
retains a unique identification ID.

(5) Identity Management and Update: The parameters of
both the Kalman filter and LSTM model, alongside the state
and identity information of the targets, undergo updates.
As the target makes its re-entry into the FOV, the previously
stored state and identity data facilitate prompt recognition and
re-matching.

DeepSORT, by leveraging cascade matching and new
trajectory confirmation techniques, has notably reduced
instances of ID loss. This is especially critical for objects like
wind turbine blades that exhibit unique motion characteris-
tics. Its enhanced features play a pivotal role in maintaining
tracking consistency and accuracy. When the blades exit the
FOV, we introduce an LSTM model. This model utilizes
prior trajectory data to generate potential future paths of the
blades, addressing situations of target loss. These generated
trajectories, considered as virtual observations, are fed into
the Kalman filter. This ensures that the system can continue
estimating the target state during periods of target loss until
the blades re-enter the FOV. The integration and optimization
of theKalman filter offer a robust solution for this system. It is
capable of adeptly handling the unique motion characteristics
of wind turbine blades, ensuring system stability and tracking
accuracy under diverse complex conditions. Finally, when the
blades re-enter the FOV, the system can swiftly identify and
rematch the target using previously saved state and identity
information. This further guarantees persistent consistency in
a specific region throughout the continuous tracking process.

By employing this technical approach that combines
LSTM with DeepSORT, we have not only optimized the
tracking process of wind turbine blades but also achieved sus-
tained consistency within specific areas. This holds immense
practical value for the stable operation and maintenance of
wind turbines.

1) KALMAN FILTERING AND ITS ENHANCEMENTS
The Kalman filter [22], [23] is a linear recursive estimation
method, widely used in estimating system states within time
series data. Its fundamental assumptions are that system
noise follows a Gaussian distribution and the system itself
is linear or approximately linear. However, the rotational
characteristics of wind turbine blades deviate from these
assumptions.

The rotation of the turbine blades exhibits periodic
properties, but the shape changes induced by rotation within
images can compromise the continuous stability of tracking.
Especially when the observational viewpoint focuses on

specific parts of the blades, the frequent entrance and exit
of the wind turbine blades from the FOV make tracking
increasingly challenging.

Taking into account the aforementioned factors, this study
designed an optimized Kalman filter model specifically for
wind turbine blades. Based on the blade’s angle and angular
velocity, the research establishes the state vector as illustrated
below:

X =

[
θ

ω

]
. (11)

This provides a foundation for the precise estimation of
blade rotation. Furthermore, considering the nonlinear rota-
tion characteristics of wind turbine blades, we optimized the
prediction model. This optimization enables more accurate
blade position predictions, thereby assisting DeepSORT in
achieving more precise tracking.

From the perspective of a drone, the movement trajectory
of the wind turbine blade can be considered as a type
of perspective projection. For each detected blade, we can
pinpoint the center of its bounding box. Due to perspective
distortion, these centers describe a circular motion trajectory
in the real world but are projected as an ellipse in the image.
Observing this ellipse, we can estimate the distance from
the bounding box’s center to the turbine tower, deriving the
major and minor axes of the ellipse. Crucially, this major axis
actually represents the radius of the blade’s circular motion in
the real-world environment.

To ensure the accuracy of observations, our aerial shooting
strategy aims to keep the drone and the wind turbine tower on
the same horizontal plane as much as possible. In this manner,
the wind turbine blade will mostly present as a vertical ellipse
from the drone’s viewpoint. In the mapping process from the
ellipse to a circle, we can achieve a ‘‘stretching’’ correction
for the perspective distortion by multiplying the x-coordinate
by a factor k . For a point P on the ellipse, its mapped
position on the circle is P′. The transformation process of its
coordinates is shown as follows:

P′
=

(
x ′, y′

)
= (kx, y). (12)

wherein, k is the stretching factor, which is related to
the camera’s focal length, altitude, and other perspective
parameters.

Using the position of the tower shaft as the originO, we can
compute the angle between point P′ and O. Assuming the
coordinates of O serve as the origin, the angle of the wind
turbine blade can be obtained through the following equation:

θ = arctan
(
y′

x ′

)
. (13)

The angular velocity is the rate of change of angle with
respect to time. For two consecutive frames, the angular
velocity can be obtained through the following equation:

ω =
θt+1 − θt

1t
. (14)
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In the aforementioned equation, θt+1 and θt are the angles
in two consecutive frames, while 1t represents the time
difference between the two frames.

Based on the aforementioned assumptions, the state
transition model can be described as the following
equation:

Xk+1 = AXk + BUk + Wk . (15)

In the aforementioned state transition model, A is the state
transition matrix, Uk is the optional control input. However,
for wind turbines, their motion is driven by wind speed,
so we can typically disregard this input. Wk represents the
process noise, which includes factors such as camera jitter
and inherent blade vibrations.

For the prediction phase of the Kalman filter, we forecast
based on the state from the previous moment. Given the
non-linear rotational characteristics of the wind turbine
blades, it’s necessary to employ the Jacobian matrix for
linearization to ensure accurate prediction. The uncertainty
in the prediction is represented by the covariance Pk , and its
covariance equation is shown as follows:

Pk+1|k = APkAT + Q. (16)

In the aforementioned equation, Q represents the covari-
ance matrix of the process noise.

In the update phase, the Kalman gain Kk is used to
determine the extent to which we should trust the prediction
and the extent to which we should trust the observation. The
formula for calculating the Kalman gain is as follows:

Kk = Pk+1|kHT
(
HPk+1|kHT

+ R
)−1

. (17)

Finally, combining the prediction and observation, the
updated state estimate and covariance can be obtained using
the following equations:

Xk+1 = Xk+1|k + Kk
(
Yk − HXk+1|k

)
. (18)

Pk+1 = (I − KkH)Pk+1|k . (19)

Through this prediction-update loop, the optimized
Kalman filter can provide effective estimation and tracking
for nonlinear systems, especially in scenarios with noise and
uncertainty. For tracking the wind turbine blades, this means
that DeepSORT can consistently track their position and
velocity, and quickly make corrections even when the blades
move in and out of the FOV.

In summary, by improving the Kalman filter within
DeepSORT, particularly for the specific scenario of wind
turbine blades, we can significantly enhance tracking stability
and accuracy, achieving consistent target calibration of key
components of the blade under the motion state of the wind
turbine.

2) UTILIZING LSTM IN CONJUNCTION WITH KALMAN FILTER
After the aforementioned optimization, the Kalman filter
can now provide effective estimation and tracking. However,
during the tracking process of wind turbine blades, tracking

FIGURE 5. Kalman filter trajectory estimation diagram.

failures or losses frequently occur due to various factors such
as occlusions and exiting the FOV. When the wind turbine
blade leaves the FOV, its estimated trajectory is shown in
Figure 5.

Figure 5 clearly illustrates that when trajectory estima-
tion is performed with observation points, the optimized
Kalman filter’s trajectory estimation closely aligns with the
distribution of the observation points. However, when the
wind turbine blades leave the FOV, the lack of sufficient
observational data to correct the prediction often results in the
Kalman filter producing significant biases and uncertainties.
This leads to a substantial deviation between the estimated
trajectory and the actual trajectory. Such deviations can
impact the DeepSORT algorithm’s ability to correctly assign
IDs when the blade re-enters the FOV.

To address the aforementioned issue, this study intro-
duces an innovative approach that integrates the LSTM
network [24] with the Kalman filter. The objective is to utilize
the LSTM for accurate position estimation when the blade
exits the FOV, ensuring the continuity of trajectory estimation
by the Kalman filter.

When the blade is within the FOV, the Kalman filter
operates normally, updating its state and covariance based on
the dynamic behavior of the blade. Once the blade exits the
FOV, the LSTMmodel intervenes, using previously collected
trajectory data to generate a trajectory prediction for the
period after the blade has left the FOV. Figure 6 below shows
the training curve of the LSTM.

From Figure 6, it can be observed that the center
coordinates of the turbine blade closely match the LSTM
prediction model to the observed points. Once the blade
leaves the FOV, the LSTM model will utilize the previously
collected trajectory data to generate predictions for the
blade’s path outside of the FOV. These predicted data points
serve as virtual observations, which are then fed into the
Kalman filter to continuously update the blade’s state. As a
result, even in scenarios where the blade is lost from view,
the combined LSTM and Kalman filter can offer a more
stable and precise trajectory estimation, greatly enhancing
the robustness of the DeepSort algorithm and laying a solid
foundation for subsequent analysis and applications. The
trajectory estimation using the Kalman filter in conjunction
with LSTM is illustrated in Figure 7.
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FIGURE 6. LSTM training curve diagram.

FIGURE 7. Trajectory estimation diagram with Kalman filter integrated
with LSTM.

From Figure 7, it is evident that the trained LSTM model
can predict the trajectory of the wind turbine blades. Due to its
superior capability in handling sequential data, the model is
able to learn the inherent patterns of blade motion, generating
accurate trajectory predictions even when the blade exits
the FOV. The Kalman filter, in turn, utilizes these virtual
observations, achieving a seamless estimation of the blade’s
state.

Through this approach, the robustness of the DeepSort
algorithm during blade occlusions is significantly enhanced,
realizing a more coherent and accurate trajectory estimation,
laying a solid foundation for subsequent analysis and applica-
tions. This method not only stabilizes the tracking algorithm
but also ensures more precise and reliable localization when
the blade re-enters the FOV, effectively overcoming the
challenges posed by blade occlusions and exits from the
visual field.

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL ENVIRONMENT
The experimental environment used for pedestrian target
tracking in this paper is Ubuntu18.04 operating system,
Python 3.7.0, 8G RAM, Intel(R) CoreTMi9-10900K pro-
cessor, and NVIDIA GeForce RTX 3090 (8G) GPU. The
camera used in this experiment is Logitech StreamCam, with
a maximum video resolution of 720p/30fps.

In this study, data collection was carried out in a wind
farm located in an eastern coastal region of China. A total of
6089 video frames were captured. To avoid minimal changes
between adjacent frames, 3451 frames were selected from
these as the experimental dataset for this research. Two
experimental scenarios were designed: one with a whole
wind turbine sequence of 960 frames and a local sequence
of 2491 frames. After completing the dataset construction
and organization, the custom dataset was uploaded and made
public. This dataset can be found on the public repository
IEEE DataPort and can be accessed and downloaded through
a link. The dataset was manually annotated using the
LabelImg annotation tool, eventually generating labels in
txt format, with coordinates all undergoing normalization.
The tip, middle, and base of the wind turbine blades are
represented by the numbers 0, 1, and 2, respectively. Images
were divided into training, validation, and test sets at a ratio
of 8:1:1.

B. ANALYSIS OF MODEL TRAINING AND DETECTION
RESULTS
To test the performance of the fused model after adding
SEnet, this study trained the network model using a
dataset established for wind turbines, employing the same
environment and parameter configurations.

To more intuitively evaluate the performance of the
proposed fused model in detecting segments of wind turbine
blades — especially areas lacking texture features — we
designed and carried out a series of visualization experiments.
The results of these experiments are detailed in Figure 8.

Compared to the original YOLOv5 model, the fusion
model developed in this study shows its superiority in
multiple aspects. Specifically, the original model struggles
with distinguishing between the tip and the middle sections
of the wind turbine blades, often confusing these two parts.
This issue is particularly pronounced when the blade’s tip
and middle sections overlap with other parts of the turbine
due to their high similarity in appearance, which significantly
complicates the recognition process.

However, the fusion model proposed in this study offers
effective solutions to these challenges. Not only does the
model accurately identify different parts of the wind turbine
blades, but it also exhibits strong robustness against complex
backgrounds and overlapping areas.

To comprehensively assess the model’s performance,
this study adopted various evaluation metrics, including
mAP_0.5, Precision, and Recall. Furthermore, a series of
visualization steps were conducted to provide amore intuitive
display of themodel’s performance trends. Figure 9 illustrates
the change in these evaluation metrics as the number of
training iterations increases.

From the data in Figure 9, it is evident that, compared to the
original YOLOv5model, the integratedmodel demonstrates a
faster convergence rate across all evaluation metrics. Notably,
this performance enhancement is achieved with a reduction
in the model’s feature parameters, further attesting to the
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FIGURE 8. Algorithm detection and recognition results.

TABLE 1. Detection model performance metrics.

efficiency of the optimization. The integrated model exhibits
a significant improvement in accuracy and robustness in the
local detection of wind turbine blades. These experimental
results not only validate the high accuracy of the fused model
in handling highly similar or overlapping objects but also lay
a solid technical foundation for its broader adaptability in
practical applications.

To systematically assess the effectiveness of the improved
YOLOv5 backbone network proposed in this study, we con-
ducted a series of comparative experiments and consolidated
the results in Table 1.

After a detailed analysis of the data in Table 1, we draw
the following conclusions: The integrated model with
SEnet achieved a significant improvement in the mAP_0.5.
Specifically, its mAP_0.5 reached 96.7%, a 5.3% increase
compared to the original YOLOv5model’s 91.4%. This result
clearly indicates that the introduction of SE-net significantly
enhanced the performance of the feature extraction network,
enabling the model to make more efficient and rational
inferences in complex environments. Notably, despite the
addition of extra network structures, the fused model’s
detection speed still remains at 143 frames per second.
This not only demonstrates the model’s high computational
efficiency but also meets the requirements for real-time
applications.

C. TRACKING RESULTS AND ANALYSIS
To comprehensively evaluate the effectiveness of enhancing
the DeepSORT tracking algorithm by combining LSTM
for predicting blade center trajectory and optimizing the
Kalman filter, this study designed a series of comparative
experiments, particularly focusing on the dynamic tracking
of wind turbine blades. The performance of DeepSORT is
typically assessed by two main metrics: MOTP (Multiple
Object Tracking Precision) and MOTA (Multiple Object
Tracking Accuracy). MOTP reflects the positional precision

FIGURE 9. Variation curve of model metrics.

of the correctly tracked targets, measuring the average error
between the positions of the tracked objects and their actual
positions. MOTA takes into account multiple factors to
evaluate the accuracy of tracking, including false positives
(FP), false negatives (FN), and identity switches (IDS). The
formulas for calculating MOTP and MOTA are as follows:

MOTP =

∑
i,t di,t∑
t TPt

. (20)

MOTA = 1 −

∑
t (FPt + FNt + IDSt)∑

t GTt
. (21)

Scenario one primarily targets the global tracking of wind
turbine generators. The experiment ensures the complete
visibility of the wind turbine generator within the camera’s
FOV by hovering the drone in front of the wind turbine tower.
As shown in Figure 10, it presents the integrated performance
of the two tracking algorithms in a real-world wind turbine

VOLUME 12, 2024 5329



Y. Xu et al.: Recurrent Approach for Uninterrupted Tracking of Rotor Blades Using Kalman Filter

FIGURE 10. Global tracking results of the wind turbine.

scenario. Given that the wind turbine generator rotates
clockwise, the ID values are arranged counterclockwise from
smallest to largest, providing an intuitive description of the
motion. The colorful detection boxes (in orange, pink, and
red) not only differentiate the different sections of the blade
(top, middle, and root) but also provide category information
and detection accuracy.

Figure 10 shows a comparative demonstration where the
original DeepSORT algorithm exhibits limitations when
tracking wind turbines, such as imprecise localization of the
tracking box and the presence of redundant boxes. These
issues could potentially lead to subsequent misidentification
and reduced robustness. After integrating the movement
information of the wind turbine, the performance of the
DeepSORT algorithm is noticeably enhanced, especially
in the localization of the tracking box and reduction
of misidentification, thereby augmenting the algorithm’s
accuracy and robustness.

In scenario two, a drone hovers at a close distance in front
of the wind turbine, causing the camera’s FOV to mainly
focus on the local region of the wind turbine, where the blades
frequently enter and exit the viewpoint. This design aims to
validate the tracking performance of the optimized Kalman
filter in the DeepSORT algorithm, particularly when blades
frequently enter and exit the visual field.

The results from Figure 11 clearly highlight the evident
shortcomings of the original tracking model when the turbine
blades frequently enter and exit the visual field. When the
blades leave and subsequently re-enter the FOV, the model
often loses its tracking frame, resulting in inconsistencies

FIGURE 11. Local tracking results of the wind turbine.

TABLE 2. Tracking model performance metrics.

in object identification. In contrast, the DeepSORT tracking
model improved with LSTM integration performs outstand-
ingly in such scenarios of high-frequency entry and exit. Not
only does it accurately label the turbine blades, but it also
tracks their trajectory continuously, significantly reducing the
risk of target loss.

This substantial advantage can be primarily attributed to
the refinement of the Kalman filter integrated with LSTM.
Traditional Kalman filters predict the next state of an object
based on linear assumptions, but such predictions can be
inaccurate under certain complex motion patterns. LSTM,
being a long short-termmemory network, can better learn and
predict complex patterns in time series. In this application,
the integration of LSTM allows the Kalman filter to predict
the turbine blade’s movement trajectory with higher accuracy,
thereby enhancing the tracking algorithm’s precision and
robustness.

Table 2 further contrasts the tracking performance of
the blades using the original DeepSORT algorithm and our
method under two distinct scenarios.

The data from Table 2 clearly demonstrates that the
LSTM-enhanced version of DeepSORT outperforms its
original counterpart, especially in scenarios with frequent
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entries and exits from the FOV, exhibiting greater robustness
in reducing misidentifications and target losses.

Overall, the experimental results validate the superiority
of the proposed dynamic target tracking algorithm at a
superfield scale, integrating deep learning with global motion
information, in tracking the blades of wind turbines.

V. CONCLUSION
Through the improved YOLOv5 object detection algorithm
and the DeepSORT object tracking algorithm, this study
successfully achieved consistent target labeling of the blades
of wind turbines in operation and their specific parts. Given
the high similarity among the blades and the lack of distinct
texture features between the blade segments, we incorporated
the SEnet into the backbone network of YOLOv5 and opti-
mized the focal loss function. Experimental results indicate
that the enhanced model has achieved a 5.3% improvement
in the mAP evaluation metric. During the tracking process,
the frequent entry and exit of the blades from the drone’s
FOV could jeopardize tracking stability. To address this issue,
we optimized the Kalman filter in DeepSORT based on
the motion patterns and characteristics of the wind turbines
and incorporated LSTM to predict the position of the blade
once it exits the FOV. This improvement allows the system
to track specific blades continuously and stably, enhancing
tracking robustness even when blades frequently enter and
exit the visual field. In summary, the method proposed in this
study has successfully achieved consistent target labeling of
crucial components of specific turbine blades under motion,
offering technical support for the widespread application of
drones in wind turbine inspections. Although our approach
demonstrates exceptional performance in the two outlined
scenarios, there are inherent limitations. For instance, should
there be an abrupt change in the motion of the wind turbine
assembly, the LSTM might necessitate a certain period to
adapt to such a shift. In the future, we aim to incorporate more
sophisticated deep learning models, like the Transformer,
to further bolster the robustness of tracking.
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