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ABSTRACT Multi-label scene classification on remote sensing imagery (RSI) includes the classification
of images into multiple categories or labels, where each image belongs to more than one class or scene.
This is a common task in RS and computer vision, especially for applications like urban planning, land
cover classification, and environmental monitoring. By leveraging the power of deep learning (DL), this
model extracts high-level features from the imagery, facilitating efficient and accurate scene classification,
which is indispensable for applications including environmental analysis, land use monitoring, and disaster
management. This study introduces a new Multi-Label Scene Classification on Remote Sensing Imagery
using Modified Dingo Optimizer with Deep Learning (MSCRSI-MDODL) technique. The MSCRSI-
MDODL technique targeted the identification and classification of multiple target classes from the RSI.
In the presentedMSCRSI-MDODL technique, attention Squeeze and Excitation (SE) with DenseNet model,
named improved DenseNet model is applied for the extraction of features. Besides, MDO algorithm can be
employed for the optimal hyperparameter tuning of the improved Densenet model. For scene classification
process, the MSCRSI-MDODL technique makes use of stacked dilated convolutional autoencoders
(SDCAE) model. The simulation analysis of the MSCRSI-MDODL model is tested on benchmark RSI
datasets. The comprehensive result analysis portrayed the higher performance of the MSCRSI-MDODL
technique over other existing techniques for RSI classification.

INDEX TERMS Remote sensing images, deep learning, scene classification, hyperparameter tuning,
computer vision.

I. INTRODUCTION
Remote sensing (RS) plays a pivotal role in earth observation
because it aids in discovering as well as identifying acts
based on physical characteristics [1]. At present, Remote
sensing images (RSI) have gained a high reputation in
government and business fields for several reasons like
weather, agriculture, forestry and biodiversity monitoring
to surface variations. In recent research, RS employed
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Deep Learning (DL) method to satellite images to remove
effective information [2]. Efforts are still being made to
extract many discriminatory features for the classification of
satellite images in recent days. The traditional techniques are
mainly focused on handcrafted features like texture and color
features [3]. The mid-level models are proposed to develop
further representation to aid high-level statistical tech-
niques. The scene classification images are an effective and
highly challenging task in real-time applications like urban
planning from High-Spatial Resolution (HSR), geospatial
object detection, geographic image retrieval, natural hazard
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detection and environmental monitoring [4]. Scene classifi-
cation is an essential step in several real-time applications
of RS.

In terms of Machine Learning (ML), there are huge kinds
of applications that arise from RSI which are proposed by
employing single-label classification [5]. The main aim is to
allocate a semantic/ single label set to an image. Moreover,
usually, the real-time RSIs are more difficult and consist of
more than a single semantic class in a particular image. So,
single-label identification remains inadequate to define the
attendance of complex areas which can carry out semantically
complex content. To simplify the highly accurate image
of RSI, the training of RSI must be taken through the
Multi-Label classification (MLC) task, where an assumed
image can be connected with many semantic concepts
that are occupied by a predetermined set of labels [6].
With this method, the identification issue becomes more
complicated when compared to single-label classification
that was detailed in a recent important comparative research
and investigated huge types of MLC models. The research
comes with two kind of main challenges which can able
to limit the performance of MLC techniques such as high-
dimensional label spaces and the presence of difficult label
correlations [7].

From Deep Learning (DL) researchers, these sorts of
challenges are increasing huge extents of attention, especially
on models that are proficient in learning long-range needs
automatically (for example, with the usage of self-attention
devices in vision transformer (ViT) base network framework)
as well as controlling high dimensional label space [8]. Their
inner devices and framework like hierarchical design and
characteristics in Convolutional Neural Networks (CNNs),
with non-linearity and local connectivity, are proficient in
encoding data enormously [9]. However, their flexible plan
provides data to be removed and discriminative represen-
tations must be trained from noisy data in an end manner.
It helps to gain more exact classification performance in less-
constrained situations when related to commonMLCmodels.
Then, the current achievement of this sort of technique
can be able to connect with their capability to influence
a massive range of labelled data for absorbing important
knowledge [10].

This study introduces a new Multi-Label Scene
Classification on Remote Sensing Imagery using the
Modified Dingo Optimizer with Deep Learning (MSCRSI-
MDODL) technique. In the presented MSCRSI-MDODL
technique, attention Squeeze and Excitation (SE) with
the DenseNet model, named the improved DenseNet
model is applied for the extraction of features. Besides,
the MDO algorithm can be employed for the optimal
hyperparameter tuning of the improved Densenet model.
For the scene classification process, the MSCRSI-MDODL
technique makes use of the stacked dilated convolutional
autoencoders (SDCAE) model. The simulation analysis of
the MSCRSI-MDODL model is tested on benchmark RSI
datasets.

II. RELATED WORKS
In [11], a multistage self-guided separation network
(MGSNet) is developed. Numerous feature concerns between
dissimilar network branches are extended through contrastive
regularization (CR). In addition to that, a self-guided
system is designed to discover the mutual feature among
intraclass samples and then enhance feature representation
constancy. Xu et al. [12] designed a new network technique
called Lie Group Regional Influence Network (LGRIN).
Initially, by mapping numerous space samples are attained
and then features are removed. Next, multidilation pooling
is combined into the CNNs framework. Similarly, the
image regional influence system model is mainly proposed
in order to monitor the attention of the identification
approach by employing the regional level control of
decomposition. In [13], an adaptive learning method for
transporting a CNN-based technique is designed. Initially,
an adaptive transform is mainly employed to alter RS
image size. And then, an adaptive transferring technique is
mainly projected for the purpose of classification. Lastly,
in grouping with the label smoothing model, an adaptive
label is offered in order to create easy labels depending
on the images of the identification method forecasts for
every type.

Liang et al. [14] designed an original dual-stream design
which associates object-based location as well as global-
based visual features. At first, the research study removed
the appearance visual features from the entire scene image
which is based on CNN. Next, the designed method identifies
ground objects and build a chart in order to train spatial
location feature depending on the GCN. Yang et al. [15]
introduced a Semantic-Aware Graph Network (SAGN)
model which consists of a Scene Decision Module (SDM),
a dynamic graph feature update module, an adaptive semantic
analysis module (ASAM) and a Dense Feature Pyramid
Network (DFPN). Instead of transferring single-label into
multi-label problems, the SAGN can elaborate appropriate
techniques by employing various semantics unseen in HRRS
images for the purpose of scene classification. Deng et al. [16]
developed a common design that combined CNNs as well
as Vision Transformer (ViT) (CTNet) by including two
modules. First, compressed image patches are sent to a pre-
trained ViT technique in order to mine semantic features.
Then, the pre-trained CNN is transported in order to remove
local structural feature in the C-stream.

In [17], a multi-level fusion Swin Transformer (MFST)
combines an adaptive feature compression (AFC) as well as a
multi-level feature merging (MFM) method is proposed. The
MFM part restricts the semantic gap in multi-level feature
through the patch inclusion in lower-level feature map as
well as adjacent networks in the top-down path. By adaptive
channel reduction, the AFC model generates multi-level
feature which have tiny sizes and clear semantic data.
Liu et al. [18] proposed a multi-level label-aware (MLLA),
which is a semi-supervised act identification design. At first,
amulti-level prototype awarenessmethod is designed. At last,
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based on this design, a multi-level pseudo-label generation
technique is projected in order to allocate multi-level pseudo-
labels to the unlabeled data.

III. THE PROPOSED MODEL
In this study, we have designed an automated scene classi-
fication using the MSCRSI-MDODL technique on the RSI.
The MSCRSI-MDODL technique targeted the identification
and classification of multiple target classes from the RSI.
In the presented MSCRSI-MDODL technique, three phases
of operations are mainly involved namely improved MDO-
based hyperparameter tuning, DenseNet model for feature
extraction, and SDCAE-based classification. Fig. 1 demon-
strates the entire process of MSCRSI-MDODL approach.

FIGURE 1. Overall process of MSCRSI-MDODL approach.

A. FEATURE EXTRACTION USING IMPROVED DENSENET
MODEL
Primarily, the improved DenseNet model is applied for
the extraction of features. DenseNet is the formation of
dense connections which ensure maximum flow of data
between layers. DenseNet is composed of 3 transition layers,

3 × 3 max-pooling layer and 7 × 7 Conv layers with a stride
of 2, a classification layer, and 4 dense blocks [19]. Among
these, dense block implements 1 × 1 and 3 × 3 Conv. The
transition layer has 2 × 2 avg pooling layers and 1 × 1 Conv
layer. The classification layer has FC layer and 7 × 7 global
avg pooling layers.

DenseNet has L(L+1)
2 direct connection with L layers

different from classical CNN with L layers. Note that
x0 is the input image, the CNN has 5 layers, xi(i =

0, 1, 2, · · · 5) is the mapping features of ith layer, Hi()
is non-linear conversion that includes activation function,
batch normalization, convolution, pooling, etc. Therefore, the
output of 5th layer is a non-linear conversion of output feature
map of each prior layer,

x5 = H5 ([x0, x1, · · ·x4]) (1)

Attention mechanism is considered a resource allocation
model and split into different classes, namely, multistage
attention, channel attention, pixel attention, etc. The key
concept of Squeeze and Excitation (SE) block is to learn
the weight features based on the loss thus mapping feature
has greater weight. Squeeze is a compressing feature with a
spatial dimension and transforms 2D feature channels into
real numbers. Excitation is the same as Recurrent Neural
Network (RNN), which learns the weight to model the rela-
tionship between the feature channels and generate weight for
the feature channel through parameters. where U∈RH×W×C ,

for any transformation Ftr mapping X (X∈RH
′
×W ′

×C ′

) input
into the mapping feature U , we create a respective SE block
to implement feature re-calibration. First, the feature U
passed over the squeeze operation Fsq that compressesU into
1×1×C feature. Next, the feature fromFsq is excited through
the excitation operation Fex . Lastly, the re-calibration feature
X̃ (X̃∈RH

′
×W ′

×C ′

) achieved Fscale, in which Fscale implies the
weight of excitation output is successively weighted to the
prior feature channels through multiplication.

B. HYPERPARAMETER TUNING USING MDO ALGORITHM
The MDO algorithm is exploited to tune the hyperparameter
values of the improved DenseNet architecture. The MDO is
the new biologically inspired global optimization algorithm
based on the hunting tactics of dingoes [20]. This model
includes persecuting individuals, scavenging behavior, and
grouping techniques. The dingo dog is at risk of extinction in
Australia. During classification, the MDO algorithm is used
to calculate the weighted value for approximating the loss
function so as to optimize the performance. Meanwhile, the
computation of the loss function is an indispensable process
for enhancing the classifier accuracy. As well, it assists
in reducing the classification error rate while detecting the
attack class. Therefore, the computation of the loss function
can be enhanced by the MDO approach. The central benefits
of using the MDO algorithm are high search efficacy,
low computation burden, and high convergence rate when
compared to the other optimization algorithms. Also, the
surviving probability of dingoes is considered.
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The input −→χ is a feature matrix, and the output is
optimum value of −→xb . Now, initialize the input parameters
including the probability of hunting P, the persecution
attack, the set of population −→χ , and the probability of
the group. The three different rules namely group attack,
scavenger, and persecution attack procedures are calculated
until the maximal amount of iterations is reached. By using
the subsequent equation, the new position of search agent
xk (iter→ +1) can be assessed during rule 1 formation:

−→
xk (iter + 1) = ϑ1∗

nP∑
j=1

|
−→
δj (iter)−

−→xj (iter)|
np

−
−→
Xb(iter) (2)

In Eq. (2), the random number is indicated as ϑ1, the
random number within the range of [2,Psize2 ] can be denoted as
np, the total population size is represented by Psize, the subset
of search agents is specified as

−→
δj (iter), the current searching

agent can be implied as −→xk (iter→ +1), and the fittest search
agent of the prior iteration is xb (iter). By using the following
equation, the existing position updating is performed while
executing rule 2:

−→xk (iter→+1) =
−→xb (iter) + ϑ1 ∗ expϑ2∗(−→xs1 (iter)−

−→xk (iter))

(3)

In Eq. (3), the arbitrary values from 1 to the maximum
size of search agents are s1. The uniformly generated random
number within [−1, 1] is ϑ2,

By using the following model, the position updating is
performed While executing rule 3:

E−→xk (iter + l) =
1
2
∗{expϑ2∗

−→xs1→ (iter)

− (−1)ε ∗
−→xk (iter) →} (4)

In Eq. (4), a randomly generated binary number is ε. Next,
by using the following equation, the search agent with lower
survival rate can be estimated:

§(k) =
Mfit − fit(k)
Mfit − Nfit

(5)

In Eq. (5), the existing fitness value of the k th search
agent is fit(k), and the worst and the best fitness values of
the present generation are Mfit and Nfit , correspondingly.
By using the following model, the fitness value of the search
agent can be evaluated:

x
−→new
k (iter) =

−→
xb(iter) +

1
2
∗{expϑ2∗

−→xs1 (iter)

− (−1)ε ∗
−→xk (iter)} (6)

If the existing iteration is higher than the prior iteration, the
last position updating is performed using Eq. (7):

−→xb (iter) → =
−−→
xnewk (iter) − ∇∗

(
1
2

− ℵ

)
(7)

Here, uniformly distributed pseudo-random integers
within [−2, 2] and [0, 1] are ∇, and ℵ.

The MDO method derives FF to accomplish high effi-
ciency of classification. It defines a positive integer to signify
the superior result of the solution candidate. The decline of
the classifier error rate is assumed as an FF.

fitness (xi) = ClassifierErrorRate (xi)

=
number of misclassified samples

Total number of samples
∗100 (8)

C. IMAGE CLASSIFICATION USING SDCAE MODEL
In this work, the SDCAE model is utilized for the image
classification process. Dilated convolutional autoencoder
(DCAE) has a similar design to classical AE [21]. An acti-
vating method used to transform the input into convolution
layer:

ic = s
(
A ∗ Ec + yc

)
. (9)

In Eq. (9), Ec and yc are matrices with bias related to cth

mapping features ic, and the 2D inputs converted from the
numerical vector is A.
In the proposed model, (∗) is a ReLU activation function,

AF input vector. Subsequently, the feature mapping of the
hidden layer is transported into the reconstruction via inverted
convolution:

A = s
(∑

c
ic∗Ĕc + y̆

)
, (10)

In Eq. (10), A is a set of mapping features with a similar
design as input A; also, i refers to the set of mapping features
with a similar structure as inputA. The Ė &E weight matrices
have similar initial values. Fig. 2 illustrates the infrastructure
of DCAE.

FIGURE 2. Structure of DCAE.

The training purpose is DCAE is to minimize the variance
amongst the input vectors A and the reconstructed B. MSE is
the cost function:

M (A,B) =
1
x

x∑
j

(Aj − Bj)2. (11)

The DCAEs are used for creating the DNN by layering
many DCAEs. The hidden layer output of the prior DCAE is
applied as an input of subsequent DCAE. Stacked DCAEs are
a demanding layer-by-wise unsupervised training process.
Dilated convolution has a wide range of visual fields without
losing data. Due to these advantages, it is suitable for data
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extraction. Firstly, dilated convolution is used to expand the
activation function of the layer, which allows them to learn
global features. In comparison with max-pooling, Dilated
convolution safeguards the input data from the lost data. Next,
the DCAEs’ training model does not need a labelled dataset.
Lastly, DCAEs have fewer parameters compared to FCN.
Thus, DCAE outperforms other unsupervised DL algorithms
for efficiency and effectiveness.

IV. RESULTS AND DISCUSSION
In this section, the scene classification results of the
MSCRSI-MDODL method are tested on the LandUse
dataset [22]. It holds 2100 samples with 21 classes as defined
in Table 1.

TABLE 1. Details on database.

Fig. 3 shows the confusion matrix formed by theMSCRSI-
MDODL technique under 70% of the TR phase. The
simulated values reported the efficient recognition of all
21 classes.

In Table 2, the scene classification results of the MSCRSI-
MDODL technique are tested on 70% of the TR Phase. The
simulated values indicate that the MSCRSI-MDODLmethod
reaches effectual outcomes with 21 classes. It is also noticed
that the MSCRSI-MDODL system gains an average accuy of
99.84%, precn of 98.41%, sensy of 98.37%, specy of 99.92%,
and Gmeasure of 98.38%.

Fig. 4 shows the confusion matrix produced by the
MSCRSI-MDODL methodology on 30% of the TS phase.

FIGURE 3. Confusion matrix of MSCRSI-MDODL approach on 70% of TR
phase.

TABLE 2. Scene classification outcome of MSCRSI-MDODL approach on
70% of TR phase.

The simulated values reported the efficient recognition of all
21 classes.

In Table 3, the scene classification analysis of the
MSCRSI-MDODL technique is confirmed in 30% of the
TS Phase. The simulated values exhibit that the MSCRSI-
MDODL system obtains effectual outcomes with 21 classes.
Additionally, it is observed that theMSCRSI-MDODLmodel
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FIGURE 4. Confusion matrix of MSCRSI-MDODL approach on 30% of TS
phase.

TABLE 3. Scene classification outcome of MSCRSI-MDODL approach on
30% of TS phase.

achieves an average accuy of 99.88%, precn of 98.87%,
sensy of 98.79%, specy of 99.94%, and Gmeasure of 98.81%
correspondingly.

To estimate the performance of the MSCRSI-MDODL
technique, TR and TS accuy curves are determined, as shown
in Fig. 5. The TR and TS accuy curves demonstrate the
performance of the MSCRSI-MDODL system over various
epochs. The figure offers important details about the learning

tasks and generalization abilities of the MSCRSI-MDODL
model. With a rise in epoch count, it is evidenced that the TR
and TS accuy curves have improved. It is observed that the
MSCRSI-MDODL methodology achieves enriched testing
accuracy that can have the potential to identify the patterns
in the TR and TS data.

FIGURE 5. Accuy curve of the MSCRSI-MDODL approach.

FIGURE 6. Loss curve of the MSCRSI-MDODL approach.

Fig. 6 illustrates the overall TR and TS loss values of
the MSCRSI-MDODL system over epochs. The TR loss
described as the model loss gets diminished over epochs.
Primarily, the loss values are reduced as the model adjusts
the weight to decrease the predicted error on the TR and TS
data. The loss curves exhibit the level to which the model
fits the training data. It is noticed that the TR and TS loss
is progressively reduced and represents that the MSCRSI-
MDODL algorithm efficaciously learns the patterns shown
in the TR and TS data. It is also perceived that the MSCRSI-
MDODL method modifies the parameters to minimize the
difference among the predicted and actual training labels.

The PR performance of the MSCRSI-MDODL system is
represented by plotting precision against recall as shown
in Fig. 7. The simulated values confirm that the MSCRSI-
MDODL method becomes improved PR values with each
21 class. The figure exhibits that the model learns to
recognize different 21 class labels. The MSCRSI-MDODL
technique attains enriched outcomes in the recognition of
positive samples with diminished false positives.
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FIGURE 7. PR curve of the MSCRSI-MDODL approach.

FIGURE 8. ROC curve of the MSCRSI-MDODL approach.

The ROC analysis offered by the MSCRSI-MDODL
system is shown in Fig. 8, which has proficiency in the
differentiation of the 21 class labels. The figure revealed
valuable perceptions of the trade-off among the TPR
and FPR rates over different classification thresholds and
modifying counts of epochs. It accurately gives the predicted
performance of the MSCRSI-MDODL methodology on the
classification of various 21 classes.

TABLE 4. Comparative outcome of MSCRSI-MDODL approach with other
systems.

In Table 4 and Fig. 9, the experimental validation of
the MSCRSI-MDODL technique with recent models is
made [23]. The results highlighted that the SIDTLD+SSA

FIGURE 9. Comparative outcome of MSCRSI-MDODL approach with other
systems.

and DL-CaffeNet models have obtained worse perfor-
mance. Along with that, the DL-C-PTRN, DL-MOPSO,
DL-AlexNet, and DL-VGG-VD-19 models have reported
slightly improved results. Meanwhile, the SIDTL-AICmodel
reaches considerably boosted performance with accuy, precn,
sensy, and specy values of 99.60%, 95.89%, 95.86%,
and 95.85% respectively. However, the MSCRSI-MDODL
technique reaches higher accuy, precn, sensy, and specy
values of 99.88%, 98.87%, 98.79%, and 99.94% respectively.
Therefore, the MSCRSI-MDODL technique ensured better
performance over other models on the scene classification
process.

FIGURE 10. CT outcome of MSCRSI-MDODL approach with other systems.

Finally, the computation time (CT) analysis of the
MSCRSI-MDODL system is shown in Table 5 and Fig. 10.
The extensive simulated values demonstrated that the
MSCRSI-MDODL technique outcomes in a reducing CT
value of 1.80s. While, the SIDTL-AIC, SIDTLD+SSA, DL-
C-PTRN, DL-MOPSO, DL-AlexNet, DL-VGG-VD-19, and
DL-CaffeNet methods acquire increased CT values.
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TABLE 5. CT outcome of MSCRSI-MDODL approach with other systems.

V. CONCLUSION
In this study, we have designed an automated scene classifica-
tion using the MSCRSI-MDODL technique on the RSI. The
MSCRSI-MDODL technique targeted the identification and
classification of multiple target classes from the RSI. In the
presented MSCRSI-MDODL technique, three phases of
operations are mainly involved namely improved DenseNet
model for feature extraction, MDO-based hyperparameter
tuning, and SDCAE-based classification. In this work, the
improved DenseNet model is applied for the extraction of
features. Besides, the MDO algorithm can be employed for
the optimal hyperparameter tuning of the improved Densenet
model. For the scene classification process, the MSCRSI-
MDODL technique makes use of the SDCAE model. The
simulation analysis of the MSCRSI-MDODL technique is
tested on benchmark RSI datasets. The comprehensive result
analysis portrayed the higher performance of the MSCRSI-
MDODL model over other existing techniques for RSI
classification.
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