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ABSTRACT The Static synchronous compensator (STATCOM) is a renowned FACTS (flexible alternating
current transmission system) device used in power grids to copewith protean conditions. This article provides
a comprehensive bibliographic review of various aspects of STATCOM developed over the last 16 years. The
paper includes a detailed study presenting different models, test systems, and results of various researches.
The study covers the modelling, control technology, stability, optimal location, applications, and installation
of STATCOM. The modelling of STATCOM is diverse and include various models such as voltage source
converters, software-based models, load flow models, pulse width modulation, and modular multilevel
converters. The control technology includes a PI/PID controller, fuzzy-based, feedback controller, model
predictive controller, sliding mode controller, and miscellaneous controller based on different schemes,
algorithms, and controllers. In studying the stability analysis, all stability aspects such as steady-state
stability, dynamic stability, and transient stability are considered for the stability analysis. The genetic
algorithm, heuristic algorithm, probabilistic technique and branch and bound approach are mainly used for
the optimal placement of STATCOM as described in the available research paper. Various applications of
STATCOM in power system are identified such as optimal power flow, voltage stability, voltage fluctuation
mitigation, fault analysis and total harmonic distortion. This paper, also mentions the current installation of
STATCOM is also mentioned with their different locations such as China (2018), and Canada (2019). The
current functions of STATCOM still have many limitations. So there is still a lot of room for improvement.
This paper will help the researcher finding the reference of a particular topic of interest in different aspects
of STATCOM. The finding of different sections of the paper can help the researchers to develop new ideas
and work on different prospective of the device.

INDEX TERMS STATCOM, FACTS devices, modeling, control scheme application, renewable, installation.
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NOMENCLATURE
3LNPC Three-level Neutral-point-clamped.
AAC Alternate arm converter.
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ANCF Adaptive noise cancellation filter.
ANN Artificial neural network.
APLC Active power line conditioner.
ASFC Adaptive Switched Filter Compensator.
AC-PSO Ant Colony-Particle Swarm

Optimization.
BESS Battery energy storage system.
CHB Cascaded H-Bridge.
CMC Cascaded Multilevel Converter.
DQ Direct-Quadrature.
DOSSR Damping of sub-synchronous resonance.
DOPSO Damping of Power System Oscillation.
DSTATCOM Distribution-type static synchronous

compensator.
DEHS Differential evolution harmony search.
DSP Digital Signal Processing.
DCMC Diode clamped multi converter.
EMTP Electromagnetic Transients Program.
ES-STATCOM Energy storage and static synchronous

compensator.
EPSO Evolutionary particle swarm

optimization.
EMTDC Electromagnetic Transients

including DC.
EO Energy operator.
FPGA Field programmable gate array.
FDL Fault detection and localization.
GDQ-DP Generalized DQ-dynamic phasor.
HDP Heuristic dynamic programming.
HVDC High voltage direct current.
IGBT Insulated-gate bipolar transistor.
IPCC Individual Phase Current Control.
LTG Line–to–Ground IPCC.
LL Line–to–Line.
LLG Double Line–to–Ground.
LVRT Low-voltage ride-through.
MMC Modular Multilevel Converter.
MVMO Mean-variance mapping optimization.
MOP Multi-objective programming.
MOOP Multi-objective optimization problem.
MMCC-SSBC Modular Multilevel Cascade Converter

Single-star Bridge-cell.
NR Newton-Raphson.
NAEI North American Eastern Interconnection.
NERC North American Electric Reliability

Corporation.
NYPS-NETS New York Power System and

New England Transmission System.
PCC Performance-oriented Congestion

Control.
PLECS Piecewise Linear Electrical Circuit

Simulation.
PS Power System.
PSS Power System Simulator.
PSCAD Power System Computer-Aided Design.
PWM Pulse width modulation.

PV Photovoltaic technology.
RTDS Real-time digital simulator.
R-SFCL Resistive superconductor fault current

limiter.
RWNNC Reduced wide normalized normal

constraint.
SHE PWM Selective Harmonic Eliminated Pulse

width modulation.
SHEM Selective Harmonic Elimination Method.
SIEG Self- excited induction generator.
SMIBS Single machine infinite bus system.
SSR Synchronous Resonance.
SSSC Static synchronous series compensator.
STFPC Self-Tuning Fuzzy Logic PI-Controller.
SVPWM Space vector pulse width modulation.
SVM Space Vector Modulator.
SPWM Sinusoidal pulse-width modulation.
SWC Square Wave Controlled.
SMIB Single Machine Infinite Bus.
THD Total Harmonic Distortion.
UKGDS U.K. generic distribution system.
VFD Variable frequency drive.
VSI Voltage Source Inverter.
VSC Voltage Source Converter.
ZVRT Zero-voltage-ride-through.

I. INTRODUCTION
In today’s world, electricity is everyone’s basic need. As a
result, demand has risen sharply. To a certain extent, many
problems occur in meeting the demand of individuals through
our existing electricity system, especially the transmission
grid. This can be due to internal faults or external distur-
bances. These problems include harmonic distortion, reactive
power control, active power control, voltage fluctuation, volt-
age sag, voltage swell, and optimal power flow. In these
cases, we need FACTS (Flexible Alternating Current Trans-
mission System) devices to keep our power system in
a healthy state. A number of FACTS devices have been
developed and manufactured by researchers and scientists.
FACTS devices can be divided into four categories: Series
FACTS devices, Shunt FACTS devices, Series-Series FACTS
devices and Series-Shunt FACTS devices. Series FACTS
devices include the Thyristor Controlled Series Capacitor
(TCSC), the Thyristor Controlled Series Reactor (TCSR), the
Thyristor Switched Series Capacitor (TSSC) and the Static
Synchronous Series Compensator (SSSC). The shunt FACTS
devices are the Static VARCompensator (SVC), the Thyristor
Controller Reactor (TCR), the Thyristor Switched Capaci-
tor (TSC), the Thyrsitor Switched Reactor (TSR), and the
Static Synchronous Compensator (STATCOM). The Inter-
line Power Flow Controller (IPFC) falls into the category
of Series-Series FACTS devices. The Unified Power Flow
Controller (UPFC) also belongs to the series shunt FACTS
devices. If the number of series branches in the UPFC is more
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than one, it is referred to as a GeneralizedUnified Power Flow
Controller (GUPFC).

In this post, wewill focus on a thorough literature review of
STATCOM. As we know, STATCOM falls into the category
of serial FACTS devices. The main interest in studying STAT-
COM lies in its uniqueness in the power grid. It is a FACTS
device that is capable of solving a number of problems in the
power system.

A power electronic shunt device, the static synchronous
compensator (STATCOM), belongs to the family of FACTS
devices. The operating principle of a STATCOM is related to
the operating principle of rotary synchronous compensators
or generators. It is more reliable than other generators because
it works quickly. This close relationship has given the STAT-
COM its name. It is superior to static VAR compensators;
with which it shares most of its functions. STATCOM (as
shown in Figure 1) is generally used to regulate the alter-
nating current in power transmission networks. In figure 1
two diagrams the of STATCOM: first one on the left side
shows the voltage source converter and second one at the right
side shows the current source converter. They utilize power
electronic voltage source converters such as IGBT, GTO, etc.
to behave like a source or sink for the AC reactive power
of an electrical transmission network. It controls the reactive
power flow through electrical grids and improves the transient
stability of these grids. It is also capable of delivering active
AC power when connected to a power source. STATCOM
proves to be more valuable than others, as it is also useful
in reducing voltage fluctuations.

A glimpse of recent research paper published on STAT-
COM is presented as fellows: The enhancement of STAT-
COM technologies for the betterment of future grid’s
requirement is described in [1]. STATCOM will help in
providing stable operation by feeding the load from con-
ventional and non-conventional energy sources and helping
in achieving a carbon-neutral economy. In order to enhance
the performance of STATCOM, a capacitor condition mon-
itoring method is explained in [2]. This is a cost-effective
method for monitoring capacitor condition online, offering
real-time monitoring without extra hardware. The method
practices averaged low-frequency signals to recognize ESR
and capacitance values, avoiding high-frequency noise, and
incorporating antialiasing filters. An artificial rabbit opti-
mizer is used for the tuning of the STATCOM controller,
which is based on the PID scheme in [3]. This controller
is capable of controlling the frequency of the system within
permissible limits. This controller is tested on two area-four
machine systems and an IEEE 39 bus system. A wide-area
damping controller for STATCOM for inter-area oscillation
is exhibited in [4]. The inter-area signals are evaluated on
the basis of rotor angle and speed deviation. The IEEE 39-
bus test system and practical Iran nation power grid are
used to test the effectiveness of the controller. Ref. [5]:
In order to minimize the larger oscillation in the capacitor
voltage of STATCOM, an optimal third harmonic circulating

current is injected. The effectiveness is tested for balanced
and unbalanced conditions. A multi-bus bar sub-module for
STATCOM with partially rated energy storage is explained
in [6]. The module is better at maintaining frequency within
the limit and reactive power compensation in comparison
to a conventional full-bridge submodule. A star-connected
cascaded H-bridge converter-based STATCOM with a sin-
gle IGBT open circuit fault is proposed in [7]. It uses a
modified current regulator and synthesizes output signals to
rapidly find the fault IGBT position. The controller can act
as a monitor without supplementary sensors. A cascaded
H-bridge converter-based static synchronous compensator
(STATCOM), which injects virtual synchronous inertial sup-
port into the system, is introduced in [8]. It provides reactive
power compensation and less frequency deviation. Ref. [9]
states the use of a number of STATCOMs to support volt-
age control in integrated power systems with PV and wind
energy sources. The proposal is tested with an IEEE 14 bus
system in which three STATCOMs are installed. A selective
harmonic voltage control method for STATCOM is proposed
in [10]. This method is very effective in mitigating the voltage
harmonics. This method is verified using an EMTP simula-
tion. A dynamic voltage equalization control (DVEC)method
for distributed STATCOM is proposed in [11]. Experimental
results show this method can minimize the negative sequence
voltage as well as control voltage unbalance in the event
of a fault. A central controller-based Gorilla Troops Opti-
mization (GTO) algorithm for optimal parameter setting of
distributed STATCOM is proposed in [12]. This algorithm is
tested on an IEEE 33-node system and a North Delta Electri-
cal Distribution Company 24-bus radial network. Simulation
results exhibit its effectiveness in controlling the voltage
within the permissible limits and minimizing power loss and
energy waste. The use of STATCOM in attaining the stability
and quality of electrical supply during dynamic interaction
between wind turbines, transmission cables, and other elec-
trical equipment is exhibited in [13]. A detection method
based on the carrier phase-shifted SPWM technique for CHB
STATCOM is exhibited in [14]. Simulation results show its
effectiveness in balancing the capacitor voltage. A hybrid
controller composed of TCR, TSC, and distributed STAT-
COM acts as a reactive power and harmonic compensator,
as exhibited in [15]. A mathematical model of dissipating
energy-based source/sink characterization for STATCOM is
formulated in [16]. A numerical case study of the IEEE
bus system shows its usefulness in damping low-frequency
oscillations. The mismatch between reactive power genera-
tion and consumption voltage collapse may take place in a
large, high-voltage power network. To deal with this prob-
lem, a STATCOM with a low voltage rating is proposed
in [17]. For a STATCOM-compensated line, an adaptive
network-based fuzzy interface system (ANFIS) is introduced
in [18]. This system will utilize the positive and negative
sequence voltages and current phasors to find the fault loca-
tion. The mitigation of unbalanced voltage and power factor
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correction is done by a hybrid controller with SVC and
delta-connected STATCOM for a high voltage distribution
system [19]. Simulation results validate the capability of the
controller. To mitigate some problems (poor dynamic charac-
teristics, capacity issues, and active power shock) of the SVC
installed power network, STATCOM is used in [20]. Experi-
mental results show the effectiveness of the network’s power
compensation. The reduction of total harmonic distortion is
achieved using a quasi-Z-source inverter-based STATCOM,
as exhibited in [21]. A dual-layer modulated model predictive
control scheme for STATCOM is proposed in [22]. This is
very effective in achieving controlled current and voltage
balance. A neural network-based approach for the STATCOM
controller is proposed in [23]. This approach shows its capa-
bility to reduce the computational burden of the conventional
control scheme. The evidence of a reduction in torsional
damping by the use of STATCOM is exhibited in [24]. It was
tested with a French line commutated converter and a new
Electro link modular multilevel converter interacting with
a grave lines generator. To reduce imbalances in voltage
and damping of oscillation, an innovative point-of-common
coupling (PCC) voltage controller for STATCOM is exhibited
in [25].

A number of review papers are published on STATCOM,
like ref. [26]. These papers provide a literature review of less
than 50 papers and are not very extensive in nature. Only
Ref. [27], a review paper published in 2008, is a very good
review paper that provides an extensive review of the paper
up to 2008. In our present paper, we have started emerging the
paper published in 2008 and will continue until 2024. This
paper provides a very extensive review, which will be very
beneficial for the researchers.

The specific contributions of the authors in this paper are

1. This paper provides a detailed bibliography on
STATCOM.

2. This paper covered all the aspect of the STATCOM:
Modelling, Control technique, Stability, Optimal loca-
tion, Integration with renewable system, application
and Installation.

3. This paper Highlighted the different type of modelling
of STATCOM done by the different researchers.

4. The control techniques used for the controller of
STATCOM with different application. The author
also commented for the best control technique used
for THD.

5. The major contribution of the paper is to provide the
future scope of research on STATCOM.

In this paper, the authors have performed a rigorous and
in-depth review of the research done in the field of STAT-
COM. The various aspects of STATCOM and their major
outcomes have been reviewed bibliographically. The paper
has tabulated the information gathered by the analysis of the
previously published papers. Graphs have been included to
provide a better pictorial representation of the data inferred.
This work has been done to provide new researchers with

FIGURE 1. The block diagram of STATCOM. (Voltage source converter and
current source converter.)

ample information about the previous works done, which will
aid them in their research.

After a detailed review of the work, it was found that the
most frequently achieved results were DOPSO, THD, sys-
tem stability, and improved operational performance. It was
described that a considerable number of researchers achieved
reduced computation time, minimized functional costs, and
reduced losses during the operation of STATCOM.The article
is divided into 10 sections. Starting with the introduction
as the first section, the bibliography follows as Section II,
highlighting the various aspects discussed in the paper.
Section III deals with the different modelling types of STAT-
COM, such as load flow models, software-based models,
voltage source converters, and pulse width modulation, while
Section IV deals with different control schemes and design
techniques for STATCOM, such as proportional-integral con-
trollers, proportional-integral-derivative controllers, sliding
mode controllers, model predictive and fuzzy logic, etc.
The works that achieve different types of stability, such as
stationary, transient, and dynamic, have been discussed in
Section V, and the papers with different optimization tech-
niques to find the optimal location and size for STATCOM
have been mentioned in Section VI, such as probabilis-
tic technique, genetic algorithm, sensitivity-based index
method, mesh adaptive direct approach, branch and bound
approach, etc. Section VII of the paper presents work inte-
grating different types of renewable energy sources with
STATCOM. Sections VIII and IX deal with applications of
STATCOM, including THD, voltage stability, fault analysis,
and studies on the installation of STATCOMs in various
parts of the world. Section X contains the conclusion of
the article and points out future challenges in the field
of STATCOM.

The literature review presented on STATCOM concludes
that considerable work has been done in developing different
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FIGURE 2. A circular representation of the proposed approach and bibliography of the STATCOM.

control schemes and modelling techniques to improve the
performance of power systems. Recent publications show
remarkable work in increasing the efficiency of renewable
energy sources. However, various aspects of STATCOM are
yet to be explored.

There are some fields in which very little work has been
done. The future scope of STATCOM’s research is as follows:

1. Modelling of STATCOM in a Current Source Inverter
2. Implementation of Heuristic Technique with Optimal

Sizing of STATCOM
3. STATCOM for problems in power systems such as

power swing, power fluctuation, and the Ferranti effect.
4. Integration of STATCOM with PV Cell
5. FPGA for implementation of STATCOM.
6. Integration of STACOM in controller designs using

fuzzy techniques

II. PROPOSED APPROACH AND BIBLIOGRAPHY
A comprehensive review of STATCOM with the different
paradigms of modelling, control, stability, optimal location,
application, and installation is represented in seven sections,
as given below in Figure 2:

1. Different Aspects of STATCOM Modelling [28], [29],
[30], [31], [32], [33], [34], [35], [36], [37], [38], [39],
[40], [41], [42], [43], [44], [45], [46], [47], [48], [49],
[50], [51], [52], [53], [54], [55], [56], [57], [58], [59],
[60], [61], [62], [63], [64], [65], [66], [67], [68], [69],
[70], [71], [72], [73], [74], [75], [76]

2. Controller Design Technique for STATCOM [73], [77],
[78], [79], [80], [81], [82], [83], [84], [85], [86], [87],
[88], [89], [90], [91], [92], [93], [94], [95], [96], [97],
[98], [99], [100], [101], [102], [103], [104], [105],
[106], [107], [108], [109], [110], [111], [112], [113],
[114], [115], [116], [117], [118], [119], [120], [121],

[122], [123], [124], [125], [126], [127], [128], [129],
[130], [131], [132], [133], [134], [135], [136], [137],
[138], [139], [140], [141], [142], [143], [144], [145],
[146], [147], [148], [149], [150], [151], [152], [153],
[154], [155], [156], [157], [158], [159], [160], [161],
[162], [163], [164], [165], [166], [167], [168], [169],
[170], [171], [172], [173], [174], [175], [176], [177],
[178], [179], [180], [181], [182], [183], [184], [185],
[186], [187], [188], [189]

3. Impact of STATCOM on System Stability [60], [190],
[191], [192], [193], [194], [195], [196], [197], [198],
[199], [200], [201], [202], [203], [204], [205], [206],
[207], [208]

4. Optimal Location and Sizing of STATCOM [209],
[210], [211], [212], [213], [214], [215], [216], [217],
[218], [219], [220], [221], [222], [223], [224], [225],
[226], [227], [228], [229], [230]

5. Integration of Renewable Energy Sources with STAT-
COM [231], [232], [233], [234], [235], [236], [237],
[238], [239], [240], [241], [242], [243], [244], [245],
[246], [247], [248], [249], [250], [251], [252], [253],
[254]

6. Applications of STATCOM in Different Areas of
Power Systems [255], [256], [257], [258], [259], [260],
[261], [262], [263], [264], [265], [266], [267], [268],
[269], [270], [271], [272], [273], [274], [275], [276],
[277], [278], [279], [280], [281], [282], [283], [284],
[285], [286], [287], [288], [289], [290], [291], [292],
[293], [294], [295], [296], [297], [298], [299], [300],
[301], [302], [303], [304], [305], [306], [307], [308],
[309], [310], [311], [312], [313], [314], [315], [316],
[317], [318], [319], [320], [321], [322]

7. Real-Site Installation of STATCOM in theWorld [200],
[323], [324], [325], [326], [327], [328]
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TABLE 1. Summary of different aspects of the STATCOM modelling [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43], [44],
[45], [46], [47], [48], [49], [50], [51], [52], [53], [54], [55], [56], [57], [58], [59], [60], [61], [62], [63], [64], [65], [66], [67], [68], [69], [70], [71], [72], [73], [74],
[75], [76].
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TABLE 1. (Continued.) Summary of different aspects of the STATCOM modelling [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38], [39], [40], [41],
[42], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52], [53], [54], [55], [56], [57], [58], [59], [60], [61], [62], [63], [64], [65], [66], [67], [68], [69], [70], [71],
[72], [73], [74], [75], [76].

FIGURE 3. A detailed summary of different aspects of the STATCOM modelling.

Figure 2 shows a summarizing diagram of the comprehen-
sive review of STATCOM. In it, the literature review of
STATCOM is divided into seven categories. The first and

second branches of the diagram show the various aspects
of STATCOMmodelling and STATCOM controller develop-
ment techniques, respectively. The third and fourth branches

VOLUME 12, 2024 2707



S. Sharma et al.: Comprehensive Review on STATCOM

TABLE 2. Various controller design techniques of the STATCOM [73], [77], [78], [79], [80], [81], [82], [83], [84], [85], [86], [87], [88], [89], [90], [91], [92], [93],
[94], [95], [96], [97], [98], [99], [100], [101], [102], [103], [104], [105], [106], [107], [108], [109], [110], [111], [112], [113], [114], [115], [116], [117], [118], [119],
[120], [121], [122], [123], [124], [125], [126], [127], [128], [129], [130], [131], [132], [133], [134], [135], [136], [137], [138], [139], [140], [141], [142], [143], [144],
[145], [146], [147], [148], [149], [150], [151], [152], [153], [154], [155], [156], [157], [158], [159], [160], [161], [162], [163], [164], [165], [166], [167], [168], [169],
[170], [171], [172], [173], [174], [175], [176], [177], [178], [179], [180], [181], [182], [183], [184], [185], [186], [187], [188], [189].
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TABLE 2. (Continued.) Various controller design techniques of the STATCOM [73], [77], [78], [79], [80], [81], [82], [83], [84], [85], [86], [87], [88], [89], [90],
[91], [92], [93], [94], [95], [96], [97], [98], [99], [100], [101], [102], [103], [104], [105], [106], [107], [108], [109], [110], [111], [112], [113], [114], [115], [116],
[117], [118], [119], [120], [121], [122], [123], [124], [125], [126], [127], [128], [129], [130], [131], [132], [133], [134], [135], [136], [137], [138], [139], [140], [141],
[142], [143], [144], [145], [146], [147], [148], [149], [150], [151], [152], [153], [154], [155], [156], [157], [158], [159], [160], [161], [162], [163], [164], [165], [166],
[167], [168], [169], [170], [171], [172], [173], [174], [175], [176], [177], [178], [179], [180], [181], [182], [183], [184], [185], [186], [187], [188], [189].
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TABLE 2. (Continued.) Various controller design techniques of the STATCOM [73], [77], [78], [79], [80], [81], [82], [83], [84], [85], [86], [87], [88], [89], [90],
[91], [92], [93], [94], [95], [96], [97], [98], [99], [100], [101], [102], [103], [104], [105], [106], [107], [108], [109], [110], [111], [112], [113], [114], [115], [116],
[117], [118], [119], [120], [121], [122], [123], [124], [125], [126], [127], [128], [129], [130], [131], [132], [133], [134], [135], [136], [137], [138], [139], [140], [141],
[142], [143], [144], [145], [146], [147], [148], [149], [150], [151], [152], [153], [154], [155], [156], [157], [158], [159], [160], [161], [162], [163], [164], [165], [166],
[167], [168], [169], [170], [171], [172], [173], [174], [175], [176], [177], [178], [179], [180], [181], [182], [183], [184], [185], [186], [187], [188], [189].
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TABLE 2. (Continued.) Various controller design techniques of the STATCOM [73], [77], [78], [79], [80], [81], [82], [83], [84], [85], [86], [87], [88], [89], [90],
[91], [92], [93], [94], [95], [96], [97], [98], [99], [100], [101], [102], [103], [104], [105], [106], [107], [108], [109], [110], [111], [112], [113], [114], [115], [116],
[117], [118], [119], [120], [121], [122], [123], [124], [125], [126], [127], [128], [129], [130], [131], [132], [133], [134], [135], [136], [137], [138], [139], [140], [141],
[142], [143], [144], [145], [146], [147], [148], [149], [150], [151], [152], [153], [154], [155], [156], [157], [158], [159], [160], [161], [162], [163], [164], [165], [166],
[167], [168], [169], [170], [171], [172], [173], [174], [175], [176], [177], [178], [179], [180], [181], [182], [183], [184], [185], [186], [187], [188], [189].

FIGURE 4. Representation of different types of STATCOM models versus
publications.

deal with the effects of STATCOM on system stability and
the optimal location and sizing of STATCOM, respectively.
The fifth and sixth branches cover the integration of renew-
able energy sources with STATCOM and applications of
STATCOM in different areas of energy systems. Finally, the
seventh branch shows the real installation of STATCOM at
various locations.

III. DIFFERENT ASPECTS OF STATCOM MODELLING
In recent years, many modern models and topologies have
been developed for STATCOM. A considerable number of
publications have been made on cascaded multilevel convert-
ers [31], [38], [39], [41], [44], [45], [48], [67]. As shown
in Figure 3, good work has been written on VSC [30],
[35], [37], [43], [52], [57], [64], PWM [28], [46], [58],
[59], [60], MMC [40], [49], [62], [63], [66], [73], software-
based [32], [47], [53], [71], [72], and load flow models [50],
[51], [54], [68], [70], as shown in Figure 3. Some papers on
multilevel converters [33], [56], cascaded multilevel invert-
ers [34], [55], multilevel inverters [69], VSI [36], hexagram

FIGURE 5. Representation of STATCOM’s controller design techniques
versus publications.

converters [42], and novel techniques [29], [61], [65] have
been observed. MATLAB, PSCAD, laboratory prototypes,
and various IEEE-bus systems are used as test systems to
verify the novel techniques and configurations presented
by the publications. The majority of the papers focus on
enhancing the voltage stability of the system, THD, and
minimizing the power losses and cost of the system. Table 1
gives an overview of the different aspects of STATCOM
modelling [28], [29], [30], [31], [32], [33], [34], [35], [36],
[37], [38], [39], [40], [41], [42], [43], [44], [45], [46],
[47], [48], [49], [50], [51], [52], [53], [54], [55], [56],
[57], [58], [59], [60], [61], [62], [63], [64], [65], [66],
[67], [68], [69], [70], [71], [72], [73], [74], [75], [76].
Figure 3 shows a summary of the different aspects of STAT-
COM modelling, while Figure 4 shows the representation of
the different types of STATCOM models compared to the
publications.

IV. CONTROLLER DESIGN TECHNIQUE FOR STATCO
It can be observed that there have been major develop-
ments in control design techniques in the last 16 years,
as evidenced by Figure 5. In addition, many new control
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FIGURE 6. An exhaustive review summary of different controller design techniques for STATCOM.

TABLE 3. Impact of STATCOM on electrical power system stability [60], [190], [191], [192], [193], [194], [195], [196], [197], [198], [199], [200], [201], [202],
[203], [204], [205], [206], [207], [208].
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FIGURE 7. A detailed review on the impact of STATCOM on system stability.

FIGURE 8. An exclusive summary of optimal location and sizing of STATCOM.

algorithms have been formulated and implemented. The most
important results were DOPSO, THD, voltage balancing
under balanced and unbalanced conditions, and transient and
dynamic response improvement. Table 2 summarizes various
techniques used to develop controllers for STATCOM [50],
[51], [52], [53], [54], [55], [56], [57], [58], [59], [60], [61],
[62], [63], [64], [65], [66], [67], [68], [69], [70], [71], [72],
[73], [74], [75], [76], [77], [78], [79], [80], [81], [82], [83],

[84], [85], [86], [87], [88], [89], [90], [91], [92], [93], [94],
[95], [96], [97], [98], [99], [100], [101], [102], [103], [104],
[105], [106], [107], [108], [109], [110], [111], [112], [113],
[114], [115], [116], [117], [118], [119], [120], [121], [122],
[123], [124], [125], [126], [127], [128], [129], [130], [131],
[132], [133], [134], [135], [136], [137], [138], [139], [140],
[141], [142], [143], [144], [145], [146], [147], [148], [149],
[150], [151], [152], [153], [154], [155], [156], [157], [158],
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TABLE 4. Optimal location and sizing of STATCOM [209], [210], [211], [212], [213], [214], [215], [216], [217], [218], [219], [220], [221], [222], [223], [224],
[225], [226], [227], [228], [229], [230].

which contains information about the year of publication,
the name of the controller design technique, the name of
the test system or software, and the main results. Figure 6
shows a summary of the different STATCOM controller
design techniques in nine different categories. The PI control
technique [98], [143], [164], [186] has the main advantage
of damping power system oscillations. The feedback con-
troller used in ref no. [88], [91], [95], [96], [125], and [138]
has found performance comparable to the PI controller in
terms of response dynamics and control effort required. The
hysteresis control scheme [151], [158], [171], [177] is very
useful in controlling reactive power and voltage variation.
A combination of dynamic stability and damping of power
system oscillation has been achieved by the PID controller
in [99], [105], and [109]. As per the literature available,
authors findmany control techniques and algorithms for THD
improvement, such as the DQ frame theory-based control
algorithm, the auto-tuning technique, hysteresis control, and
conventional LC-STATCOM. CHB STATCOM is based on
DC link voltage shaping and closed-loop analytical filtering.

All the techniques provided in the literature review show
their usefulness but have some limitations with the order of
harmonics. The author strongly recommends the best control
technique as CHB STATCOM based on DC link voltage
shaping, as it provides the best results and overcomes the
conventional LC-STATCOM in both capacitive and induc-
tive modes, as well as being explained in [174]. The output
voltage THD in capacitive mode is 43.3% (conventional)
and 29.2% (proposed CHB-STATCOM), while the THD in
inductive mode changes from 48% (conventional) to 33.6%
(proposed CHB-STATCOM). The technique is also effective
for different orders of harmonics, such as 3rd, 5th, 11th,
and 13th.

V. IMPACT OF STATCOM ON SYSTEM STABILITY
Papers enhancing steady-state, transient, or dynamic stability
have been summarized in Table 3. It can be noted that pub-
lications have been tested on software like MATLAB [195]
and PSCAD [60], [191], [194], as well as industrial proto-
types. Various outcomes have been observed, including better
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TABLE 5. Integration of renewable energy sources with STATCOM [200], [201], [202], [203], [204], [205], [206], [207], [208], [209], [210], [211], [212], [213],
[214], [215], [216], [217], [218], [219], [220], [221], [222].

FIGURE 9. Different types of optimization techniques separated year
wise.

performances [190], [194], [198] and system stability [60],
[193], [195], [197], [199], [200]. Table 3 shows the summary

FIGURE 10. Comparison of research in various renewable energy
sources.

of the impact of STATCOM on electrical power system sta-
bility [60], [190], [191], [192], [193], [194], [195], [196],
[197], [198], [199], [200], [201], [202], [203], [204], [205],
[206], [207], [208], whereas the graphical representation of
the review of the impact of STATCOM on system stability is
shown in Figure 7.
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FIGURE 11. A graphical view: Integration of renewable energy sources with STATCOM.

VI. OPTIMAL LOCATION AND SIZING OF STATCOM
All the publications under optimal location and size have
unique optimization techniques. They have been tested on
MATLAB [225], transmission systems [217], and differ-
ent bus systems. Major conclusions of these papers include
improved system stability [209], [214], [215], [219], [223],
[228], reduction in computational time [214], [220], [227],
and benefit in cost [213], [214], [216], [226]. Few papers have
accomplished multiple objectives [214], [226], [235]. Table 4
and Figures 8–9 show a summary of the optimal location and
size of STATCOM [209], [210], [211], [212], [213], [214],
[215], [216], [217], [218], [219], [220], [221], [222], [223],
[224], [225], [226], [227], [228], [229], [230]. Figure 8 shows
the summary of optimal location and sizing of STATCOM
under six different categories, whereas different types of
optimization techniques separated year-wise are shown in
Figure 9. Figure 10 shows the research done on different types
of renewable sources. The graph shows that wind and PV are
the most renewable systems used by the researchers.

VII. INTEGRATION OF RENEWABLE ENERGY SOURCES
WITH STATCOM
Papers that show relations to renewable energy sources
have been put together in Figure 10-11. The main subcate-
gories were noticed to be Wind [229], [233], [234], [235],
[236], [238], [239], [240], [241], [242], [242], [243], [244],
[244], [245], [245], [246], [247], [247], [248], [249], [250],
PV [241], [243], [246], [248], and BESS [232], [237]. Papers
that have been addressed in different categories but have a
hint of renewable energy sources have also been considered
in the comparison graph. From table 5, it can be deduced

that PSCAD [229], [232], [236], [237], [239], [241], [242],
[244] is the most used software for testing. The common
interpretation of these papers is that system stability [232],
[233], [234], [235], [236], [238], [240], [243], [246], [248]
has been achieved, damped power oscillations [237], [246],
[247], [248], [251] were observed, and faults have been
analyzed [239], [240], [241], [253]. Table 5 represents a
summary of the integration of renewable energy sources
with STATCOM [231], [232], [233], [234], [235], [236],
[237], [238], [239], [240], [241], [242], [243], [244], [245],
[246], [247], [248], [249], [250], [251], [252], [253], [254].
Figure 10 shows the main comparison of research on vari-
ous renewable energy sources, which includes the five main
energy resources in this study. Whereas a graphical view
(Integration of Renewable Energy Sources with STATCOM)
is represented in Figure 11.

VIII. APPLICATIONS OF STATCOM IN DIFFERENT AREA
OF POWER SYSTEMS
The work presented in this section projects the various appli-
cations of STATCOM in power electronics. Researchers have
used various test systems like IEEE bus standards, kV pro-
totypes, etc., and software like MATLAB, PSCAD, and
EMTDC to simulate and execute the outcomes. The conclu-
sions from the various papers have been noted to be DOPSO,
fault analysis, and THD, transient stability. The major out-
comes delivered from the first paper on solar power were the
integration of PV-STATCOM and active power enhancement
during the day and night. Figure 12 depicts a tree diagram
for the application of STATCOM in different areas of power
systems, which includes six major areas of applications.
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TABLE 6. Applications of STATCOM in different area of power systems [223], [224], [225], [226], [227], [228], [229], [230], [231], [232], [233], [234], [235],
[236], [237], [238], [239], [240], [241], [242], [243], [244], [245], [246], [247], [248], [249], [250], [251], [252], [253], [254], [255], [256], [257], [258], [259],
[260], [261], [262], [263], [264], [265], [266], [267], [268], [269], [270], [271], [272], [273], [274], [275], [276], [277], [278], [279], [280], [281], [282], [283],
[284], [285], [286], [287], [288], [289], [290].
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TABLE 6. (Continued.) Applications of STATCOM in different area of power systems [223], [224], [225], [226], [227], [228], [229], [230], [231], [232], [233],
[234], [235], [236], [237], [238], [239], [240], [241], [242], [243], [244], [245], [246], [247], [248], [249], [250], [251], [252], [253], [254], [255], [256], [257],
[258], [259], [260], [261], [262], [263], [264], [265], [266], [267], [268], [269], [270], [271], [272], [273], [274], [275], [276], [277], [278], [279], [280], [281], [282],
[283], [284], [285], [286], [287], [288], [289], [290].

A detailed analysis of the number of publications published
in various categories of the application has been depicted in
Figure 13. It was observed that the maximum publication
of the papers has been done under the categories of fault
analysis, THD, and voltage stability. Table 6 represents a

summary of the applications of STATCOM in different areas
of power systems [255], [256], [257], [258], [259], [260],
[261], [262], [263], [264], [265], [266], [267], [268], [269],
[270], [271], [272], [273], [274], [275], [276], [277], [278],
[279], [280], [281], [282], [283], [284], [285], [286], [287],
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FIGURE 12. A tree diagram: Application of The STATCOM in different areas of power system.

FIGURE 13. Representation of STATCOM’s applications versus
publications.

[288], [289], [290], [291], [292], [293], [294], [295], [296],
[297], [298], [299], [300], [301], [302], [303], [304], [305],
[306], [307], [308], [309], [310], [311], [312], [313], [314],
[315], [316], [317], [318], [319], [320], [321], [322].

IX. REAL-SITE INSTALLATION OF STATCOM IN THE
WORLD
Over the past 16 years, few papers showing a detailed study
of STATCOM installation have been observed. These papers
have shown categorical enhancements in the pre-existing
power generation and transmission systems. These enhance-
ments have been in terms of operational experience, sta-
bility, voltage regulation, and reactive power compensation.
Figure 9 has been attached, displaying the locations of

FIGURE 14. Locations over the world where installations of STATCOM has
been done.

the installed systems around the globe. It is established
through the figures that installations have been done in
China [200], [327], Korea [323], [326], Canada [324], [328],
Great Britain [324], and Ankara [225].
The real installation of STATCOM around the Seoul

metropolitan area of north-west South Korea is reported
in [323]. A STATCOM of 100 MVAR capacity was installed
at Migcum. The main objective was to achieve voltage sta-
bility around the Seoul metropolitan area. The operation
principle of median voltage STATCOMs and their oper-
ation experience, which were actually installed in Great
Britain and Canada, are exhibited in [324]. Overall stabil-
ity, including voltage stability and total harmonic distortion,
is achieved in unbalanced grid conditions. STATCOM-based
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21-level inverters are implemented on a transmission line
of 154 KV+/− 50 Mvar, as showcased in [325]. Active
voltage harmonics filtering and dynamic reactive power com-
pensation are achieved. A delta structure connected to +/−
200 MVAr STATCOM based on a cascaded H-bridge con-
verter is installed in China’s southern grid, as explained
in [200]. In this paper, the use of multi-STATCOMs is
explained to improve the stability of both AC and DC
power systems. For the full utilization of STATCOM installed
at Korean Electric Power, a special protection scheme is
explained in [326]. This scheme is very helpful in reducing
the tripping of generators during overload conditions. The
urgency of the installation of the DC network by replacing the
AC/DC interconnected network at the China Southern Grid
is exhibited in [327]. In this paper, STATCOM is installed to
mitigate the instability that occurs during the faulty condition.
A PV solar-based STATCOM to be utilized in the daytime and
nighttime is installed in Canada, as explained in [328]. This
STATCOM is usedwith a 10-KW solar system. A continuous,
stable operation is achieved for the induction machine during
the unbalanced condition.

X. CONCLUSION
This paper has presented a deep analytical review of STAT-
COM and its associated applications in power systems.
In the modelling of STATCOM, different types of mod-
elling schemes used by the authors are reported. The major
modelling concepts are based on a cascaded multilevel con-
verter (CMC), voltage source inverter, PWM, software-based
model, and load flow model. In controller design techniques,
mainly PID, PI, and fuzzy logic-based controllers, feed-
back controllers, model predictive-based controllers, sliding
mode control, and other miscellaneous controllers, schemes,
and algorithms are exhibited. A lot of references on the
impact of STATCOM on system stability, which includes
steady state, transient, and dynamic stability, are reported.
After that, optimal sizing and location based on probabilistic
technique, genetic algorithm, sensitivity index-based, mesh
adaptive direct approach, branch and bound approach have
been discussed. Moreover, special attention has been paid
to the applications of STATCOM and its use for achieving
THD, voltage mitigation, DOPSO, fault analysis, and optimal
power flow. After that, the real installation location of STAT-
COM is cited. Finally, the research gap is identified, and the
future scope of STATCOM is explained.

The literature review presented on STATCOM concludes
that considerable work has been done in developing different
control schemes and modelling techniques to improve the
performance of power systems. Recent publications show
remarkable work in increasing the efficiency of renewable
energy sources. However, various aspects of STATCOM are
yet to be explored.

There are some fields in which very little work has been
done. The future scope of STATCOM’s research is as follows:

1. Modelling of STATCOM in Current Source Inverter:
In the modelling of STATCOM, a number of methods

are used. Most methods are based on voltage source
inverters and PWM; very little work is reported on CSI-
based STATCOM. The CSI-based STATCOM needs to
be explored more, as CSI has many advantages over
VSI, such as: 1) it can be used for high power ratings;
2) there is no need for an anti-parallel diode; and 3)
there is a reduction in cost.

2. Implementation of Heuristic Technique with Optimal
Sizing of STATCOM: The existing research work
mainly focuses on the genetic algorithm and probabilis-
tic approach. No paper reported the use of techniques
such as particle swarm optimization or neural net-
works. Nowadays, mainly heuristic techniques are
available that can be used to find the optimal location
of STATCOM.

3. STATCOM for problems in power systems such as
power swing, power fluctuation, and the Ferranti effect:
During this review, the author finds many applica-
tions of STATCOM, such as total harmonic distortion,
voltage fluctuation, voltage stability, sag, and swell.
In very crisp mitigation of power swing, fluctuation is
not reported by any researcher. This could also be the
probable next area of research.

4. Integration of STATCOMwith PV Solar: In this review,
a number of papers report on wind farm integration
with STATCOM. Very few papers have been reported
on the integration of STATCOM with solar. This area
can be explored to decrease the load on our conven-
tional power source and get more efficiency with the
use of STATCOM.

5. FPGA for implementation of STATCOM: FPGA is a
kind of technology that enables researchers to make
the hardware of a component at a lower cost. Only one
research paper exhibits the use of FPGA technology.
So the author strongly recommends the implementation
of STATCOM using an FPGA.

6. Integration of STACOM in controller designs using
fuzzy techniques: In controller design techniques, very
few papers reported work on fuzzy logic. In the design
of the controller, the use of fuzzy logic and the FIS
editor can be explored more.

Through a rigorous review of the publications, this paper
concludes work done on various aspects of STATCOM. The
authors have made a sincere attempt to present their findings
by referencingmultiple research papers on STATCOMand its
associated applications. However, some research papers were
not used and were hence excluded from our references. The
authors apologize for the same. The authors strongly believe
that this review paper will prove to be a useful resource for
future researchers in this important field of research going
forward.
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