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ABSTRACT A novel XM-YOLOViT real-time detection algorithm for pedestrians and vehicles in foggy
weather based on YOLOV5 framework is proposed, which effectively solves the problems of dense target
interference and obscuration by haze, and the detection effect in complex foggy environments is improved.
Firstly, Inverted Residual Block and MobileViTV3 Block are introduced to construct XM-net feature
extraction network, secondly, EIOU is used as a location loss function and a high-resolution detection
layer is added in the Neck region. In terms of data, a nebulization method is designed to map images from
fogless space to foggy space based on the atmospheric scattering model and the dark channel prior. Finally,
the validity on four datasets under different foggy environments is verified, respectively. The experimental
results show that the accuracy, recall and mAP of the XM-YOLOViTmodel are 54.95%, 41.93% and 43.15%
respectively, and with an F1-Score of 0.474, which is 3.42%,7.08%,7.52% and 13.94% improved, the model
parameter reduction of 41.7% to 4.09M, the FLOPs is 25.2G and detection speed is 70.93 FPS compared to
the baseline model. The XM-YOLOViT model has better performance than the advanced YOLO detectors,
the F1-Score and mAP are improved by 5.57% and 3.65% compared with YOLOv7-tiny, and 2.38%, 2.37%
respectively compared with YOLOv8s. Therefore, the XM-YOLOViT algorithm proposed in this article has
high detection accuracy and an extremely lightweight structure, which can effectively improve the efficiency
and quality of detection tasks for UAV in foggy weather, especially for extremely small targets. Our source
code is available at: https://github.com/AFeiV8/XM-YOLOViT.

INDEX TERMS Fog detection, XM-YOLOViT, XM-net, high-resolution layer, nebulization method,
lightweight structure, tiny object.

I. INTRODUCTION
In recent years, UAV is widely used to carry out tasks that
people not easily accomplish because of small size and fast
movement. The detection target is seriously obscured by haze
under the foggy weather, which has a great impact on recog-
nition and detection, therefore, the foggy target detection
technology is difficulty of UAV vision tasks. However, it is
significant because it can collect crucial analytical data for the
analysis of foggy road conditions, foggy traffic management,
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foggy rescue, and other work. In order to obtain a better
viewing field, the UAV needs to fly at a certain height and
adjust its flight height at any time. Therefore, the scale of
targets changes dramatically, and most targets are small and
densely distributed, which brings certain difficulties to UAV
target detection. Therefore, a more effective fog detection
algorithm is urgently needed.

In recent years, significant progress has been made in
object detection technology. Researchers have proposed
manymethods based on deep learning to solve the problem of
fog target detection. Researcher has proposed designing a dis-
parity reduction module based on defogging technology [1],
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[2], [3], [4], [5]. In [6] and [7], researchers designed a style
transfer module based on generative adversarial networks to
reduce differences. In [8], [9], and [10], researchers utilized
the domain adaptive approach to study the alignment rela-
tionship between the source domain and the target domain
to achieve disparity reduction. Scholars have proposed using
more complex structures to enhance the feature extraction
ability of the model and improve detection accuracy [11],
[12], [13].

Although these works have achieve good results, it is
impossible to deploy on UVA and other mobile devices
because of the introduction of artificial prior knowledge or
the complexity of the architecture, resulting in the algorithm
being complex, the model magnitude being too large and not
optimized for detection of small and dense objects. In this
paper, a lightweight and efficient object detection algorithm
based on CNN and Transformer is proposed to detect pedes-
trians and vehicles under fog conditions for UAVs. These
primary innovations are as follows:

1) The Inverted Residual Block and MobileViTV3 Block
are used to design XM-net as the backbone for the
XM-YOLOViT model to enhance the feature extraction and
global modeling ability.

2) The EIoU Loss is used as the localization loss function
to accelerate convergence and improve detection accuracy.

3) The detection layer with higher resolution can enhance
the multi-scale processing ability of the model, and the influ-
ence of the drastic change of target scale during UAV flight
is suppressed, thereby, the detection accuracy is improved.

4) In terms of data, a fogging algorithm is designed based
on the atmospheric scattering model and the dark channel
prior which mapping images to foggy spaces, to obtain
more natural foggy images for training and testing the
high-performance model proposed in this paper.

The remainder of the paper is organized as follows:
The related work is presented in section II. Section III
describes the design process and architectural details of XM-
YOLOViT. Section IV introduces the fog detection algorithm
and its implementation in detail. Section V describes the
related experimental tests and analyzes the experimental
results. Section VI discusses the limitations of the work and
presents future work. Section VII is the conclusion of this
paper.

II. RELATED WORKS
The related work in this paper covers the current state of
object detection, foggy object detection, model lightweight,
and small dense objects. Representative works in each field
are reviewed as below.

A. OBJECT DETECTION
At present, one-stage (SSD series [14], [15], [16] and YOLO
series [17], [18], [19]) and two-stage (Faster-RCNN [20]) are
the main target detectors. The two-stage network has high
detection accuracy, but the real-time performance is poor due
to a large amount of computation. One-stage algorithm with

better real-time performance is simple and efficient. Among
them, YOLOv5 is the most commonly used, but the detection
accuracy is low in complex environments, especially for small
targets, dense targets, and extreme weather conditions with
severe occlusion.

B. OBJECT DETECTION IN FOGGY WEATHER
In foggy weather, severe degradation of image quality or
severe occlusion of targets can have a significant impact on
target detection. Researchers have proposed many solutions
based on deep learning, which can be divided into two cate-
gories.

In the first type of research, the first class of research
the artificial prior knowledge or deep learning module is
introduced to reduce the difference between the source and
target domains before performing the detection task. Some
researchers used physical models to represent foggy images.
He et al. [1] proposed a single-image defoggingmethod based
on the dark channel prior, Zhu et al. [2] proposed a fast
single-image defogging method based on the color attenua-
tion prior. The image becomes clear by defogging and the
image quality is improved through the above technology, but
the original texture and color of the object may be damaged
to some extent. Liu et al. [3] proposed to add a dark channel
defogging algorithm based on YOLOv7. The efficiency of
dark channel defogging algorithm is effectively improved
by down-sampling and up-sampling, and the head of ECA
module is added to the network to improve the accuracy
of target classification and regression. Dong et al. [4] pro-
posed a multi-scale enhancement feature fusion defogging
network based on U-Net structure, which skillfully combines
enhancement strategies and back projection techniques for
image defogging. The IDOD-YOLOv7model is suggested by
Qiu et al. [5] which is based on IDOD module and YOLOV7
module for joint learning, and the IDOD module is responsi-
ble for image defogging and image enhancement to improve
detection accuracy. An improved YOLOv5 algorithm is pre-
sented by Zhai et al. [21], the brightness and contrast of the
image are adjusted by the improved adaptive histogram equal-
ization method in the process of image preprocessing, which
highlights the detailed information of vehicle image mark-
ers and improves the detection accuracy of a single image.
Liu et al. [22] used GCANet to defog the image and enhance
the representation of the object boundary, then the YOLOV5
model is used to realize the detection. Several studies have
used generative adversarial networks for image preprocess-
ing. Shan et al. [6] proposed a UDA model that uses the
generation of adversarial networks for image translation,
which enhanced the anti-interference ability of the detec-
tion network. a new generative adversarial network based on
CycelGAN is designed by Guo et al. [7] to achieve style
translation between foggy images and normal images before
performing the detection task. Some studies that use domain
adaptivemethods to study the alignment relationship between
source and target domains, Hu et al. [8] proposed DAGL-
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Faster, which enhances Faster-RCNN with multiple domain
classifiers, these classifiers assist the network in extracting
features that are invariant to the domain difference between
the source domain (typical weather) and the target domain,
and the consistency regularization is introduced to optimized
the detection performance, Sindagi et al. [9] defined a new
prior adversarial loss based on prior knowledge to supervise
the adaptive process, which mitigating the effect of weather
on the detection performance, Liu et al. [10] proposed a
domain adaptive model called IA-YOLO and a differentiable
image processing (DIP) module is designed, which can adap-
tively learn the brightness, color, tone, and weather features
of an image. The interference of weather information in the
image can be suppressed and the potential information can be
recovered after processing by DIP module.

In another class of research, the feature extraction abil-
ity and the detection accuracy of the model are improved
by designing the complex structure. Meng et al. [11] intro-
duced SwinFocus based on YOLOv5 to enhance the feature
extraction capability of the original algorithm and added a
decoupling head to the model, which effectively improves
the detection performance of fuzzy and small targets under
foggy conditions. To improve the robustness and detec-
tion performance of the network, Fang et al. [12] proposes
the ODFC-YOLO model which adds a cross-stage partial
decoder at the mid-end of the backbone to reduce the differ-
ence between fuzzy and clear images, meanwhile, the GCEE
module is used to construct global contextual features and
remote dependencies. Wang et al. [13] proposed a foggy day
detection algorithm based on YOLOv5, the parameterized
ResNeXt model is used as the backbone, meanwhile, the
FEMmodule is designed to extract more useful features using
the attention mechanism.

C. MODEL LIGHTWEIGHT AND SMALL DENSE OBJECT
Due to the limited computing resources and storage space
of UAV or other mobile devices, more lightweight and
efficient algorithms are needed to realize target detection.
To reduce the computational amount of the standard convo-
lution, Howard et al. [23] proposed the Depthwise Separable
Convolution structure, which separates the standard convo-
lution into Depthwise Convolution (DW convolution) and
Pointwise Convolution (PW convolution). Han et al. [24]
proposed the Ghost module, which is used to generate
more feature mappings from low-cost operations, thereby the
computational overhead is reduced and the representation
capability of the model is improved. These structures are
usually used for lightweight work of models [25], [26], [27],
[28], [29] because they can be used as plug-and-play single-
layer structures and lightweight backbones.

In some studies, optimization has been done in the direc-
tion of model lightweight and density target detection.
Yang et al. [30] suggested a new detection head to increase
the model detection accuracy for small targets, K-means++

algorithm to optimize the scale of the initial anchors, the

GhostNet module is used to replace the relevant convolution
in YOLOv5 to create lightweight models. Wang et al. [31]
proposed a lightweight target detection algorithm based on
YOLOv4, which used MobileNetv3 as a backbone to reduce
the model parameters, then used inflated convolution instead
of the SPP structure, Dcn-Dw structure to replace convolu-
tion operation in PAN-Net, and finally introduced CBAM
module before the Head. Li et al. [32] proposed an improved
lightweight dense pedestrian detection algorithm which the
GhostNet is used as the backbone to reduce the number of
parameters and the amount of computation. In the front part,
CBL module is replaced by GSCV module, CSP module
is replaced by VoV-GSCSP module, which improves the
overlap of prediction frames in dense scenes. Although these
works can effectively reduce the model parameters and the
lightweight model is achieved, the improvement of detection
accuracy is less, even at the expense of accuracy.

There are some similar studies on small and dense object
detection by UAV. Based on YOLOv5s, a small target detec-
tion algorithm [33] for UAV is proposed by multi-scale
feature fusion, improved ASFF and adding CBAM module
before backbone network and each prediction network. The
detection performance has been improved, but the detec-
tion accuracy is still not high enough, especially in extreme
weather. Zhu et al. [34] proposed a new detection head TPH
for UAV to small target detection based on YOLOv5. The
Transformer is integrated into the C3 module, and a tiny
object detection head is added. However, the design for TPH
is rather heavy, which will seriously affect the real-time per-
formance.

III. DESIGN OF XM-YOLOViT MODEL
The XM-YOLOViT model based on the YOLOv5 architec-
ture is shown in Fig. 1. The overall architecture consists of
three parts: Backbone, Neck, and Head. Backbone (XM -
Net) performs the feature extraction, the Neck part consists
of SPPF, FPN, and PAN, which is able to enhance multi-scale
capability of the model, and Head is responsible for target
prediction and localization.

The main components of YOLOv5s are shown in Fig. 2,
where CBS is a three-layer structure of ConvBNSiLU.
Among them, the BottleNeck1 is used only for C3 Blocks
in CSP-Backone (named backbone in YOLOv5 in this way
in the paper), whereas the BottleNeck2 is used for the other
C3 Blocks.

A. DESIGN OF XM-NET ARCHITECTURE
A hierarchical feature extraction network called XM-net with
strong extraction capability is proposed, and the problems of
feature extraction and insufficient global modeling capability
of CSP-Backbone are solved. The down-sample and map-
ping structures are designed based on the Inverted Residual
Block [35] and MobileViTV3 Block [36]. The basic feature
extraction unit is composed of down-sampling and mobile-
vit3block, which is used repeatedly in the feature extraction
process. The structure of XM-net is shown in Fig. 3.
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FIGURE 1. XM-YOLOViT architecture diagram.

FIGURE 2. Main components of YOLOv5s.

FIGURE 3. Structure of XM-net.

FIGURE 4. Structure of down-sampling layer.

FIGURE 5. Architecture diagram of mapping.

B. DESIGN OF DOWN-SAMPLE AND MAPPING
Down-sampling layer is mainly used to down-sample the
feature map. In the first Down-sampling layer, a CBS module

with convolutional kernel size of 6 × 6 and step size of 2 is
used to obtain a broader receptive field. All the remaining
down-sampling layers use Inversed Residual Blocks with
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FIGURE 6. (a) Transformer blocks used in MobileViTV3 (b) Structure of separable self-attention.

FIGURE 7. Structure of MobileViTV3 block.

FIGURE 8. Structure of FPN and PAN.

step size of 2, and the down-sampling structure is shown in
Figure 4.

The Inverted Residual Block is a lightweight struc-
ture. First, the input features are projected into the
high-dimensional space using a linear combination of PW
convolutional learning input channels, and then the input
features are extracted by DW convolution, which are input
into the PW convolution module and projected into a low-
dimensional space. A linear activation layer is used after
the final PW convolution to prevent nonlinear activation
functions from seriously destroying information in low-
dimensional features. Mapping is mainly used to adjust the
number of channels to map the features to the high dimen-
sional space. The Mapping layer is implemented by Inverted
Residual Block with a stride of 1 and its structure is shown in
Fig. 5.

The Mapping includes a shortcut branch which is different
from the Inverted Residual Blocks with step size of 2. The
shortcut branch is used only when the stride of the DW

convolutional layer is 1 and the input features have the same
shape as the end features since it is an additive operation at
the end.

C. MobileViTV3 BLOCK
The three components of MobileViTV3 Block are local fea-
ture learning, global feature learning and feature fusion. The
local feature learning part combines DW convolution and
PW convolution to encode the local information of the input
features, and then learn the linear combination of the input
channels and project them to the high-dimensional space.
The global feature learning part first uses the Unfold layer to
divide the features into patches and convert them from image
form to sequence form, followed by the Transformer Blok
to encode the relationships between the patches for global
interactionmodeling, and then the Fold layer is used to reduce
the features to image form.

A SSA (Separable Self-attention) [37] with linear tem-
poral complexity and relative lightweight is employed in
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the Transformer Block when global feature learning is per-
formed, as shown in Fig. 6(a). The Separable Self-attention
employs the three-branch to process input feature X as shown
in Fig. 6 (b). In branch I, each token∈ Rd in X is first mapped
to a scalar using the linear layer to get XI ∈ Rm, and then,
the cs ∈ Rm is obtained by Softmax operation. The broadcast
mechanism as well as element-by-element multiplication is
used to calculate cv and the final result. In MSA (Multi-head
Self-attention) [38], it is necessary to multiply each feature
information in the input token with each information in the
key token to obtain the attention matrix, the time complexity
is O(k2). However, in SSA, the input token is first mapped
into a scalar and then multiplied with each message in the
key token using the broadcast mechanism, and with a time
complexity isO(k). Therefore, thememory space is saved and
the computational efficiency is improved by SSA.

Feature fusion is the fusion of local and global features and
shortcut branches. To obtain the final output of MobileViTV3
Block, the local and global learning features are first com-
bined andmapped to the same dimension as the input features
using PW convolution, finally, additively fused with shortcut
branches. Structure of MobileViTV3 Block is shown in Fig 7.

D. HIGH RESOLUTION DETECTION LAYER
In this paper, a PFN and PAN structure with three detection
layers is designed. A new detection layer with higher resolu-
tion (160 × 160) is added to the three detection layers, which
preserves more original image information and enhances the
multi-scale processing capability of the model, reduces the
influence of the target scale change during UAV flight and is
beneficial to the detection of the minimal target.

As shown in Fig. 8, the cascaded unit in FPN structure
includes adjustment channels, up-sampling and feature stitch-
ing, and finally a feature map with a scale of 160 × 160 is
obtained. Because of the symmetry between the FPN and
the PAN, the same three-layer cascade structure is used in
the PAN, and the CBS module in the cascade unit is used to
down-sample the image features, and the feature maps with
three scales of 80 × 80, 40 × 40, and 20 × 20 at the end of
the PAN will be obtained. Four detection layers with various
resolutions will be obtained after processing by the Head unit.

E. LOSS FUNCTION
In this paper, the classification accuracy and positioning
accuracy of the model are jointly optimized by using clas-
sification loss, confidence loss and positioning loss. Binary
Cross Entropy Loss (BCE Loss) is used for classification loss
and confidence loss, EIoU Loss [39] is used for localization
loss to improve the detection accuracy. The formulas of the
three loss functions are as follows:

Lcls(O,P)

= −λcls

∑
i∈pos

∑
j∈cls

(Oij ln σ (Pij) + (1 − Oij) ln σ (1 − Pij))

Npos
(1)

Lconf(Pobj,C)

= −λconf

∑
i
Piobj ln σ (Ci) + (1 − Piobj) ln σ (1 − Ci)

N
(2)

σ (x)

= Sigmoid(x) (3)

In Equation (1), Npos denotes the number of all positive
samples, Oij ∈ {0, 1} denotes the presence or absence of the
jth target type in prediction box i, Pij denotes the result pre-
dicted by themodel. In equation (2),Piobj denotes the presence
or absence of the target in box i, Ci denotes the confidence
value of the target in the prediction box i for the model.

Lloc = λloc

[
1 − IoU +

ρ2(bp, bgt )
(wc)2 + (hc)2

+
ρ2(wp,wgt )

(wc)2
+

ρ2(hp, hgt )
(hc)2

]
(4)

IoU =
GT ∩ P
GT ∪ P

(5)

In Equation (4), ρ2 denotes the square of the Euclidean
distance, bp and bgt represent the coordinates of the center
point of the prediction and reality boxes, respectively, wp

and hp are the widths and heights of the predicted box, wgt

and hgt are the widths and heights of the real box, wc and
hc represent the width and height of the minimum bounding
rectangle formed by the prediction box and the real box. The
meaning represented by each symbol is shown in Fig. 9.

FIGURE 9. Meaning of various symbols for EIoU.

The different λi in Equation (1), Equation (2) an
Equation (4) denote the balance coefficients of the three
losses, and the total loss can be expressed as:

L = Lcls + Lconf + Lloc (6)

IV. DESIGN OF FOGGING ALGORITHM
In this paper, a mapping relation is designed based on the
atmospheric scattering model [40] and the dark channel
prior [1], which maps the fog-free image data into the fogged
space, and the parameters are fine-tuned according to the
actual effect to enhance the data diversity.

A. ATMOSPHERIC SCATTERING MODEL
The atmospheric scattering model is a mathematical model
that describes the scattering of light as it passes through the
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FIGURE 10. Schematic diagram of dark channel calculation process.

Algorithm 1 Fogging Algorithm
while i ≤ number of batches do
Step I : Get Dark Channel

Require: b, the batch size. H and W, the image height and width
• Pad images: panding, and Kernel initialization: kernel size,
kernel size = K, padding=K//2

• Use Kernel to divide images into multiple patches:
shape (b, 3, H, W) → (b, 147, H×W)

• Perform minimum value operation on all patches to obtain dark channel:
shape (b, 147, H×W) → (b, 1, H×W)

Step II : Calculate Atmospheric Value
Require: R, the sampling ratio.

• Sample a certain proportion of dark pixels in dark channel:
shape (b, 1, H×W) → (b, 1, H×W×R)

• Find the locations of these dark pixels on the original image:
shape (b, 3, H×W×R)

• Perform a maximum value operation on these pixels and average the three channels to obtain the atmospheric light value:
shape (b, 3, H×W×R) → (b, 3, 1) → (b,1)

Step III : Mapping images using physical models
• Pixel normalization: Pixel / 255
• Use formula (2) (3) (4) to map the image to obtain the foggy image:
the experimental section shows in detail all parameters in equation.

i = i + 1
end while

atmosphere, the expression is expressed as:

I (x) = J (x)t(x) + A(1 − t(x)) (7)

In Equation (7), I (x) represents a foggy image, J (x) rep-
resents fog-free image, t(x) is the atmospheric transmittance,
and A is the atmospheric light value. Therefore, when t(x)
and A are known, the image is mapped from fog-free space to
foggy space. The following equations can be used to estimate
atmospheric transmittance when the atmosphere is uniform,
t(x) is expressed as:

t(x) = e−βd(x) (8)

d(x) = s−
ρ(L,C)

20
(9)

In Equation (8), x is the atomization center, β is the
atmospheric scattering coefficient, and d(x) is the scene
depth of radiation that can be calculated by Equation (9).
In Equation (9), ρ is the Euclidean distance between the
two data, s is the dimensions of the fogging space, L is the

height and width information of the original image, C is the
coordinates of the center point of the fogging space.

B. DARK CHANNEL PRIOR
In most non-sky regions for the fogless images, pixels have
extremely low intensity (dark pixels) in at least one of the
three RGB color channels. The channel composed of these
dark pixels is called a dark channel, defined as:

Jdark (x) = minc∈{r,g,b}(miny∈�(x)(J c(y))) (10)

In Equation (10), J c is color channel of J , �(x) is a local
patch centered on x. Assuming J (x) is an outdoor image
without fog, the intensity of Jdark is extremely low and tends
to zero except for the sky region based on the dark channel
priority theory.

C. ESTIMATING THE ATMOSPHERIC LIGHT VALUES
In this paper, the value A of atmospheric light value is esti-
mated from real fog images used dark-channel prior. The
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steps for obtaining the atmospheric light value are as follows:
(1) calculate the dark channel, (2) sample the brightest dark
pixels that are proportional to the number of image pixels,
(3) The sampled dark pixel corresponds to the original image,
and the average value of the three RGB channels of that pixel
is the atmospheric light value A.

The entire image is first divided into multiple patches of
7× 7 when calculating the dark channel. The dark channel is
obtained by flattening all channels in the image together with
all patches to obtain N (number of patches) group vectors
of P ∈ R147. Since the use of sliding windows similar to
convolutional operations to partition the image into patches,
N is equal to the length of the image multiplied by its width.
And then performing amatrixminimization operation on8 ∈

R147×N, as shown in (11):

Jdark (x) = miny∈8(x),d=0(y) (11)

In Equation (11),8(x) represents amatrix8 ∈ R147×N that
contains all patch pixels of three channels, d is the dimension
in which matrix minimization operation is performed. Calcu-
lation process of dark channel is shown in Fig. 10.
When sampling dark pixels, the brightest dark pixel in

the dark channel is taken. Most of the image resolution is
1920 × 1080 for the collected real fog image, therefore, the
number of dark pixel sampling is modified. Selecting 0.9%
of the number of pixels in the original image as the number
of samples, that is, the first 0.9% of the brightest dark pixels
in all dark channels are sampled, therefore, the operation
of sampling dark pixels is completed. Finally, the sampled
dark pixels corresponding to the same position of the original
image are selected and the maximum value of the sampled
pixels is limited to 220 (0.89). The atmospheric light value A
is determined by averaging the three channels of RGB at that
pixel position. The process is shown in Fig. 11. Pseudo code
of the algorithm in this section is shown in Algorithm 1.

FIGURE 11. Process of calculating A.

V. EXPERIMENTAL TESTING AND VALIDATION
To verify the performance of the proposed algorithm, the
ablation experiments are carried out in four different fogging
spaces, moreover, the comparative experiments are carried
out for XM-YOLOViT and real-time detector in YOLO
series. Then the global modeling ability of XM-Net is visual-
ized to show the powerful global modeling ability of XM-Net.

Finally, a comparative experiment is conducted on the visual
detection effects of XM-YOLOViT and YOLOv5s under
foggy conditions. The experimental platform and training
settings are shown in Table 1, all models in the experiment
are trained with the same settings, the same configuration as
the default hyper-parameter and training strategy of YOLOv5
are used.

TABLE 1. Experimental configuration table.

TABLE 2. The number of images in each datasets.

A. DATASETS
It is impossible to find a publicly available dataset that can
satisfy the requirements of UAV shooting, real foggy envi-
ronment, minimal targets and dense targets at the same time.
To reduce the cost of experiments and to compensate for
the shortcomings of current public datasets, the algorithm
proposed in this paper is used to generate image data to meet
the research needs on the basis of high-quality UAV data sets.
At the same time, the diversity of the dataset can be flexibly
enhanced and the test on multiple datasets in different foggy
environments for the model can be realized. In this paper, the
large-scale UAV image dataset which collected and published
by the AISKYEYE team in the Machine Learning and Data
Mining Laboratory of Tianjin University [41] is used, that is
VisDrone2019-DET.The original dataset is processed to meet
the research requirements.

First, the night-time images and their labeling data in
the datasets are deleted. Secondly, the object categories are
adjusted so that all samples are eventually divided into pedes-
trian, car, and LV (light-duty vehicles). Finally, the number
of images in the training set, verification set and test set are
adjusted, the final number of images in the training set is
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FIGURE 12. Visualization results of the analysis of the dataset. (a)Distribution of object categories in the dataset.
(b) Distribution of object centroid locations. (c) Distribution of object sizes.

4615, which is divided according to the ratio of 7:2:1. The
exact number of training sets, validation sets and different test
sets are shown in Table 2. Visualization results are shown in
Fig. 12.

As shown in Fig. 12, the number, size, and location dis-
tribution of labeled boxes in the datasets are visualized. The
datasets used in this experiment contain a large number of
labeled samples and most of the samples are extremely small
in scale, therefore the detection task is extremely difficult.

B. FOGGING PARAMETERS AND EFFECTS
Under the condition of single variable, a large number of
experiments show that the effect is the best when the size
of atomization space is set to 55, and several groups of
fogging parameters with better atomization effect are deter-
mined through experiments, the best atomization parameters
of verification set and test set are shown in Table 3 (the value
A in the table is its coefficient relative to 255), optimum
atomization parameters for the validation and test sets are
shown in Table 4. In Table 3 and Table 4, A denotes the
atmospheric light value, β is the parameter controlling the fog
concentration, the larger b the greater the fog concentration.

TABLE 3. Best fogging parameters in training set.

TABLE 4. Mapping parameters for validation and test set.

The test set is mapped to light fog space, medium fog
space, dense fog space and random fog space to test the
performance of the model in different environments. The
effect images of different fogging spaces are shown in Fig. 13.
It can be seen that the atomization effect of the three spaces
is very good, and some targets in medium fog and dense
fog space no longer visible to the naked eye, which accords
with the required effect of the study. With the increase of fog
concentration, the difficulty of detection task also increases.

C. ALGORITHM TESTING AND RESULT ANALYSIS
YOLOv5s is used as the baseline model. The evaluation met-
rics of the model are P (Precision), R (recall rate), mAP@0.5
(meanAverage Precision, IOU is 0.5), FLOPs and FPS, which
are widely used in the target detection field. The formulas for
P, R, F1-Score and mAP are as follows:

P =
TP

TP+ FP
(12)

R =
TP

TP+ FN
(13)

F1 − Score = 2 ×
P × R
P+ R

(14)

mAP =
1
n

n∑
i=1

∫ 1

0
P(Ri)d(Ri) (15)

In Equations (12) and (13), TP (True Positive) indicates
that the positive sample is correctly classified as a positive
sample. FP (False Positive) indicates that negative samples
are incorrectly classified as positive samples. FN (False
Negative) indicates that the positive samples are wrongly
classified as negative samples. N is the number of categories
detected, in this article N = 3. FLOPs indicate the complex-
ity of the model, FPS represents number of images detected
by model per second.

1) ABLATION EXPERIMENTS
Ablation experiments are performed on the baseline model
and several improved models to observe the performance
improvement of the models with each optimization scheme.
The XM-net is used as the Backbone for some optimiza-
tion schemes due to the significant architectural differences
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FIGURE 13. (a) original image, (b), (c), and (d) corresponding three mapping spaces L, M, and H.

TABLE 5. Ablation experimental results.

TABLE 6. DEtaied layer information of XM-net.

between CSP-Backbone and XM-net. The average values of
the test obtained in four different fogging spaces are taken as
the final test results and the ablation experimental results are
shown in Table 5.

In the M1 scheme, the proposed XM-net is used as the
Backbone. The test results show that the performance of
the model is improved, the accuracy rate is increased by

1.82%, the recall rate is increased by 3.3%, the F1-score is
increased by 6.97%, the mAP improvement of 3.62% with
a parameter reduction of 43.3%. Although the accuracy is
reduced by 0.02% compared to the M1 scheme. For the
M2 scheme, the recall and the mAP increased by 0.63%
and 0.28% respectively, which used EIoU as the positioning
loss function based on the M1 scheme. M3 scheme adds a
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FIGURE 14. (a) Mean average precision for each model. (b) Classification loss of each model (c) Location loss of each model.

FIGURE 15. (a) Bar chart of P, R, and mAP. (b) Bar chart of F1-Score.

TABLE 7. Model performance testing and comparison.

higher resolution detection layer on the basis of M1 scheme,
the precision, recall, mAP of the M3 scheme are improved
by 2.93%, 2.3% and 3.9% compared with the M1 scheme,
respectively. The XM-YOLOViT model has an accuracy
improvement of 3.42%, a recall improvement of 7.08%, the
F1-Score improvement of 14.42% and mAP improvement of
7.52% compared to the baseline model, the performance has
been comprehensively improved. The detailed layer informa-
tion of XM-Net is shown in Table 6, Kernel represents the
kernel size of the convolution layer in each stage, ED-TF
denotes the embedding dimension of the Transformer Block,
D-MLP denotes the input dimension of the MLP structure,
and N-TFB denotes the number of Transformer Blocks in the
MobileViTV3 Block.

MAP curve and Loss curve are shown in Fig. 14.
In Fig. 14(a), the mAP curves for each model tended

to stabilize as the number of training sessions increased.
In the convergence stage, the mAP curves of each
experimental scheme are better than the baseline model,
and the XM-YOLOViT scheme being the best among
them.

As shown in Fig.14(b) an Fig.14(c), the training and verifi-
cation loss curves of the baseline model and XM-YOLOViT
model show a downward trend with the increase of train-
ing times, and tend to be stable in the middle and late
stages of training, finally reaching convergence. The loss of
XM-YOLOViT has a more drastic decreasing trend, and the
final loss value is lower compared with the baseline model.
It can be seen from the verification loss curve that there is
no overfitting phenomenon in the process of model training.
As a result, the XM-YOLOViT has stronger fitting and gen-
eralization capabilities than the baseline model.
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FIGURE 16. (a) Bar chart of mean average precision of each model (b) Bar chart of F1-Score of each model.

The test results for XM-YOLOViT and baseline model
under the four fogging spaces are shown in Table 7. From
Table 7, it can be seen that the precision, recall, F1-Score and
mAP of the XM-YOLOViT model are improved by 3.1%,
7.3%, 15.17% and 7.9% respectively in the light fog space
compared to the baseline model. In the medium fog space,
the performance of XM-YOLOViT is improved by 2.4% in
precision, 7.0% in recall, 14.25% in F1-Score and 7.4% in
mAP, although the accuracy of bothmodels has decreased, the
performance of XM-YOLOViT is still greatly improved com-
pared with the baseline model. Under the dense fog space, the
mAP of the baseline model is already below 35%, whereas
the XM-YOLOViT model has an accuracy improvement of
4.3%, a recall improvement of 6.7%, F1-Score improvement
of 12.93% andmAP improvement of 7.1%. In the random fog
space, the performance of XM-YOLOViT model is far supe-
rior to the baseline model. Therefore, the proposed algorithm
achieves an average improvement of 3.42% in accuracy,
7.08% in recall, 15.35% in F1-Score and 7.52% in mAP
compared to the baseline model in four different difficulty
testing tasks. The visualization results of XM-YOLOViT and
baseline model in four testing tasks are shown in Fig. 15.

As can be seen from Fig.15, the comprehensive perfor-
mance of XM-YOLOViT model is ahead of the baseline
model in the four different difficulty test tasks.

The model properties of the baseline model and
XM-YOLOViT are shown in Table 8. From the test results,
it can be seen that the training time for XM-YOLOViT with
the new architecture increased by 23%, and FLOPs increased
by 59% compared to the baseline model. The detection speed
of XM-YOLOViT lags behind the baseline model. However,
at present, most of the high-quality videos shot by drones
are 60FPS, the XM-YOLOViT model with a detection speed
of 70.93FPS has been able to carry out real-time detection
on most of the mobile device images. As a whole, XM-
YOLOViT gives up excessive detection speed in exchange
for a huge improvement in detection accuracy performance,
which is what we expect.

2) COMPARATIVE EXPERIMENTS
XM-YOLOViT, YOLOv3 [18], YOLOv7 [19], and YOLOv8
algorithms are selected for comparative experiments. The

TABLE 8. Model level and detection speed.

experimental models are set to the same order ofmagnitude as
the baseline model to reduce the influence of parameter dif-
ferences between different versions of the detector. The tiny
model is used for YOLOv3 and YOLOv7, the width multiple
is adjusted to 0.9 and 1.06, respectively. The width multiple
is adjusted to 0.383 for YOLOv8s and named YOLOv8s-tiny.
During the experiment, the input image size is set to 640, the
confidence threshold is set to 0.001, and the IoU threshold
is set to 0.6. To evaluate the performance of the model more
objectively, the test results are calculated using the same way
as the calculation in Table 5, the comparison results are shown
in Table 9.

According to the experimental results, the algorithm pro-
posed in this paper has the smallest weight file level and
the least model parameters, the recall rate of 41.93%, the
F1-Score of 0.474, and the mAP of 43.15%, all of which
are higher than the rest of the algorithms in the comparative
experiments. Although the precision is slightly lower than
that of the YOLOv5m and the YOLOv8s, the detection per-
formance of XM-YOLOViT is better than that of YOLOv5m
and YOLOv8s as shown by the F1-Score and mAP. There-
fore, XM-YOLOViT is ahead of the rest of the algorithms
in the experiment in terms of model magnitude as well as
detection effect. The histograms and line chart of mAP and
F1-Score for each model in the comparison experiment are
shown in Fig. 16.
As can be seen from Fig.16, the mAP and F1-Score of

XM-YOLOViT are higher than all the algorithms in the com-
parison experiment, and they all maintain a leading advantage
of more than 2% compared to YOLOv8s. Fig. 17 shows the
PR (Precision-Recall) curves of each algorithm on different
datasets. Although the XM-YOLOViT are slightly lower than
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TABLE 9. Results of comparative experiments.

FIGURE 17. PR curves for all algorithms on different datasets.

TABLE 10. Test results of advanced algorithms on different datasets.

others in the comparison experiments when the recall is very
low, the PR curves of XM-YOLOViT are higher than that
other models as the recall rate increased, which shows that
the XM-YOLOViT has better prediction ability than other
algorithms.

The test results of XM-YOLOViT, YOLO7 and YOLO8s
on different data sets are shown in Table 10. As a whole,

the test results are in line with expectations, and the detec-
tion accuracy decreases with the increase of task difficulty.
In terms of details, YOLOv8s is more advantageous in terms
of detection accuracy. The detection accuracy of the proposed
algorithm is slightly lower than YOLOv8s, which is only
0.5% lower than YOLOv7-tiny in light fog, and higher than
that of YOLOv7-tiny in other environments. In terms of the

7876 VOLUME 12, 2024



H. Zhang et al.: Research on Real-Time Detection Algorithm for Pedestrian and Vehicle in Foggy Weather

FIGURE 18. Histograms of mAP and F1-Score for advanced algorithms.

FIGURE 19. (a) (c) Visualized the last two layers of C3 Blocks in CSP Backbone. (b) (d) Visualized the last two
layers of MobileViTV3 Block in XM-net.

TABLE 11. Average precision for each algorithm.

recall and the mAP, XM-YOLOViT takes an absolute lead
over YOLOv7-tiny andYOLOv8s, andYOLOv8s has a lower
recall than YOLOv7-tiny on four different datasets. Com-
pared to YOLOv7-tiny, recall of XM-YOLOViT increased by
2.3%, 1.2%, 0.6% and 1.9% respectively, the mAP increased
by 3.6%, 3.3%, 2.9% and 3.3% respectively on four different
datasets. The recall has increased by 3.6%, 2.9%, 2.8% and

3.5%, mAP has increased by 2.8%, 2.2%, 2.0% and 2.5%
respectively compared with YOLOv8s.

The visualization of F1-Score and mAP of these three
algorithms on different datasets is shown in Fig. 18. It is not
difficult to find that both mAP and F1-Score of the algorithms
proposed in this paper are higher than those of the current
advanced algorithms in the same family in the same series on
different datasets.

Table 11 shows the average detecting precision of each
algorithm in the comparison experiments for different cate-
gories on the four datasets. The data in Table 9 is the average
value of the test results on the four datasets. It is obvious
from Table 11 that XM-YOLOViT model has better detec-
tion capacity in the Pedestrian class than other algorithms.
Although, it is extremely tiny and difficult to detect for Pedes-
trian class targets, with the powerful global modeling and
feature extraction capabilities provided by XM-Net and the
multi-scale processing capabilities of the subsequent network
for XM-YOLOViT model, which is ahead of the current
advanced detectors in detecting small and extremely small
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FIGURE 20. Visualization results of XM-YOLOViT and YOLOv5s Test-L.

targets. As a result, it is capable of more tasks and is more
practical.

D. VISUALIZATION OF GLOBAL MODELING CAPABILITIES
The visualization experiments on the global modeling capa-
bilities of XM-net and CSP-Backbone are conducted. For
the last two layers of the C3 Block in the CSP-Backbone
and the MobileViTV3 Block in the XM-net, sixteen channels
in each feature layer are randomly chosen for visualization.
Visualization results are shown in Fig 19.

As shown in Fig. 19, the higher the brightness of a pixel,
the higher the model’s attention to that pixel. The test results

show that the overall brightness of the visualized image for
each channel in Fig. 19(b) and Fig. 19(d) is higher than
that of Fig. 19(a) and Fig. 19(c), which indicate that the
CSP-Backbone only focuses on local features in most cases,
whereas the attention range of context information occupies
a large portion of the whole image for XM-net. Therefore, its
global modeling capability for XM-net is greatly improved.

E. DETECTION EFFECT AND ANALYSIS
To further validate the performance of the XM-YOLOViT
model on target detection for UAV in foggy weather, the
visualization experiments of XM-YOLOViT and baseline
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FIGURE 21. Visualization results of XM-YOLOViT and YOLOv5s on Test-M.

model on different datasets are implemented. The perfor-
mances of the two models on the non-high density fog dataset
are shown in Fig. 20 and Fig. 21. It is not difficult to find
that XM-YOLOViT has greater detail processing ability than
YOLOv5s and that is particularly evident on high density fog
datasets. Therefore, the visual test results of the two models
on the high concentration fog dataset are shown in Fig. 22 and
Fig. 23, and the visual differences between the twomodels are
analyzed in detail.

As shown in Fig. 22, the XM-YOLOViT model has almost
the same detection effect as the baseline model when detect-

ing large-scale close-range targets. However, the algorithm
proposed in this paper is obviously better in detecting
small and long-distance targets. As shown in Fig. 22(K)
and Fig. 22(L), the Yolov5s algorithm does not detect any
target, whereas XM-YOLOViT can detect the target accu-
rately while XM-YOLOViT still accurately detect the target
under the condition of severe occlusion and minimal tar-
get. Therefore, XM-YOLOViT algorithm has a strong ability
to capture minimal targets. The four regions selected in
Fig. 22 are magnified and the detection effect is shown in
Fig. 23.
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FIGURE 22. Visualization results of XM-YOLOViT and YOLOv5s on Test-H.

As shown in Fig. 23, XM-YOLOViT can detect many
objects in the four locations that YOLOv5s cannot. For exam-
ple, more pedestrians on the footbridge and on the ground are
detected for XM-YOLOViT model in Region 1. In Region 2,
the bicycles (light vehicles) are detected for XM-YOLOViT
model and cannot be detected by YOLOv5s model. In Region

3, the distant targets that are heavily obscured by haze are
detected for XM-YOLOViT model. In Region 4, the bicycles
(light vehicles) that are obscured by the traffic fence are
detected for XM-YOLOViT model. From the above exper-
imental results, it can be seen that the interference caused
by complex background information such as density and
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FIGURE 23. Comparison of the detection results of the four selected regions.

occlusion can be significantly suppressed for XM-YOLOViT
model, and the missed detection of targets can be greatly
avoided, therefore, the accuracy of target detection is greatly
improved compared to the baseline model. In conclusion,
the XM-YOLOViT model has good detection performance in
extreme environments and accurately real-time detection can
be achieved.

VI. DISCUSSION
Although the XM-YOLOViT model has an absolute advan-
tage in detection performance, the XM-YOLOViT model is
hybrid architecture of CNN and Transformer, which is not
pure convolution architecture. It is well known that models

based on Transformer architectures are often difficult to train.
Although the optimized Transformer structure is already
quite lightweight, most of the current hardware devices are
not optimized for Transformer architectures, which results in
the training time and forward inference time for such models
being longer than that of the pure convolutional architecture.
During the experiment, the training time of XM-YOLOViT
increased by about 23% and the detection speed decreased
by 43% compared with the baseline model.

At present, the detection speed of XM-YOLO will not
affect the real-time performance, but it is still expected to
continue to optimize the architecture to shorten the training
time and improve the detection speed in our future work.
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At the same time, we will also deploy XM-YOLOViT to
mobile devices such as UAV, and optimize the algorithm
according to the test results.

VII. CONCLUSION
To solve the problem that the target is heavily obscured by
smog, the scale of the target is small and the change of the
target is violent, an XM-YOLOViTmodel based on YOLOv5
framework is proposed for pedestrian and vehicle detection.
The lightweight of the model is realized and the detection
accuracy is improved by the hybrid architecture of CNN
and Transformer model is used. In order to obtain a better
image dataset, an atomization method is designed to map
fog-free images from fog-free space to foggy space based
on the atmospheric scattering model and dark channel prior.
Experimental results show that the XM-YOLOViT detec-
tion algorithm has a significant performance improvement
compared to the baseline model, the precision, the recall,
the F1-Score, the mAP are improved by 3.42%, 7.08%,
13.94% and 7.52%, respectively, the model parameter is
reduced by 41.7%. And the detection effect is better than
YOLOv7-tiny and YOLOv8s.The F1-Score and the mAP
for the XM-YOLOViT model are improved by 5.57% and
3.65% respectively compared to YOLOv7-tiny, and improved
by 2.38% and 2.37% compared to YOLOv8s. The foggy
detection algorithm proposed in this paper has high detection
accuracy and an extremely lightweight structure, which pro-
vides a novel method for detection in complex foggy weather.
At the same time, because themodel is very lightweight, it can
be easily deployed on UAVs, so it can better perform foggy
road condition analysis, foggy traffic management, foggy
rescue, etc., and it is very important to collect more accurate
analysis data for these tasks.
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