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ABSTRACT The high latency and high energy consumption of wireless body areas networks (WBANSs) for
computing-intensive tasks is intolerable, especially for remote interventional surgery. In this paper, a multi-
mobile edge server collaborative computation offloading scheme is proposed, which enables tasks to choose
a server and offload a certain proportion of computation to efficiently handle computing-intensive services
for massive users. More specifically, we formulate the problem of minimizing system latency and energy
consumption, and then model the task offloading and resource allocation process as a Markov decision
process (MDP). We have developed a scheme called m4m-PDQN to optimize offloading decisions, aiming
to minimize the weighted sum of latency and energy consumption. Compared to existing single-server
offloading schemes, it is more effective in utilizing computing resources and reducing waiting time and
energy consumption for computing tasks in the multiple-server collaborative computing scenarios. The
experimental results show that it outperforms other algorithms in terms of performance and efficiency,
significantly improving the quality of service (QoS) for wearable wireless body area networks for medical
applications.

INDEX TERMS Multi-access edge computing (MEC), reinforcement learning, telemedicine, wireless body
area networks.

I. INTRODUCTION
With the development of artificial intelligence, advanced

motion data relevant to the body [1]. However, due to energy
limitation, limited bandwidth, and narrow coverage range,

robotics, and cloud computing technology in recent years,
wireless body area networks (WBANs) have emerged as
an important way to achieve intelligent and remote medical
care [1].

WBAN is a wireless communication network designed to
connect sensor devices worn on the human body to facilitate
personal health monitoring and medical services. It estab-
lishes a communication environment in close proximity to
the human body, utilizing wireless technology and sensor
devices to monitor and collect physiological parameters and
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the critical quality of service (QoS) requirements of WBANs
cannot be effectively guaranteed in the resource-constrained
environment of health monitoring. These limitations have
become a bottleneck limiting WBANS’ application [2], [3].

To address the low QoS issue in WBANs, a new computing
model, mobile edge computing (MEC), has emerged in recent
years. MEC provides computing services on network edge
devices and moves computing tasks from sensor devices to
remote resources to achieve computing resource sharing and
network optimization [4].

Task offloading refers to the process of transferring com-
putational tasks from mobile devices to more powerful
computing resources for processing, aiming to enhance
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performance and save energy consumption on the mobile
devices. By offloading computational tasks to MEC nodes,
mobile devices can shift the heavy computational workload
to the network edge, alleviating the computing burden on the
devices themselves, reducing latency and energy consump-
tion, and improving user experience [5], [6], [7].

In recent years, an increasing amount of research has
focused on improving the QoS of WBAN networks, with
the use of MEC task offloading technology being a widely
explored solution [8], [9], [10], [11], [12], [13], [14], [15].
Specifically, joint cost and energy-efficient task offloading
in health care systems enabled by MEC are investigated
in [8], with incentive measures designed for WBAN users to
reduce their task offloading, significantly reducing the energy
cost of edge servers. A resource management scheme was
proposed to minimize the energy consumption of edge servers
without affecting the WBAN user’s quality of experience
(QoE) in [9]. Reference [10] presents a task offloading frame-
work that considers WBAN user task priorities, multiple
tasks, resources, availability, different delays for computing
offloading, network connectivity, and processing devices to
improve end-to-end latency. In [11], a new control scheme is
designed to effectively share the limited computing and com-
munication resources in the MEC-assisted WBAN (M-W)
platform, achieving substantial performance improvement
compared to the comparison scheme. Reference [12] pro-
poses a task offloading framework that combines cellular,
WiFi networks, and device-to-device communication to fully
utilize the communication and computing resources in the
WBAN scenario, enhancing the system’s reliability. In [13],
the aim is to enhance UE’s computing capability by utilizing
small Coordinator-based Mobile Edge Computing (C-MEC)
servers, allowing UE to effectively execute delay-sensitive or
computation-intensive tasks. In [14], the authors propose a
medical monitoring framework based on hospital/home and
a task offloading mechanism supported by wireless relays
composed of a network model and a computation model,
with the performance evaluation of various metrics for all
relays in different scenarios. In [15], a two-stage potential
game-based task offloading strategy (TPOS) that considers
both WBAN task priorities and user priorities to optimize
resource allocation is proposed.

Reinforcement learning is a machine learning technique
that optimizes behaviour by trial and error learning. In MEC,
reinforcement learning can be applied to optimize task
offloading strategies by learning task allocation policies
through interaction with the environment to maximize sys-
tem performance. The reinforcement learning environment in
MEC includes mobile devices, edge servers, and communica-
tion links. Mobile devices can act as agents and take different
actions to choose the server for offloading tasks or to execute
local computing. Edge servers can be part of the environment,
provide offloading services and send feedback information
to mobile devices. Communication links can also be part of
the environment, affecting the efficiency and latency of task
allocation.
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In this paper, we propose a resource-constrained, edge o

In this paper, we propose a resource-constrained, edge
offloading model, as shown in Figure 1, which consists of
a remote medical center (cloud center), multiple edge cloud
servers, and multiple user devices (UEs) in WBAN. UEs
can split computing tasks into two parts and offload a part
to an edge server, while the remaining portion is locally
executed. In addition, to better simulate real-world scenarios,
the computing tasks and available computing capabilities of
UE are time-varying. Unlike existing DRL policies based on
continuous and discrete space decisions, this paper proposes
an algorithm based on PDQN, named m4m-PDQN, for task
offloading and resource allocation in a mixed action space.
The main contributions of this study are presented as follows:

o This study addresses the problem of limited computing
resources in a single-edge cloud, which cannot meet the
low-latency and low-energy requirements of multiple
UE devices responding to intensive computational tasks.
To improve the QoS of WBAN, a resource-constrained,
multi-to-multi, edge collaborative computing scenario
was designed with the goal of minimizing the weighted
total cost of system latency and energy consumption.

o The joint optimization problem of minimizing the
weighted total cost of latency and energy consumption
was modelled as a Markov decision process (MDP).
The m4m-PDQN algorithm based on a mixed action
space was employed to enable the entire system to learn
effective task offloading and resource allocation strate-
gies, maximizing the improvement of users’ quality of
experience (QoE).

o A simulation experiment was conducted to evalu-
ate the overall performance of the policy learned by
the m4m-PDQN algorithm using numerical metrics
for user latency and energy consumption. The results
also demonstrated the superiority of the m4m-PDQN
algorithm based on a mixed action space compared to the
Deterministic Policy Gradient (DPG) algorithm based
on a continuous action space combined with an expe-
rience replay technique, as well as other policies.

The remainder of this paper is organized as follows:
Section II provides an overview of related work. The system
model is described in Section III, while Section IV presents
a novel deep reinforcement learning algorithm named
m4m-PDQN. Simulation experiments are conducted in
Section V to compare the performance of different strategies.
Section VI summarizes the contributions of this paper.

Il. RELATED WORK

Numerous prior works have investigated task offloading and
resource allocation in Mobile Edge Computing (MEC) using
the reinforcement learning method from multiple optimiza-
tion perspectives.

Delay-sensitive applications require system response times
that are optimized to reduce time consumption. To address
this, delay-based offloading schemes have been proposed
to optimize system response time for delay-sensitive
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applications [16], [17], [18], [19]. One approach is to
use autonomous partial offloading systems with RL-based
offloading policies to optimize delay performance [16].
Another proposal is a Software-Defined Edge Cloud (SDEC)
based on reinforcement learning that uses Q-learning and
cooperative Q-learning reinforcement learning schemes to
optimize task offloading and resource allocation in wireless
MEC and reduce total delay [17]. Additionally, a computation
offloading algorithm for a UAV-assisted mobile edge com-
puting system has been developed using Deep Deterministic
Policy Gradient (DDPG) in reinforcement learning to min-
imize maximum processing delay while jointly optimizing
user scheduling, task offloading rate, drone flight angles, and
flight speed [18]. And a distributed computation offloading
method is proposed for utilizing surrounding vehicles as a
resource pool in scenarios where MEC is not available or
sufficient. The proposed method involves splitting complex
tasks into smaller sub-tasks and assigning them for optimal
execution time using a Deep Q-learning Network [19].

Meanwhile, other researchers have considered both energy
and delay factors to improve energy efficiency or reduce
costs [20], [21], [22], [23]. One approach is an RL-based
computation offloading and energy transfer algorithm that
uses joint optimization methods to develop an allocation
algorithm that obtains an approximately optimal solution for
energy and computation resource allocation [20]. Another
method models devices as job shops and uses the Q-learning
algorithm to determine the optimal offloading strategy in an
MEC environment with Device to Device (D2D) communica-
tion, minimizing energy consumption and delay [21]. An RL-
based method that uses the Actor-Critic (AC) algorithm has
been proposed to address the offloading decision and resource
allocation problems in MEC systems with multidimensional
continuous and discrete action spaces [22]. An intelligent
factory model is constructed, and a mixed-integer nonlin-
ear programming problem is formulated with the objective
of minimizing the weighted sum of task delay and energy
consumption. Since the problem is NP-hard, the objec-
tive function is solved using a deep Q-network (DQN)
approach [23]. A computation offloading strategy is proposed
for an MEC system consisting of multiple mobile users,
considering stochastic task arrivals and wireless channels.
The strategy is designed to minimize the long-term average
computation cost, including power consumption and buffer-
ing delay [24].

In addition, a framework with multiple static and
vehicle-assisted edge servers has been designed, and an
improved computation offloading method based on deep
reinforcement learning has been proposed to minimize the
weighted total cost, including transmission and execution
cost, energy consumption cost, and communication band-
width cost [25]. A reinforcement learning method based
on Q-Learning and Double Deep Q-Network (DDQN) has
been proposed to solve the joint optimization problem of
computation offloading and resource allocation in a dynamic
multi-user MEC system, with simulation results showing
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significant reductions in system energy consumption in dif-
ferent scenarios [26]. A content caching strategy based
on DQN is proposed, which considers caching benefit,
transmission delay, and backhaul link load. Additionally,
a quantum ant colony-based computing offloading strategy
is also presented, which takes into account delay, energy
consumption, and server cost [27]. A qualified trace actor-
critic (AC) algorithm was proposed to improve the revenue
of mobile network operators by maximizing the number
of offloaded tasks while reducing energy consumption and
latency [22]. An online algorithm framework called DROO
for wireless-powered MEC networks was proposed, which
employs deep reinforcement learning to make binary offload-
ing decisions that adapt to time-varying wireless channel
conditions [28].

Ill. SYSTEM MODEL

As shown in Figure 1, there are multiple edge servers
and multiple users in the environment, and the computing
resources of edge servers are limited. User equipment (UE)
can offload tasks to an edge server for processing in any
proportion while also performing local processing on UE
and remote processing on edge servers to maximize system
service quality. To achieve a more realistic scenario, the local
computing capability of UE and the computational tasks to
be processed are time-varying. This paper assumes that UE
offloads tasks to edge servers via wireless channels, and
different servers transmit data to the cloud centre by different
feedback paths.

Database

Medical Center

.g,,
( 3

FIGURE 1. The system diagram proposed consists of multiple users,
multiple edge servers, and one medical center.

Specifically, E = {e1, ez, ..., en, ., ey} and
U = {u, uy, ..., Uy, ., upy} represent the set
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of edge servers and set of users, respectively, and § =
{s1, s2, ..., Sm, , Sy} represents a set of com-
putationally intensive tasks at the user end, where s, =
{dm, cm, T} represents the data size, number of clock cycles
required to process one bit, and maximum delay tolerance.
The remaining computing resources of e, are Fj,, and the size
of computing resources allocated to the task is f . When
the remaining computing resources are insufficient, e, cannot
continue to provide services. The task processing includes the
following three stages:

o Task offloading: In this stage, some parts of the user task
are offloaded to the edge cloud. Let p,, , represent the
offloading ratio of task s,, from u, to edge server e,,
representing the part that e, needs to compute. Based
on Py, pn, users can flexibly offload part of s, to edge
servers and locally process the other part to fully utilize
the computing resources of UE.

o Task computation: After collecting the subtasks in the
first stage, edge servers and UE compute the received
subtasks in parallel, which helps reduce computation
delay.

o Result feedback: After the task computation is com-
pleted, the edge server transmits the computation result
to the cloud centre via a wireless channel and then
returns it to UE via a downstream link. Since the number
of bits in the task processing result is much smaller than
that of the initial data, the delay in the result feedback
can be disregarded.

A. WIRELESS COMMUNICATION MODEL

When tasks are offloaded by the UE to edge servers via
wireless channels, additional time and energy consumption
are incurred. In our model, g,, represents the channel gain
between a UE device and a wireless base station, p,, is the
transmission power used to offload tasks to the base station,
W is the bandwidth of the channel between UE and the base
station, and Ny is the noise power spectral density of the
channel. The transmission rate of the channel when tasks are
offloaded to edge servers is defined as:

Pm8m
NoW

The delay and energy consumption during task transmission
are defined as:

Ry = Wlogy(1 + ) D

pm,ndm

Ttr — 2
m R, @
d
Ry,

where p;, , € [0, 1] represents the task offloading ratio of u,,
to edge server e;,.

B. LOCAL COMPUTING MODEL

Although the computing capability of UE is quite limited,
to fully utilize the existing computing resources and improve
the user experience, a portion of the task will be locally
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processed. Assuming that the computing capacity of uy, is a
fixed value per second over a certain period, denoted as f fn,
and k represents the energy factor of the CPU chip, the latency
and energy consumption of local processing of the task are
defined as follows:

I - Pm,n dmem

ri = (e @
2

Erln = (1 - pm,n) (f in) kdycm 5)

C. EDGE COMPUTING MODEL
In our model, UE has multiple options for edge offloading
targets, but the final offloading target is one of the multiple
edge servers. Compared to local computing, edge computing
has richer computing resources, which can greatly reduce the
computing latency of intensive computing applications.

We define the delay and energy consumption of edge pro-
cessing as follows:

e _ pm,ndmcm

T = ———— (6)
" Jnm
d,
E:'; :pnT; _ PnPm,nGmCm %)
Jnm

where f;, ;, is the computing resources assigned to u,, by edge
server e, and p, is the computing power of e,.

In addition, the remaining computing resources of edge
server e, are defined as F,. Therefore, the computing
resources allocated to the task by e, cannot exceed its total
limit, that is, z% fam < Fn. When the total allocated
resources exceed the edge server limit, the system will force-
fully offload the task to UE for local computing.

D. PROBLEM MODEL

In this paper, we allow task offloading in a certain pro-
portion to maximize the utilization of the system’s com-
putational resources and to reduce the required latency for
processing-intensive computing tasks. Furthermore, local and
edge computing can be performed in parallel. Therefore,
the delay and energy consumption at the mobile device are
defined as:

T, = max {T;{ + T, T,fl} ®)
E, =Ejj + E{, + E}, ©)

The comprehensive weighted total cost is:
Chn=aTyp+(1—-a)E, (10)

where o € [0, 1] is the weight factor between delay and
energy consumption.

The primary optimization objective of this paper is to
minimize the total cost of the system while meeting the user’s
requirements for task processing delay tolerance. The total
cost includes time and energy costs. The goal is to minimize
the cost of the system by effectively utilizing edge computing
resources while meeting user requirements, thus improving
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system performance and user experience. The total cost of
the system is defined as:

M
Ciowat = ) Cm (11
m=1

To ensure successful task execution, two conditions must
be met: First, the task processing delay must not exceed
the maximum delay tolerance 7. Second, the computational
resources allocated by the edge server to the UE must not
exceed its remaining computational resources. Assuming that
the number of tasks successfully executed by the UE is y, the
task execution success rate can be defined as the ratio of the
number of tasks successfully executed by the UE to the total
number of tasks:

suL = 2 (12)
M

Under the constraints of task processing delay and edge

server resource limitations, we need to develop a task offload-

ing decision and resource allocation plan to maximize the

task execution success rate and minimize the total cost of

all mobile devices. Therefore, the problem is formulated as
follows:

min Cyyry; and max SUL (13a)
S.t. pma € [0, 1] (13b)
0<T, <t (13c¢)
0 <fom < Fn (13d)
M
> fam < Fu (13¢)
m=1

In the next section, we develop a DRL-based method to
optimize this problem.

IV. DRL-BASED COLLABORATIVE OPTIMIZATION
ALGORITHM

In this section, we propose a DRL-based method for mini-
mizing the system delay and energy cost. Specifically, we use
the proposed m4m-PDQN method to learn a task offloading
and computing resource allocation strategy from the per-
spective of the entire system. The strategy selects an action
that involves offloading a portion of the UE-intensive com-
puting tasks and allocating the limited computing resources
of the edge servers, with the aim of reducing the overall
system delay and energy cost. Our discussion is presented in
two parts: 1) MDP model formulation and 2) m4m-PDQN
solution.

A. MDP MODEL FORMULATION

The Markov decision process (MDP) is a mathematical
framework commonly used in reinforcement learning to
describe sequential decision-making problems. The MDP
involves the interaction between an agent and an environ-
ment, where the agent chooses an action at each time slope
to influence the environment and receives a reward while
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transitioning to a new state. By solving the MDP, the optimal
policy is obtained, which selects the best action at each state
to maximize the long-term cumulative reward. The optimal
policy is represented using value functions or Q-functions,
where the former represents the long-term cumulative reward
from a given state following the optimal policy, and the latter
represents the long-term cumulative reward from taking a
specific action in a given state following the optimal policy.
The MDP formulation for the optimization problem proposed
in this paper is described as follows:

1) DECISION EPOCHS

The period during which a UE device makes a decision and
the timing of decisions made by all UE devices are repre-
sented by a sequence 7':

T={1,2, ..., t, ..., M) (14)

where M represents the total number of UE devices and a
specific decision time slot is described as ¢, t € T.

2) STATES

States: In the MDP, the state set is a collection of all possible
states that describe the environment. The state of the environ-
ment affects the decisions made by an intelligent agent. In this
context, a state can be represented as:

5 = (d,, RC,, fﬁ) (15)

where d; represents the data size of the current UE device’s
intensive computing task, RC; is the set of remaining com-
puting resources of all edge servers at time slot #, and
f ,l represents the current UE device’s local computing capa-
bility. Additionally, RC; is expressed as

RC, = (rctl, rctz, RN AR i’Civ) (16a)

(16b)

n n
re; =rci_y = a1

where rc} represents the remaining computing resources of
edge server e, at time slot ¢ and f,, ; denotes the computing
resources allocated to the current UE device by edge server
e, at time slot ¢.

3) ACTION
At each time slot, the agent selects an action to execute based
on the current state and available actions. The agent’s goal is
to maximize the long-term reward by choosing the optimal
sequence of actions. In our model, we define the action space
as follows:

A=A =@l za=Nx=(45)] 07

(17b)
(17¢)

S.t.a,GZ
xiel-1,1],i=1,2

where a, represents the edge server to which the current UE
device offloads its task, x,1 represents the task offloading ratio
of the current UE device, and sz represents the computing
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Loss Function of X

update @

(8,4,5755,.,)

12

L

Loss Function of Q

suamQ(s,,x,;a))

update @

0(s,-x,a,;0)

max O (Sm X3 @ )
a

oy

Experience Replay Unit

FIGURE 2. Framework of the m4m-PDQN optimization strategy.

resources allocated to the task by the edge server. It can
be seen that A is a hybrid action space that simultaneously
includes both discrete actions and continuous actions.In addi-
tion, N refers to the number of edge servers, and -1 and 1
correspond to the minimum value and maximum value,
respectively, of the allocated computational resources and the
task offloading ratio.

4) REWARD FUNCTION
In the MDP, the agent receives an immediate reward signal
after taking an action, which is utilized to evaluate the quality
of the action.In this paper’s model, the immediate reward for
the agent is composed of the time and energy costs incurred
by the offloading decision. Thus, at each time slope ¢, the
reward function for the agent is represented as:
R
rr = max
-1, otherwise

If the task is successfully executed

(18)

where Cy,,, represents the maximum weighted total cost of
the UE. From the above equation, when the actual total cost
C; exceeds the maximum weighted total cost, the reward is
negative, and the smaller C; is, the greater the reward, and
vice versa. In addition, if the task execution fails, i.e., the edge
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server exceeds its resource limit, or the task execution delay
exceeds the delay tolerance, the reward value is —1.

B. m4m-PDQN SOLUTION

The Parametrized Deep Q-Network (PDQN) is a reinforce-
ment learning algorithm that combines ideas from the Deep
Q-Network (DQN) and Deep Deterministic Policy Gradient
(DDPG) and can be utilized to solve problems with hybrid
action spaces. The PDQN uses a parameterized neural net-
work to represent the Q-function and employs techniques
such as experience replay and target networks to improve
learning efficiency and stability. Although the network struc-
ture of the PDQN resembles that of the DDPG, both using
two neural networks and jointly inputting state and action into
the second network, the PDQN does not have an actor-critic
structure. Instead, the PDQN is divided into a continuous
action Q-network and discrete action Q-network.

We apply the PDQN algorithm to task offloading and
resource allocation in the multiserver collaboration scenario
and refer to it as the m4m-PDQN algorithm. The proposed
m4m-PDQN algorithm is shown in Figure 2. First, the current
state is input into the X network, which outputs all continuous
parameters x in the action space after passing through some
fully connected layers and activation functions. Second, the
current state, with the action parameter vector output by
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the X network in the previous step, are input into the Q
network, which passes through several fully connected layers
and activation functions to output Q(s, x, a), where a Q-value
is produced for each of the N discrete actions in the action
space, similar to the DQN. The optimal discrete action is then
selected, and the corresponding continuous parameters are
chosen accordingly. In addition, the loss function is divided
into two parts:

o The discrete Q-network uses a TD error similar to the
DQN to optimize, greedily selecting the action and
Q-value with the maximum value among N Q-values
and then calculating the TD loss for optimization.

o The design of the continuous network in the PDQN is
aimed at deterministically providing the optimal contin-
uous parameter values, while the discrete network can
act as a “critic”’ by obtaining N corresponding Q-values
by feeding the continuous parameters into the discrete
network and then optimizing the continuous Q-network
by maximizing the sum of all Q-values.

According to [29], consider an MDP with action space,
as shown in (17), where a € [N] and x € x. Let at denote the
discrete action selected at time ¢, with associated continuous
action parameter x;. The Bellman equation is written as:

O (s, ar, xt)

= E [rz +v m[ax] sup Q (s1+1, @, x)|s; = s,

T1,81+1 a€[N]xex
A = (ar, x1)] (19)

For the right-hand side of the equation, we compute x* =
argsupxeXQ(s,H, a, x) for a € [N] and then choose the
maximum Q-value, i.e., Q(s;+1, a, x*).

Note that for any s € S and x € yx, when the Q-function
is fixed, we view argsup,. xQ (s¢+1, a, x) as a function
x2 : S — x. Thus, the Bellman equation (19) is rewritten
as:

O (sy, ar, xp)
[rf + Y max Q (St+], a, xQ (St+])) |sl = S}
a€[N]
(20)

Similar to the DQN approach, we approximate Q(s, a, x)
with a deep neural network Q(s, a, x; w) and use a deter-
ministic policy network x(s; 8) : S —> x to approximate
x2. Given a fixed w, we obtain a set of 6 that satisfies:

= E

Fey St+1

(s, a, x(s; 0); w)y~supQ(s, a, x; w) for eacha € [N]

XEX

2D

Let w; and 6; denote the parameters of the value network
and deterministic policy network at time 7, respectively. For
afixed n > 1, we define the n-step target y; as:

n—1
Ve =D V' y" max O (sipn, @, X (51103 61) 5 1)
P ae[N]

(22)
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We then define two loss functions:
1
LE @) = 310 (1. ar. xii @) =yl

o)== 06 a s 6); o)

to optimize the parameters of the two networks.

(23a)

(23b)

Algorithm 1 The m4m-PDQN Optimization Algorithm

1: Initialize experience replay unit R

2: Randomly initialize 6 and w, let 6 —=6, v —=w

3: Loop for each episode:

4:  Reset system model environment, and initialize s; € S
5:  Loop for each time slot 7 € [1, M]:

6: x; is obtained by inputting s; into X (6)

7.

8

Calculate Q(s;, x;; w), let a, = arg max,Q(s;, x;; @)
Carry out action A; = (x;, a;), and observe the immediate reward r;
and 5,41, then R is updated with (s;, A;, 17, S141)

9: Randomly sample minibatch from R
T =M
10: Sety, = o .
e+ ymaxQ(se+1, X(sr41;07); ™), otherwise
11: Use the loss functions to train Q(w) and X (@), then update 6 and

12: Update the target networks by 6~ < 86 + (1 — §)0 and w™ <« Sw+
1-dw

13: Lets; = 5141

14:  end for

15: end for

V. SIMULATION RESULTS

In this section, we present the numerical results from
simulation experiments carried out to investigate the per-
formance of our proposed m4m-PDQN algorithm. First,
we introduce the parameter settings of the simulation system.
Second, we demonstrate the performance of the proposed
algorithm compared to other solutions from several different
perspectives.

A. NUMERICAL SETUP

The m4m-PDQN architecture consists of two neural net-
works, including a Q network and an X network. The Q
network is a fully connected neural network with two hidden
layers of 256 and 128 neurons and an output layer of dimen-
sion N, using the ReL.U activation function. The X network
has the same hidden layer structure as the Q network but
uses the tanh activation function in the output layer. We use
the Adam optimizer with adaptive moment estimation [30]
to learn the neural network parameters, setting the learning
rates for the X network and Q network to 0.00001 and 0.001,
respectively. The soft update rate of the target network is set to
0.01. To explore better strategies, we set the X network noise
to 0.1, and the Q network uses e—greedy for action explo-
ration. The initial value of ¢ is 1, and it gradually decreases
to 0.002 and then remains constant during training. The size of
the experience replay buffer is set to 2.5x 10°. The parameters
for the MEC system are shown in Table 1.

B. NUMERICAL SETUP

To better fit the rewards and optimal policy provided by
the environment, we generated 1000 tasks based on the task
parameters in Table 1.The first 800 tasks were utilized as a
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TABLE 1. Simulation parameters.

Symbol Values
d, [3,5] MB
Cp 500 (Hz/bit)
T 3.8s
f ’L [2,3] GHz
D, 2w
P, 05W
k 102
w 2.0 MHz

Jom [5, 10] GHz
g, 507
o 0.5
Ny -174 dBm/Hz
N 3
y 0.9

—— m4m-PDQN

average reward

] 1000 2000 3000 4000 5000
episode

(@

—— m4m-PDQN
60 <

average total cost
"
8

40

1000 2000 3000 4000 5000
episode

(b)

FIGURE 3. Graph of the change in reward and the weighted sum of delay
and energy consumption over the training epochs.

oA

training set to train the model, and the remaining 200 tasks
were utilized as a test set to evaluate the model’s performance.
Figure 3 shows the training process, which indicates that in
the early stages of training, the total reward was low due
to the high probability of random action selection as the
agent was in an exploratory learning stage. With an increase
in the number of iterations, the agent transitioned from the
exploration learning stage to utilizing experienced states, and
the algorithm quickly converged, with the total reward value
tending to stabilize.
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Next, we conduct comparative experiments on some algo-
rithms from two perspectives: the number of users and
the computing resources of edge servers. Four baseline
approaches are employed for comparison as follows:

1) ALL-LOCAL
Tasks are locally executed by the user.

2) RANDOM

A random percentage of tasks are offloaded to a randomly
selected edge server, and the remaining tasks are locally
executed by the user.

3) UNIFORM DISTRIBUTION ALGORITHM (UDA)
Half of the tasks are offloaded to edge servers with suffi-
cient computing resources, the edge servers allocate moderate
computing resources to execute the offloaded tasks, and the
remaining tasks are locally executed by the user.

4) DETERMINISTIC POLICY GRADIENT (DPG) AND
EXPERIENCE REPLAY

A continuous action-based deep reinforcement learning
(DRL) algorithm [30] that uses the experience replay
mechanism.

The graph in Figure 4 shows the variation in the average
total cost and average success rate of execution with respect
to the number of users. As shown in Figure 4(a), the average
total cost of all algorithms increases with an increase in the
number of users. Specifically, when the number of users is

=== DPG + Exper ience replay
&~ mAm—PDON
140 4 e Random
All-local
=e= UDA

Average Total Cost

5 10 5 0 5 £ E @
The number of UE
(a)
100% [ DPG + Experience replay
= mta-PDON
[ Random
= All-local
== WA
0%
)
]
®
H
o %
Q
Q
=
a
8
o an
o
=
=
0%
o L]
5 10 15 ) k3 0

2 <]
The number of UE
(b)

FIGURE 4. Graph of the variation in the average total cost and average
success rate of execution with respect to the number of UE devices.
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less than or equal to 15, the average total cost of the m4m-
PDQN algorithm and the DPG algorithm with experience
replay is significantly lower than that of other strategies, with
the former being up to 27% lower than the UDA algorithm.
When the number of users is greater than 15, the m4m-
PDQN algorithm outperforms the other algorithms, with
the average total cost being up to 6.5% lower than that of
the DPG algorithm with experience replay. Notably, when the
number of users is less than or equal to 15, the performances
of the m4m-PDQN algorithm and the DPG algorithm with
the experience replay mechanism are similar, which indicates
that both algorithms can achieve good results via training
when MEC computing resources are relatively abundant.

As shown in Figure 4(b), the m4m-PDQN algorithm con-
sistently achieves an average execution success rate that is
not lower than that of the other algorithms, with a maximum
performance improvement of over 20% compared to the DPG
algorithm with experience replay.However, when the number
of users exceeds 25, the average execution success rate of
other algorithms significantly decreases due to the insuffi-
cient computing resources of the edge servers to meet the
users’ offloading demands, with the exception of the m4m-
PDQN algorithm. Moreover, the average success rate of all
local methods remains 0% as the users’ available computing
resources are insufficient to satisfy the task’s latency toler-
ance requirements.

Figure 5 shows the variation in the average total cost and
average success rate of execution with respect to the sum

~— DPG + Exper ience replay
®= min-PDON
e Random
All-local
e DA

a
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&

8

a
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.

8
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]
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@
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FIGURE 5. Graph of the variation in the average total cost and average
success rate of execution with respect to the sum of RC.
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of RC. In Figure 5(a), since the All-local strategy locally
executes all tasks, the computation resources of the edge
server do not affect its average total cost. When the sum of
RCis not less than 150, the average total cost of the UDA
algorithm is relatively stable as the computation resources of
the edge server are sufficient to allocate appropriate computa-
tion resources for all offloading tasks. When the sum of RCis
not less than 210, the m4m-PDQN algorithm and the DPG
algorithm with experience replay have similar performance,
indicating that the training effects of these two algorithms
are similar when computational resources are sufficiently
abundant. When the sum of RCis less than 210, the average
total cost of the m4m-PDQN algorithm is much lower than
that of the other algorithms, being up to 7.8% lower than that
of the DPG algorithm with experience replay.

Figure 5(b) shows that as the sum of RCincreases, the
average execution success rate of all algorithms, with the
exception of the All-local strategy, will keep increasing until
stability is reached. However, the average execution success
rate of the All-local strategy will remain stable, as it locally
executes all tasks and is not affected by changes in the compu-
tation resources of the edge server.Overall, the m4m-PDQN
algorithm has a significantly higher average execution suc-
cess rate than other algorithms when computation resources
are relatively scarce, with a maximum advantage over the
DPG algorithm with experience replay of more than 20%.
When computing resources are abundant, the average success
rate of the m4m-PDQN algorithm is similar to that of the DPG
algorithm with experience replay but significantly higher than
the average success rates of the other three algorithms, with
a maximum advantage over the UDA algorithm of approxi-
mately 20%.

VI. CONCLUSION

This paper considers a resource-constrained MEC system in
the WBAN scenario, which involves multiple users and mul-
tiple edge servers. The aim is to overcome the limitations of a
single-server MEC system in meeting the latency and energy
requirements of multiple users. Specifically, the computing
tasks and available computing capabilities of UEs are time-
varying. We therefore design a weighted sum minimization
problem for system latency and energy consumption and pro-
pose the m4m-PDQN algorithm. We then conduct simulation
experiments and compare our proposed algorithm with four
other algorithms, demonstrating its excellent performance in
terms of both average total cost and task execution success
rate.
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