
Received 18 October 2023, accepted 7 December 2023, date of publication 18 December 2023,
date of current version 3 January 2024.

Digital Object Identifier 10.1109/ACCESS.2023.3344317

ALPACA: An Asymmetric Loss Prediction
Algorithm for Channel Adaptation Based
on a Convolutional-Recurrent Neural
Network in URLLC Systems
KIRILL GLINSKIY, ALEKSEY KUREEV , AND EVGENY KHOROV , (Senior Member, IEEE)
Wireless Networks Laboratory, Institute for Information Transmission Problems of the Russian Academy of Sciences (IITP RAS), 127051 Moscow, Russia
Telecommunications Systems Lab, HSE University, 101000 Moscow, Russia

Corresponding author: Evgeny Khorov (khorov@frtk.ru)

The research has been carried out at HSE University and supported by the Russian Science Foundation (Grant No 21-79-10158,
https://rscf.ru/en/project/21-79-10158/).

ABSTRACT A key feature of 5G systems is the Ultra-Reliable Low-Latency Communication (URLLC),
which can be used for remote surgery, smart grids, industrial control, etc. URLLC requires millisecond-level
delays and very high reliability, i.e., less than 10−5 packet loss probability. The ability to satisfy these very
strict quality of service requirements depends on selecting the Modulation and Coding Schemes (MCS)
for data transmissions. On the one hand, the selected MCS shall be robust enough to avoid multiple
retransmissions within a small delay budget. On the other hand, theMCS shall be high-rate to reduce channel
resource consumption and, thus, shall increase the system capacity for URLLC. The MCS selection problem
is extremely challenging to capture the quickly varying wireless channel effects, e.g., in highly mobile
scenarios, because the decision shall be made long before the actual transmission occurs. The paper proposes
a novel MCS selection algorithm called ALPACA (Asymmetric Loss Prediction Algorithm for Channel
Adaptation), which relies on a widely used class of convolutional-recurrent neural networks. However,
in contrast to existing approaches, ALPACA explicitly considers the asymmetric error cost for channel
prediction by utilizing quantile regression loss. Both real-life channel measurements and 3GPP channel
models are used to evaluate the performance of ALPACA. Numerical results demonstrate the increase in
the reliability and reduction in resource consumption compared with the existing MCS selection algorithms,
which results in 40% growth of the network capacity.

INDEX TERMS Channel prediction, deep learning, MCS selection, quantile regression loss, URLLC.

I. INTRODUCTION
Being a key feature of 5G systems, Ultra-Reliable Low-
Latency Communication (URLLC) is needed for such
applications as unmanned vehicles, remote surgery, and smart
grids, where the cost of a missed deadline or lost transmission
can be very high. These applications impose very strict
quality of service (QoS) requirements, e.g., delays below ten
milliseconds and packet loss ratio below 10−5. Providing low
latencies and high reliability strongly depends on selecting
the appropriate Modulation and Coding Scheme (MCS).

The associate editor coordinating the review of this manuscript and
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The MCS selection algorithm shall select a sufficiently
robust MCS for the reliability goal, while keeping the
resource consumption down, making the selection of only
the lowest MCS unsuitable. In mobile scenarios, the channel
quality changes rapidly, and the channel state information
obtained at a time may become obsolete when the scheduled
transmission occurs. Therefore, the algorithm that selects an
appropriate MCS shall not only adapt to the current channel
condition but also predict the channel quality changes in
the future. In the literature, many approaches have been
proposed to address the channel prediction problem. A group
of algorithms introduces clear assumptions of channel
properties, proposes a channel model, collects some statistics
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from tuning it, and then solves some channel prediction
optimization problem [1]. Despite their interpretability, these
algorithms rely on the introduced assumption about channel
behavior, and they may not be suitable if, in some scenarios,
the assumptions are not held. Additionally, these simple
heuristics and models have limited ability to be generalized
and to be used for different user speeds. This problem limits
the effectiveness of simpler approaches, forcing authors
to supplement these algorithms with additional functions,
like periodically modifying the transmit frame structure [2],
adding model parameter tracking [3].
That is why algorithms based on neural networks (NN)

are often considered as the most promising [4], [5], [6], [7],
[8], [9] because they are capable of extracting useful channel
behavior patterns automatically from training data, i.e.,
channel measurements. Unfortunately, NN-based approaches
can hardly find the exact solution for some optimization
problems. However, the objective can be expressed in the
form of a loss function. Specifically, in contrast to eMBB, for
URLLC, packet losses and missed deadlines are much more
dangerous than channel resource waste caused by selecting
a bit lower MCS, therefore resulting in different rewards for
various types of errors in channel prediction. To the best of
our knowledge, this issue has not been considered in existing
channel-prediction approaches, which motivates us for this
study.

Naturally, the performance of various channel prediction
methods significantly depends on the scenario and the
testing data: various approaches shall be compared under
the same conditions. However, few datasets containing
channel measurements exist. Most of them cannot be
used for evaluating MCS selection algorithms for URLLC
because they do not provide enough high-granularity
measurements and/or consider only static or low-mobility
scenarios [10], [11], [12].

The key goal of the paper is to design a CQI prediction
approach that can compensate changes in the channel
quality between the channel measurements and the real data
transmission.

The contribution of this paper is two-fold.
First, we introduce an MCS selection algorithm called

ALPACA (Asymmetric Loss Prediction Algorithm for Chan-
nel Adaptation) that considers the strict QoS requirements
of the URLLC systems. ALPACA is based on a deep
convolutional-recurrent neural network that predicts the
channel quality. In contrast to existing works, ALPACA uses
a specific asymmetric loss function in the form of quantile
regression loss, which explicitly addresses the problem
of different outcomes of under- and overestimating the
channel quality, as the former increases the channel resource
consumption, while the latter results in losses crucial for the
URLLC systems.

Second, to accurately evaluate the performance of the
ALPACA, we collect real channel measurements in several
3GPP-like scenarios. Then we use a hybrid simulation based
on (i) the ns-3 [13] network simulator that emulates the

TABLE 1. List of acronyms.

operation of the 5G protocol stack and (ii) various channel
traces. To obtain channel traces, we use the collected real
channel measurements obtained from an original testbed.
For consistency, we also evaluate the performance of the
developed algorithms using the 3GPP 38.901 channel model
for similar scenarios [14].

This paper is organized as follows. We examine the state-
of-the-art approaches to MCS selection for URLLC and
the use of NN-based algorithms for channel prediction in
Section II. Then we briefly overview the channel measure-
ment procedure and describe our methodology for dataset
gathering and processing in Section III. Section IV describes
the developed ALPACA algorithm. Additionally, this section
contains a general description of the MCS selection pipeline
and data flow. Section V describes the simulation setup and
scenario, as well as analyzes the evaluation results of the
proposedMCS selection algorithm. SectionVI concludes this
work, and Section VII analyzes the future research direction.

II. RELATED WORK
The usage of channel prediction for link adaptation receives
great attention because of its significant impact on network
performance. Multiple approaches have been proposed in the
literature, including those based on signal processing [15] or
statistical models such as linear auto-regression [2].

Recently, neural networks became extremely promising
for link adaptation because they excel at handling complex
non-linear tasks with a sufficient amount of data. For
example, an NN-based algorithm is used to predict channel
conditions in a 5G system [16], [17], [18], [19]. The algorithm
is tested in many experimental scenarios, but all the measure-
ments were collected with static or pedestrian-level mobility
UEs, limiting the conclusions to semi-static channels. Similar
work was carried out in [20], which proposed an NN-based
algorithm for an LTE-A network, where the algorithm is
trained on experimental data collected from a deployed
base station operator, with transfer learning used to improve
the performance of the network. A promising architecture
of neural network for the channel adaptation task is the
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Convolutional Neural Network (CNN), originally designed
for image processing tasks, but achieving high accuracy in
the channel prediction task in [21]. Another CNN, inspired by
the image super-resolution technique was proposed by [22].
In [9], [17], [23], [24], [25], [26], [27], [28], and [29]
a channel state information predictor is proposed based
on a recurrent neural network and its modifications, such
as Long-Short Term Memory (LSTM) [30], [31] network.
The simulations and experimental studies confirm that the
neural network can pick up and learn the channel evolution
patterns in various fading channels, including the Rayleigh
channel [24], as well as experimental measurements [32].
Additional modifications to the neural recurrent architec-

ture, such as adding constant learning during deployment
were proposed in [25]. Paper [27] proposed an algorithm
to estimate Channel State Information (CSI) in a complex
MIMO system, named CSINet, which uses an end-to-end
approach for CSI representation and reconstruction. In [29],
the LSTM network is trained to predict the CSI for the
drone-ground data link scenario. Recently, the authors of
the paper [33] proposed neural network designs with a
so-called attention mechanism, which increases the weight
(or importance) of some elements of the sequence and, thus,
improves the prediction performance.

However, the algorithms designed in most of the papers do
not consider the strict QoS requirements imposed by URLLC
systems. For example, one of the arising challenges is the
vastly different outcome for under- or overestimating the
channel quality. These challenges are sometimes addressed
by using some heuristic algorithms for channel prediction,
e.g., [1], relying on the moving average and minimum
approach to robustly predict the channel quality. Additionally,
the parameters need to be adjusted for each different channel
environment. Furthermore, the data for evaluating and testing
the algorithms need to be considered while designing the
channel prediction algorithms. As the NN algorithms are
data-driven, the best option for closest-to-life data needs to
be experimentally obtained, which is rarely used, and channel
modeling data is often used instead [23].
While experimental testbeds to measure the channel

properties exist, each of them possesses some drawbacks
that limit its functionality for channel prediction in URLLC
in mobile scenarios, which is the target of this paper.
The simplest approach in the literature uses off-the-shelf
devices such as smartphones for LTE channel quality
measurement [10]. However, in the testbed, access to the
low-level PHY measurements is limited, meaning that the
unprocessed channel properties are inaccessible using this
solution. Another approach is to construct the measurement
setup from scratch using specific hardware and software. For
example, in [11], a sophisticated testbed is used to measure
the fast-fading channels. This testbed is mechanically com-
plex, allowing high-speed antenna movements, and is not
universally applicable, as moving antenna testbed is limited
to static channel environments by its design. To record signals
from deployed base stations and further process them is

proposed in [34]. Unfortunately, this approach also does not
allow an accurate estimation of the mobile channel conditions
during the rapid changes because the minimum interval
between measurements is too long [12].
In the next section, we address the issue with the

availability of training data and describe our approach to
gathering the necessary dataset.

III. DATASET
A. CHANNEL MEASUREMENT MECHANISM IN CELLULAR
NETWORKS
While 5G systems are deployed in many countries, its
coverage can be lacking outside very dense areas, while its
predecessor, 4G, is still highly prevalent. So, we designed our
testbed to be compatible with both 4G and 5G systems using
the Software-Defined Radio (SDR) platform.

This design also allows us to be more flexible with our
dataset creation. Specifically, the measurement dataset is
collected in 4G systems because of their current abundance in
the areas of interest, while 5G cells are also capable of being
recorded.

The physical layers of 4G and 5G systems have much
in common. For example, both use OFDM (Orthogonal
Frequency Division Multiplexing). Channel resources are
divided into resource blocks (RB), which are later assigned
to the specific signals. In both technologies, the total number
of RBs depends on the available bandwidth (in 5G, it also
depends on the used numerology).

In 4G systems, the UE can estimate the channel quality
using the received cell reference signals (CRS) sent by
the base station. Then, as the CRS is standardized, the
UE determines how the CRS degrades in the channel and
therefore performs the channel estimation. After that, the
receiver calculates the Signal to Interference and Noise Ratio
(SINR). While all these stages are performed at the UE, the
base station receives information about the channel quality
via a Channel Quality Indicator (CQI), which is calculated
by mapping the SINR value to an integer value from 0 to 15,
where 0 is the worst signal quality, and 15 is the best one.
Then the gNB uses CQI to select theMCS scheme. Therefore,
the MCS selection procedure significantly depends on the
knowledge about the CQI for the certain RB that can be
obtained by using channel prediction algorithms.

B. EXPERIMENTAL TESTBED
Because of the lack of existing channel measurements
applicable to our research, we developed a new channel mea-
surement testbed that satisfies the following requirements:

• The testbed has to support a high granularity of channel
estimation measurements for rapidly varying channels.

• The testbed has to operate with no emission in the
licensed spectrum, i.e., only as a receiver.

• The testbed has to be compatible with off-the-shelf
cellular base stations to obtain measurements for
real-life scenarios without the need to deploy cutting-
edge equipment.
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FIGURE 1. Testbed scheme.

The testbed and the overall method used in the
dataset-gathering process were originally proposed in [35].
However, in this paper, they are extended to accommodate
different frequency bands and bandwidths.

Figure 1 shows the scheme of the experiment. During
the experiment, the signals from the commercial off-the-
shelf (COTS) cells are received and processed by the SDR
connected to the PC emulating the UE receiver implemented
in the software framework.

We measure the channel in the following mobile scenarios:
1) The xEVA (experimental Extended Vehicular A) sce-

nario: the testbed is located in a car that moved
with a speed of approximately 40 to 60 kmph in
a city center with moderate traffic and different
environments, including high buildings and a park
zone. Such environment shall provide variable delay
spread of reflected signals

2) The xEPA (experimental Extended Pedestrian A)
scenario: the testbed is carried by a pedestrian with a
speed of 3 kmph in a city center.

We record parameters of movements such as speed and
position via a GPS tracker attached to the testbed.

In the experiment, we record the channel state as In-phase
and Quadrature (IQ) samples and process them using a
modified version of the srsLTE software suite [35] in real-
time. The output of the data processing pipeline is the CQI
and SINR values for each RB. We obtain the sampling
frequency of one CQI value per slot. This value allows
tracking the channel fading with frequencies up to 1 kHz,
according to Nyquist frequency. Note that the sampling
frequency is significantly higher than the maximum Doppler
frequency for 60 kmph and 2.6 GHz, which is below 200 Hz.

IV. ALPACA
To estimate the future CQI based on previous channel
measurements, we designed an NN-based algorithm called
ALPACA (Asymmetric Loss Prediction Algorithm for Chan-
nel Adaptation). ALPACA treats the channel prediction
problem as a multivariate time-series prediction task. The
input of the neural network is the previous CQI values for
all RB in the form of a time-frequency array, and the output
is the predicted CQI values for all RB in the future slot. In the

time dimension, the size of the input array is 128 (meaning
that with a per-TTI CQI report, the NN knows 128 previous
CQI values). In the frequency dimension, the size of the array
equals the number of RB groups.

A. NEURAL NETWORK ARCHITECTURE
The ALPACA NN has several layers. First, to predict
the CQI, we need to extract the features from the previ-
ous measurements, which can be represented as different
spatio-temporal patterns on the time-frequency grid. For
that, we use convolutional neural network layers. Then,
we use the LSTM layer, to obtain information about temporal
dependencies. The resulting features are used by the network
head, consisting of fully connected layers, to interpret the
extracted features and predict the next values of the channel
quality indicator accordingly. The neural network design is
based on paper [16]. However, the CSI prediction task is
significantly different from the CQI prediction one because,
in contrast to complex CSI values, the CQI ones are integer.
Consequently, we do not need the 2D convolutional layer.

Let us describe the developed neural network in detail,
see Fig. 2. The first stage of the neural network is a
stack of two 1D convolutional layers designed to extract
frequency-specific and local features. The first layer consists
of 32 filters with a kernel size of 5, while the second one
contains 64 filters with the same kernel size. We use the
Rectified Linear Unit (ReLU) activation function on these
layers and the BatchNormalization technique [36] to improve
the performance of the convolutional network.

Then the outputs of the CNN layers are passed through
the LSTM layer. The LSTM layer is added to create more
time-global features from the previously extracted local
time-frequency patterns of the CNN, therefore increasing the
receptive field of the NN, as well as improving its capabilities
on the long-term prediction of rare events, which are often
crucial for enabling URLLC.

The used LSTM has a hidden state size of 128. The
structure of the LSTM cell is presented in Fig. 3. The
parameters of the LSTM layer and the data flow can be
described as follows:

ft = σg
(
Wf × xt + Uf × ht−1 + bf

)
it = σg (Wi × xt + Ui × ht−1 + bi)

ot = σg (Wo × xt + Uo × ht−1 + bo)

c′t = σc (Wc × xt + Uc × ht−1 + bc)

ct = ft · ct−1 + it · c′t
ht = ot · σc (ct) , (1)

where xt is the output of the CNN layers, ht−1 and ct−1 are the
inputs from the previous timestep of the LSTM, output gate
o(t) is the output of the LSTM for the timestep t . Additionally,
on every step of LSTM, the cell state ct , forget state ft , and
the hidden state ht are also generated. W and U are the
weight matrices for the respective gates, while b∗ are the
bias vectors. Finally, σg denotes the sigmoid nonlinearity, and
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FIGURE 2. Neural network architecture.

FIGURE 3. The LSTM scheme [30].

sigmac is the hyperbolic tangent. The symbol · denotes the
element-wise multiplication (Hadamard product), and × is
the matrix multiplication. We use the output vector of the cell
at the last timestep to feed it to the final part of the network,
as it is the final output vector that contains the important
temporal information.

The final part of the network consists of three fully
connected layers with intermediate ReLU activation and
linear activation at the final layer, with 128, 64, and N
nodes, respectively, where N is the number of RB groups
for which we predict the CQI values. To prevent overfitting
during training, we use Dropout, a technique that zeroes out a
certain percentage of units in the LSTM layer, and the Fully-
Connected (FC) layer in Fig.2. We set the dropout percentage
to 0.2. This architecture means that we can predict the CQI
values for an arbitrary number of steps ahead by feeding the
prediction back into the neural network, with each step equal
to the training data step (0.5 ms). However, with the longer
prediction horizon, the prediction error also increases.

B. ASYMMETRIC LOSS DURING TRAINING
A significant problem to take into account for URLLC is
that even a small overestimated prediction can lead to packet

loss and delays, possibly violating the QoS requirements,
while the underestimated prediction leads to a bit higher
channel resource consumption. We consider a promising way
to address this issue by utilizing the asymmetric loss function
during the training process. To the best of our knowledge,
there were no previous studies on applying asymmetric loss
functions to the channel adaptation task in wireless networks.
The use of asymmetric loss during training is a key feature of
ALPACA, which gives the name of the designed algorithm.
Specifically, we use the quantile regression loss inspired
by [37] function to train the network, which can be written
as

l =

N∑
i=0

max(q · (yi − ŷi), (q− 1) · (yi − ŷi)), (2)

where l is the weighted error of the prediction with different
weights for overestimation and underestimation, q is the
quantile we aim to predict, yi is the element of the true
value vector, and ŷi is the element of the neural network
output vector, and the size of truth values and predictions
vector is N . Unlike previous works [16], [23], which also
use LSTM for channel quality prediction, we can explicitly
optimize for the necessary target reliability during algorithm
training and reduce the chance of overestimating the channel
quality. Moreover, the proposed approach can be extended to
multiple quantile output values to target multiple reliability
requirements with a negligible additional incurred cost.
Additionally, should the need to change the probability
quantile arise, it could be done on the already pre-trained
neural network using methods such as transfer learning with
minimal computational overhead on the new data.

We train the created network using the stochastic gradient
descent (SGD) method [38] with the Adam optimizer [39]
to improve convergence. The initial learning rate of SGD
is 0.001. The training spans 100 epochs. We reduce the
learning rate twofold if the validation loss has not improved
for five epochs, as well as introduce early stopping. To adapt
the neural network for different channel conditions, we also
introduce augmentations to the dataset, namely adding or
subtracting a constant SINR from input and target data,
simulating different path loss values in the scenario. Figure 4
shows the losses for the training and validation steps. The
results show that the early stopping allows us to select the
neural network state with a reasonably low test loss quite
quickly.

C. SCHEDULING AND MCS SELECTION STEP
When the scheduling algorithm decides on allocating RBs
to UEs, it should take into account the channel conditions
in a certain subband corresponding to the moment of actual
transmission, i.e., use the predictions. However, during
CQI quantization some channel information is lost, as the
continuous SNR values are converted to values of 0 to 15.
Similarly to [1] and [23], we use the following approach to
scheduling and MCS selection based on given predictions.
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FIGURE 4. Train and test losses during training.

FIGURE 5. The CDF of SINR changes per 1 ms in different channels.

1) Calculate the scheduling metric for each RB and UE.
2) For each RB, sort UEs according to this metric and find

the highest-rated UE according to the metric, further
referred to as leaders.

3) Sort RBs in the descending order of CQIs reported by
corresponding leaders.

4) Starting from the first RB (with the highest CQI),
allocate RBs to the corresponding leader.

5) For each UE, calculate the maximal transport block
(TB) for the transmission. All RBs assigned to the UE
at Step (5) and not used are considered for further
scheduling.

6) Remove from consideration the UEs that can transmit
all buffered data in already allocated RBs.

7) Go to Step (3) and continue the procedure until all RBs
are allocated or none of the remaining RBs can increase
the TB size for any UE.

The TB size and MCS selection step can be also described
algorithmically:

1) For each RB ai from the set, we calculate the CQI
estimation according to the predictions from the
ALPACA neural network and map the obtained CQIs
{CQI1, . . . ,CQIn} to SINRs {SINR1, . . . , SINRn}
using the inverted SINR to CQI table specified by the
3GPP [40]. Belowwe assume that RBs are sorted in the
descending order of SINRs.

2) A single effective SINRk (see [41]) is calculated for
each subset Ak = {a1, . . . , ak}, k = {1, . . . , n}.

3) Using the effective SNRk , we find such an MCSMCSk
that allows obtaining BLER less than the given target
value.

4) Assuming that MCSk is used in all RBs, we calculate
the TB size TBk for each subset Ak .

5) We find the subset Ak providing the maximal TB size.
As these steps apply to other channel adaptation algo-

rithms, such as [1] and [42], and the computational overhead
presented by it is insignificant, as no additional computation
is required by the neural network after the CQI prediction.

V. NUMERICAL RESULTS
A. PRELIMINARY ANALYSIS OF CHANNEL PROPERTIES
Before evaluating the system-layer performance of ALPACA,
let us investigate the properties of the measured channels and
the 3GPP channel models [43] for similar scenarios. Specif-
ically, we consider Non-Light-Of-Sight (NLOS) Extended
Pedestrian A (EPA) and Extended Vehicle A (EVA) channel
models with user device velocities of 3 and 60 kmph,
respectively, which should have properties similar to the
experimental scenarios xEVA and xEPA.

We calculate howmuch SINR changes with time to provide
a simple overview of channels. Specifically, we measure the
absolute SINR changes during every millisecond for a given
RB and show the CDF of these changes in Fig. 5.
These changes grow with the Doppler frequency and,

therefore, the speed of the user in the scenario. The pedestrian
channel changes slightly because of its lower Doppler
frequency. Moreover, as we can see, the change of SINR
per one millisecond is smaller than the differences between
two SINR thresholds corresponding to neighboring MCSs,
meaning that transmission with the MCS computed with the
last measurement is likely successful. Thus, if there were
no URLLC, the usage of the last SRS measurement would
work. However, for URLLC, significant rare losses are still
possible, which violate QoS requirements, and thus shall be
taken into account.

The differences in SINR changes between the 3GPPmodel
and real-life measurements can be attributed to differences in
the propagation environment, which influences the number
of scattering surfaces and the way the signal is weakened and
changed during propagation.

B. SIMULATION SCENARIO
To evaluate the performance of the developed algorithm
at the system layer, we use the ns-3 simulation tool with
channel traces obtained with measurements and channel
models. The simulation scenario consists of a base station
and a UE, receiving a constant bitrate URLLC traffic of 500-
byte packets with the intensity of 200 packets per second.
To satisfy the timing requirement of 10 ms only one HARQ
retransmission attempt is allowed for each frame. After the
neural network is trained on the training set, we measure the
PLR, i.e., the percentage of packets not delivered in time, and
the RB usage, i.e., the percentage of RBs allocated to the UE
receiving URLLC packets.
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FIGURE 6. PLR (a) and RB usage (b) in the xEVA scenario.

We compare the following MCS Selection algorithms:
• Ideal algorithm, which has perfect channel knowledge
and selects the MCS as the maximal one that provides
an error rate below 10−5;

• Adaptive algorithm, described in [1], which estimates
the possible channel quality degradation using a sliding
window approach and makes adjustments to the predic-
tion accordingly. The size of the sliding window W is a
hyperparameter of this algorithm, and a longer window
leads to more conservative predictions. We evaluate the
algorithm using windows from 1 to 1000. The MCS is
selected by the algorithm output, as it is an end-to-end
predictor.

• The proposed algorithm, ALPACA, with asymmetric
loss parameter q of 0.1, 0.2, 0.5. We note, that the
quantile regression with the quantile parameter of 0.5 is
equivalent to the mean absolute error (MAE) loss,
which is symmetric, and forecasts the median, making
this approach similar to the LSTM-based approaches
described in papers [16], [23], hence we name the
algorithm with q = 0.5 as ‘‘CNN-LSTM’’. The MCS
is selected according to the CQI prediction to provide
the 10−5 error rate.

For each algorithm, we evaluate PLR and the number of
used RBs, i.e., RB usage, for different average values of
SINR by applying an offset to all SINRs in the scenario. This
approach imitates the performance for varying path loss and
distance between the base station and the user. The SINR shift
values belong to the interval−3 to 20 dB as the typical values
for cellular systems [44].

C. SIMULATION RESULTS
1) xEVA SCENARIO
The xEVA scenario has a fast-fading channel, making it a
complicated target to predict channel quality. Both ALPACA
and the reference Adaptive algorithm have the configuration
parameters, i.e., the window W or quantile q, that determine

how conservative the predictions are. In other words, they
determine the tradeoff between the PLR and RB usage,
see Fig. 6. Specifically, the increase in the window parameter
W from 1 to 1000 makes predictions more conservative,
increasing the RB usage and reducing the PLR down to the
values of the Ideal prediction.

Having fixed W = 100, as a parameter of the Adaptive
algorithm that provides PLR ≤ 10−5 starting from the
average SINR of 5dB, we can conclude that ALPACA
significantly improves the network performance in terms of
coverage and RB usage.

Specifically, as shown in Fig. 6(a), ALPACA with q =

0.2 satisfies the PLR requirement for the average SINR above
0 dB, while the Adaptive algorithm with W = 100 requires
the SINR higher than 5 dB. Thus, ALPACA provides a larger
coverage. Also, Fig. 6(b) confirms that ALPACA provides
a significant channel resource economy while satisfying the
QoS requirements for edge users. The gain in the RB usage
exceeds 40% compared with the Adaptive algorithm with
W = 100.

Note that ALPACAwith q = 0.5 (that does not have asym-
metry in the loss function and is denoted as CNN-LSTM in
this section) provides too optimistic predictions. Although it
reduces channel resource consumption, it does not satisfy the
PLR requirement by orders of magnitude, which highlights
the necessity of accounting for unequal risks. Additionally,
it sheds light on the learned patterns of the neural network
layers: we can see that in both of the key metrics (PLR and
RB usage), the CNN-LSTM are located near the results of the
Adaptive algorithm with W = 1 and W = 10, meaning that
during training with a symmetric loss, the network has been
trained to look only at recent events. Contrary to that, with
the asymmetric loss, ALPACA is capable of looking over its
entire receptive field of 128 previous CQIs to find the relevant
channel patterns. Similarly to the Adaptive algorithm with
W = 100 and W = 1000, it considers rare risky events but
does it more accurately.
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FIGURE 7. PLR (a) and RB usage (b) in the EVA scenario.

2) EVA SCENARIO
The EVA scenario is designed to be similar to that of the
xEVA channel measurements in terms of channel parameters
such as user speed and environment parameters using a 3GPP
channel model.

Figures 7(a) and 7(b) show that ALPACA with q =

0.2 provides sufficient coverage and minimizes the resource
consumption, respectively, reducing it up to 30% as compared
to the Adaptive algorithm withW = 100.
Small performance degradation of the ALPACA algorithm

in the high-SINR area can be explained by the fact that
each CQI corresponds to a certain SINR interval, and the
measurements outside these intervals result in CQI value
saturation, reducing the amount of information the neural
network can extract from it. However, the absolute value
of the increase in RB usage compared to the counterpart
algorithms is negligible. Thus, potentially more accurate
CQI feedback may be considered as a possible way to
further increase the accuracy of the channel prediction
algorithms.

3) NETWORK CAPACITY IN URLLC SCENARIOS
For both of these scenarios, one of the metrics chosen was the
RB usage by the user. This metric, while simple to compute
and easy to compare (in case of equal average SINR), is not
as interpretable, as the upper bound of the Network Capacity,
which is the inverse of RB usage (per 1 user). This determines
the number of users that can be supported while providing
necessary QoS.

We note that both in our experiments and in [44] the
average SINR for the user is distributed in the 5-15 dB region,
and take this interval as the bound for estimating this KPI for
both the xEVA and EVA scenarios.

We select the Adaptive algorithm with W = 100 as
the baseline algorithm with the lowest resource usage while

FIGURE 8. Cell capacity plot for different URLLC scenarios.

providing the necessary QoS within the whole interval, and
select the ALPACA with a quantile value of 0.2 for the same
reasons out of the proposed algorithms.

Figure 8 shows the bar plot comparing the network
capacity achieved by the two algorithms in the xEVA and
EVA scenarios. This figure demonstrates, that the proposed
algorithm can significantly increase the capacity of the cell
(up to 40% compared with the Adaptive algorithm with
W = 100) in this SINR region both in the experimental and
simulated scenario.

VI. CONCLUSION
This paper proposes a novel algorithm for channel prediction
in URLLC named ALPACA: Asymmetric Loss Prediction
Algorithm for Channel Adaptation.

ALPACA uses a convolutional-recurrent neural network to
predict the channel quality in the future and adjust the MCS
accordingly. This type of neural network is selected for its
ability to work with sequential data and extract both local
time-frequency patterns and more global time-series features.
The key feature of ALPACA is the focus on the reliability
requirements for URLLC. To satisfy these requirements,
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ALPACA uses a specifically designed asymmetric loss based
on quantile regression.

We have evaluated the ability of the designed algorithm
to provide the necessary QoS with a low amount of
the used channel resources in typical URLLC deployment
scenarios with the ns-3 simulation framework. However,
in contrast to traditional simulation studies, we used both real
(experimental) channel traces and simulated ones. For each
scenario, we studied the performance of ALPACA in different
channel quality regions, as well as measured the performance
of the baseline algorithms and the upper bound.

The numerical results show that the developed algorithm
satisfies the strict requirements of URLLC in tested scenarios,
as well as provides an up to 30%. . . 40% reduction of
channel resource consumption compared with both heuristic
and neural-network-based state-of-the-art approaches. Also,
it increases the network capacity for URLLC users by about
40% in the relevant SINR region.

An important property of ALPACA is its stable gains and
its applicability to various scenarios. Specifically, ALPACA
is tested with both modeled channels and the channels
collected in real measurements in a city center with different
surrounding conditions, including buildings, parks, and the
number of cars on the road. Similar gains observed in
these experiments show the capabilities of ALPACA to be
generalized to different scattering environments, as well as
varying velocities.

Finally, ALPACA is lightweight and can be deployed in
real-time on real hardware.

VII. FUTURE WORK
In future work, we are going to study the use of neural
channel adaptation in Massive MIMO URLLC systems,
which is considered to be a part of 6G systems [45]. The
Massive MIMO-URLLC could benefit from the flexibility
and efficiency of neural networks in handling complex
and dynamic wireless channel conditions. Such neural
network-based approaches can encompass not only the
CQI but also some information about the MIMO channel
matrix to extract more information about the channel state.
Additionally, CSI MIMO data itself can be added to the
dataset.

Another direction would be to examine possible neu-
ral network design improvements, such as incorporating
various attention mechanisms or using different types of
transmission feedback to further improve the MCS selection
process.

Finally, a promising research direction is the adaptation of
channel prediction algorithms to a rapidly changing environ-
ment, with both the delay profile andDoppler frequency vary-
ing during user movement. While currently, separate models
were trained for the xEVA and EVA scenarios, it would
be interesting to investigate neural network transfer and
adaptation techniques that can effectively handle the quickly
evolving channel environment while being simultaneously
sufficiently robust for URLLC.
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