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ABSTRACT In this research, an optimization methodology was introduced for improving bipedal robot
locomotion controlled by reinforcement learning (RL) algorithms. Specifically, the study focused on
optimizing the Proximal Policy Optimization (PPO), Advantage Actor-Critic (A2C), Soft Actor-Critic
(SAC), and Twin Delayed Deep Deterministic Policy Gradients (TD3) algorithms. The optimization process
utilized the Tree-structured Parzen Estimator (TPE), a Bayesian optimization technique. All RL algorithms
were applied to the same environment, which was created within the OpenAl GYM framework and
known as the bipedal walker. The optimization involved the fine-tuning of key hyperparameters, including
learning rate, discount factor, generalized advantage estimation, entropy coefficient, and Polyak update
parameters. The study comprehensively analyzed the impact of these hyperparameters on the performance
of RL algorithms. The results of the optimization efforts were promising, as the fine-tuned RL algorithms
demonstrated significant improvements in performance. The mean reward values for the 10 trials were as
follows: PPO achieved an average reward of 181.3, A2C obtained an average reward of —122.2, SAC reached
an average reward of 320.3, and TD3 had an average reward of 278.6. These outcomes underscore the
effectiveness of the optimization approach in enhancing the locomotion capabilities of the bipedal robot

using RL techniques.

INDEX TERMS Hyperparameter optimization, reinforcement learning, robot motion.

I. INTRODUCTION

In recent years, mobile robots have become increasingly
integrated into our daily lives, and they come in various types.
In general, robots can be classified into two main categories:
wheeled robots and legged robots [1]. Furthermore, it’s
possible to combine wheeled and legged components to
create various types of robots [2]. While wheeled robots
are common, legged robots mimic nature and offer superior
efficiency. Legged robots are well-suited for navigating
rough terrains, climbing steps, crossing wide gaps, and
traversing extremely uneven surfaces where wheeled robots
would struggle due to ground irregularities [3]. However,
these advantages come with the need for more complex
control algorithms [4]. Traditional walking algorithms have
limitations, leading to restricted motion [5]. Therefore, there
is a growing need for learning-based walking algorithms
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for legged robots [6]. In recent times, four-legged and
two-legged robots have gained popularity [7], [8]. Biped
robots have an exceptional ability to mimic human-like
mobility, making them highly suitable for tasks that require
human-like dexterity and agility, such as complex search and
rescue missions. By profiting from their ability to mimic
human characteristics, they can outperform conventional
robots in a variety of fields [9].

The structure of this paper unfolds as follows: It com-
mences with an introduction, providing insight into the
motivation behind the presented work and offering informa-
tion related to previous research on the control of bipedal
robots and bipedal locomotion concepts. A comprehensive
definition of the robot and its environment has been offered
in the second section. Here, we provide a detailed account
of the action and observation states, integral components
used in the training process of Reinforcement Learning
(RL) algorithms. The third section discusses the details
of the RL algorithms used, including Proximal Policy
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Optimization (PPO), Advantage Actor-Critic (A2C), Soft
Actor-Critic (SAC), and Twin Delayed Deep Deterministic
Policy Gradients (TD3). In the fourth section, the focus
shifts to the analysis of hyperparameter optimization for RL
algorithms, a key objective of this study. The concluding
section offers a discussion that centers on the comparative
performance of the RL algorithms. Additionally, we outline
potential directions for future research, encapsulating the
paper’s findings and insights.

A. BACKGROUND AND RELATED WORKS

Bipedal robots generate more interest than other mobile
robots that use conventional locomotion. They offer a
significantly wider range of applications, such as search
and rescue, industrial diagnostics, exploration of unknown
areas, nuclear plants, and dangerous environments, among
others [10]. Due to their reduced ground contact area
and fewer driving effectors, bipedal robots may exhibit a
potentially lower total energy consumption when compared
to their multi-legged robots [11].

While the classical model-based control techniques have
been suggested for bipedal robots, including model pre-
dictive control [12], robust control [13], and trajectory
tracking control [14]. These control approaches are generally
pre-calculated with lack flexibility. As a result, the bipedal
robots often fall short in terms of stability, adaptability, and
robustness. In addition, optimization-based control strategies
are advanced for dynamic legged robots [4].

Obtaining a mathematical-based control approach for
bipedal robot locomotion in diverse environments, while
ensuring stability comparable to that of a human, is a
challenging task. Consequently, reinforcement learning
(RL)-based approaches for bipedal robots show promise in
overcoming the complexity of control algorithms. Through
RL, the robot can autonomously learn to walk with stability
control on unknown and unexpectedly complex surfaces.
Data-driven methods offer a versatile framework that empow-
ers legged robots to exhibit a wide range of behaviors
by incorporating reference motion terms into the learning
process [6].

However, the development of RL-based algorithms
presents a significant challenge in terms of computational
time. Training on a real robot introduces various difficulties.
The most rational approach is to create the robot within
a simulation environment and conduct RL-based algorithm
training. Several robot simulators are available in the
literature, with popular options including Gazebo [15],
Webots [16], CoppeliaSim [17], and IsaacSim [18]. These
simulators offer realistic visualization with real dynamics.
Nonetheless, to optimize hyperparameters that impact RL
efficiency and reduce training time, it may be necessary
to use a simplified robot structure. For this reason, Gym
or Gymnasium, developed by OpenAl, aims to provide a
simplified environment for faster training in RL studies.
Also MuJoCo is a general purpose physics engine that
aims to facilitate research and development in robotics and
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various appllications required physics engine. This tool
develeoped by DeepMind. Thanks to these tools, they have
been possible to develop many RL-based algorithms with low
computational cost.

RL has shown promise in enhancing bipedal locomotion.
Various studies have applied deep reinforcement learning
(DRL) to this field. One research effort introduced a
framework developed using MuJoCo that employs passive
dynamics via DRL to generate multimodal bipedal locomo-
tion. This approach successfully replicates natural walking
patterns, underscoring DRL’s potential in capturing complex
bipedal dynamics [19]. A novel RL framework for 3D bipedal
locomotion control policies was presented in a separate
study. The authors utilized deep neural networks and RL
algorithms to create adaptive control strategies adaptable
to different terrains and disturbances, highlighting RL’s
potential in designing adaptable locomotion for bipedal
walkers created using MuJoCo [20]. In its simplest form,
a bipedal robot can be modeled with 4 degrees of freedom
(DOF). Using the robot structure known as a bipedal
walker in the literature, the walking algorithm provides an
advantage in terms of computational power. Deep Q-learning
and augmented random search have been used to teach
a simulated two-dimensional bipedal robot in the Gym
BipedalWalker-v3 environment [21]. Another study in the
same environment presented an evaluation procedure via
supervised learning, using a randomly initialized neural
network to imitate the set and then execute the acquired policy
against the environment [22]. PPO and Deep Deterministic
Policy Gradients (DDPG) have been compared for same envi-
ronment [23]. SAC has been used for Gym BipedalWalker-v3
environment, too [24].

B. MOTIVATION

The impact of hyperparameters on the performance of
reinforcement learning algorithms is significant. Hyper-
parameters serve as adjustable settings that fine-tune the
learning process and exert a substantial influence on the
trajectory, stability, and ultimate success of RL-based tasks.
The choice of appropriate hyperparameters can mean the
difference between an RL algorithm swiftly converging to an
optimal policy or becoming stuck at a suboptimal solution,
or even worse, leading to undesirable drift. Furthermore,
hyperparameters often require customization to suit specific
robotic platforms and environmental conditions, presenting a
non-trivial challenge in their selection. Poor hyperparameter
choices can result in protracted training times, increased
sample requirements, and limited adaptability to unexpected
scenarios. These issues are particularly critical in applications
such as bipedal robot control, where real-time adaptability
and efficiency are of paramount importance. Therefore,
understanding and optimizing hyperparameters is essential
to unlock the full potential of RL in facilitating agile and
adaptive robotic systems. Nevertheless, due to the numerous
independent studies in the literature, it is challenging to
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FIGURE 1. Action and observation states of robot.

determine which RL algorithm performs best with specific
parameters.

For this reason, the present study aims to optimize various
hyperparameters for different RL algorithms in a manner that
is easily comprehensible and comparable in the literature.
This approach will help elucidate which algorithm and
hyperparameter combination is best suited for bipedal robots.

Il. DEFINITIONS OF ROBOT AND ENVIRONMENT

In this study, a simple 4-joint walker robot environment was
utilized to conduct a comparative analysis of various RL
algorithms with the aim of optimizing their hyperparameters.
The robot comprises a central hull and two legs, each
equipped with both knees and hips, as illustrated in Fig. 1. The
observation state encompasses several crucial variables as
given in (1). These observation state variables are highlighted
in purple in Fig. 1.

Oy = [0h, 0. vy, vz, 051, wj1, O, wjp, Cp1,
62, w2, Oj2, Wi, Cr2, lidaro—o)| (D

The observation state has the hull’s angle speed (6p),
angular velocity (wy,), horizontal speed (v,), vertical speed
(v;), joint positions, joint angular speeds (6;, w;), the state of
leg-ground contact (Cp1—2 expressed as a binary value: True
or False), and data from 10 lidar rangefinder measurements
for terrain feedback.

For this experiment, slightly uneven terrain, corresponding
to the standard version in the GYM environment, was
selected. Additionally, the standard reward function was
employed during the training of the RL algorithms. The
reward mechanism was designed to incentivize forward
movement, providing a cumulative total of 300+ points as
the robot progresses towards the far end. Conversely, if the
robot falls, it incurs a penalty of —100 points. Furthermore,
applying motor torque results in a marginal deduction of
points.

lll. RL ALGORITHMS

A. PPO

PPO is a popular reinforcement learning algorithm used
to train agents in environments where they must learn a
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policy to perform tasks and maximize cumulative rewards.
PPO is known for its stability and efficiency in train-
ing DRL agents. It was introduced by Schulman et al.
in 2017 [25]. The algorithm of the PPO algorithm is given
in Algorithm 1. Additionally, you can access the details of
all the algorithms mentioned in this paper from the OpenAl
webpage.

PPO builds on the foundations of previous policy gradient
methods and offers improvements in terms of both computa-
tional efficiency and sample complexity. PPO uses two neural
networks: a policy network that generates actions based on
the current state, and a value network that estimates expected
cumulative rewards. What sets PPO apart is its trimmed
surrogate objective function, designed to prevent the policy
from making large and potentially harmful changes during
updates. This clipping is implemented by a hyperparameter
known as the “clipping parameter” that limits the update size
of the policy. In addition to policy updates, PPO optimizes the
value function using a standard value loss. Data is collected
through interactions with the environment and multiple
update cycles are applied iteratively to improve the agent’s
performance.

Algorithm 1 Proximal Policy Optimization (PPO)

Input: Initial policy 7y and value function Vs

Output: Updated policy 7, and value function Vj

while rnot converged do

Collect a batch of trajectories using g

Compute advantages A(s, a) based on the

collected trajectories

Update the policy by maximizing the PPO

objective: for each policy update do
Calculate the surrogate objective:

g(als) }
———A(s, )
nanld (a |S)

Update policy parameters 6 using gradient
ascent:

LO) = IE|:

0 «— 0 +aVyL(0)

end
Fit the value function Vj to the collected data:

¢ < argmin,[E [(V¢(S) - Vtarget(s))z:l

end
return 7, and V(;)

B. A2C

A2C is another popular reinforcement learning algorithm
used to train agents in environments where they must
learn a policy to perform tasks and maximize cumulative
rewards. A2C is a synchronous variant of the Asynchronous
Advantage Actor-Critic (A3C) algorithm. It combines the
advantages of both policy gradient methods and value
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function estimation methods. The term ‘““Actor-Critic” refers
to the fact that it simultaneously learns both a policy (actor)
and a value function (critic) [26]. The pseudo code of A2C is
given in Algorithm 2.

A2C introduces the concept of the advantage function,
measuring the relative merit of chosen actions compared
to the average actions within a given state. This advantage
guides policy updates, encouraging actions that lead to
higher advantages and, in turn, enhanced expected returns.
Simultaneously, the value function is updated to improve
the accuracy of state value estimation, reducing the error
between estimated and actual returns through Mean Squared
Error (MSE) loss. A2C offers synchronous and asynchronous
training options, allowing multiple agents to collect expe-
riences in parallel. A2C’s strength lies in its robust sample
efficiency, training stability, and adaptability to both discrete
and continuous action spaces, making it a valuable choice for
diverse reinforcement learning tasks across domains such as
game playing, robotics, and autonomous control.

Algorithm 2 Advantage Actor-Critic (A2C)

Input: Initial policy 7y and value function Vs
Output: Updated policy 7, and value function Vj
Initialize policy and value function parameters

6 and ¢

for each episode do
Initialize an empty trajectory ©

Initialize the environment with the initial state sq

while not done do
Sample an action a; from the policy 7y
Action a;, observe reward r;, next state sy
Add (sy, a;, ry) to the trajectory t
Update the current state: s; <— Sy

end

Compute returns and advantages for each time

step in the trajectory: for each time step t in T do
Compute return G; based on future rewards

Compute advantage A; using function Vs
end
Update the policy and value function using the

trajectory: for each time step t in T do
Update the policy using the advantage:

0 < 0 + o Vg log(mg(ar|s:))As
Update function by temporal difference error:

¢ — ¢+ ap(Gr — Vo(s:)) Vg Ve(sr)

end
end
return 7, and ng

C. SAC
SAC is a state-of-the-art reinforcement learning algorithm
designed for training agents in continuous action space
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environments. It builds upon the framework of DDPG and
addresses some of its limitations. SAC is known for its
stability, sample efficiency, and strong performance in a wide
range of tasks [27]. The pseudo code of SAC is given in
Algorithm 3.

This off-policy algorithm brings several key innovations
to the table to enhance training efficiency and sample
effectiveness. At its core, SAC adopts the actor-critic
architecture, featuring a neural network-based actor for action
selection and a critic for estimating the state-action value
function. What sets SAC apart is its emphasis on entropy
regularization, which encourages effective exploration by
promoting action stochasticity. By maximizing entropy in
the objective function, SAC achieves a delicate balance
between exploration and exploitation. SAC’s off-policy
nature allows the utilization of a replay buffer, breaking
temporal data correlations and improving sample efficiency.
The agent’s value function, or Q-function, is learned
concurrently with the policy, and automatic temperature
adjustment dynamically regulates the entropy term during
training. This combination of features enables SAC to excel
in environments with continuous action spaces, making it
a robust choice for a variety of applications, including
robotic control, autonomous systems, and game-playing
agents. Careful hyperparameter tuning and experience
replay buffers play a significant role in successful SAC
training.

D. TD3

TD3 is an extension of the DDPG algorithm. TD3 is
designed for solving reinforcement learning problems in
environments with continuous action spaces, and it addresses
some of the limitations of DDPG, such as issues related to
overestimation bias in the Q-value estimates. TD3 is known
for its stability, robustness, and improved performance in
challenging continuous control tasks [28]. The pseudo code
of TD3 is given in Algorithm 4.

TD3 addresses the challenges faced during agent training,
focusing on improving stability, robustness, and sample
efficiency. It retains the actor-critic architecture, where the
actor generates actions and the critic estimates state-action
values. Notably, TD3 introduces twin critics to mitigate
overestimation bias, a common issue in Q-learning. These
twin critics produce averaged Q-values for more accurate
value estimates. Additionally, TD3 incorporates delayed
policy updates, ensuring that actor network updates are less
frequent compared to the critic network to enhance training
stability. Exploration is facilitated through the addition of
noise to actions. The algorithm also clips target Q-values
to prevent instability. TD3 leverages off-policy learning,
allowing the use of experience replay for efficient and stable
training. With careful hyperparameter tuning and experience
replay buffers, TD3 excels in addressing challenges in
environments with continuous action spaces, making it a
robust choice for a wide range of applications, including
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Algorithm 3 Soft Actor-Critic (SAC)
Input: Initial policy 7, Q-functions Oy, and Qy,, and
value function Vi
Output: Updated policy 7, Q-functions Qﬁm and Qiﬁz’ and
value function V/,

Initialize policy parameters 6, Q-function parameters ¢ and
¢», and value function parameters ¢

Initialize target value function Viarget

Initialize a replay buffer D

for each episode do
Initialize the environment with the initial state sq

while not done do
Sample an action a; from the policy my

Execute action a;, reward r;, next state s,
Store (¢, ar, 17, S;+1) in the replay buffer D
Update the current state: s; < sy41

Sample a minibatch of transitions from D
Update the Q-functions using soft Bellman:

04 (5. a)<-Ey ,plr +y - min(Q) (s'. 7)(s)).
... QZPz ', né(s’))) —a log(né(s', a))]

Update the policy to maximize the
entropy-regularized objective:

VoJ (0) = Es~plVaQg, (s, Dla=rmy(s) - - -
.. Vo log(mo(s, @)l a=ny(s))
Update target function using a soft update:
Viarget(s) <= (1=7)Viarget(s)+7-min(Qy, (s, 75(5)),

Q) (5. 4(5)) — o log(rh (s, ) (s))

end

end
return 7, Q;h’ Q/m, and Vd’)

robotic control, autonomous systems, and game-playing
agents.

IV. OPTIMIZATION OF HYPERPARAMETERS

This study optimized hyperparameters for improved RL
algorithm performance, focusing on identifying the best
RL algorithm for bipedal robot locomotion. A Bayesian
optimization technique known as Tree-structured Parzen
estimator (TPE) was used for hyperparameter optimization
powered by Optuna [29]. It’s designed to efficiently search for
the best set of hyperparameters for a given machine learning
model. TPE is particularly useful when optimizing complex
models with various hyperparameters. Instead of performing
an exhaustive grid search or random search, TPE focuses the
search on the most promising regions of the hyperparameter
space [30]. The algorithm has been proposed by to determine
hyperparameters [31].

The concept of conditional probability from Bayes’ theory
is introduced. Here, p(x|y) denotes the conditional probability
that the hyperparameter is x when the model’s loss is y. In the
initial step, a threshold, y*, for the loss is selected based
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Algorithm 4 Twin Delayed Deep Deterministic
Policy Gradients (TD3)
Input: Initial policy 7o, Q-functions Qy, and Qy,
Output: Updated policy my, Q-functions @y, , Oy,
Initialize policy parameters 6, Q-function parameters
¢1 and ¢
Initialize target Q-functions Q:/)] and Q;>2
Initialize target policy ), and a replay buffer D

for each episode do
Initialize the environment with the initial state sq

while not done do
Sample an action a; from the policy myp

Action a;, observe reward r;, next state ;41
Store (s;, a;, 1y, S¢+1) in the replay buffer D
Sample a minibatch of transitions from D
Compute the target Q-functions:

y=r+y - min(Q) (i1, (1)),
o Ol (5141, T (5141)))
Update Q-functions using Bellman error:
2
Vol @) = E[ (Qo(s1. a) — v)’]

Update the policy using the deterministic
policy gradient:

Vo (0) = E [VaQg, (51 @a=sy (s Voo (s1)]
Add target policy smoothing noise:
a = my(si1) + clipNV (0, o), —clip, clip)
Update target Q-functions with a soft update:
¢i < thi + (1 = 1)¢},
Update target policy with a soft update:

i=1,2

0 <~ 10+ —1)0

end
end

/ / /
return 7, Q¢1, Q¢2

on the available data. Subsequently, two probability density
functions, /(x) and g(x), are developed for data greater than
the threshold and less than the threshold, respectively.

The concept of conditional probability from Bayes’ theory
is introduced. Here, p(x|y) denotes the conditional probability
that the hyperparameter is x when the model’s loss is y. In the
initial step, a threshold, y*, for the loss is selected based
on the available data. Subsequently, two probability density
functions, /(x) and g(x) given in Eq. 2, are developed for
data greater than the threshold and less than the threshold,
respectively.

Ix) if y<y",
fr— 2
Pe {g(x) if y=y* @
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where [(x) represent the density function formed using
a subset of observations denoted as {x()}, where the
corresponding loss function f(x) is guaranteed to be less
than the threshold y*. Meanwhile, g(x) denotes the density
function formed using the remaining observations. This
parametrization splits the joint probability distribution p(x, y)
into two components: p(y), which models the distribution of
the parameters y, and p(x|y), which models the distribution
of the objective function values x given the parameters y.
This separation allows the TPE algorithm to more efficiently
explore and exploit the parameter space while searching for
the optimal solution. The Expected Improvement (ET), given
in Eq. 3, is a utility function commonly used in Bayesian
optimization to quantify the potential improvement in the
objective function. By breaking down p(x, y) into p(y) and
p(x]y), the computation of EI becomes more tractable and
can be optimized effectively, making the TPE algorithm a
popular choice in Bayesian optimization for tasks such as
hyperparameter tuning and global optimization [32].

Ely(x) = / O = ypOlody

_ / " (XIy)p(y) PP 4 3)
p(x)

The Eq. 3 can be modified ans simplified as given in Eq. 4

Yy 1) — 1(x) [2. p(y)dy
yi(x) + (1 — p)g(x)

GG ) s
(+1()( Y) )

Therefore, the approach involves minimizing the ratio
g(x)/l(x) to obtain a new x. Subsequently, the new x
is reinserted into the function, and the iterative process
continues to adapt both the functions /(x) and g(x). This
iterative cycle persists until the predetermined number of
iterations is reached, resulting in the completion of the
hyperparameter optimization [32].

Learning rates are key in RL, shaping learning speed
and quality, and striking a balance between exploration and
exploitation. The discount factor influences the agent’s time
preference for rewards, impacting long-term planning and
risk-taking in RL tasks. Proper tuning of these parameters is
essential for achieving success in various RL applications.
In the study, the learning rate (1) and discount factor (y)
parameters were optimized for all RL algorithms to determine
their most suitable values. The results, as illustrated in
Figure 2, reveal that the best-performing n and y values
cluster in the same region. The contour plot uses darker colors
to indicate higher rewards. Specifically, the most effective
n value is 8.27¢~*, and the optimal discount factor value
is 0.96979, resulting in a corresponding reward value of
294.016.

As depicted in Figure 3, similar outcomes are observed for
the A2C algorithm. Nevertheless, it’s important to note that

Ely(x) =
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FIGURE 2. Contour plot for learning rate and discount factor with
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FIGURE 3. Contour plot for learning rate and discount factor with
objective value of A2C algorithm.

the A2C reward value is notably lower, standing at 120.461,
in comparison to PPO.

The optimized values for the SAC algorithm are concen-
trated in a tight cluster, as illustrated in Figure 4. During the
optimization process of the SAC algorithm, the reward value
surpassed 300, triggering an early stop at the 2547 epoch
using the EarlyStop callback. This resulted in a remarkably
high reward value of 319.501.

Similar to A3C, the parameters yielding the best results are
clustered in the lower right corner of the contour plot shown
in Figure 4. In this context, TD3 achieved the best results with
values of 9.78e-4 for n and 0.97857 for y, respectively. The
highest reward achieved with TD3 is 292.599.

In the field of reinforcement learning, several key
concepts and techniques enhance the training of agents.
Generalized Advantage Estimation (GAE) is one such
technique that focuses on estimating the advantage func-
tion, providing a more accurate measure of an action’s
superiority or inferiority compared to the average action in
a given state. The GAE incorporates a parameter known
as (A) to balance the consideration of short-term and
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FIGURE 5. Contour plot for learning rate and discount factor with
objective value of TD3 algorithm.

long-term rewards. Entropy coefficient, represented as (8)
is a vital hyperparameter utilized in reinforcement learning
algorithms like PPO and A2C. It governs the policy
distribution’s entropy, enabling the fine-tuning of the balance
between exploration and exploitation. Lastly, Polyak update
(1), stabilizes training in deep reinforcement learning by
maintaining two sets of parameters - the ‘“target” and
“current” networks. The Polyak update gradually modifies
the target network’s parameters, reducing variance and
preventing rapid updates to ensure a more stable learning
process.

In this study, the parameters (A), (8), and (r) were
optimized. It is important to note that these parameters
are specific to certain RL algorithms used in this study
and are presented separately in Table 1. Additionally,
the impact of all hyperparameters on the performance
of the RL algorithms is visualized in Figure 6. Notably,
as depicted in the figure, the y parameter stands out
with a more significant impact compared to the other
hyperparameters.
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TABLE 1. Optimal hyperparameters achieved through optimization
process.

Hyperparameters PPO A2C SAC TD3
Learning Rate (1) 827e~%  56de=T  252¢73 978 %
Discount Factor (v) 0.96979 0.96685 0.96667 0.97857
GAE Parameter (\) 0.92680 0.91653 - -

Entropy Coef. (3) 1.99e75  1.04e~4 - -

Polyak update (7) - - 168!  4.88e 2

TABLE 2. Test scores (Rewards) for optimal RL algorithms on bipedal
walker.

Test N PPO A2C SAC TD3
Test-1 41.9 -111.4 320.7 281.3
Test-2 307.0 -131.7 3204 279.0
Test-3 306.4 -105.8 320.0 271.0
Test-4 305.7 -113.8 320.7 278.7
Test-5 117.3 -122.6 320.6 276.1
Test-6 308.5 -109.9 319.5 280.3
Test-7 20.9 -120.6 319.5 279.5
Test-8 23.0 -129.7 320.9 279.3
Test-9 310.1 -147.1 320.8 276.9
Test-10 72.4 -129.8 3194 278.0
Mean (1-10) 181.3 -122.2 320.3 278.6

The optimization process times were as follows: it
took about 5 hours for 1000 epochs of PPO training,
6 hours for 1000 epochs of A2C training, 18 hours for
248 epochs of SAC training, and 43 hours for 1000 epochs
of TD3 training. Notably, the SAC training process was
terminated at the 248" epoch due to the earlyStop
callback.

RL algorithms with optimized hyperparameters were
tested 10 times in the same environment, and a performance
analysis was conducted. The results are presented in Table 2.
While PPO exceeded 300 points in a few of the tests,
it achieved an average score of 181.3 points after 10 tests.
On the other hand, A2C failed all of the tests. SAC,
in contrast, consistently scored approximately 320 points in
all tests, resulting in a satisfactory average of 320 points. TD3
consistently ranked as the second-best algorithm with a score
of about 280. Despite PPO exceeding 300 points in some
tests, it struggled to maintain the expected performance con-
sistently. As evident, SAC emerged as the best RL algorithm
for this study, showcasing both high stability and a high
score.
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FIGURE 6. Importance of hyperparameters on objective value; a) PPO, b) A2C, c) SAC, d) TD3.

Frame-691

FIGURE 7. SAC performance for bipedal walker v3 (Frames 1-691 from Video File). Video link: https://youtu.be/R2gQGgfl4WQ .

V. FINDINGS AND FUTURE RESEARCH DIRECTIONS

The video capturing the best results achieved by SAC
was recorded, resulting in 691 frames. Using the SAC
algorithm, the bipedal robot successfully completed the
course from the starting point to the finishing point
in approximately 14 seconds. Each frame was labeled
with both the frame number and the corresponding time
in seconds. Several images from this study can be
seen in Figure 7. Also, the video is available in link:
https://youtu.be/R2gQGgfJ4WQ.

The terrain used in this study consists of the standard
environment prepared for the GYM, featuring slightly
uneven terrain. However, when opting for a Hardcore
environment, characterized by the presence of ladders,
stumps, and pitfalls, the robot encounters difficulties and
may fail. Therefore, if the robot is intended to navigate
such challenging terrain, the procedures outlined in the
study must be repeated with the Hardcore parameter set
to True. The hardcore version of the terrain is shown
in Fig. 8.

The insights presented in this paper extend their rel-
evance to a broader spectrum of walking algorithms.
To enable real-world application, the creation of life-size
robot drawings and the implementation of all outlined
processes in a simulation environment are paramount.
Training the RL model with a simulated robot that mirrors

VOLUME 12, 2024
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FIGURE 8. Hardcore environment with ladders, stumps, pitfalls.

real-world characteristics enhances the potential for effective
real-time control applications. Additionally, assessing the
viability of deploying bipedal locomotion strategies in
challenging environments, featuring unpredictable terrain
and dynamic obstacles, highlights the adaptability of the
proposed approach. In the context of real-time imple-
mentation, synchronizing the sampling time between the
simulation and the real-time controller is crucial, amplifying
the utility of the controller developed in simulation within
the real-time system. These considerations underscore the
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foundational role of this work in real-time applications,
paving the way for practical implementations across diverse
contexts.

Exploring various robot structures, including quadrupeds
and hexapods, goes beyond the bipedal walker, offer-
ing insights into the generalizability of the optimization
methodology. Further, investigating real-world challenges
like uneven terrain and obstacles enhances the practicality
of the proposed RL optimization. Transfer learning, multi-
agent systems, adversarial training, and online learning
mechanisms provide avenues for understanding collabora-
tive interactions, robustness, and adaptability. Additionally,
studying sensor variability addresses how fine-tuned RL
algorithms respond to uncertainties. These future research
directions aim to emphasize current findings’ significance
and pave the way for a comprehensive understanding
of RL-based locomotion in diverse robotic systems and
environments.

VI. CONCLUSION

This study presented a comparative approach on RL-based
algorithms used in the walking control of two-legged robots.
Popular algorithms such as PPO, A2C, SAC, and TD3 RL
algorithms were trained on the GYM bipedal walker robot
and its environment. During training, parameters such as
learning rate, discount factor, generalized advantage estima-
tion, entropy coefficient, and Polyak update parameters were
optimized with TPE optimization to achieve the best training
results. This way, an attempt was made to obtain the highest
possible performance from RL algorithms. Additionally, the
importance of these optimized hyperparameters for each
algorithm was analyzed. Ultimately, the discount factor was
considered the most important parameter. Furthermore, the
optimization distributions of learning rate and discount factor
parameters were shown on the objective function, indicating
where the clusters were mostly located. Subsequently, using
the obtained optimal hyperparameters, all RL algorithms
were subjected to 10 tests each, and the reward values
from each test were compared. As a result of the study,
the SAC-based RL algorithm was found to be the most
suitable solution, achieving both high stability and the highest
score. SAC managed to obtain a score of approximately
320 in all tests, while TD3 came closest with a score
of around 280. PPO, on the other hand, exceeded a
score of 300 in some tests but could not consistently
achieve this value in every test, indicating insufficient
stability, with an average score of 181. A2C performed
poorly in all tests. In conclusion, it can be said that the
SAC-based RL algorithm is the most suitable for bipedal
robots.
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