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ABSTRACT This study presents a robust estimation-based control approach for nonlinear systems with
generalized one-sided Lipschitz (OSL) conditions projected for delay measurement. A control scheme
was devised for this family of nonlinear systems by deploying the Lyapunov–Krasovskii (LK) method
for the delayed system and by encompassing the generalized OSL inequality without using the quadratic
inner boundedness (QIB) condition to overcome the conservatism introduced by the QIB condition. The
stability of the resulting system is attained by employing a delay-range-dependent technique, while the
derivative of the LK functional is scouted usingWirtinger’s inequality, which shrinks the conservativeness of
typical Jensen’s inequality, resulting in stability in the form of linear matrix inequalities (LMIs). Moreover,
a sufficient and necessary solution for the main results was achieved through a decoupling mechanism to
acquire the controller and estimator gains simultaneously using iterative optimization tools. To attenuate
the effects of external disturbances on the system, the L2 gain of the error with reference to the system
was computed and incorporated into the dynamics. Furthermore, the LMI-based results are handled using
the cone complementary linearization (CCL) method to authenticate the controller and observer gains via
convex optimization. Finally, a numerical example demonstrates the success of the presented robust observer
control formation for generalized OSL nonlinear systems in the presence of output delays.

INDEX TERMS Robust observer-based control, generalized one-sided Lipschitz nonlinearity, cone com-
plementary linearization, Wirtinger’s inequality.

I. INTRODUCTION
Estimating the vision-based motion of unmanned air vehi-
cles, automatic electric throttles of DC motors, PEM fuel
cells, electric machines, and various other real-life dynamical
systems is challenging in the current era [1], [2], [3], [4].
To design a feedback system, it is always desirable to find the
unknown or missing states of the system; however, for several
systems, we cannot find system states owing to the absence
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of a physical sensor. To eliminate this problem, an observer
design scheme was used to determine the unavailable states
of the system. Consequently, the observer design has gar-
nered considerable attention from researchers in the past few
decades owing to its importance in fault diagnosis, energy
system analysis, chaos-based secure communications, and
synchronization studies [5], [6], [7], [8]. When designing an
observer, the stability of the system must be ensured under
output delays and resistance to external disturbances.

A considerable amount of studies are available on observer
design using Lipschitz and one-sided Lipschitz (OSL)
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nonlinearities. The Lipschitz nonlinearity is region-based,
provides an infeasible solution for larger constant values,
and also introduces conservativeness; therefore, the OSL
nonlinearity is generally used as it covers a large range of
nonlinearities, but it also introduces conservatism owing to
the quadratic inner boundedness (QIB) limitations. However,
the aforementioned obstacles are addressed using generalized
OSL nonlinearity [9], which also does not require the use
of QIB conditions and covers the entire range of nonlinear-
ities that the Lipschitz, OSL, and QIB conditions together
may have been covered. Over the past few decades, several
observer design studies on Lipschitz and OSL nonlinearities
have been presented for continuous and discrete-time sys-
tems. For instance, the asymptotic stability of a Lipschitz
nonlinear observer is determined by having the necessary and
sufficient condition for the matrix inequality [10]. A full-
order state observer was designed for Lipschitz systems using
linear matrix inequalities (LMIs) to ensure asymptotic stabil-
ity [11]. In [12], the conservatism in the nonlinear observer
design for Lipschitz systems is reduced using the Riccati
equation in one variable for the existence of a stable solution
using the S-procedure. A recent study [13] investigated the
observer design for OSL systems in the presence of mea-
surement delays and L2 norm-based perturbations.Moreover,
in a study [14], a sufficient condition for the existence of an
observer for monotone nonlinearities and one-sided nonlin-
earities was accomplished. In another study [15], the design
of observers for OSL descriptors subject to output delays,
delays in state, disturbances, and uncertainties using the
Lyapunov–Krasovkii (LK) functional to ensure the stability
of such systems was presented. In [16], a full-order nonlinear
unknown input observer (UIO) and a reduced-order UIOwere
designed using a linear matrix inequality (LMI) approach
for OSL nonlinear systems. Another work [17] presented a
robust estimation-based controller design for OSL nonlinear
systems using Young’s inequality and a cone complementary
linearization (CCL) technique.

The simplest method for investigating the stability is the
use of a delay-independent approach. Design conservatism
in delay-dependent and delay-range-dependent schemes is
reduced by introducing a delay range starting from zero to an
upper limit or in a precise range with a lower limit not equal
to zero [18], [19], [20], [21]. Controller stabilization analy-
sis independent of delay reduces complexity but introduces
conservatism when the lower limit on delay is considered to
be zero. Delay-dependent stability schemes are utilized to
overcome traditionalism in delays in reference to a delay-
independent scheme. Moreover, a more specific condition
involves the reflection of the delay starting from a constant
lower limit (other than zero) to a definite upper limit [22],
[23], [24], [25]. In [26], a delay-range-dependent scheme
was studied to determine stability by considering Jensen’s
inequality. The dynamics involved in the measurement delays
are incorporated into the Lyapunov functional, the derivative
of which is exploited by involving Jensen’s inequality to

obtain LMI-based results for determining stability. Because
Jensen’s inequality is conservative, researchers have been
motivated to use Wirtinger’s inequality, which provides a
more accurate integral than Jensen’s inequality. Obtaining
the controller and observer gains simultaneously and inde-
pendently using an output feedback system is challenging
because of the dependability of both gains on each other.
Therefore, decoupling methods are employed to compute
both gains [27].
Motivated by the described factors, this study aims to

present observer-based control for generalized OSL nonlin-
earity under measurement delays and L2 norm-based external
disturbances using the LK functional. The derivative of the
Lyapunov functional is solved using Wirtinger’s inequal-
ity, which reduces the conservatism introduced by Jensen’s
inequality, and provides a more accurate integral than the
aforementioned inequality. The stability of a nonlinear sys-
tem is determined using the Lyapunov functional derivative
and resulting LMI. The generalized OSL (GOSL) condition
was also added to the resulting LMI. Because the feedback
loop dynamics are coupled with system errors, we cannot
calculate the observer and controller gains independently.
Therefore, we used a decoupling and CCL mechanism to
obtain the controller and observer gains. A numerical exam-
ple was presented to demonstrate the success of the proposed
robust observer control formation for generalized OSL non-
linear systems in the presence of output delays.

The main contributions of the proposed study are provided
as follows:
1. To the best of our knowledge, the current study is the first

to present a robust observer-based control scheme for gen-
eralized OSL nonlinear systems under output delays that
are subjected to disturbances. Furthermore, the method-
ology adopts straightforward computations to retrieve the
observer and controller gains using the CCL technique.

2. The regional stability of the robust estimation-based
control of nonlinear systems with delayed dynamics
is ensured by Lyapunov retreatment with Wirtinger’s
inequality results and local region selection, in contrast to
existing techniques [22], [23], [24], [25], [26]. Previously,
Jensen’s inequality was used to provide a solution of inte-
gral terms; therefore, generic treatment was a motivating
aspect of the study.

3. The proposed scheme develops a less conservative decou-
pled condition by corroborating both necessity and suf-
ficiency conditions for the solution of constraints in a
main coupled system in the presence of disturbances for
generalized OSL nonlinear systems.

The remainder of this paper is organized as follows. The
main system under consideration and the augmented system
formation are presented in Section II. In Section III, three
theorems are proposed, and their proofs are provided. The
simulation results for the moving ball simulation example are
presented in Section IV. The main results are presented in
Section V, and a few future recommendations are provided.
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II. SYSTEM DESCRIPTION
Assuming a class of nonlinear dynamic systems in the pres-
ence of output delay as follows:

ẋ (t) = Ax (t)+ Bu (t)+ f (t, x)+ d (t) ,

y (t) = Cx (t − τ (t)) , (1)

where the system state vector is given by x (t) ∈ ℜ
n , the

output measurement vector is y (t) ∈ ℜ
p, the control input

of the system is taken as u (t) ∈ ℜ
m, disturbance vector to

the system by d (t) ∈ ℜ
n, and the nonlinearity is denoted by

f (t, x) ∈ ℜ
n. A, B, and C are constant system matrices for

the linear dynamics. The continuous output function for the
delay term is τ (t), which satisfies:

0 ≤ h1 ≤ τ (t) ≤ h2,

τ̇ (t) ≤ µ. (2)

The nonlinear function in the system dynamics is assumed
to belong to the generalizedOSL condition defined below (for
reference, see [9]):
Definition 1 ( [9]): For positive definite matrices U ,V ∈

Rn and scalar σ ∈ R, the function G (t, x) is assumed to ful-
fill the generalized OSL stipulation, such that the inequality
provided below holds:

(G(z, t) − G(ẑ, t))TU (z− ẑ) ≤ σ (z− ẑ)TV (z− ẑ). (3)

The idea is to select matrices U and V to satisfy the GOSL
condition. Under these conditions, when U = V = I, the
GOSL condition becomes the traditional OSL condition,
as discussed in [9].
Assumption 1: The function f (t, x) in (1) fulfills the gen-

eralized OSL condition defined in (3).
Assumption 2: The system matrix pairs for the observ-

ability (A,C) and controllability (A,B) were detectable and
stabilizable, respectively.

This study proposes a robust observer-based control strat-
egy for generalized OSL nonlinear systems in the presence of
an output delay.

A. OBSERVER DESIGN
The estimation of all unavailable states is required to com-
pletely control nonlinear systems; for this purpose, the
observer is provided with the following dynamics:

˙̂x (t) = Ax̂ (t)+ f
(
t, x̂
)
+ Bu (t)+ Ko

(
y (t)− ŷ (t)

)
,

ŷ (t) = Cx̂ (t − τ (t)) , (4)

where Ko ∈ Rn×p is assumed to be the estimation gain, and
the estimated state for the original state x is mentioned as x̂.
To guarantee asymptotic conversion, the estimation error for
the original system and the estimated state are required, which
is mathematically expressed as follows:

e (t) = x (t)− x̂ (t) . (5)

Exploiting the time derivative for error dynamics and
including the estimation dynamics from (4), we obtain the

following relation:

ė (t) = Ae (t)+ ϕ
(
x, x̂

)
− KoCe (t − τ (t))+ d (t) ,

ϕ
(
x, x̂

)
= f (t, x)− f

(
t, x̂
)
. (6)

To establish the control algorithm, the observer dynamics
are provided by the controller according to the relation:

u (t) = Kcx̂ (t) . (7)

whereKc ∈ Rm×n represents the gain matrix of the controller.
Overall, a closed-loop system is acquired by considering the
relationship between (1) and (7) as follows:

ẋ (t)=Ax (t)+f (t, x)+BKcx (t)− BKce (t)+ d (t) . (8)

Transforming (5) and (8) into an augmented state that
encapsulates both the state and error dynamics yields:

z (t) =

[
xT (t) eT (t)

]T
,

where the state equation is obtained as follows:

ż (t) = Āz (t)+ Ā1z (t − τ (t))+ g
(
t, x, x̂

)
+ D (t) ,

A =

[
A+ BKc −BKc

0 A

]
, Ā1 =

[
0 0
0 −KoC

]
,

D (t) =

[
d (t)
d (t)

]
, and g

(
t, x, x̂

)
=

[
f (t, x)
ϕ (x, x̂)

]
. (9)

The convergence of augmented system states and estimation
states in the neighborhood of the origin is ensured by involv-
ingWirtinger’s inequality, which is integrated into the present
study and provided by Lemmas 1 and 2 below (for proofs and
results, see [8], [30], and the references therein).
Lemma 1 [8], [30]:
For a given function x, which is continuous and differ-

entiable, such that [w, v] → Rn. There subsists a matrix
M > 0 such that it fulfills,
v∫

w

ẋT (s)Mẋ(s)ds

≥
1

v− w
[x(v) − x(w)]T M [x(v) − x(w)]

+
3

v− w

x(v) + x(w) −
2

v− w

v∫
w

x(s)ds

T

×M

x(v) + x(w) −
2

v− w

v∫
w

x(s)ds

 . (10)

Lemma 2 [8], [30]:
For the function 2(α,R) defined by

2(α,R) =
1
α
ζ TW T

1 RζW1 +
1

1 − α
ζ TW T

2 RζW2,

where R ∈ Rn×n,W1,W2 ∈ Rn×m, ζ ∈ Rm, α ∈
(
0 1

)
and

n, m are positive scalars. If we select a matrix T ∈ Rn×n that
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satisfies the condition
[
R T
∗ R

]
> 0, the inequality must

fulfill

min2(α,R) =

[
W1ζ

W2ζ

]T [R T
∗ R

] [
W1ζ

W2ζ

]
. (11)

This study encapsulated the main conditions for the stability
of the estimation-based control systems for generalized OSL
nonlinear systems provided in (1). Asymptotic convergence
to the origin is provided by involving the augmented system
in (9), and the stability condition is derived by assuming the
LK functional for delayed dynamics.

III. MAIN RESULTS
The preceding section incorporated the complete derivation
and results for the stability of the coupled system and ensured
the stability of the system states asymptotically to the origin,
provided that the feedback control system was stable.
Theorem 1:
An augmented system (9), introduced by involving a gen-

eralized OSL nonlinear system in (1), observer dynamics
in (5), and controller in (7), satisfies the condition provided
in Assumptions 1 and 2, and converges asymptotically to the
neighborhood of origin. For symmetric matrices,

P =

[
P1c 0
∗ P1o

]
> 0,Q1 =

[
Q1c 0
∗ Q1o

]
> 0,

Q2 =

[
Q2c 0
∗ Q2o

]
> 0,Q3 =

[
Q3c 0
∗ Q3o

]
> 0,

Z1 =

[
Z1c 0
∗ Z1o

]
> 0,Z2 =

[
Z2c 0
∗ Z2o

]
> 0

and scalars ε1 > 0, and ε3 > 0 the z (t) such that the
following resultant inequalities exist (12), as shown at the
bottom of the next page, where

ω1,1 = ĀTP+ PĀ+ diag {ρε1U , ρε3V } +

3∑
i=1

Qi,

ω1,8 = P−
1
2
[diag {ε1U , ε3V }] ,

ω2,2 = − (1 − µ)Q3,

T1 =

[
GT3 GT4 GT5 GT6

]T
,

T2 =
[
GT7 GT8 GT5 GT6

]T
,

G3 =
[
I −I 0 0 0 0 0 0 0

]
,

G4 =
[
I I 0 0 −2I 0 0 0 0

]
,

G5 =
[
0 I −I 0 0 0 0 0 0

]
,

G6 =
[
0 I I 0 0 0 −2I 0 0

]
,

G7 =
[
0 I 0 −I 0 0 0 0 0

]
,

G8 =
[
0 I 0 I 0 0 −2I 0 0

]
,

φ1 =

[
Z̃1 0
∗ Z̃1

]
, φ2 =

[
Z̃2 0
∗ Z̃2

]
,

Z̃1 =

[
Z1 0
0 3Z1

]
, Z̃2 =

[
Z2 0
0 3Z2

]
.

Proof: Assume an LK functional [13], [26] for the
delayed dynamics of the augmented system as follows:

V (z)=zTPz+

t∫
t−τ (t)

zT (α)Q3z(α)dα+

2∑
i=1

t∫
t−hi

zT (α)Qiz(α)dα

+

0∫
−h1

t∫
t+θ

h1żT (α)Z1ż(α)dαdθ

+

−h1∫
−h2

t∫
t+θ

h12żT (α)Z2ż(α)dαdθ. (13)

The Lyapunov functional time derivative is exploited to guar-
antee the stability conditions, and is required to ensure that the
resultant is negative definite for asymptotic stability. Thus,
the time derivative of (13) is expressed as follows:

V̇ (z, t) ≤ 2zT (t)Pż (t)

+

2∑
i=1

{
zT (t)Qiz (t)− zT (t − hi)Qi

× z (t − hi)} + żT (t)
{
h21Z1 + h212Z2

}
ż (t)

+ zT (t)Q3z (t)

− (1 − µ) zT (t − τ (t))Q3z (t − τ (t))

−

t∫
t−h1

h1żT (α)Z1ż (α) dα

−

t−h1∫
t−h2

h12żT (α)Z2ż (α) dα. (14)

Using the dynamics in Equation (9) and substituting the
resultant into Equation (14), we obtain:

V̇ (z, t)

≤ 2zT (t)P
(
Az (t)+A1z (t − τ (t))+ g

(
t, x, x̂

)
+ D (t)

)
+

3∑
i=1

{
zT (t)Qiz (t)

}
− (1 − µ) zT (t − τ (t))Q3z (t − τ (t))

−

2∑
i=1

zT (t − hi)Qiz (t − hi)

+
(
Az (t)+ A1z (t − τ (t))+ g

(
t, x, x̂

)
+ D (t)

)T
×

{
h21Z1 + h212Z2

} (
Az (t)+ A1z (t − τ (t))

+g(t, x, x̂) + D (t)
)

−

t∫
t−h1

h1żT (α)Z1ż (α) dα −

t−h1∫
t−h2

h12żT (α)Z2ż (α) dα.

(15)
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The integral terms in the inequality in (15) are further treated
by dividing the integral as follows:

−

t∫
t−h1

h1żT (α)Z1ż (α) dα

= −

t∫
t−τ(t)

h1żT (α)Z1ż (α) dα −

t−τ(t)∫
t−h1

h1żT (α)Z1ż (α) dα.

Moreover, involving Wirtinger’s inequality provided in
Lemma 1, it renders the following:

−

t∫
t−τ(t)

h1żT (α)Z1ż (α) dα −

t−τ(t)∫
t−h1

h1żT (α)Z1ż (α) dα

≤ −
h1
τ (t)

[z (t)− z (t − τ (t))]T Z1[z (t)− z (t − τ (t))]

−
3h1
τ (t)

z (t)+ z (t − τ)−
2
τ (t)

t∫
t−τ(t)

z (α) dα


T

× Z1

z (t)+ z (t − τ (t))−
2
τ (t)

t∫
t−τ(t)

z (α) dα


−

h1
h1 − τ (t)

[z (t − τ (t))− z (t − h1)]T Z1 [z (t − τ (t))

−z (t − h1)]

−
3h1

h1 − τ (t)

z (t − τ (t))+ z (t − h1)−
2

h1 − τ (t)

×

t−τ(t)∫
t−h1

z (α) dα


T

×Z1

z (t−τ (t))+z (t − h1)−
2

h1−τ (t)

t−τ(t)∫
t−h1

z (α) dα

 .
(16)

By defining σ as follows:

σ =

 zT (t) zT (t − τ (t)) zT (t − h1) zT (t − h2)

×
1
τ (t)

t∫
t−τ(t)

zT (α) dα
1

τ (t)− h1

t−h1∫
t−h2

zT (α) dα

×
1

h2 − τ (t)

t−τ(t)∫
t−h2

zT (α) dαgT
(
t, x, x̂

)
DT


T

,

G3,G4,G5, and G6 as follows:[
z (t) z (t − τ)

]
=
[
I −I 0 0 0 0 0 0 0

]
σ

= G3σ = σ1, z (t) z (t − τ) 2
τ(t)

t∫
t−τ(t)

zT (α) dα


=
[
I I 0 0 −2I 0 0 0 0

]
σ = G4σ = σ2,[

z (t − τ) z (t − h1)
]

=
[
0 I −I 0 0 0 0 0 0

]
σ = G5σ = σ3,[

z (t − τ) z (t − h1) −
2

h1−τ(t)

t−τ∫
t−h1

zT (α) dα

]
=

[
0 I I 0 0 −2I 0 0 0

]
σ = G6σ = σ4.



(17)

Moreover, from (17), we can obtain (16) as follows:

−

t∫
t−h1

h1żT (α)Z1ż (α) dα

≤ −
h1
τ (t)

σ T1 Z1σ1 −
3h1
τ (t)

σ T2 Z1σ2

−
h1

h1 − τ (t)
σ T3 Z1σ3 −

3h1
h1 − τ (t)

σ T4 Z1σ4,

= −
h1
τ (t)

σ TGT3 Z1G3σ −
3h1
τ (t)

σ TGT4 Z1G4σ



ω1,1 PĀ1 0 0 0 0 0 ω1,8 P h1ĀT h12ĀT

∗ ω2,2 0 0 0 0 0 0 0 h1ĀT1 h12ĀT1
∗ ∗ −Q1 0 0 0 0 0 0 0 0
∗ ∗ ∗ −Q2 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 h1 h12
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 −h1Z

−1
1 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 ∗ −h12Z
−1
2


−

1
h1
T T1 φ1T1 −

1
h12

T T2 φ2T2 < 0,

(12)
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−
h1

h1 − τ (t)
σ TGT5 Z1G5σ −

3h1
h1 − τ (t)

σ TGT6 Z1G6σ,

= −
h1
τ (t)

σ T [GT3G
T
4 ]
[
Z1 0
0 3Z1

] [
G3
G4

]
σ

−
h1

h1 − τ (t)
σ T [GT5 G

T
6 ]
[
Z1 0
0 3Z1

] [
G5
G6

]
σ. (18)

Assuming κ and Z̃1 as follows:

κ =
τ (t)
h1

and Z̃1 =

[
Z1 0
0 3Z1

]
. (19)

Integrating the relation mentioned in (19), (18) results into:

−

t∫
t−h1

h1żT (α)Z1ż (α) dα ≤ −
1
κ
σ T

[
GT3 GT4

]
Z̃1

[
G3
G4

]
σ

−
1

1 − κ
σ T

[
GT5 GT6

]
Z̃1

[
G5
G6

]
σ. (20)

Encompassing Lemma 2 in (20) by defining, φ1 =[
Z̃1 0
∗ Z̃1

]
> 0, we have the following:

−

t∫
t−h1

h1żT (α)Z1ż (α) dα

≤ −σ T
[
GT3 GT4 GT5 GT6

]
φ1


G3
G4
G5
G6

 σ. (21)

Defining T1 =
[
GT3 GT4 GT5 GT6

]T
, renders

−

t∫
t−h1

h1żT (α)Z1ż (α) dα ≤ −σ TT T1 φ1T1σ. (22)

Similarly, employing Lemma 1 on the other integral term
in (14) provides

−

t−h1∫
t−h2

h12żT (α)Z2ż (α) dα

= −

t−h1∫
t−τ(t)

h12żT (α)Z2ż (α) dα −

t−τ(t)∫
t−h2

h12żT (α)Z2ż (α) dα

(23)

Assigning the terms G7 and G8 as follows:[
0 I 0 −I 0 0 0 0 0

]
σ = G7σ,[

0 I 0 I 0 0 −2I 0 0
]
σ = G8σ.

(24)

Using G5,G6 defined in (17) and G7,G8 defined in (24),
(23) becomes

−

t−h1∫
t−h2

h12żT (α)Z2ż (α) dα ≤

−
h12

τ (t)− h1
σ TGT5 Z2G5σ −

3h12
τ (t)− h1

σ TGT6 Z2G6σ

−
h12

h2 − τ (t)
σ TGT7 Z2G7σ

−
3h12

h2 − τ (t)
σ TGT8 Z2G8σ

= −
h12

τ (t)− h1
σ T

[
GT5 GT6

] [ Z2 0
0 3Z2

] [
G5
G6

]
σ

−
h12

h2 − τ (t)
σ T

[
GT7 GT8

] [ Z2 0
0 3Z2

] [
G7
G8

]
σ. (25)

Furthermore, defined α2 as follows:

α2 =
τ (t)− h1
h2 − h1

, (26)

and utilizing (26) in (25) renders

−

t−h1∫
t−h2

h12żT (α)Z2ż (α) dα

≤ −
1
α2

[
σ T

[
GT5 GT6

]
Z̃2

[
G5
G6

]
σ

]
−

1
1 − α2

[
σ T

[
G7 G8

]
Z̃2

[
G7
G8

]
σ

]
. (27)

Implementing Lemma 2 on (27) and by defining φ2 =[
Z̃2 0
∗ Z̃2

]
> 0, we obtain

−

t−h1∫
t−h2

h12żT (α)Z2ż (α) dα

≤ −σ T
[
GT5 GT6 GT7 GT8

]
φ2


G5
G6
G7
G8

 σ. (28)

Furthermore, define T2 =
[
GT5 GT6 GT7 GT8

]T and use it
in (28) to obtain

−

t−h1∫
t−h2

h12żT (α)Z2ż (α) dα ≤ −σ TT T2 φ2T2σ. (29)

By substituting (22) and (29) into (14), we obtain the
following relationship for Lyapunov:

V̇ (z, t)

≤ zT (t)P
(
Āz (t)+ Ā1z (t − τ (t))+ g

(
t, x, x̂

)
+ D

)
+

(
zT (t) ĀT +zT (t − τ (t)) ĀT1 +gT

(
t, x, x̂

)
+D

)
Pz (t)

+

3∑
i=1

zTQiz− (1 − µ) zT (t − τ (t))Q3z (t − τ)

−

2∑
i=1

zT (t − hi)

×Qiz (t − hi)+
[
Āz (t)+Ā1z (t − τ (t))+ g

(
t, x, x̂

)
+D

]T
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×

[
h21Z1+h

2
12Z2

] [
Āz (t)+Ā1z (t−τ (t))+g

(
t, x, x̂

)
+D

]
− σ TT T1 φ1T1σ − σ TT T2 φ2T2σ.

Using σ defined in (16), the time-varying terms are sepa-
rated to obtain (30), as shown at the bottom of the page.
From the generalized OSL condition stated in Assump-
tion 1, with the scalars assumed as ε1 > 0 and
ε3 > 0 resulted into

zT (t) diag {ρε1U , ρε3V } z (t)

−zT (t) diag {ε1I , ε3I } g
(
t, x, x̂

)
> 0.

The above inequality results in the following relation
using (16), and can be written as (31), shown at the bottom of
the page.
Integrating (31) in (30), renders (31(a)), as shown in the

equation at the bottom of next page.
Incorporating the inequality for L2 gain reduction, the

Lyapunov functional will be revised as follows:

J (z, t) = V̇ (z, t) + γ−1zT z− γDTD < 0,

=

t∫
0

V̇ (z, t)dt +

t∫
0

γ−1zT zdt −

t∫
0

γDTDdt < 0,

=V (z, t)−V (z, 0)+

t∫
0

γ−1zT zdt −

t∫
0

γDTDdt<0,

√
zT zdt = γ

√√√√√ t∫
0

DTDdt, ∥z∥2 < γ ∥D∥2 . (32)

Using Eq. (31) and Eq. (32) we can write J (z, t), as shown
in the equation (31(b)) at the bottom of the next page.

By applying Schur’s complement to (32), the form of (10)
is obtained. This completes the proof of Theorem 1:
Remark 1: The feedback control of Lipschitz and OSL

nonlinear systems has been debated for the past decade [8],
[9], [10], [11], [12]. The Lipchitz condition offers less generic
stability, as it encapsulates a small class of nonlinear sys-
tems. For OSL, nonlinearity integrates the QIB inequality
to provide a feasible solution. To incorporate the lower
complexity offered by QIB and broaden the scope, a general-
ized one-sided Lipchitz condition is assumed in this study.
This condition can be redefined as a special case of non-
linear Lipschitz and one-sided nonlinear Lipschitz systems.
Additionally, a generalized OSL constant may acquire more
features and scalar selection through Monte Carlo simula-
tions, as in [9], to ensure the stability of the error dynamics
for various systems.
Remark 2: The scheme proposed in Theorem 1 involves a

robust delay range-dependent stability criterion for solving
the feedback stability problem. Previous approaches offer
the stability condition of the system without considering the
impact of delayed terms, as proposed in [22], [23], [24],
and [25]. This study involves a more generic delay-range-
dependent approach with nonzero upper and lower bounds.
This aids in its effective application to real-time problems.
Remark 3: The estimation-based delay-range-dependent

approach has been studied previously [28]. Jensen’s inequal-
ity was involved in treating complex integral terms that
offered a certain conservatism. To eradicate the problem

V̇ (z) ≤ σ T



ĀTP+ PA+

3∑
i=1

Qi PĀ1 0 0 0 0 0 P P

∗ −(1 − µ)Q3 0 0 0 0 0 0 0
∗ ∗ −Q1 0 0 0 0 0 0
∗ ∗ ∗ −Q2 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0


σ

+ σ T [ Ā Ā1 0 0 0 0 0 I I ]T [h21Z1 + h212Z2][ Ā Ā1 0 0 0 0 0 I I ]σ

− σ TT T1 φ1T1σ − σ TT T2 φ2T2σ. (30)

σ T (t)



diag
{
ρε1U
−ρε3V

}
0 0 0 0 0 0 −

1
2diag

{
ε1U
−ε3V

}
0

∗ 0 0 0 0 0 0 0 0
∗ ∗ 0 0 0 0 0 0 0
∗ ∗ ∗ 0 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0


σ (t) > 0 (31)
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and enhance stability, the present study proposed in The-
orem 1 involves Wirtinger’s inequality, which extends to
traditional Jensen’s inequality but offers less conservatism.
To the best of our knowledge, this is the first study that
covers a robust delay-range-dependent approach for the
estimation-based control of a generalized OSL nonlinear sys-
tem with Wirtinger’s inequality.

Theorem 1 ensures the stability of the robust estimation-
based controller scheme. The observer and controller gains
are identified by solving the matrix inequalities for the
dynamics mentioned in (1). However, the observer and con-
troller are not retrieved simultaneously from Theorem 1
matrix inequalities. Hence, the decoupling approach is used
in the forthcoming theorem to compute both gains simultane-
ously and independently using simulation tools.
Theorem 2: For the existence of a solution to the con-

straints provided in Theorem 1, the following sufficient and
necessary condition is provided by the matrix inequalities,
(33) and (34), as shown at the bottom of the next page,
where,

ψ1,1 = P̄1cAT + AP̄1c + BK̄c + K̄T
c B

T
+ P̄1c (ρε2V ) P̄1c

+

3∑
i=1

�i,

ψ1,8 = I −
1
2
ε1UP̄1c,

ψ2,2 = − (1 − µ)�3,

ψ1,9 = I ,

ψ1,10 = h1
[
kTc B

T
+ P̄1cAT

]
,

ψ1,11 = h12
[
kTc B

T
+ P̄1cAT

]
,

�1 = P̄1cQ1cP̄1c,

�2 = P̄1cQ2cP̄1c,

�3 = P̄1cQ3cP̄1c,

φ1C =


81 0 0 0
0 381 0 0
0 0 81 0
0 0 0 381

 ,

φ1C =


82 0 0 0
0 382 0 0
0 0 82 0
0 0 0 382

 ,
81 = P̄1cZ1cP̄1c,82 = P̄1cZ2cP̄1c, 41 = P̄1c8̄1P̄1c,

42 = P̄1c8̄2P̄1c, λ1,1 = ATP1o + P1oA+ ρε4V+

3∑
i=1

Qio,

λ1,2 = −K̄oC, λ1,8 = P1o +
1
2
(αε4U) ,

λ1,9 = P1o, λ1,10 = h1ATP1o,

λ1,11 = h12ATP1o, λ2,10 = −h1CT K̄T
o ,

λ2,11 = −h12CT K̄T
o , K̄o = P1oKo,

ζ1 = P1oZ
−1
1o P1o, ζ2 = P1oZ

−1
2o P1o,

φ1o =


Z1o 0 0 0
0 3Z1o 0 0
0 0 Z1o 0
0 0 0 3Z1o

 ,

V̇ (z, t)≤σ T



ω1,1 PĀ1 0 0 0 0 0 ω1,8 P
∗ ω2,2 0 0 0 0 0 0 0
∗ ∗ −Q1 0 0 0 0 0 0
∗ ∗ ∗ −Q2 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0


σ+σ T

[
Ā Ā1 0 0 0 0 0 I I

]T

×

[
h21Z1 + h212Z2

] [
Ā Ā1 0 0 0 0 0 I I

]
σ − σ TT T1 φ1T1σ − σ TT T2 φ2T2σ. (31a)

J (z, t)≤σ Td



W PĀ1 0 0 0 0 0 ω1.8 P
∗ ω2,2 0 0 0 0 0 0 0
∗ ∗ −Q1 0 0 0 0 0 0
∗ ∗ ∗ −Q2 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ I


×σd+σ Td

[
Ā Ā1 0 0 0 0 0 I I

]

× (h21Z1+h
2
12Z2) ×

[
Ā Ā1 0 0 0 0 0 I I

]
σd − σ Td T

T
3 φ1T3σd − σ Td T

T
4 φ2T4σd , (31b)
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φ2o =


Z2o 0 0 0
0 3Z2o 0 0
0 0 Z2o 0
0 0 0 3Z2o

 ,

are satisfied for the real matrices P−1
1c = P̄1c > 0, and P−1

1o =

P̄1o > 0. The controller gain is given by Kc = P1cK̄c, and the
observer gain is given by Ko = P̄1oK̄o.

Proof: Sufficiency: Applying congruence transforma-
tions with diag {P1c,P1c,P1c,P1c,P1c,P1c,P1c, I , I , I , I }
and diag

{
I , I , I , I , I , I , I , I , P̄1o, P̄1o, P̄1o

}
to inequali-

ties (33) and (34), respectively, results in (35), as shown at
the bottom of the next page, where

ψ̃1,1 = ATP1c + P1cA+ P1cK̄c + K̄T
c P1c + (ρε2U)

+

3∑
i=1

Qi,1,

ψ̃2,2 = − (1 − µ)Q3c,

ψ̃1,8 = P1c −
1
2
ε2UI ,

ψ̃1,9 = P1c,

ψ̃1,10 = h1
[
kTc B

T
+ AT

]
,

ψ̃1,11 = h12
[
kTc B

T
+ AT

]
,

φ̃1C =


Z1 0 0 0
0 3Z1 0 0
0 0 Z1 0
0 0 0 3Z1

 ,

φ̃2C =


Z2 0 0 0
0 3Z2 0 0
0 0 Z2 0
0 0 0 3Z2


and (36), as shown at the bottom of the next page, where

λ̃1,9 = I , λ̃1,10 = h1AT , λ̃1,11 = h12AT ,

λ̃2,10 = −h1CTKT
o , λ̃2,11 = −h12CTKT

o .

Furthermore assigning

03 =



−BKcP1c 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0


(37)

01 =



ψ1,1 0 0 0 0 0 0 ψ1,8 ψ1,9 ψ1,10 ψ1,11
∗ ψ2,2 0 0 0 0 0 0 0 0 0
∗ ∗ −�1 0 0 0 0 0 0 0 0
∗ ∗ ∗ −�2 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 h1I h12I
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −h141 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −h1242





− T T1 φ1cT1 − T T2 φ2cT2 < 0

(33)

02 =



λ1,1 λ1,2 0 0 0 0 0 λ1,8 λ1,9 λ1,10 λ1,11
∗ λ2,2 0 0 0 0 0 0 0 λ2,10 λ2,11
∗ ∗ −Q12 0 0 0 0 0 0 0 0
∗ ∗ ∗ −Q22 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 h1P1o h12P1o
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −h1ζ1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −h12ζ2





− T T1 φ1oT1 − T T2 φ2oT2 < 0

(34)
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and using (36)-(38), we have[
01 0T3
∗ ς02

]
< 0, (38)

where ς > 0 represents a relatively large number of
cases. By interchanging the columns and rows in (38) and
using (20) and (21), we obtain the form in (9) using P =

diag {P1c,P1o} .:
Necessity: Assume a positive-definite symmetric matrix P

such that it fulfills the conditions provided in Theorem 1 and
a matrix P is defined as follows:

P =

[
⌢

P1c ϖ

∗ ϖ

]
and P =

[
ϖ ϖ

∗
⌢

P1o

]
,

where ϖ is any entry having no impact overall on math-
ematics. Integrating the relation P for both controller and
observer matrix inequalities in (9), we have (39) and (40),
as shown at the bottom of the next page.

Multiplying the following inequalities with (39) and (40)
as per the congruence transformation rules, as shown in the
equation at the bottom of page 12.

Further, employing P̂−1
1c = P̄1c and P̂1o = P1o,, the forms

of inequalities (33) and (34) are obtained.
Remark 4: The presented results of Theorem 2 provide

sophisticated circumstances for identifying the observer gain
Ko and controller gain Kc for the system in (8). Decoupling
schemes are explored in literature for various augmented

matrices for linear and nonlinear systems as provided in (
[26], [29] and references therein). The constraints in The-
orem 2 ensure less complex computations compared to
Theorem 1 and ensure simultaneous and independent con-
straints to compute the gains for the controller and observer
using the simulation tools.
Remark 5: The results of Theorem 2 offer more generic,

sufficient, and necessary conditions for solving the matrix
inequality for the robust estimation-based design in The-
orem 1. The decoupled methodology provides less-tedious
conditions for attaining observer and controller gains for a
robust design involving measurement delays. The resultant
matrices obtained in Theorem 2 are more convenient for
providing a solution because the bilinear matrix inequality
terms in 03 [29] are avoided.
A solution to Theorem 2 that treats the bilinear terms and

provides a convenient solution is required. This is provided
in Theorem 3 with the most probable cases for the nonlinear
terms.
Theorem 3: For the solution of inequalities in Theorem 2

in (21), symmetric matrices P > 0,Q1,1 > 0,Q2 > 0,Q3 >

0,Z1 > 0,Z2 > 0 and K̄1 of proper dimension and anyone of
the following result exists.

(i) If ρε2V + γ̄ > 0, (41), as shown at the bottom of
page 12, where ψ̂1,1 = P̄1cAT +AP̄1c+BK̄1+ K̄T

1 B
T

+

3∑
i=1
�i.

01=



ψ̃1,1 0 0 0 0 0 0 ψ̃1,8 ψ̃1,9 ψ̃1,10 ψ̃1,11

∗ ψ̃2,2 0 0 0 0 0 0 0 0 0
∗ ∗ Q1c 0 0 0 0 0 0 0 0
∗ ∗ ∗ Q2c 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ I h1I h12I
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −h1Z

−1
1c 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −h12Z
−1
2c


−σ TT T1 φ̃1cT1σ−σ TT T2 φ̃2cT2σ <0,

(35)

02 =



λ1,1 λ1,2 0 0 0 0 0 λ1,8 λ̃1,9 λ̃1,10 λ̃1,11

∗ λ2,2 0 0 0 0 0 0 0 λ̃2,10 λ̃2,11
∗ ∗ −Q12 0 0 0 0 0 0 0 0
∗ ∗ ∗ −Q22 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 0 h1I h12I
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ I 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −h1Z

−1
1o 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −h12Z
−1
2o


−σ TT T1 φ1oT1σ

− σ TT T2 φ2oT2σ < 0 (36)
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(ii) If ρε2V + γ̄ = 0, (42), as shown at the bottom of the
next page, where ψ̂1,1 = P̄1cAT+AP̄1c+BK̄1+K̄T

1 B
T
+

3∑
i=1
�i.

(iii) If ρε2V + γ̄ < 0, (43), as shown at the bottom of
page 13, whereψ1,1 = P̄1cAT +AP̄1c+BK̄1+ K̄T

1 B
T

+

3∑
i=1
�i − J1 and J = −P1c(ρε2V + γ̄ )P1c.



ω1,1 ϖ P̂1cA1 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ ω1,8 ϖ P̂1c ϖ h1AT ϖ h12AT ϖ

∗ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ

∗ ∗ ω2,2 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ h1AT1 ϖ h12AT1 ϖ

∗ ∗ ∗ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ

∗ ∗ ∗ ∗ − Q1 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ

∗ ∗ ∗ ∗ ∗ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ

∗ ∗ ∗ ∗ ∗ ∗ − Q2 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 ϖ 0 ϖ h1 ϖ h12 ϖ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϖ ϖ ϖ ϖ ϖ ϖ ϖ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − γ I ϖ 0 ϖ 0 ϖ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϖ ϖ ϖ ϖ ϖ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − h1Z
−1
1c ϖ 0 ϖ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϖ ϖ ϖ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ − h12Z
−1
2c ϖ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϖ


− T T1 φ1T1 − T T2 φ2T2 < 0 (39)

ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ

∗ ω̂1,1 ϖ P̂1oA1 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ ω̂1,8 ϖ P̂1o ϖ h1AT ϖ h12AT

∗ ∗ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ

∗ ∗ ∗ ω̂2,2 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ h1AT1 ϖ h12AT1
∗ ∗ ∗ ∗ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ

∗ ∗ ∗ ∗ ∗ −Q̂1 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ 0
∗ ∗ ∗ ∗ ∗ ∗ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ

∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q̂2 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 ϖ 0 ϖ 0 ϖ 0 ϖ 0 ϖ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 ϖ 0 ϖ 0 ϖ 0 ϖ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϖ ϖ ϖ ϖ ϖ ϖ ϖ ϖ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 ϖ 0 ϖ −h1 ϖ −h12
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϖ ϖ ϖ ϖ ϖ ϖ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ I ϖ 0 ϖ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϖ ϖ ϖ ϖ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −h1Ẑ
−1
1o ϖ 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ϖ ϖ

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −h12Ẑ
−1
2o


− T T1 φ1T1 − T T2 φ2T2 < 0. (40)
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Proof: For the case of ρε2V + γ̄ > 0, by applying
Shur’s compliment on the inequality in (33), we obtain (41);
thus, both these inequalities are equivalent to |ρε2V + γ̄ | ≥

ρε2V + γ̄ . Therefore, if (41) is satisfied, then (33) is also

satisfied. In the case of ρε2V = 0, the inequality in (33)
is reduced to (42) and both are equivalent. By removing the
last row and column of (41), (42) is obtained. In the case that
ρε2V < 0,(43) is obtained by setting J = −P1c(ρε2V +



P̂−1
1c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 P̂−1

1c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 P̂−1

1c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 P̂−1

1c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 P̂−1

1c 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 P̂−1

1c 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 P̂−1

1c 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0




0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 P̂1o 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 P̂1o



01 =



ψ̂1,1 0 0 0 0 0 0 ψ1,8 ψ1,9 ψ1,10 P̄1c
√

|ρε2V + γ̄ |

∗ ψ2,2 0 0 0 0 0 0 0 0 0
∗ ∗ −�1 0 0 0 0 0 0 0 0
∗ ∗ ∗ −�2 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 h1I h12I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −h141 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −h1242 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −V


− σ TT T1 φ1cT1σ

− σ TT T2 φ2cT2σ < 0 (41)

01 =



ψ̂1,1 0 0 0 0 0 0 ψ1,8 ψ1,9 ψ1,10
∗ ψ2,2 0 0 0 0 0 0 0 0
∗ ∗ −�1 0 0 0 0 0 0 0
∗ ∗ ∗ −�2 0 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 h1I h12I
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −h141 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −h1242


− T T1 φ1cT1 − T T2 φ2cT2 < 0 (42)
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γ̄ )P1c to (33). This implies that if ρε2V + γ̄ < |ρε2V + γ̄ |,
which also results in −J < P1 |ρε2V + γ̄ |P1 as a result if
the inequality in (41) is satisfied, then the inequality in (43)
is also satisfied.

The resulting nonlinear terms in the matrix inequalities for
Theorems 2 and 3 require treatment using the CCL algorithm
(as provided in [8], [26], [28]) for which the controller gain
Kc matrix is rendered by optimizing

minTrace

×

P1cP̄1c + J J̄ + P̄1cθ P̄1cJ̄

+

2∑
i=1
8i8̄i +44̄i + P̄1cZioP̄1c8̄i + P̄1c8̄iP̄1c4̄i

 ,
(44)

subject to[
P1c I
I P̄1c

]
≥ 0,

[
J I
I J̄

]
≥ 0,[

θ P1c
P1c T̄

J̄
]

≥ 0,
[
4k I
I 4̄k

]
≥ 0,[

8k I
I 8̄k

]
≥ 0,

[
Zkc P1c
P1c 8k

]
≥ 0,

[
8k P1c
P1c 4k

]
≥ 0,

(45)

for k = 1, 2, where θ = ρε1 + βε2, J = P̄1cθ P̄1c,8i =

P̄1cZioP̄1c and 4i = P̄1c8̄iP̄1c.
Similarly, for the observer gain matrix, the optimization of

minTrace

(
P1oP̄1o+

2∑
i=1

SiS̄i+ZioZ̄io + P1oZ̄ioP1oS̄i

)
(46)

subject to[
P1o I
I P̄1o

]
≥ 0,

[
Sk I
I SK

]
≥ 0,

[
Z̄ko P̄1o
P̄1o S̄K

]
≥ 0,

for k = 1, 2, where Si = P1oZ̄ioP1o, is required to be
performed.
Remark 6: This Theorem offers less conservative results

than Theorem 1 and provides a solution for nonlinear con-
straints using various simulation tools. For this purpose,
multiple nonlinear terms were incorporated to obtain the
results. This approach provides less conservatism, as it may
acquire positive, negative, or zero values, in contrast to the

approach of taking an upper bound in [8]. The linearization
algorithm (as proposed in [26], [28]) treats the aforemen-
tioned nonlinear terms.

IV. SIMULATION RESULTS
In this section, we describe the effectiveness of the proposed
method. Assume a system with the state equations provided
in (1) and constant matrices and nonlinearities provided as
follows:

A =

[
1 1

−1 1

]
,B =

[
1 0
0 10

]
,C =

[
1
0

]T
and

f (t, x) = −(x21 + x22 )
[
x1
x2

]
, (47)

respectively. The system in (46) identifies the motion of any
object. For instance, a robot whose motion can be reactionary
or progressive is exposed to a measurement delay of t - 0.18
+ 0.05 ∗ sin (0.01 ∗ t). The CCL technique is implemented on
the results of Theorem 3 along with the constraints mentioned
in (44) and (46). The bounds on the delays for the controller
and observer were assumed to be h1 = 0.5s and h2 = 0.6s,
h1 = 300ms, and h2 = 0.01s, respectively. The values
for µ for the controller and observer are taken as 0.1 and
0.13, respectively. The system is a globally OSL system
for ρ = 0 and ρ = −20, of the controller and observer.
The constraints for the generalized one-sided U and V , were
adopted from [9] as follows:

U = V =

[
157.8364 −10.5208
−10.5208 144.1245

]
.

After simulation, the controller and the observer gain matrix
are computed as follows:

Kc =

[
3.5964 0
2.1044 0

]
andKo =

[
-4.0965 -0.1232
-0.1229 -4.2571

]
, (48)

for γ = 40 and 200, respectively. The system states, esti-
mated states, and estimation results are presented in Figs. 1, 2,
and 3, respectively, which depict the tracking of the estimated
states to the original states, and the estimation error converges
asymptotically in the neighborhood of the origin.
To evaluate the performance of the proposed methodology

in the presence of disturbances,

d =

[
0.2 sin (12t)
0.15 cos (8t)

]
.

01 =



ψ1,1 0 0 0 0 0 0 ψ1,8 ψ1,9 ψ1,10
∗ ψ2,2 0 0 0 0 0 0 0 0
∗ ∗ −�1 0 0 0 0 0 0 0
∗ ∗ ∗ −�2 0 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0 −h1I −h12I
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −h141 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −h1242


− T T1 φ1cT1 − T T2 φ2cT2 < 0, (43)
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FIGURE 1. Original state x1 and its estimation error for the closed-loop
system in the presence of output delay.

FIGURE 2. Original state x2 and its estimation error for the closed-loop
system in the presence of output delay.

FIGURE 3. Observer error for original states of plant and the required
estimated states.

Figures 4, 5, and 6 show the plots of the states and estimation
errors for the proposed robust observer-based control in the
presence of perturbations. The estimation error converges
in the neighborhood or origin, even in the presence of a
disturbance.

FIGURE 4. Original state x1 and its estimated state of the closed-loop
system in the presence of disturbance and output delay.

FIGURE 5. Original state x2 and its estimated state of the closed-loop
system in the presence of disturbance and output delay.

FIGURE 6. Observer error for original states of plant and the required
estimated states in the presence of disturbances and delay.

A comparison of the computed upper bounds of delay to
ensure stability is summarized in Table. 1 for h2, for h1 = 10.
This shows that the proposed methodology is applicable to
broader ranges of delay, in contrast to [8]. Another notable
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TABLE 1. Allowable upper limit of h2, assuming h1 = 10s, ρ = −2.9 and
ρ = −20.

aspect of the proposed technique is that it can be employed
for a range of time delays, even with h1 ̸= 0.

V. CONCLUSION
This study explores a robust observation-based control
scheme in the presence of output time-delayed dynamics
by assuming generalized OSL nonlinearity. The estimation
technique for GOSL nonlinear systems under measurement
delays and external disturbances was exploited using the
LK functional, Wirtinger’s inequality, LMIs, decoupling, and
CCL methods. The proposed controller was based on an
observer that exhibits asymptotic convergence and is robust
against external disturbances. The LK stability method was
deployed, the derivative of which is exploited by consid-
ering Wirtinger’s inequality, which resulted in nonlinear
inequalities being converted into LMIs to guarantee stabil-
ity. Disturbance rejection was achieved through the concept
of L2-gain. A decoupling mechanism was applied to the
LMI-based results deduced from the derivative of the Lya-
punov functional to extricate the observer and controller
gains. A sufficient and necessary condition for a robust
estimation-based controller for generalized OSL nonlin-
ear systems in the presence of a measurement delay was
presented. A simulation result assuming moving ball prac-
tical systems is provided to demonstrate that the proposed
approach is applicable to a wider class of electrical and
electronic systems extended to delayed dynamics.
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